Daily retail demand forecasting using machine learning with emphasis on calendric special days
Demand forecasting is an important task for retailers as it is required for various operational decisions. One key challenge is to forecast demand on special days that are subject to vastly different demand patterns than on regular days. We present the case of a bakery chain with an emphasis on spec...
Saved in:
| Published in | International journal of forecasting Vol. 36; no. 4; pp. 1420 - 1438 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2070 1872-8200 1872-8200 |
| DOI | 10.1016/j.ijforecast.2020.02.005 |
Cover
| Abstract | Demand forecasting is an important task for retailers as it is required for various operational decisions. One key challenge is to forecast demand on special days that are subject to vastly different demand patterns than on regular days. We present the case of a bakery chain with an emphasis on special calendar days, for which we address the problem of forecasting the daily demand for different product categories at the store level. Such forecasts are an input for production and ordering decisions. We treat the forecasting problem as a supervised machine learning task and provide an evaluation of different methods, including artificial neural networks and gradient-boosted decision trees. In particular, we outline and discuss the possibility of formulating a classification instead of a regression problem. An empirical comparison with established approaches reveals the superiority of machine learning methods, while classification-based approaches outperform regression-based approaches. We also found that machine learning methods not only provide more accurate forecasts but are also more suitable for applications in a large-scale demand forecasting scenario that often occurs in the retail industry. |
|---|---|
| AbstractList | Demand forecasting is an important task for retailers as it is required for various operational decisions. One key challenge is to forecast demand on special days that are subject to vastly different demand patterns than on regular days. We present the case of a bakery chain with an emphasis on special calendar days, for which we address the problem of forecasting the daily demand for different product categories at the store level. Such forecasts are an input for production and ordering decisions. We treat the forecasting problem as a supervised machine learning task and provide an evaluation of different methods, including artificial neural networks and gradient-boosted decision trees. In particular, we outline and discuss the possibility of formulating a classification instead of a regression problem. An empirical comparison with established approaches reveals the superiority of machine learning methods, while classification-based approaches outperform regression-based approaches. We also found that machine learning methods not only provide more accurate forecasts but are also more suitable for applications in a large-scale demand forecasting scenario that often occurs in the retail industry. |
| Author | Huber, Jakob Stuckenschmidt, Heiner |
| Author_xml | – sequence: 1 givenname: Jakob surname: Huber fullname: Huber, Jakob email: jakob@informatik.uni-mannheim.de – sequence: 2 givenname: Heiner surname: Stuckenschmidt fullname: Stuckenschmidt, Heiner email: heiner@informatik.uni-mannheim.de |
| BookMark | eNqVkM1KAzEUhYNUsFbfIS8w482knUk3gtZfKLjRreE2uWNTppmSTC3z9qZUEdyom3vgcs63-E7ZwLeeGOMCcgGivFjlblW3gQzGLi-ggByKHGByxIZCVUWmCoABG6bqNCugghN2GuMKUqMSYsheb9A1PQ_UpeSW1ugt_-I5_8a3cX_XaJbOE28Ig98_dq5bclpvlhhd5K3nBhvyNjjD44aMwwTDPp6x4xqbSOefOWIvd7fPs4ds_nT_OLuaZ2YsZZcJa0HVMJGlrA2VlUK5QCVliSRqZQFsqYppKQWmNGMFFnEMFaKhemGpliM2PXC3foP9DptGb4JbY-i1AL0XpVf6W5Tei9JQ6KQhbdVha0IbY6D6P9PLH1PjOuxc67uQfP4FcH0AUJLz7ijoaBx5Q9aldqdt636HfAC_V6OA |
| CitedBy_id | crossref_primary_10_1049_tje2_12265 crossref_primary_10_1057_s41272_024_00477_7 crossref_primary_10_3390_agronomy11040667 crossref_primary_10_3390_plants13091200 crossref_primary_10_1016_j_mlwa_2021_100239 crossref_primary_10_1016_j_scitotenv_2023_165964 crossref_primary_10_1080_00207543_2024_2342019 crossref_primary_10_1016_j_ijforecast_2021_05_010 crossref_primary_10_1016_j_asoc_2024_112419 crossref_primary_10_1016_j_ijforecast_2021_11_001 crossref_primary_10_1080_08874417_2023_2240753 crossref_primary_10_1016_j_eswa_2024_126200 crossref_primary_10_1016_j_engappai_2022_105664 crossref_primary_10_32710_tekstilvekonfeksiyon_809867 crossref_primary_10_1016_j_ijpe_2020_107828 crossref_primary_10_1038_s41598_021_99542_z crossref_primary_10_3390_app13010231 crossref_primary_10_1016_j_neunet_2022_10_006 crossref_primary_10_1007_s10479_024_06348_z crossref_primary_10_1088_1757_899X_1098_5_052115 crossref_primary_10_3390_pr13020594 crossref_primary_10_1002_ajim_23429 crossref_primary_10_1016_j_cie_2024_110280 crossref_primary_10_1016_j_jclepro_2022_131852 crossref_primary_10_3390_a16090423 crossref_primary_10_1080_0951192X_2021_1972469 crossref_primary_10_3390_electronics10030227 crossref_primary_10_56038_oprd_v1i1_136 crossref_primary_10_1007_s10479_021_04429_x crossref_primary_10_1016_j_ijforecast_2021_09_012 crossref_primary_10_1016_j_procs_2022_01_298 crossref_primary_10_21605_cukurovaumfd_1514451 crossref_primary_10_1080_07421222_2023_2267317 crossref_primary_10_2139_ssrn_4213618 crossref_primary_10_1007_s42979_023_02427_3 crossref_primary_10_1016_j_mlwa_2023_100467 crossref_primary_10_1007_s13253_023_00554_1 crossref_primary_10_1155_2022_4247290 crossref_primary_10_1016_j_dss_2023_114065 crossref_primary_10_17341_gazimmfd_944081 crossref_primary_10_1057_s41270_022_00169_4 crossref_primary_10_1016_j_jretconser_2024_103991 crossref_primary_10_1016_j_ins_2023_119382 crossref_primary_10_3280_CCA2022_001003 crossref_primary_10_1108_JADEE_03_2023_0075 crossref_primary_10_3390_electronics11193194 crossref_primary_10_3390_make6040128 crossref_primary_10_55179_dusbed_1099085 crossref_primary_10_1177_14707853251315585 crossref_primary_10_1016_j_compeleceng_2022_108358 crossref_primary_10_20965_jaciii_2022_p0236 crossref_primary_10_1016_j_ejor_2023_10_039 crossref_primary_10_1016_j_ijpe_2021_108315 crossref_primary_10_3390_su141911942 crossref_primary_10_2139_ssrn_5032956 crossref_primary_10_1021_acs_est_3c08331 crossref_primary_10_1016_j_procir_2023_09_133 crossref_primary_10_1142_S0218213024500015 crossref_primary_10_1080_00207543_2024_2447927 crossref_primary_10_3389_frsus_2024_1388771 crossref_primary_10_1007_s42979_023_01888_w |
| Cites_doi | 10.1016/j.ijpe.2010.07.007 10.1287/mksc.1050.0135 10.1016/j.ijforecast.2012.10.002 10.1016/j.eswa.2010.10.082 10.1108/09600030710840822 10.1198/jasa.2011.r10138 10.1016/j.ijforecast.2016.09.004 10.1016/j.ijforecast.2018.06.001 10.1109/TKDE.2015.2457911 10.1016/S0969-6989(00)00011-4 10.1162/neco.1997.9.8.1735 10.1016/S0925-5273(03)00068-9 10.1016/j.ejor.2014.02.022 10.1016/j.ijpe.2015.09.011 10.1016/j.jfoodeng.2005.03.056 10.1016/S0169-2070(01)00110-8 10.1016/j.asoc.2005.06.001 10.1016/j.ijforecast.2006.03.001 10.1007/s10288-016-0316-0 10.1016/j.ijpe.2004.10.019 10.1016/j.ijforecast.2019.02.017 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.eswa.2013.12.011 10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q 10.1016/j.ijforecast.2015.12.011 10.1016/j.ejor.2016.07.015 10.1016/j.ejor.2015.08.029 10.1016/j.eswa.2012.01.039 10.1109/IJCNN.2010.5596686 10.1109/59.476055 10.1007/BF03396653 10.1109/IJCNN.2008.4633963 10.1080/07474938.2010.481556 10.1016/j.ijpe.2015.09.039 10.1016/j.ijforecast.2008.08.003 10.1016/j.eswa.2016.01.034 10.1057/jors.2013.174 10.1016/j.ijforecast.2008.07.005 10.1016/j.ijforecast.2011.04.001 10.1509/jmkr.37.3.383.18782 10.1287/mnsc.1090.1141 10.1146/annurev-statistics-062713-085831 10.1016/j.ijforecast.2015.12.004 10.1108/09600031311293255 10.1016/j.ejor.2013.03.039 10.1371/journal.pone.0194889 10.1016/j.ejor.2014.02.036 10.1002/1099-131X(200007)19:4<235::AID-FOR772>3.0.CO;2-L 10.1287/mksc.18.3.301 10.1016/j.ijpe.2015.10.022 10.1016/j.ejor.2006.02.006 10.1016/j.csda.2017.11.003 10.1016/S0169-2070(97)00044-7 10.1108/IJLM-04-2017-0088 10.1016/j.eswa.2017.01.022 10.1016/j.artint.2016.04.003 10.1016/j.ejor.2006.12.004 10.1016/j.ejor.2016.12.032 10.1016/j.eswa.2009.04.052 |
| ContentType | Journal Article |
| Copyright | 2020 International Institute of Forecasters |
| Copyright_xml | – notice: 2020 International Institute of Forecasters |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.ijforecast.2020.02.005 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Sciences (General) |
| EISSN | 1872-8200 |
| EndPage | 1438 |
| ExternalDocumentID | oai:ub-madoc.bib.uni-mannheim.de:54684 10_1016_j_ijforecast_2020_02_005 S0169207020300224 |
| GroupedDBID | --K --M -~X .L6 .~1 0R~ 13V 1B1 1OL 1RT 1~. 1~5 29J 3R3 4.4 457 4G. 5GY 5VS 63O 7-5 71M 85S 8P~ 96U 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFFL AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AARIN AAXUO ABEHJ ABJNI ABKBG ABLJU ABMAC ABMVD ABTAH ABUCO ABXDB ABYKQ ACBMB ACDAQ ACGFO ACGFS ACHQT ACHRH ACNTT ACRLP ACROA ADBBV ADEZE ADFHU ADMUD AEBSH AEKER AEYQN AFAZI AFFNX AFKWA AFODL AFTJW AGHFR AGJBL AGTHC AGUBO AGUMN AGYEJ AHHHB AI. AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BEZPJ BGSCR BKOJK BKOMP BLXMC BNSAS BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLX HVGLF HZ~ IHE IXIXF J1W KOM LG8 LPU LXL LXN LY1 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBM SDF SDG SDP SDS SEB SES SEW SPCBC SSB SSD SSF SSL SSZ T5K TN5 U5U VH1 WUQ XPP XYO YK3 ZMT ZRQ ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c433t-1dd08f05363fce678a3ba8336ae1f8d00d6829631a682c480daa407aacefbdef3 |
| IEDL.DBID | .~1 |
| ISSN | 0169-2070 1872-8200 |
| IngestDate | Sun Oct 26 03:51:40 EDT 2025 Thu Apr 24 22:54:50 EDT 2025 Thu Oct 02 04:36:55 EDT 2025 Fri Feb 23 02:47:09 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Neural networks Demand forecasting Classification Comparative studies Regression Forecasting practice Decision trees |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c433t-1dd08f05363fce678a3ba8336ae1f8d00d6829631a682c480daa407aacefbdef3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/abs/pii/S0169207020300224 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ijforecast_2020_02_005 crossref_primary_10_1016_j_ijforecast_2020_02_005 crossref_citationtrail_10_1016_j_ijforecast_2020_02_005 elsevier_sciencedirect_doi_10_1016_j_ijforecast_2020_02_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of forecasting |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Huang, Fildes, Soopramanien (b37) 2014; 237 Cooper, Baron, Levy, Swisher, Gogos (b21) 1999; 18 (pp. 232–238). Wang, Ramsay (b75) 1998; 23 Makridakis, Spiliotis, Assimakopoulos (b55) 2018; 13 Van Donselaar, Gaur, Van Woensel, Broekmeulen, Fransoo (b69) 2010; 56 Ben Taieb, Bontempi, Atiya, Sorjamaa (b9) 2012; 39 Di Pillo, Latorre, Lucidi, Procacci (b24) 2016; 14 Hyndman, B., D., Grose (b39) 2002; 18 Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter (b28) 2015; Vol. 28 Panapakidis (b56) 2016; 54 Ahmed, Atiya, Gayar, El-Shishiny (b3) 2010; 29 Adya, Collopy (b2) 1998; 17 Chu, Zhang (b20) 2003; 86 Kolassa (b47) 2016; 32 Bontempi, Ben Taieb, Borgne (b15) 2012 Petropoulos, Makridakis, Assimakopoulos, Nikolopoulos (b57) 2014; 237 Fildes, Ma, Kolassa (b29) 2019 Huber, Gossmann, Stuckenschmidt (b38) 2017; 76 Barrow, Kourentzes (b8) 2018; 264 (pp. 1279–1284). Hastie, Tibshirani, Friedman (b34) 2009 Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In Kolassa (b48) 2020; 36 Barrow, Crone (b6) 2016; 32 Doganis, Alexandridis, Patrinos, Sarimveis (b26) 2006; 75 Ke, Meng, Finley, Wang, Chen, Ma (b44) 2017 Crone, Hibon, Nikolopoulos (b22) 2011; 27 Trapero, Kourentzes, Fildes (b67) 2015; 66 (pp. 1–8). . Srinivasan, Chang, Liew (b63) 1995; 10 Taylor (b65) 2007; 178 Tibshirani (b66) 1996 Kang, Hyndman, Smith-Miles (b43) 2017; 33 Ma, Fildes, Huang (b53) 2016; 249 Kim (b45) 2013; 230 Kourentzes, Petropoulos (b50) 2016; 181 LeCun, Bottou, Orr, Müller (b51) 2012 Ma, Fildes (b52) 2017; 260 Ramanathan, Muyldermans (b60) 2011; 38 Chen, Guestrin (b18) 2016 Bergstra, Yamins, Cox (b13) 2013 Ehrenthal, Stölzle (b27) 2013; 43 Barrow, D., Crone, S., & Kourentzes, N. (2010). An evaluation of neural network ensembles and model selection for time series prediction. In Van Woensel, Van Donselaar, Broekmeulen, Fransoo (b74) 2007; 37 Soares, Medeiros (b62) 2008; 24 Van Donselaar, van Woensel, Broekmeulen, Fransoo (b71) 2006; 104 Tay, Wallis (b64) 2000; 19 Gneiting (b30) 2011; 106 Carbonneau, Laframboise, Vahidov (b17) 2008; 184 Zhang, Patuwo, Hu (b76) 1998; 14 Cheng, J., Wang, Z., & Pollastri, G. (2008). A neural network approach to ordinal regression. In Alon, Qi, Sadowski (b4) 2001; 8 Hyndman, Koehler, Ord, Snyder (b42) 2008 Bergstra, Bardenet, Bengio, Kégl (b11) 2011 Gür Ali, Sayın, Van Woensel, Fransoo (b32) 2009; 36 Van Donselaar, Peters, de Jong, Broekmeulen (b70) 2016; 172 Crone, S. F., & Kourentzes, N. (2009). Forecasting seasonal time series with multilayer perceptrons-an empirical evaluation of input vector specifications for deterministic seasonality.. In Snoek, Larochelle, Adams (b61) 2012; Vol. 25 Hyndman, Koehler (b41) 2006; 22 Bergmeir, Hyndman, Koo (b10) 2018; 120 Kourentzes, Barrow, Crone (b49) 2014; 41 Arunraj, Ahrens (b5) 2015; 170 Aburto, Weber (b1) 2007; 7 Cancelo, Espasa, Grafe (b16) 2008; 24 Hyndman, Khandakar (b40) 2008; 26 Gutiérrez, Pérez-Ortiz, Sánchez-Monedero, Fernández-Navarro, Hervás-Martínez (b33) 2016; 28 Trapero, Pedregal, Fildes, Kourentzes (b68) 2013; 29 R Core Team (b58) 2017 Makridakis, Spiliotis, Assimakopoulos (b54) 2018; 34 Ramanathan, Muyldermans (b59) 2010; 128 van Heerde, Leeflang, Wittink (b73) 2002; 54 Bergstra, Bengio (b12) 2012; 13 van Heerde, Leeflang, Wittink (b72) 2000; 37 Gneiting, Katzfuss (b31) 2014; 1 Hochreiter, Schmidhuber (b35) 1997; 9 Bischl, Kerschke, Kotthoff, Lindauer, Malitsky, Fréchette (b14) 2016; 237 Hofmann, Rutschmann (b36) 2018; 29 Divakar, Ratchford, Shankar (b25) 2005; 24 Srinivasan (10.1016/j.ijforecast.2020.02.005_b63) 1995; 10 Zhang (10.1016/j.ijforecast.2020.02.005_b76) 1998; 14 Kourentzes (10.1016/j.ijforecast.2020.02.005_b50) 2016; 181 R Core Team (10.1016/j.ijforecast.2020.02.005_b58) 2017 Tay (10.1016/j.ijforecast.2020.02.005_b64) 2000; 19 Gür Ali (10.1016/j.ijforecast.2020.02.005_b32) 2009; 36 Kolassa (10.1016/j.ijforecast.2020.02.005_b47) 2016; 32 Carbonneau (10.1016/j.ijforecast.2020.02.005_b17) 2008; 184 Hyndman (10.1016/j.ijforecast.2020.02.005_b40) 2008; 26 Ramanathan (10.1016/j.ijforecast.2020.02.005_b59) 2010; 128 Hastie (10.1016/j.ijforecast.2020.02.005_b34) 2009 Bergstra (10.1016/j.ijforecast.2020.02.005_b13) 2013 Bergstra (10.1016/j.ijforecast.2020.02.005_b12) 2012; 13 Hyndman (10.1016/j.ijforecast.2020.02.005_b42) 2008 Ben Taieb (10.1016/j.ijforecast.2020.02.005_b9) 2012; 39 van Heerde (10.1016/j.ijforecast.2020.02.005_b72) 2000; 37 Makridakis (10.1016/j.ijforecast.2020.02.005_b55) 2018; 13 Kim (10.1016/j.ijforecast.2020.02.005_b45) 2013; 230 van Heerde (10.1016/j.ijforecast.2020.02.005_b73) 2002; 54 Ehrenthal (10.1016/j.ijforecast.2020.02.005_b27) 2013; 43 Chen (10.1016/j.ijforecast.2020.02.005_b18) 2016 Petropoulos (10.1016/j.ijforecast.2020.02.005_b57) 2014; 237 Trapero (10.1016/j.ijforecast.2020.02.005_b68) 2013; 29 10.1016/j.ijforecast.2020.02.005_b46 Ma (10.1016/j.ijforecast.2020.02.005_b52) 2017; 260 Tibshirani (10.1016/j.ijforecast.2020.02.005_b66) 1996 Di Pillo (10.1016/j.ijforecast.2020.02.005_b24) 2016; 14 Snoek (10.1016/j.ijforecast.2020.02.005_b61) 2012; Vol. 25 Fildes (10.1016/j.ijforecast.2020.02.005_b29) 2019 Alon (10.1016/j.ijforecast.2020.02.005_b4) 2001; 8 Ma (10.1016/j.ijforecast.2020.02.005_b53) 2016; 249 Panapakidis (10.1016/j.ijforecast.2020.02.005_b56) 2016; 54 Cancelo (10.1016/j.ijforecast.2020.02.005_b16) 2008; 24 Crone (10.1016/j.ijforecast.2020.02.005_b22) 2011; 27 Gutiérrez (10.1016/j.ijforecast.2020.02.005_b33) 2016; 28 Makridakis (10.1016/j.ijforecast.2020.02.005_b54) 2018; 34 Barrow (10.1016/j.ijforecast.2020.02.005_b6) 2016; 32 Gneiting (10.1016/j.ijforecast.2020.02.005_b30) 2011; 106 Chu (10.1016/j.ijforecast.2020.02.005_b20) 2003; 86 Taylor (10.1016/j.ijforecast.2020.02.005_b65) 2007; 178 Hyndman (10.1016/j.ijforecast.2020.02.005_b39) 2002; 18 Bischl (10.1016/j.ijforecast.2020.02.005_b14) 2016; 237 Bontempi (10.1016/j.ijforecast.2020.02.005_b15) 2012 Kang (10.1016/j.ijforecast.2020.02.005_b43) 2017; 33 Van Donselaar (10.1016/j.ijforecast.2020.02.005_b69) 2010; 56 10.1016/j.ijforecast.2020.02.005_b19 Divakar (10.1016/j.ijforecast.2020.02.005_b25) 2005; 24 LeCun (10.1016/j.ijforecast.2020.02.005_b51) 2012 Bergstra (10.1016/j.ijforecast.2020.02.005_b11) 2011 Feurer (10.1016/j.ijforecast.2020.02.005_b28) 2015; Vol. 28 Trapero (10.1016/j.ijforecast.2020.02.005_b67) 2015; 66 Aburto (10.1016/j.ijforecast.2020.02.005_b1) 2007; 7 Cooper (10.1016/j.ijforecast.2020.02.005_b21) 1999; 18 Van Donselaar (10.1016/j.ijforecast.2020.02.005_b70) 2016; 172 Arunraj (10.1016/j.ijforecast.2020.02.005_b5) 2015; 170 Adya (10.1016/j.ijforecast.2020.02.005_b2) 1998; 17 Huber (10.1016/j.ijforecast.2020.02.005_b38) 2017; 76 Ahmed (10.1016/j.ijforecast.2020.02.005_b3) 2010; 29 Wang (10.1016/j.ijforecast.2020.02.005_b75) 1998; 23 Hyndman (10.1016/j.ijforecast.2020.02.005_b41) 2006; 22 Barrow (10.1016/j.ijforecast.2020.02.005_b8) 2018; 264 10.1016/j.ijforecast.2020.02.005_b7 10.1016/j.ijforecast.2020.02.005_b23 Ke (10.1016/j.ijforecast.2020.02.005_b44) 2017 Kourentzes (10.1016/j.ijforecast.2020.02.005_b49) 2014; 41 Gneiting (10.1016/j.ijforecast.2020.02.005_b31) 2014; 1 Kolassa (10.1016/j.ijforecast.2020.02.005_b48) 2020; 36 Van Donselaar (10.1016/j.ijforecast.2020.02.005_b71) 2006; 104 Bergmeir (10.1016/j.ijforecast.2020.02.005_b10) 2018; 120 Van Woensel (10.1016/j.ijforecast.2020.02.005_b74) 2007; 37 Hochreiter (10.1016/j.ijforecast.2020.02.005_b35) 1997; 9 Hofmann (10.1016/j.ijforecast.2020.02.005_b36) 2018; 29 Soares (10.1016/j.ijforecast.2020.02.005_b62) 2008; 24 Ramanathan (10.1016/j.ijforecast.2020.02.005_b60) 2011; 38 Doganis (10.1016/j.ijforecast.2020.02.005_b26) 2006; 75 Huang (10.1016/j.ijforecast.2020.02.005_b37) 2014; 237 |
| References_xml | – start-page: 3146 year: 2017 end-page: 3154 ident: b44 article-title: LightGBM: A highly efficient gradient boosting decision tree publication-title: Advances in neural information processing systems, vol. 30 – reference: Barrow, D., Crone, S., & Kourentzes, N. (2010). An evaluation of neural network ensembles and model selection for time series prediction. In – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b35 article-title: Long short-term memory publication-title: Neural Computation – volume: 56 start-page: 766 year: 2010 end-page: 784 ident: b69 article-title: Ordering behavior in retail stores and implications for automated replenishment publication-title: Management Science – volume: 1 start-page: 125 year: 2014 end-page: 151 ident: b31 article-title: Probabilistic forecasting publication-title: Annual Review of Statistics and its Application – year: 2008 ident: b42 article-title: Forecasting with exponential smoothing: the state space approach – start-page: 267 year: 1996 end-page: 288 ident: b66 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology – year: 2009 ident: b34 publication-title: The elements of statistical learning – volume: 27 start-page: 635 year: 2011 end-page: 660 ident: b22 article-title: Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction publication-title: International Journal of Forecasting – volume: 41 start-page: 4235 year: 2014 end-page: 4244 ident: b49 article-title: Neural network ensemble operators for time series forecasting publication-title: Expert Systems with Applications – volume: 8 start-page: 147 year: 2001 end-page: 156 ident: b4 article-title: Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods publication-title: Journal of Retailing and Consumer Services – volume: 120 start-page: 70 year: 2018 end-page: 83 ident: b10 article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction publication-title: Computational Statistics & Data Analysis – volume: 172 start-page: 65 year: 2016 end-page: 75 ident: b70 article-title: Analysis and forecasting of demand during promotions for perishable items publication-title: International Journal of Production Economics – volume: Vol. 28 start-page: 2962 year: 2015 end-page: 2970 ident: b28 article-title: Efficient and robust automated machine learning publication-title: Advances in neural information processing systems – volume: 24 start-page: 334 year: 2005 end-page: 350 ident: b25 article-title: CHAN4CAST: A multichannel, multiregion sales forecasting model and decision support system for consumer packaged goods publication-title: Marketing Science – volume: 106 start-page: 746 year: 2011 end-page: 762 ident: b30 article-title: Making and evaluating point forecasts publication-title: Journal of the American Statistical Association – volume: 237 start-page: 152 year: 2014 end-page: 163 ident: b57 article-title: ‘Horses for courses’ in demand forecasting publication-title: European Journal of Operational Research – volume: 66 start-page: 299 year: 2015 end-page: 307 ident: b67 article-title: On the identification of sales forecasting models in the presence of promotions publication-title: The Journal of the Operational Research Society – reference: (pp. 1–8). – volume: 36 start-page: 12340 year: 2009 end-page: 12348 ident: b32 article-title: SKU Demand forecasting in the presence of promotions publication-title: Expert Systems with Applications – start-page: 785 year: 2016 end-page: 794 ident: b18 article-title: XGBoost: A scalable tree boosting system – volume: 264 start-page: 967 year: 2018 end-page: 977 ident: b8 article-title: The impact of special days in call arrivals forecasting: A neural network approach to modelling special days publication-title: European Journal of Operational Research – volume: 38 start-page: 5544 year: 2011 end-page: 5552 ident: b60 article-title: Identifying the underlying structure of demand during promotions: A structural equation modelling approach publication-title: Expert Systems with Applications – volume: 29 start-page: 594 year: 2010 end-page: 621 ident: b3 article-title: An empirical comparison of machine learning models for time series forecasting publication-title: Econometric Reviews – volume: 29 start-page: 739 year: 2018 end-page: 766 ident: b36 article-title: Big data analytics and demand forecasting in supply chains: a conceptual analysis publication-title: The International Journal of Logistics Management – start-page: 2546 year: 2011 end-page: 2554 ident: b11 article-title: Algorithms for hyper-parameter optimization publication-title: Proceedings of the 24th international conference on neural information processing systems – volume: 34 start-page: 802 year: 2018 end-page: 808 ident: b54 article-title: The M4 competition: Results, findings, conclusion and way forward publication-title: International Journal of Forecasting – volume: 237 start-page: 41 year: 2016 end-page: 58 ident: b14 article-title: Aslib: A benchmark library for algorithm selection publication-title: Artificial Intelligence – volume: 26 start-page: 1 year: 2008 end-page: 22 ident: b40 article-title: Automatic time series forecasting: the forecast package for R publication-title: Journal of Statistical Software – volume: 14 start-page: 309 year: 2016 end-page: 325 ident: b24 article-title: An application of support vector machines to sales forecasting under promotions publication-title: 4OR – volume: 17 start-page: 481 year: 1998 end-page: 495 ident: b2 article-title: How effective are neural networks at forecasting and prediction? A review and evaluation publication-title: Journal of Forecasting – reference: (pp. 232–238). – volume: 14 start-page: 35 year: 1998 end-page: 62 ident: b76 article-title: Forecasting with artificial neural networks:: The state of the art publication-title: International Journal of Forecasting – year: 2017 ident: b58 article-title: R: A language and environment for statistical computing – volume: 32 start-page: 1120 year: 2016 end-page: 1137 ident: b6 article-title: Cross-validation aggregation for combining autoregressive neural network forecasts publication-title: International Journal of Forecasting – volume: 237 start-page: 738 year: 2014 end-page: 748 ident: b37 article-title: The value of competitive information in forecasting FMCG retail product sales and the variable selection problem publication-title: European Journal of Operational Research – volume: 178 start-page: 154 year: 2007 end-page: 167 ident: b65 article-title: Forecasting daily supermarket sales using exponentially weighted quantile regression publication-title: European Journal of Operational Research – volume: 184 start-page: 1140 year: 2008 end-page: 1154 ident: b17 article-title: Application of machine learning techniques for supply chain demand forecasting publication-title: European Journal of Operational Research – volume: 76 start-page: 140 year: 2017 end-page: 151 ident: b38 article-title: Cluster-based hierarchical demand forecasting for perishable goods publication-title: Expert Systems with Applications – volume: 54 start-page: 105 year: 2016 end-page: 120 ident: b56 article-title: Application of hybrid computational intelligence models in short-term bus load forecasting publication-title: Expert Systems with Applications – volume: 249 start-page: 245 year: 2016 end-page: 257 ident: b53 article-title: Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information publication-title: European Journal of Operational Research – volume: 54 start-page: 198 year: 2002 end-page: 220 ident: b73 article-title: How promotions work: SCAN*PRO-based evolutionary model building publication-title: Schmalenbach Business Review – reference: Crone, S. F., & Kourentzes, N. (2009). Forecasting seasonal time series with multilayer perceptrons-an empirical evaluation of input vector specifications for deterministic seasonality.. In – volume: 128 start-page: 538 year: 2010 end-page: 545 ident: b59 article-title: Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK publication-title: International Journal of Production Economics – reference: Cheng, J., Wang, Z., & Pollastri, G. (2008). A neural network approach to ordinal regression. In – volume: 10 start-page: 1897 year: 1995 end-page: 1903 ident: b63 article-title: Demand forecasting using fuzzy neural computation, with special emphasis on weekend and public holiday forecasting publication-title: IEEE Transactions on Power Systems – volume: 43 start-page: 54 year: 2013 end-page: 69 ident: b27 article-title: An examination of the causes for retail stockouts publication-title: International Journal of Physical Distribution and Logistics Management – volume: 36 start-page: 208 year: 2020 end-page: 211 ident: b48 article-title: Why the “best” point forecast depends on the error or accuracy measure publication-title: International Journal of Forecasting – volume: 29 start-page: 234 year: 2013 end-page: 243 ident: b68 article-title: Analysis of judgmental adjustments in the presence of promotions publication-title: International Journal of Forecasting – volume: 18 start-page: 439 year: 2002 end-page: 454 ident: b39 article-title: A state space framework for automatic forecasting using exponential smoothing methods publication-title: International Journal of Forecasting – volume: 33 start-page: 345 year: 2017 end-page: 358 ident: b43 article-title: Visualising forecasting algorithm performance using time series instance spaces publication-title: International Journal of Forecasting – volume: 22 start-page: 679 year: 2006 end-page: 688 ident: b41 article-title: Another look at measures of forecast accuracy publication-title: International journal of forecasting – volume: 260 start-page: 680 year: 2017 end-page: 692 ident: b52 article-title: A retail store SKU promotions optimization model for category multi-period profit maximization publication-title: European Journal of Operational Research – volume: 28 start-page: 127 year: 2016 end-page: 146 ident: b33 article-title: Ordinal regression methods: Survey and experimental study publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 37 start-page: 704 year: 2007 end-page: 718 ident: b74 article-title: Consumer responses to shelf out-of-stocks of perishable products publication-title: International Journal of Physical Distribution and Logistics Management – volume: 75 start-page: 196 year: 2006 end-page: 204 ident: b26 article-title: Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing publication-title: Journal of Food Engineering – volume: 24 start-page: 630 year: 2008 end-page: 644 ident: b62 article-title: Modeling and forecasting short-term electricity load: a comparison of methods with an application to brazilian data publication-title: International Journal of Forecasting – volume: 181 start-page: 145 year: 2016 end-page: 153 ident: b50 article-title: Forecasting with multivariate temporal aggregation: The case of promotional modelling publication-title: International Journal of Production Economics – volume: 86 start-page: 217 year: 2003 end-page: 231 ident: b20 article-title: A comparative study of linear and nonlinear models for aggregate retail sales forecasting publication-title: International Journal of Production Economics – volume: 39 start-page: 7067 year: 2012 end-page: 7083 ident: b9 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Systems with Applications – volume: 37 start-page: 383 year: 2000 end-page: 395 ident: b72 article-title: The estimation of pre- and postpromotion dips with store-level scanner data publication-title: Journal of Marketing Research – volume: 13 start-page: 1 year: 2018 end-page: 26 ident: b55 article-title: Statistical and machine learning forecasting methods: Concerns and ways forward publication-title: PLOS One – volume: 32 start-page: 788 year: 2016 end-page: 803 ident: b47 article-title: Evaluating predictive count data distributions in retail sales forecasting publication-title: International Journal of Forecasting – volume: 104 start-page: 462 year: 2006 end-page: 472 ident: b71 article-title: Inventory control of perishables in supermarkets publication-title: International Journal of Production Economics – volume: 24 start-page: 588 year: 2008 end-page: 602 ident: b16 article-title: Forecasting the electricity load from one day to one week ahead for the spanish system operator publication-title: International Journal of Forecasting – volume: 230 start-page: 170 year: 2013 end-page: 180 ident: b45 article-title: Modeling special-day effects for forecasting intraday electricity demand publication-title: European Journal of Operational Research – start-page: 115 year: 2013 end-page: 123 ident: b13 article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures publication-title: Proceedings of the 30th international conference on machine learning - vol. 28 – start-page: 9 year: 2012 end-page: 48 ident: b51 article-title: Efficient BackProp publication-title: Neural networks: Tricks of the trade – year: 2019 ident: b29 article-title: Retail forecasting: Research and practice publication-title: International Journal of Forecasting – reference: . – volume: 19 start-page: 235 year: 2000 end-page: 254 ident: b64 article-title: Density forecasting: a survey publication-title: Journal of Forecasting – volume: Vol. 25 start-page: 2951 year: 2012 end-page: 2959 ident: b61 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Advances in neural information processing systems – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: b12 article-title: Random search for hyper-parameter optimization publication-title: Journal of Machine Learning Research (JMLR) – volume: 170 start-page: 321 year: 2015 end-page: 335 ident: b5 article-title: A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting publication-title: International Journal of Production Economics – volume: 23 year: 1998 ident: b75 article-title: A neural network based estimator for electricity spot-pricing with particular reference to weekend and public holidays publication-title: Neurocomputing – start-page: 62 year: 2012 end-page: 77 ident: b15 article-title: Machine learning strategies for time series forecasting publication-title: Business intelligence – reference: (pp. 1279–1284). – volume: 18 start-page: 301 year: 1999 end-page: 316 ident: b21 article-title: PromoCast™: A new forecasting method for promotion planning publication-title: Marketing Science – volume: 7 start-page: 136 year: 2007 end-page: 144 ident: b1 article-title: Improved supply chain management based on hybrid demand forecasts publication-title: Applied Soft Computing – reference: Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In – volume: 128 start-page: 538 issue: 2 year: 2010 ident: 10.1016/j.ijforecast.2020.02.005_b59 article-title: Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2010.07.007 – volume: 24 start-page: 334 issue: 3 year: 2005 ident: 10.1016/j.ijforecast.2020.02.005_b25 article-title: CHAN4CAST: A multichannel, multiregion sales forecasting model and decision support system for consumer packaged goods publication-title: Marketing Science doi: 10.1287/mksc.1050.0135 – volume: 29 start-page: 234 issue: 2 year: 2013 ident: 10.1016/j.ijforecast.2020.02.005_b68 article-title: Analysis of judgmental adjustments in the presence of promotions publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2012.10.002 – volume: 38 start-page: 5544 issue: 5 year: 2011 ident: 10.1016/j.ijforecast.2020.02.005_b60 article-title: Identifying the underlying structure of demand during promotions: A structural equation modelling approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.10.082 – volume: Vol. 25 start-page: 2951 year: 2012 ident: 10.1016/j.ijforecast.2020.02.005_b61 article-title: Practical Bayesian optimization of machine learning algorithms – volume: 37 start-page: 704 issue: 9 year: 2007 ident: 10.1016/j.ijforecast.2020.02.005_b74 article-title: Consumer responses to shelf out-of-stocks of perishable products publication-title: International Journal of Physical Distribution and Logistics Management doi: 10.1108/09600030710840822 – volume: 106 start-page: 746 issue: 494 year: 2011 ident: 10.1016/j.ijforecast.2020.02.005_b30 article-title: Making and evaluating point forecasts publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2011.r10138 – volume: 33 start-page: 345 issue: 2 year: 2017 ident: 10.1016/j.ijforecast.2020.02.005_b43 article-title: Visualising forecasting algorithm performance using time series instance spaces publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2016.09.004 – volume: 34 start-page: 802 issue: 4 year: 2018 ident: 10.1016/j.ijforecast.2020.02.005_b54 article-title: The M4 competition: Results, findings, conclusion and way forward publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2018.06.001 – volume: 28 start-page: 127 issue: 1 year: 2016 ident: 10.1016/j.ijforecast.2020.02.005_b33 article-title: Ordinal regression methods: Survey and experimental study publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2015.2457911 – volume: 8 start-page: 147 issue: 3 year: 2001 ident: 10.1016/j.ijforecast.2020.02.005_b4 article-title: Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods publication-title: Journal of Retailing and Consumer Services doi: 10.1016/S0969-6989(00)00011-4 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.ijforecast.2020.02.005_b35 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 86 start-page: 217 issue: 3 year: 2003 ident: 10.1016/j.ijforecast.2020.02.005_b20 article-title: A comparative study of linear and nonlinear models for aggregate retail sales forecasting publication-title: International Journal of Production Economics doi: 10.1016/S0925-5273(03)00068-9 – volume: 237 start-page: 738 issue: 2 year: 2014 ident: 10.1016/j.ijforecast.2020.02.005_b37 article-title: The value of competitive information in forecasting FMCG retail product sales and the variable selection problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.02.022 – volume: 181 start-page: 145 year: 2016 ident: 10.1016/j.ijforecast.2020.02.005_b50 article-title: Forecasting with multivariate temporal aggregation: The case of promotional modelling publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2015.09.011 – ident: 10.1016/j.ijforecast.2020.02.005_b23 – volume: 75 start-page: 196 issue: 2 year: 2006 ident: 10.1016/j.ijforecast.2020.02.005_b26 article-title: Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2005.03.056 – volume: 18 start-page: 439 issue: 3 year: 2002 ident: 10.1016/j.ijforecast.2020.02.005_b39 article-title: A state space framework for automatic forecasting using exponential smoothing methods publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(01)00110-8 – volume: 7 start-page: 136 issue: 1 year: 2007 ident: 10.1016/j.ijforecast.2020.02.005_b1 article-title: Improved supply chain management based on hybrid demand forecasts publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2005.06.001 – volume: 23 issue: 1 year: 1998 ident: 10.1016/j.ijforecast.2020.02.005_b75 article-title: A neural network based estimator for electricity spot-pricing with particular reference to weekend and public holidays publication-title: Neurocomputing – volume: 22 start-page: 679 issue: 4 year: 2006 ident: 10.1016/j.ijforecast.2020.02.005_b41 article-title: Another look at measures of forecast accuracy publication-title: International journal of forecasting doi: 10.1016/j.ijforecast.2006.03.001 – year: 2009 ident: 10.1016/j.ijforecast.2020.02.005_b34 – volume: 14 start-page: 309 issue: 3 year: 2016 ident: 10.1016/j.ijforecast.2020.02.005_b24 article-title: An application of support vector machines to sales forecasting under promotions publication-title: 4OR doi: 10.1007/s10288-016-0316-0 – volume: 104 start-page: 462 issue: 2 year: 2006 ident: 10.1016/j.ijforecast.2020.02.005_b71 article-title: Inventory control of perishables in supermarkets publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2004.10.019 – start-page: 2546 year: 2011 ident: 10.1016/j.ijforecast.2020.02.005_b11 article-title: Algorithms for hyper-parameter optimization – start-page: 9 year: 2012 ident: 10.1016/j.ijforecast.2020.02.005_b51 article-title: Efficient BackProp – year: 2008 ident: 10.1016/j.ijforecast.2020.02.005_b42 – year: 2017 ident: 10.1016/j.ijforecast.2020.02.005_b58 – start-page: 115 year: 2013 ident: 10.1016/j.ijforecast.2020.02.005_b13 article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures – volume: 26 start-page: 1 issue: 3 year: 2008 ident: 10.1016/j.ijforecast.2020.02.005_b40 article-title: Automatic time series forecasting: the forecast package for R publication-title: Journal of Statistical Software – year: 2019 ident: 10.1016/j.ijforecast.2020.02.005_b29 article-title: Retail forecasting: Research and practice publication-title: International Journal of Forecasting – volume: 36 start-page: 208 issue: 1 year: 2020 ident: 10.1016/j.ijforecast.2020.02.005_b48 article-title: Why the “best” point forecast depends on the error or accuracy measure publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2019.02.017 – start-page: 267 year: 1996 ident: 10.1016/j.ijforecast.2020.02.005_b66 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 41 start-page: 4235 issue: 9 year: 2014 ident: 10.1016/j.ijforecast.2020.02.005_b49 article-title: Neural network ensemble operators for time series forecasting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.12.011 – volume: 17 start-page: 481 issue: 5–6 year: 1998 ident: 10.1016/j.ijforecast.2020.02.005_b2 article-title: How effective are neural networks at forecasting and prediction? A review and evaluation publication-title: Journal of Forecasting doi: 10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q – volume: 32 start-page: 1120 issue: 4 year: 2016 ident: 10.1016/j.ijforecast.2020.02.005_b6 article-title: Cross-validation aggregation for combining autoregressive neural network forecasts publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2015.12.011 – volume: 264 start-page: 967 year: 2018 ident: 10.1016/j.ijforecast.2020.02.005_b8 article-title: The impact of special days in call arrivals forecasting: A neural network approach to modelling special days publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.07.015 – volume: 249 start-page: 245 issue: 1 year: 2016 ident: 10.1016/j.ijforecast.2020.02.005_b53 article-title: Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.08.029 – volume: 39 start-page: 7067 issue: 8 year: 2012 ident: 10.1016/j.ijforecast.2020.02.005_b9 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.039 – ident: 10.1016/j.ijforecast.2020.02.005_b7 doi: 10.1109/IJCNN.2010.5596686 – volume: 10 start-page: 1897 year: 1995 ident: 10.1016/j.ijforecast.2020.02.005_b63 article-title: Demand forecasting using fuzzy neural computation, with special emphasis on weekend and public holiday forecasting publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.476055 – start-page: 785 year: 2016 ident: 10.1016/j.ijforecast.2020.02.005_b18 – volume: 54 start-page: 198 issue: 3 year: 2002 ident: 10.1016/j.ijforecast.2020.02.005_b73 article-title: How promotions work: SCAN*PRO-based evolutionary model building publication-title: Schmalenbach Business Review doi: 10.1007/BF03396653 – ident: 10.1016/j.ijforecast.2020.02.005_b19 doi: 10.1109/IJCNN.2008.4633963 – volume: 29 start-page: 594 issue: 5–6 year: 2010 ident: 10.1016/j.ijforecast.2020.02.005_b3 article-title: An empirical comparison of machine learning models for time series forecasting publication-title: Econometric Reviews doi: 10.1080/07474938.2010.481556 – volume: 170 start-page: 321 year: 2015 ident: 10.1016/j.ijforecast.2020.02.005_b5 article-title: A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2015.09.039 – volume: 24 start-page: 630 year: 2008 ident: 10.1016/j.ijforecast.2020.02.005_b62 article-title: Modeling and forecasting short-term electricity load: a comparison of methods with an application to brazilian data publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2008.08.003 – volume: 54 start-page: 105 year: 2016 ident: 10.1016/j.ijforecast.2020.02.005_b56 article-title: Application of hybrid computational intelligence models in short-term bus load forecasting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.01.034 – volume: 66 start-page: 299 issue: 2 year: 2015 ident: 10.1016/j.ijforecast.2020.02.005_b67 article-title: On the identification of sales forecasting models in the presence of promotions publication-title: The Journal of the Operational Research Society doi: 10.1057/jors.2013.174 – volume: 24 start-page: 588 year: 2008 ident: 10.1016/j.ijforecast.2020.02.005_b16 article-title: Forecasting the electricity load from one day to one week ahead for the spanish system operator publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2008.07.005 – volume: 27 start-page: 635 issue: 3 year: 2011 ident: 10.1016/j.ijforecast.2020.02.005_b22 article-title: Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2011.04.001 – volume: 37 start-page: 383 issue: 3 year: 2000 ident: 10.1016/j.ijforecast.2020.02.005_b72 article-title: The estimation of pre- and postpromotion dips with store-level scanner data publication-title: Journal of Marketing Research doi: 10.1509/jmkr.37.3.383.18782 – volume: 56 start-page: 766 issue: 5 year: 2010 ident: 10.1016/j.ijforecast.2020.02.005_b69 article-title: Ordering behavior in retail stores and implications for automated replenishment publication-title: Management Science doi: 10.1287/mnsc.1090.1141 – volume: 1 start-page: 125 issue: 1 year: 2014 ident: 10.1016/j.ijforecast.2020.02.005_b31 article-title: Probabilistic forecasting publication-title: Annual Review of Statistics and its Application doi: 10.1146/annurev-statistics-062713-085831 – volume: 32 start-page: 788 issue: 3 year: 2016 ident: 10.1016/j.ijforecast.2020.02.005_b47 article-title: Evaluating predictive count data distributions in retail sales forecasting publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2015.12.004 – volume: 43 start-page: 54 issue: 1 year: 2013 ident: 10.1016/j.ijforecast.2020.02.005_b27 article-title: An examination of the causes for retail stockouts publication-title: International Journal of Physical Distribution and Logistics Management doi: 10.1108/09600031311293255 – volume: 230 start-page: 170 year: 2013 ident: 10.1016/j.ijforecast.2020.02.005_b45 article-title: Modeling special-day effects for forecasting intraday electricity demand publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2013.03.039 – volume: 13 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.ijforecast.2020.02.005_b55 article-title: Statistical and machine learning forecasting methods: Concerns and ways forward publication-title: PLOS One doi: 10.1371/journal.pone.0194889 – volume: 237 start-page: 152 issue: 1 year: 2014 ident: 10.1016/j.ijforecast.2020.02.005_b57 article-title: ‘Horses for courses’ in demand forecasting publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.02.036 – volume: 19 start-page: 235 issue: 4 year: 2000 ident: 10.1016/j.ijforecast.2020.02.005_b64 article-title: Density forecasting: a survey publication-title: Journal of Forecasting doi: 10.1002/1099-131X(200007)19:4<235::AID-FOR772>3.0.CO;2-L – volume: 18 start-page: 301 issue: 3 year: 1999 ident: 10.1016/j.ijforecast.2020.02.005_b21 article-title: PromoCast™: A new forecasting method for promotion planning publication-title: Marketing Science doi: 10.1287/mksc.18.3.301 – ident: 10.1016/j.ijforecast.2020.02.005_b46 – volume: 172 start-page: 65 year: 2016 ident: 10.1016/j.ijforecast.2020.02.005_b70 article-title: Analysis and forecasting of demand during promotions for perishable items publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2015.10.022 – start-page: 3146 year: 2017 ident: 10.1016/j.ijforecast.2020.02.005_b44 article-title: LightGBM: A highly efficient gradient boosting decision tree – volume: 178 start-page: 154 issue: 1 year: 2007 ident: 10.1016/j.ijforecast.2020.02.005_b65 article-title: Forecasting daily supermarket sales using exponentially weighted quantile regression publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.02.006 – volume: 120 start-page: 70 year: 2018 ident: 10.1016/j.ijforecast.2020.02.005_b10 article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2017.11.003 – volume: 14 start-page: 35 issue: 1 year: 1998 ident: 10.1016/j.ijforecast.2020.02.005_b76 article-title: Forecasting with artificial neural networks:: The state of the art publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(97)00044-7 – volume: 29 start-page: 739 issue: 2 year: 2018 ident: 10.1016/j.ijforecast.2020.02.005_b36 article-title: Big data analytics and demand forecasting in supply chains: a conceptual analysis publication-title: The International Journal of Logistics Management doi: 10.1108/IJLM-04-2017-0088 – volume: 76 start-page: 140 year: 2017 ident: 10.1016/j.ijforecast.2020.02.005_b38 article-title: Cluster-based hierarchical demand forecasting for perishable goods publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.01.022 – volume: Vol. 28 start-page: 2962 year: 2015 ident: 10.1016/j.ijforecast.2020.02.005_b28 article-title: Efficient and robust automated machine learning – volume: 13 start-page: 281 year: 2012 ident: 10.1016/j.ijforecast.2020.02.005_b12 article-title: Random search for hyper-parameter optimization publication-title: Journal of Machine Learning Research (JMLR) – volume: 237 start-page: 41 year: 2016 ident: 10.1016/j.ijforecast.2020.02.005_b14 article-title: Aslib: A benchmark library for algorithm selection publication-title: Artificial Intelligence doi: 10.1016/j.artint.2016.04.003 – volume: 184 start-page: 1140 issue: 3 year: 2008 ident: 10.1016/j.ijforecast.2020.02.005_b17 article-title: Application of machine learning techniques for supply chain demand forecasting publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.12.004 – volume: 260 start-page: 680 issue: 2 year: 2017 ident: 10.1016/j.ijforecast.2020.02.005_b52 article-title: A retail store SKU promotions optimization model for category multi-period profit maximization publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.12.032 – volume: 36 start-page: 12340 issue: 10 year: 2009 ident: 10.1016/j.ijforecast.2020.02.005_b32 article-title: SKU Demand forecasting in the presence of promotions publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.04.052 – start-page: 62 year: 2012 ident: 10.1016/j.ijforecast.2020.02.005_b15 article-title: Machine learning strategies for time series forecasting |
| SSID | ssj0005711 |
| Score | 2.5911841 |
| Snippet | Demand forecasting is an important task for retailers as it is required for various operational decisions. One key challenge is to forecast demand on special... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1420 |
| SubjectTerms | Classification Comparative studies Decision trees Demand forecasting Forecasting practice Neural networks Regression |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB1BOJRLW1oQaWm1hx7KwcTejZ2NeoraAkICVSqR4II13g8wDSaKE1Xpr2c2u6YtElKEOFm2dmStZ3bejPX2LcCnPtXwaaFUlKmEGhQp0wh7iJHlPLYoMI0XOrPHJ9nhsHt0lp6twEGzF8bRKkPu9zl9ka3Dk074mh0s6s64LDs_nZYIp6jlFKsOjVZhLUupKG_B2vDkx-DcK3v3IzfGtV6yR-ufAiNwejzTq7ym-tAorB23ksdewzN9DKhezKoxzn_jaPQPEO2_gqtmCp5_8mtvNi321J8H6o7PMMfX8DIUq2zgx27AiqneQNvv6GUhK9Tsc5Cu3n0LF9-wHM3ZZMFLZdrcYKVZM20CSeZo9pfsZsHgNCwcWXHJ3N9gZiiwsC5rdlsxihxTacrRzG0Fda_TOK83Ybj__fTrYRROcIhUV4hplGgdS0vrPBNWGcJFFAVKITI0iZU6jnUmOaWABOmqujLWiNRhIipjC22s2IJWdVuZbWDI-90Mqdy0ggCV2j5hUtdgF1lqLFrZhl7jrlwFeXN3ysYob3hs1_lfR-fO0XnMc3J0G5J7y7GX-FjC5ksTEfl_rswJiZaw5vdBtPQr3z3F6D2suzvPPtyB1nQyMx-oipoWH8MKuQN_Xx2s priority: 102 providerName: Unpaywall |
| Title | Daily retail demand forecasting using machine learning with emphasis on calendric special days |
| URI | https://dx.doi.org/10.1016/j.ijforecast.2020.02.005 https://www.sciencedirect.com/science/article/abs/pii/S0169207020300224 |
| UnpaywallVersion | submittedVersion |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8200 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005711 issn: 1872-8200 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-8200 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005711 issn: 1872-8200 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8200 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005711 issn: 1872-8200 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8200 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005711 issn: 1872-8200 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8200 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005711 issn: 1872-8200 databaseCode: AKRWK dateStart: 19850101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBZLeuhelnbbstm2iw57aA9ubMl2HHoKaUO2jxDaBrKXNWM9goPjhDhLyaW_vSNLzqaHhUBPwsZCYmY034z5NEPIdQ9j-CgTwotFgAlKkkQedAE8zZivgUPk13Vmv4_j0TT8MotmJ2TQ3IUxtErn-61Pr721e9Nx0uys87zz09QRYWixDO3UIJG5wR52TReDD38OaB7dwPYkjHue-dqxeSzHK19gZKgEVIZVyXxbvTN6DKKe3pdr2P2GojiAoOEzcuZiR9q323tOTlR5Ttr2gi11h7Si71wl6fcvyN0nyIsd3dQ0USrVEkpJm70gZlHDep_TZU2oVNR1kJhT83OWKtQzVHlFVyVFRapSosukle1XTyXsqpdkOvz8azDyXEMFT4Scb71ASj_ReOxiroVCmAKeQcJ5DCrQifR9GScMT2QAOIow8SUAJnwAQulMKs1fkVa5KtUFocB6YQwY_WmO-IZZGFeRyXezOFIadNIm3UaGqXDVxk3TiyJtaGWL9EH6qZF-6rMUpd8mwX7m2lbcOGLOx0ZN6T_WkyIwHDGb7TV79JKX_7Xka3Jqniwr8A1pbTf36i1GN9vsqjbfK_KkP_jxbWLGm6-jMY7T8aR_-xf2VP9S |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-DnoRn7g-c_Cgh7pt0na7eBIfrM-LCp4M0zykstbFrshe_O1OmtTHQVjwVGgbEmYm882ELzOE7HQxhk9yKYNURpigZFkSQAcgMIyFBjgkYV1n9uo67d3F5_fJ_QQ5au7CWFql9_3Op9fe2r9pe2m2B0XRvrF1RBhaLEM7tUg0SabjhHVsBrb_8YPn0YlcU8K0G9jfPZ3HkbyKJwwNtYTK0ipZ6Mp3Jn9h1MxbOYDRO_T7PzDodJ7M-eCRHrr1LZAJXS6SlrthS_0ureiuLyW9t0QejqHoj-hrzROlSj9DqWizFgQtamnvj_S5ZlRq6ltIPFJ7Oks1KhqqoqIvJUVN6lKhz6SVa1hPFYyqZXJ3enJ71At8R4VAxpwPg0ipMDO471JupEacAp5DxnkKOjKZCkOVZgy3ZAT4lHEWKgDM-ACkNrnShq-QqfKl1KuEAuvGKWD4ZzgCHKZhXCc24c3TRBswWYt0GhkK6cuN264XfdHwyp7Et_SFlb4ImUDpt0j0NXLgSm6MMeagUZP4ZT4CkWGM0exLs2NPufavKbfJTO_26lJcnl1frJNZ-8VRBDfI1PD1TW9iqDPMt2pT_gTnif2i |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB1BOJRLW1oQaWm1hx7KwcTejZ2NeoraAkICVSqR4II13g8wDSaKE1Xpr2c2u6YtElKEOFm2dmStZ3bejPX2LcCnPtXwaaFUlKmEGhQp0wh7iJHlPLYoMI0XOrPHJ9nhsHt0lp6twEGzF8bRKkPu9zl9ka3Dk074mh0s6s64LDs_nZYIp6jlFKsOjVZhLUupKG_B2vDkx-DcK3v3IzfGtV6yR-ufAiNwejzTq7ym-tAorB23ksdewzN9DKhezKoxzn_jaPQPEO2_gqtmCp5_8mtvNi321J8H6o7PMMfX8DIUq2zgx27AiqneQNvv6GUhK9Tsc5Cu3n0LF9-wHM3ZZMFLZdrcYKVZM20CSeZo9pfsZsHgNCwcWXHJ3N9gZiiwsC5rdlsxihxTacrRzG0Fda_TOK83Ybj__fTrYRROcIhUV4hplGgdS0vrPBNWGcJFFAVKITI0iZU6jnUmOaWABOmqujLWiNRhIipjC22s2IJWdVuZbWDI-90Mqdy0ggCV2j5hUtdgF1lqLFrZhl7jrlwFeXN3ysYob3hs1_lfR-fO0XnMc3J0G5J7y7GX-FjC5ksTEfl_rswJiZaw5vdBtPQr3z3F6D2suzvPPtyB1nQyMx-oipoWH8MKuQN_Xx2s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Daily+retail+demand+forecasting+using+machine+learning+with+emphasis+on+calendric+special+days&rft.jtitle=International+journal+of+forecasting&rft.au=Huber%2C+Jakob&rft.au=Stuckenschmidt%2C+Heiner&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0169-2070&rft.eissn=1872-8200&rft.volume=36&rft.issue=4&rft.spage=1420&rft.epage=1438&rft_id=info:doi/10.1016%2Fj.ijforecast.2020.02.005&rft.externalDocID=S0169207020300224 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2070&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2070&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2070&client=summon |