Daily retail demand forecasting using machine learning with emphasis on calendric special days

Demand forecasting is an important task for retailers as it is required for various operational decisions. One key challenge is to forecast demand on special days that are subject to vastly different demand patterns than on regular days. We present the case of a bakery chain with an emphasis on spec...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of forecasting Vol. 36; no. 4; pp. 1420 - 1438
Main Authors Huber, Jakob, Stuckenschmidt, Heiner
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text
ISSN0169-2070
1872-8200
1872-8200
DOI10.1016/j.ijforecast.2020.02.005

Cover

Abstract Demand forecasting is an important task for retailers as it is required for various operational decisions. One key challenge is to forecast demand on special days that are subject to vastly different demand patterns than on regular days. We present the case of a bakery chain with an emphasis on special calendar days, for which we address the problem of forecasting the daily demand for different product categories at the store level. Such forecasts are an input for production and ordering decisions. We treat the forecasting problem as a supervised machine learning task and provide an evaluation of different methods, including artificial neural networks and gradient-boosted decision trees. In particular, we outline and discuss the possibility of formulating a classification instead of a regression problem. An empirical comparison with established approaches reveals the superiority of machine learning methods, while classification-based approaches outperform regression-based approaches. We also found that machine learning methods not only provide more accurate forecasts but are also more suitable for applications in a large-scale demand forecasting scenario that often occurs in the retail industry.
AbstractList Demand forecasting is an important task for retailers as it is required for various operational decisions. One key challenge is to forecast demand on special days that are subject to vastly different demand patterns than on regular days. We present the case of a bakery chain with an emphasis on special calendar days, for which we address the problem of forecasting the daily demand for different product categories at the store level. Such forecasts are an input for production and ordering decisions. We treat the forecasting problem as a supervised machine learning task and provide an evaluation of different methods, including artificial neural networks and gradient-boosted decision trees. In particular, we outline and discuss the possibility of formulating a classification instead of a regression problem. An empirical comparison with established approaches reveals the superiority of machine learning methods, while classification-based approaches outperform regression-based approaches. We also found that machine learning methods not only provide more accurate forecasts but are also more suitable for applications in a large-scale demand forecasting scenario that often occurs in the retail industry.
Author Huber, Jakob
Stuckenschmidt, Heiner
Author_xml – sequence: 1
  givenname: Jakob
  surname: Huber
  fullname: Huber, Jakob
  email: jakob@informatik.uni-mannheim.de
– sequence: 2
  givenname: Heiner
  surname: Stuckenschmidt
  fullname: Stuckenschmidt, Heiner
  email: heiner@informatik.uni-mannheim.de
BookMark eNqVkM1KAzEUhYNUsFbfIS8w482knUk3gtZfKLjRreE2uWNTppmSTC3z9qZUEdyom3vgcs63-E7ZwLeeGOMCcgGivFjlblW3gQzGLi-ggByKHGByxIZCVUWmCoABG6bqNCugghN2GuMKUqMSYsheb9A1PQ_UpeSW1ugt_-I5_8a3cX_XaJbOE28Ig98_dq5bclpvlhhd5K3nBhvyNjjD44aMwwTDPp6x4xqbSOefOWIvd7fPs4ds_nT_OLuaZ2YsZZcJa0HVMJGlrA2VlUK5QCVliSRqZQFsqYppKQWmNGMFFnEMFaKhemGpliM2PXC3foP9DptGb4JbY-i1AL0XpVf6W5Tei9JQ6KQhbdVha0IbY6D6P9PLH1PjOuxc67uQfP4FcH0AUJLz7ijoaBx5Q9aldqdt636HfAC_V6OA
CitedBy_id crossref_primary_10_1049_tje2_12265
crossref_primary_10_1057_s41272_024_00477_7
crossref_primary_10_3390_agronomy11040667
crossref_primary_10_3390_plants13091200
crossref_primary_10_1016_j_mlwa_2021_100239
crossref_primary_10_1016_j_scitotenv_2023_165964
crossref_primary_10_1080_00207543_2024_2342019
crossref_primary_10_1016_j_ijforecast_2021_05_010
crossref_primary_10_1016_j_asoc_2024_112419
crossref_primary_10_1016_j_ijforecast_2021_11_001
crossref_primary_10_1080_08874417_2023_2240753
crossref_primary_10_1016_j_eswa_2024_126200
crossref_primary_10_1016_j_engappai_2022_105664
crossref_primary_10_32710_tekstilvekonfeksiyon_809867
crossref_primary_10_1016_j_ijpe_2020_107828
crossref_primary_10_1038_s41598_021_99542_z
crossref_primary_10_3390_app13010231
crossref_primary_10_1016_j_neunet_2022_10_006
crossref_primary_10_1007_s10479_024_06348_z
crossref_primary_10_1088_1757_899X_1098_5_052115
crossref_primary_10_3390_pr13020594
crossref_primary_10_1002_ajim_23429
crossref_primary_10_1016_j_cie_2024_110280
crossref_primary_10_1016_j_jclepro_2022_131852
crossref_primary_10_3390_a16090423
crossref_primary_10_1080_0951192X_2021_1972469
crossref_primary_10_3390_electronics10030227
crossref_primary_10_56038_oprd_v1i1_136
crossref_primary_10_1007_s10479_021_04429_x
crossref_primary_10_1016_j_ijforecast_2021_09_012
crossref_primary_10_1016_j_procs_2022_01_298
crossref_primary_10_21605_cukurovaumfd_1514451
crossref_primary_10_1080_07421222_2023_2267317
crossref_primary_10_2139_ssrn_4213618
crossref_primary_10_1007_s42979_023_02427_3
crossref_primary_10_1016_j_mlwa_2023_100467
crossref_primary_10_1007_s13253_023_00554_1
crossref_primary_10_1155_2022_4247290
crossref_primary_10_1016_j_dss_2023_114065
crossref_primary_10_17341_gazimmfd_944081
crossref_primary_10_1057_s41270_022_00169_4
crossref_primary_10_1016_j_jretconser_2024_103991
crossref_primary_10_1016_j_ins_2023_119382
crossref_primary_10_3280_CCA2022_001003
crossref_primary_10_1108_JADEE_03_2023_0075
crossref_primary_10_3390_electronics11193194
crossref_primary_10_3390_make6040128
crossref_primary_10_55179_dusbed_1099085
crossref_primary_10_1177_14707853251315585
crossref_primary_10_1016_j_compeleceng_2022_108358
crossref_primary_10_20965_jaciii_2022_p0236
crossref_primary_10_1016_j_ejor_2023_10_039
crossref_primary_10_1016_j_ijpe_2021_108315
crossref_primary_10_3390_su141911942
crossref_primary_10_2139_ssrn_5032956
crossref_primary_10_1021_acs_est_3c08331
crossref_primary_10_1016_j_procir_2023_09_133
crossref_primary_10_1142_S0218213024500015
crossref_primary_10_1080_00207543_2024_2447927
crossref_primary_10_3389_frsus_2024_1388771
crossref_primary_10_1007_s42979_023_01888_w
Cites_doi 10.1016/j.ijpe.2010.07.007
10.1287/mksc.1050.0135
10.1016/j.ijforecast.2012.10.002
10.1016/j.eswa.2010.10.082
10.1108/09600030710840822
10.1198/jasa.2011.r10138
10.1016/j.ijforecast.2016.09.004
10.1016/j.ijforecast.2018.06.001
10.1109/TKDE.2015.2457911
10.1016/S0969-6989(00)00011-4
10.1162/neco.1997.9.8.1735
10.1016/S0925-5273(03)00068-9
10.1016/j.ejor.2014.02.022
10.1016/j.ijpe.2015.09.011
10.1016/j.jfoodeng.2005.03.056
10.1016/S0169-2070(01)00110-8
10.1016/j.asoc.2005.06.001
10.1016/j.ijforecast.2006.03.001
10.1007/s10288-016-0316-0
10.1016/j.ijpe.2004.10.019
10.1016/j.ijforecast.2019.02.017
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.eswa.2013.12.011
10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q
10.1016/j.ijforecast.2015.12.011
10.1016/j.ejor.2016.07.015
10.1016/j.ejor.2015.08.029
10.1016/j.eswa.2012.01.039
10.1109/IJCNN.2010.5596686
10.1109/59.476055
10.1007/BF03396653
10.1109/IJCNN.2008.4633963
10.1080/07474938.2010.481556
10.1016/j.ijpe.2015.09.039
10.1016/j.ijforecast.2008.08.003
10.1016/j.eswa.2016.01.034
10.1057/jors.2013.174
10.1016/j.ijforecast.2008.07.005
10.1016/j.ijforecast.2011.04.001
10.1509/jmkr.37.3.383.18782
10.1287/mnsc.1090.1141
10.1146/annurev-statistics-062713-085831
10.1016/j.ijforecast.2015.12.004
10.1108/09600031311293255
10.1016/j.ejor.2013.03.039
10.1371/journal.pone.0194889
10.1016/j.ejor.2014.02.036
10.1002/1099-131X(200007)19:4<235::AID-FOR772>3.0.CO;2-L
10.1287/mksc.18.3.301
10.1016/j.ijpe.2015.10.022
10.1016/j.ejor.2006.02.006
10.1016/j.csda.2017.11.003
10.1016/S0169-2070(97)00044-7
10.1108/IJLM-04-2017-0088
10.1016/j.eswa.2017.01.022
10.1016/j.artint.2016.04.003
10.1016/j.ejor.2006.12.004
10.1016/j.ejor.2016.12.032
10.1016/j.eswa.2009.04.052
ContentType Journal Article
Copyright 2020 International Institute of Forecasters
Copyright_xml – notice: 2020 International Institute of Forecasters
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.ijforecast.2020.02.005
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 1872-8200
EndPage 1438
ExternalDocumentID oai:ub-madoc.bib.uni-mannheim.de:54684
10_1016_j_ijforecast_2020_02_005
S0169207020300224
GroupedDBID --K
--M
-~X
.L6
.~1
0R~
13V
1B1
1OL
1RT
1~.
1~5
29J
3R3
4.4
457
4G.
5GY
5VS
63O
7-5
71M
85S
8P~
96U
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFFL
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARIN
AAXUO
ABEHJ
ABJNI
ABKBG
ABLJU
ABMAC
ABMVD
ABTAH
ABUCO
ABXDB
ABYKQ
ACBMB
ACDAQ
ACGFO
ACGFS
ACHQT
ACHRH
ACNTT
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADMUD
AEBSH
AEKER
AEYQN
AFAZI
AFFNX
AFKWA
AFODL
AFTJW
AGHFR
AGJBL
AGTHC
AGUBO
AGUMN
AGYEJ
AHHHB
AI.
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNSAS
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLX
HVGLF
HZ~
IHE
IXIXF
J1W
KOM
LG8
LPU
LXL
LXN
LY1
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBM
SDF
SDG
SDP
SDS
SEB
SES
SEW
SPCBC
SSB
SSD
SSF
SSL
SSZ
T5K
TN5
U5U
VH1
WUQ
XPP
XYO
YK3
ZMT
ZRQ
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c433t-1dd08f05363fce678a3ba8336ae1f8d00d6829631a682c480daa407aacefbdef3
IEDL.DBID .~1
ISSN 0169-2070
1872-8200
IngestDate Sun Oct 26 03:51:40 EDT 2025
Thu Apr 24 22:54:50 EDT 2025
Thu Oct 02 04:36:55 EDT 2025
Fri Feb 23 02:47:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Neural networks
Demand forecasting
Classification
Comparative studies
Regression
Forecasting practice
Decision trees
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-1dd08f05363fce678a3ba8336ae1f8d00d6829631a682c480daa407aacefbdef3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/abs/pii/S0169207020300224
PageCount 19
ParticipantIDs unpaywall_primary_10_1016_j_ijforecast_2020_02_005
crossref_primary_10_1016_j_ijforecast_2020_02_005
crossref_citationtrail_10_1016_j_ijforecast_2020_02_005
elsevier_sciencedirect_doi_10_1016_j_ijforecast_2020_02_005
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of forecasting
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang, Fildes, Soopramanien (b37) 2014; 237
Cooper, Baron, Levy, Swisher, Gogos (b21) 1999; 18
(pp. 232–238).
Wang, Ramsay (b75) 1998; 23
Makridakis, Spiliotis, Assimakopoulos (b55) 2018; 13
Van Donselaar, Gaur, Van Woensel, Broekmeulen, Fransoo (b69) 2010; 56
Ben Taieb, Bontempi, Atiya, Sorjamaa (b9) 2012; 39
Di Pillo, Latorre, Lucidi, Procacci (b24) 2016; 14
Hyndman, B., D., Grose (b39) 2002; 18
Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter (b28) 2015; Vol. 28
Panapakidis (b56) 2016; 54
Ahmed, Atiya, Gayar, El-Shishiny (b3) 2010; 29
Adya, Collopy (b2) 1998; 17
Chu, Zhang (b20) 2003; 86
Kolassa (b47) 2016; 32
Bontempi, Ben Taieb, Borgne (b15) 2012
Petropoulos, Makridakis, Assimakopoulos, Nikolopoulos (b57) 2014; 237
Fildes, Ma, Kolassa (b29) 2019
Huber, Gossmann, Stuckenschmidt (b38) 2017; 76
Barrow, Kourentzes (b8) 2018; 264
(pp. 1279–1284).
Hastie, Tibshirani, Friedman (b34) 2009
Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In
Kolassa (b48) 2020; 36
Barrow, Crone (b6) 2016; 32
Doganis, Alexandridis, Patrinos, Sarimveis (b26) 2006; 75
Ke, Meng, Finley, Wang, Chen, Ma (b44) 2017
Crone, Hibon, Nikolopoulos (b22) 2011; 27
Trapero, Kourentzes, Fildes (b67) 2015; 66
(pp. 1–8).
.
Srinivasan, Chang, Liew (b63) 1995; 10
Taylor (b65) 2007; 178
Tibshirani (b66) 1996
Kang, Hyndman, Smith-Miles (b43) 2017; 33
Ma, Fildes, Huang (b53) 2016; 249
Kim (b45) 2013; 230
Kourentzes, Petropoulos (b50) 2016; 181
LeCun, Bottou, Orr, Müller (b51) 2012
Ma, Fildes (b52) 2017; 260
Ramanathan, Muyldermans (b60) 2011; 38
Chen, Guestrin (b18) 2016
Bergstra, Yamins, Cox (b13) 2013
Ehrenthal, Stölzle (b27) 2013; 43
Barrow, D., Crone, S., & Kourentzes, N. (2010). An evaluation of neural network ensembles and model selection for time series prediction. In
Van Woensel, Van Donselaar, Broekmeulen, Fransoo (b74) 2007; 37
Soares, Medeiros (b62) 2008; 24
Van Donselaar, van Woensel, Broekmeulen, Fransoo (b71) 2006; 104
Tay, Wallis (b64) 2000; 19
Gneiting (b30) 2011; 106
Carbonneau, Laframboise, Vahidov (b17) 2008; 184
Zhang, Patuwo, Hu (b76) 1998; 14
Cheng, J., Wang, Z., & Pollastri, G. (2008). A neural network approach to ordinal regression. In
Alon, Qi, Sadowski (b4) 2001; 8
Hyndman, Koehler, Ord, Snyder (b42) 2008
Bergstra, Bardenet, Bengio, Kégl (b11) 2011
Gür Ali, Sayın, Van Woensel, Fransoo (b32) 2009; 36
Van Donselaar, Peters, de Jong, Broekmeulen (b70) 2016; 172
Crone, S. F., & Kourentzes, N. (2009). Forecasting seasonal time series with multilayer perceptrons-an empirical evaluation of input vector specifications for deterministic seasonality.. In
Snoek, Larochelle, Adams (b61) 2012; Vol. 25
Hyndman, Koehler (b41) 2006; 22
Bergmeir, Hyndman, Koo (b10) 2018; 120
Kourentzes, Barrow, Crone (b49) 2014; 41
Arunraj, Ahrens (b5) 2015; 170
Aburto, Weber (b1) 2007; 7
Cancelo, Espasa, Grafe (b16) 2008; 24
Hyndman, Khandakar (b40) 2008; 26
Gutiérrez, Pérez-Ortiz, Sánchez-Monedero, Fernández-Navarro, Hervás-Martínez (b33) 2016; 28
Trapero, Pedregal, Fildes, Kourentzes (b68) 2013; 29
R Core Team (b58) 2017
Makridakis, Spiliotis, Assimakopoulos (b54) 2018; 34
Ramanathan, Muyldermans (b59) 2010; 128
van Heerde, Leeflang, Wittink (b73) 2002; 54
Bergstra, Bengio (b12) 2012; 13
van Heerde, Leeflang, Wittink (b72) 2000; 37
Gneiting, Katzfuss (b31) 2014; 1
Hochreiter, Schmidhuber (b35) 1997; 9
Bischl, Kerschke, Kotthoff, Lindauer, Malitsky, Fréchette (b14) 2016; 237
Hofmann, Rutschmann (b36) 2018; 29
Divakar, Ratchford, Shankar (b25) 2005; 24
Srinivasan (10.1016/j.ijforecast.2020.02.005_b63) 1995; 10
Zhang (10.1016/j.ijforecast.2020.02.005_b76) 1998; 14
Kourentzes (10.1016/j.ijforecast.2020.02.005_b50) 2016; 181
R Core Team (10.1016/j.ijforecast.2020.02.005_b58) 2017
Tay (10.1016/j.ijforecast.2020.02.005_b64) 2000; 19
Gür Ali (10.1016/j.ijforecast.2020.02.005_b32) 2009; 36
Kolassa (10.1016/j.ijforecast.2020.02.005_b47) 2016; 32
Carbonneau (10.1016/j.ijforecast.2020.02.005_b17) 2008; 184
Hyndman (10.1016/j.ijforecast.2020.02.005_b40) 2008; 26
Ramanathan (10.1016/j.ijforecast.2020.02.005_b59) 2010; 128
Hastie (10.1016/j.ijforecast.2020.02.005_b34) 2009
Bergstra (10.1016/j.ijforecast.2020.02.005_b13) 2013
Bergstra (10.1016/j.ijforecast.2020.02.005_b12) 2012; 13
Hyndman (10.1016/j.ijforecast.2020.02.005_b42) 2008
Ben Taieb (10.1016/j.ijforecast.2020.02.005_b9) 2012; 39
van Heerde (10.1016/j.ijforecast.2020.02.005_b72) 2000; 37
Makridakis (10.1016/j.ijforecast.2020.02.005_b55) 2018; 13
Kim (10.1016/j.ijforecast.2020.02.005_b45) 2013; 230
van Heerde (10.1016/j.ijforecast.2020.02.005_b73) 2002; 54
Ehrenthal (10.1016/j.ijforecast.2020.02.005_b27) 2013; 43
Chen (10.1016/j.ijforecast.2020.02.005_b18) 2016
Petropoulos (10.1016/j.ijforecast.2020.02.005_b57) 2014; 237
Trapero (10.1016/j.ijforecast.2020.02.005_b68) 2013; 29
10.1016/j.ijforecast.2020.02.005_b46
Ma (10.1016/j.ijforecast.2020.02.005_b52) 2017; 260
Tibshirani (10.1016/j.ijforecast.2020.02.005_b66) 1996
Di Pillo (10.1016/j.ijforecast.2020.02.005_b24) 2016; 14
Snoek (10.1016/j.ijforecast.2020.02.005_b61) 2012; Vol. 25
Fildes (10.1016/j.ijforecast.2020.02.005_b29) 2019
Alon (10.1016/j.ijforecast.2020.02.005_b4) 2001; 8
Ma (10.1016/j.ijforecast.2020.02.005_b53) 2016; 249
Panapakidis (10.1016/j.ijforecast.2020.02.005_b56) 2016; 54
Cancelo (10.1016/j.ijforecast.2020.02.005_b16) 2008; 24
Crone (10.1016/j.ijforecast.2020.02.005_b22) 2011; 27
Gutiérrez (10.1016/j.ijforecast.2020.02.005_b33) 2016; 28
Makridakis (10.1016/j.ijforecast.2020.02.005_b54) 2018; 34
Barrow (10.1016/j.ijforecast.2020.02.005_b6) 2016; 32
Gneiting (10.1016/j.ijforecast.2020.02.005_b30) 2011; 106
Chu (10.1016/j.ijforecast.2020.02.005_b20) 2003; 86
Taylor (10.1016/j.ijforecast.2020.02.005_b65) 2007; 178
Hyndman (10.1016/j.ijforecast.2020.02.005_b39) 2002; 18
Bischl (10.1016/j.ijforecast.2020.02.005_b14) 2016; 237
Bontempi (10.1016/j.ijforecast.2020.02.005_b15) 2012
Kang (10.1016/j.ijforecast.2020.02.005_b43) 2017; 33
Van Donselaar (10.1016/j.ijforecast.2020.02.005_b69) 2010; 56
10.1016/j.ijforecast.2020.02.005_b19
Divakar (10.1016/j.ijforecast.2020.02.005_b25) 2005; 24
LeCun (10.1016/j.ijforecast.2020.02.005_b51) 2012
Bergstra (10.1016/j.ijforecast.2020.02.005_b11) 2011
Feurer (10.1016/j.ijforecast.2020.02.005_b28) 2015; Vol. 28
Trapero (10.1016/j.ijforecast.2020.02.005_b67) 2015; 66
Aburto (10.1016/j.ijforecast.2020.02.005_b1) 2007; 7
Cooper (10.1016/j.ijforecast.2020.02.005_b21) 1999; 18
Van Donselaar (10.1016/j.ijforecast.2020.02.005_b70) 2016; 172
Arunraj (10.1016/j.ijforecast.2020.02.005_b5) 2015; 170
Adya (10.1016/j.ijforecast.2020.02.005_b2) 1998; 17
Huber (10.1016/j.ijforecast.2020.02.005_b38) 2017; 76
Ahmed (10.1016/j.ijforecast.2020.02.005_b3) 2010; 29
Wang (10.1016/j.ijforecast.2020.02.005_b75) 1998; 23
Hyndman (10.1016/j.ijforecast.2020.02.005_b41) 2006; 22
Barrow (10.1016/j.ijforecast.2020.02.005_b8) 2018; 264
10.1016/j.ijforecast.2020.02.005_b7
10.1016/j.ijforecast.2020.02.005_b23
Ke (10.1016/j.ijforecast.2020.02.005_b44) 2017
Kourentzes (10.1016/j.ijforecast.2020.02.005_b49) 2014; 41
Gneiting (10.1016/j.ijforecast.2020.02.005_b31) 2014; 1
Kolassa (10.1016/j.ijforecast.2020.02.005_b48) 2020; 36
Van Donselaar (10.1016/j.ijforecast.2020.02.005_b71) 2006; 104
Bergmeir (10.1016/j.ijforecast.2020.02.005_b10) 2018; 120
Van Woensel (10.1016/j.ijforecast.2020.02.005_b74) 2007; 37
Hochreiter (10.1016/j.ijforecast.2020.02.005_b35) 1997; 9
Hofmann (10.1016/j.ijforecast.2020.02.005_b36) 2018; 29
Soares (10.1016/j.ijforecast.2020.02.005_b62) 2008; 24
Ramanathan (10.1016/j.ijforecast.2020.02.005_b60) 2011; 38
Doganis (10.1016/j.ijforecast.2020.02.005_b26) 2006; 75
Huang (10.1016/j.ijforecast.2020.02.005_b37) 2014; 237
References_xml – start-page: 3146
  year: 2017
  end-page: 3154
  ident: b44
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Advances in neural information processing systems, vol. 30
– reference: Barrow, D., Crone, S., & Kourentzes, N. (2010). An evaluation of neural network ensembles and model selection for time series prediction. In
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b35
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 56
  start-page: 766
  year: 2010
  end-page: 784
  ident: b69
  article-title: Ordering behavior in retail stores and implications for automated replenishment
  publication-title: Management Science
– volume: 1
  start-page: 125
  year: 2014
  end-page: 151
  ident: b31
  article-title: Probabilistic forecasting
  publication-title: Annual Review of Statistics and its Application
– year: 2008
  ident: b42
  article-title: Forecasting with exponential smoothing: the state space approach
– start-page: 267
  year: 1996
  end-page: 288
  ident: b66
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– year: 2009
  ident: b34
  publication-title: The elements of statistical learning
– volume: 27
  start-page: 635
  year: 2011
  end-page: 660
  ident: b22
  article-title: Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction
  publication-title: International Journal of Forecasting
– volume: 41
  start-page: 4235
  year: 2014
  end-page: 4244
  ident: b49
  article-title: Neural network ensemble operators for time series forecasting
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: 147
  year: 2001
  end-page: 156
  ident: b4
  article-title: Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods
  publication-title: Journal of Retailing and Consumer Services
– volume: 120
  start-page: 70
  year: 2018
  end-page: 83
  ident: b10
  article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction
  publication-title: Computational Statistics & Data Analysis
– volume: 172
  start-page: 65
  year: 2016
  end-page: 75
  ident: b70
  article-title: Analysis and forecasting of demand during promotions for perishable items
  publication-title: International Journal of Production Economics
– volume: Vol. 28
  start-page: 2962
  year: 2015
  end-page: 2970
  ident: b28
  article-title: Efficient and robust automated machine learning
  publication-title: Advances in neural information processing systems
– volume: 24
  start-page: 334
  year: 2005
  end-page: 350
  ident: b25
  article-title: CHAN4CAST: A multichannel, multiregion sales forecasting model and decision support system for consumer packaged goods
  publication-title: Marketing Science
– volume: 106
  start-page: 746
  year: 2011
  end-page: 762
  ident: b30
  article-title: Making and evaluating point forecasts
  publication-title: Journal of the American Statistical Association
– volume: 237
  start-page: 152
  year: 2014
  end-page: 163
  ident: b57
  article-title: ‘Horses for courses’ in demand forecasting
  publication-title: European Journal of Operational Research
– volume: 66
  start-page: 299
  year: 2015
  end-page: 307
  ident: b67
  article-title: On the identification of sales forecasting models in the presence of promotions
  publication-title: The Journal of the Operational Research Society
– reference: (pp. 1–8).
– volume: 36
  start-page: 12340
  year: 2009
  end-page: 12348
  ident: b32
  article-title: SKU Demand forecasting in the presence of promotions
  publication-title: Expert Systems with Applications
– start-page: 785
  year: 2016
  end-page: 794
  ident: b18
  article-title: XGBoost: A scalable tree boosting system
– volume: 264
  start-page: 967
  year: 2018
  end-page: 977
  ident: b8
  article-title: The impact of special days in call arrivals forecasting: A neural network approach to modelling special days
  publication-title: European Journal of Operational Research
– volume: 38
  start-page: 5544
  year: 2011
  end-page: 5552
  ident: b60
  article-title: Identifying the underlying structure of demand during promotions: A structural equation modelling approach
  publication-title: Expert Systems with Applications
– volume: 29
  start-page: 594
  year: 2010
  end-page: 621
  ident: b3
  article-title: An empirical comparison of machine learning models for time series forecasting
  publication-title: Econometric Reviews
– volume: 29
  start-page: 739
  year: 2018
  end-page: 766
  ident: b36
  article-title: Big data analytics and demand forecasting in supply chains: a conceptual analysis
  publication-title: The International Journal of Logistics Management
– start-page: 2546
  year: 2011
  end-page: 2554
  ident: b11
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Proceedings of the 24th international conference on neural information processing systems
– volume: 34
  start-page: 802
  year: 2018
  end-page: 808
  ident: b54
  article-title: The M4 competition: Results, findings, conclusion and way forward
  publication-title: International Journal of Forecasting
– volume: 237
  start-page: 41
  year: 2016
  end-page: 58
  ident: b14
  article-title: Aslib: A benchmark library for algorithm selection
  publication-title: Artificial Intelligence
– volume: 26
  start-page: 1
  year: 2008
  end-page: 22
  ident: b40
  article-title: Automatic time series forecasting: the forecast package for R
  publication-title: Journal of Statistical Software
– volume: 14
  start-page: 309
  year: 2016
  end-page: 325
  ident: b24
  article-title: An application of support vector machines to sales forecasting under promotions
  publication-title: 4OR
– volume: 17
  start-page: 481
  year: 1998
  end-page: 495
  ident: b2
  article-title: How effective are neural networks at forecasting and prediction? A review and evaluation
  publication-title: Journal of Forecasting
– reference: (pp. 232–238).
– volume: 14
  start-page: 35
  year: 1998
  end-page: 62
  ident: b76
  article-title: Forecasting with artificial neural networks:: The state of the art
  publication-title: International Journal of Forecasting
– year: 2017
  ident: b58
  article-title: R: A language and environment for statistical computing
– volume: 32
  start-page: 1120
  year: 2016
  end-page: 1137
  ident: b6
  article-title: Cross-validation aggregation for combining autoregressive neural network forecasts
  publication-title: International Journal of Forecasting
– volume: 237
  start-page: 738
  year: 2014
  end-page: 748
  ident: b37
  article-title: The value of competitive information in forecasting FMCG retail product sales and the variable selection problem
  publication-title: European Journal of Operational Research
– volume: 178
  start-page: 154
  year: 2007
  end-page: 167
  ident: b65
  article-title: Forecasting daily supermarket sales using exponentially weighted quantile regression
  publication-title: European Journal of Operational Research
– volume: 184
  start-page: 1140
  year: 2008
  end-page: 1154
  ident: b17
  article-title: Application of machine learning techniques for supply chain demand forecasting
  publication-title: European Journal of Operational Research
– volume: 76
  start-page: 140
  year: 2017
  end-page: 151
  ident: b38
  article-title: Cluster-based hierarchical demand forecasting for perishable goods
  publication-title: Expert Systems with Applications
– volume: 54
  start-page: 105
  year: 2016
  end-page: 120
  ident: b56
  article-title: Application of hybrid computational intelligence models in short-term bus load forecasting
  publication-title: Expert Systems with Applications
– volume: 249
  start-page: 245
  year: 2016
  end-page: 257
  ident: b53
  article-title: Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information
  publication-title: European Journal of Operational Research
– volume: 54
  start-page: 198
  year: 2002
  end-page: 220
  ident: b73
  article-title: How promotions work: SCAN*PRO-based evolutionary model building
  publication-title: Schmalenbach Business Review
– reference: Crone, S. F., & Kourentzes, N. (2009). Forecasting seasonal time series with multilayer perceptrons-an empirical evaluation of input vector specifications for deterministic seasonality.. In
– volume: 128
  start-page: 538
  year: 2010
  end-page: 545
  ident: b59
  article-title: Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK
  publication-title: International Journal of Production Economics
– reference: Cheng, J., Wang, Z., & Pollastri, G. (2008). A neural network approach to ordinal regression. In
– volume: 10
  start-page: 1897
  year: 1995
  end-page: 1903
  ident: b63
  article-title: Demand forecasting using fuzzy neural computation, with special emphasis on weekend and public holiday forecasting
  publication-title: IEEE Transactions on Power Systems
– volume: 43
  start-page: 54
  year: 2013
  end-page: 69
  ident: b27
  article-title: An examination of the causes for retail stockouts
  publication-title: International Journal of Physical Distribution and Logistics Management
– volume: 36
  start-page: 208
  year: 2020
  end-page: 211
  ident: b48
  article-title: Why the “best” point forecast depends on the error or accuracy measure
  publication-title: International Journal of Forecasting
– volume: 29
  start-page: 234
  year: 2013
  end-page: 243
  ident: b68
  article-title: Analysis of judgmental adjustments in the presence of promotions
  publication-title: International Journal of Forecasting
– volume: 18
  start-page: 439
  year: 2002
  end-page: 454
  ident: b39
  article-title: A state space framework for automatic forecasting using exponential smoothing methods
  publication-title: International Journal of Forecasting
– volume: 33
  start-page: 345
  year: 2017
  end-page: 358
  ident: b43
  article-title: Visualising forecasting algorithm performance using time series instance spaces
  publication-title: International Journal of Forecasting
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: b41
  article-title: Another look at measures of forecast accuracy
  publication-title: International journal of forecasting
– volume: 260
  start-page: 680
  year: 2017
  end-page: 692
  ident: b52
  article-title: A retail store SKU promotions optimization model for category multi-period profit maximization
  publication-title: European Journal of Operational Research
– volume: 28
  start-page: 127
  year: 2016
  end-page: 146
  ident: b33
  article-title: Ordinal regression methods: Survey and experimental study
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 37
  start-page: 704
  year: 2007
  end-page: 718
  ident: b74
  article-title: Consumer responses to shelf out-of-stocks of perishable products
  publication-title: International Journal of Physical Distribution and Logistics Management
– volume: 75
  start-page: 196
  year: 2006
  end-page: 204
  ident: b26
  article-title: Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing
  publication-title: Journal of Food Engineering
– volume: 24
  start-page: 630
  year: 2008
  end-page: 644
  ident: b62
  article-title: Modeling and forecasting short-term electricity load: a comparison of methods with an application to brazilian data
  publication-title: International Journal of Forecasting
– volume: 181
  start-page: 145
  year: 2016
  end-page: 153
  ident: b50
  article-title: Forecasting with multivariate temporal aggregation: The case of promotional modelling
  publication-title: International Journal of Production Economics
– volume: 86
  start-page: 217
  year: 2003
  end-page: 231
  ident: b20
  article-title: A comparative study of linear and nonlinear models for aggregate retail sales forecasting
  publication-title: International Journal of Production Economics
– volume: 39
  start-page: 7067
  year: 2012
  end-page: 7083
  ident: b9
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Systems with Applications
– volume: 37
  start-page: 383
  year: 2000
  end-page: 395
  ident: b72
  article-title: The estimation of pre- and postpromotion dips with store-level scanner data
  publication-title: Journal of Marketing Research
– volume: 13
  start-page: 1
  year: 2018
  end-page: 26
  ident: b55
  article-title: Statistical and machine learning forecasting methods: Concerns and ways forward
  publication-title: PLOS One
– volume: 32
  start-page: 788
  year: 2016
  end-page: 803
  ident: b47
  article-title: Evaluating predictive count data distributions in retail sales forecasting
  publication-title: International Journal of Forecasting
– volume: 104
  start-page: 462
  year: 2006
  end-page: 472
  ident: b71
  article-title: Inventory control of perishables in supermarkets
  publication-title: International Journal of Production Economics
– volume: 24
  start-page: 588
  year: 2008
  end-page: 602
  ident: b16
  article-title: Forecasting the electricity load from one day to one week ahead for the spanish system operator
  publication-title: International Journal of Forecasting
– volume: 230
  start-page: 170
  year: 2013
  end-page: 180
  ident: b45
  article-title: Modeling special-day effects for forecasting intraday electricity demand
  publication-title: European Journal of Operational Research
– start-page: 115
  year: 2013
  end-page: 123
  ident: b13
  article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
  publication-title: Proceedings of the 30th international conference on machine learning - vol. 28
– start-page: 9
  year: 2012
  end-page: 48
  ident: b51
  article-title: Efficient BackProp
  publication-title: Neural networks: Tricks of the trade
– year: 2019
  ident: b29
  article-title: Retail forecasting: Research and practice
  publication-title: International Journal of Forecasting
– reference: .
– volume: 19
  start-page: 235
  year: 2000
  end-page: 254
  ident: b64
  article-title: Density forecasting: a survey
  publication-title: Journal of Forecasting
– volume: Vol. 25
  start-page: 2951
  year: 2012
  end-page: 2959
  ident: b61
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Advances in neural information processing systems
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: b12
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 170
  start-page: 321
  year: 2015
  end-page: 335
  ident: b5
  article-title: A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting
  publication-title: International Journal of Production Economics
– volume: 23
  year: 1998
  ident: b75
  article-title: A neural network based estimator for electricity spot-pricing with particular reference to weekend and public holidays
  publication-title: Neurocomputing
– start-page: 62
  year: 2012
  end-page: 77
  ident: b15
  article-title: Machine learning strategies for time series forecasting
  publication-title: Business intelligence
– reference: (pp. 1279–1284).
– volume: 18
  start-page: 301
  year: 1999
  end-page: 316
  ident: b21
  article-title: PromoCast™: A new forecasting method for promotion planning
  publication-title: Marketing Science
– volume: 7
  start-page: 136
  year: 2007
  end-page: 144
  ident: b1
  article-title: Improved supply chain management based on hybrid demand forecasts
  publication-title: Applied Soft Computing
– reference: Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In
– volume: 128
  start-page: 538
  issue: 2
  year: 2010
  ident: 10.1016/j.ijforecast.2020.02.005_b59
  article-title: Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2010.07.007
– volume: 24
  start-page: 334
  issue: 3
  year: 2005
  ident: 10.1016/j.ijforecast.2020.02.005_b25
  article-title: CHAN4CAST: A multichannel, multiregion sales forecasting model and decision support system for consumer packaged goods
  publication-title: Marketing Science
  doi: 10.1287/mksc.1050.0135
– volume: 29
  start-page: 234
  issue: 2
  year: 2013
  ident: 10.1016/j.ijforecast.2020.02.005_b68
  article-title: Analysis of judgmental adjustments in the presence of promotions
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2012.10.002
– volume: 38
  start-page: 5544
  issue: 5
  year: 2011
  ident: 10.1016/j.ijforecast.2020.02.005_b60
  article-title: Identifying the underlying structure of demand during promotions: A structural equation modelling approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.10.082
– volume: Vol. 25
  start-page: 2951
  year: 2012
  ident: 10.1016/j.ijforecast.2020.02.005_b61
  article-title: Practical Bayesian optimization of machine learning algorithms
– volume: 37
  start-page: 704
  issue: 9
  year: 2007
  ident: 10.1016/j.ijforecast.2020.02.005_b74
  article-title: Consumer responses to shelf out-of-stocks of perishable products
  publication-title: International Journal of Physical Distribution and Logistics Management
  doi: 10.1108/09600030710840822
– volume: 106
  start-page: 746
  issue: 494
  year: 2011
  ident: 10.1016/j.ijforecast.2020.02.005_b30
  article-title: Making and evaluating point forecasts
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2011.r10138
– volume: 33
  start-page: 345
  issue: 2
  year: 2017
  ident: 10.1016/j.ijforecast.2020.02.005_b43
  article-title: Visualising forecasting algorithm performance using time series instance spaces
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2016.09.004
– volume: 34
  start-page: 802
  issue: 4
  year: 2018
  ident: 10.1016/j.ijforecast.2020.02.005_b54
  article-title: The M4 competition: Results, findings, conclusion and way forward
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2018.06.001
– volume: 28
  start-page: 127
  issue: 1
  year: 2016
  ident: 10.1016/j.ijforecast.2020.02.005_b33
  article-title: Ordinal regression methods: Survey and experimental study
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2015.2457911
– volume: 8
  start-page: 147
  issue: 3
  year: 2001
  ident: 10.1016/j.ijforecast.2020.02.005_b4
  article-title: Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/S0969-6989(00)00011-4
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.ijforecast.2020.02.005_b35
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 86
  start-page: 217
  issue: 3
  year: 2003
  ident: 10.1016/j.ijforecast.2020.02.005_b20
  article-title: A comparative study of linear and nonlinear models for aggregate retail sales forecasting
  publication-title: International Journal of Production Economics
  doi: 10.1016/S0925-5273(03)00068-9
– volume: 237
  start-page: 738
  issue: 2
  year: 2014
  ident: 10.1016/j.ijforecast.2020.02.005_b37
  article-title: The value of competitive information in forecasting FMCG retail product sales and the variable selection problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.02.022
– volume: 181
  start-page: 145
  year: 2016
  ident: 10.1016/j.ijforecast.2020.02.005_b50
  article-title: Forecasting with multivariate temporal aggregation: The case of promotional modelling
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2015.09.011
– ident: 10.1016/j.ijforecast.2020.02.005_b23
– volume: 75
  start-page: 196
  issue: 2
  year: 2006
  ident: 10.1016/j.ijforecast.2020.02.005_b26
  article-title: Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2005.03.056
– volume: 18
  start-page: 439
  issue: 3
  year: 2002
  ident: 10.1016/j.ijforecast.2020.02.005_b39
  article-title: A state space framework for automatic forecasting using exponential smoothing methods
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(01)00110-8
– volume: 7
  start-page: 136
  issue: 1
  year: 2007
  ident: 10.1016/j.ijforecast.2020.02.005_b1
  article-title: Improved supply chain management based on hybrid demand forecasts
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2005.06.001
– volume: 23
  issue: 1
  year: 1998
  ident: 10.1016/j.ijforecast.2020.02.005_b75
  article-title: A neural network based estimator for electricity spot-pricing with particular reference to weekend and public holidays
  publication-title: Neurocomputing
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.ijforecast.2020.02.005_b41
  article-title: Another look at measures of forecast accuracy
  publication-title: International journal of forecasting
  doi: 10.1016/j.ijforecast.2006.03.001
– year: 2009
  ident: 10.1016/j.ijforecast.2020.02.005_b34
– volume: 14
  start-page: 309
  issue: 3
  year: 2016
  ident: 10.1016/j.ijforecast.2020.02.005_b24
  article-title: An application of support vector machines to sales forecasting under promotions
  publication-title: 4OR
  doi: 10.1007/s10288-016-0316-0
– volume: 104
  start-page: 462
  issue: 2
  year: 2006
  ident: 10.1016/j.ijforecast.2020.02.005_b71
  article-title: Inventory control of perishables in supermarkets
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2004.10.019
– start-page: 2546
  year: 2011
  ident: 10.1016/j.ijforecast.2020.02.005_b11
  article-title: Algorithms for hyper-parameter optimization
– start-page: 9
  year: 2012
  ident: 10.1016/j.ijforecast.2020.02.005_b51
  article-title: Efficient BackProp
– year: 2008
  ident: 10.1016/j.ijforecast.2020.02.005_b42
– year: 2017
  ident: 10.1016/j.ijforecast.2020.02.005_b58
– start-page: 115
  year: 2013
  ident: 10.1016/j.ijforecast.2020.02.005_b13
  article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
– volume: 26
  start-page: 1
  issue: 3
  year: 2008
  ident: 10.1016/j.ijforecast.2020.02.005_b40
  article-title: Automatic time series forecasting: the forecast package for R
  publication-title: Journal of Statistical Software
– year: 2019
  ident: 10.1016/j.ijforecast.2020.02.005_b29
  article-title: Retail forecasting: Research and practice
  publication-title: International Journal of Forecasting
– volume: 36
  start-page: 208
  issue: 1
  year: 2020
  ident: 10.1016/j.ijforecast.2020.02.005_b48
  article-title: Why the “best” point forecast depends on the error or accuracy measure
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2019.02.017
– start-page: 267
  year: 1996
  ident: 10.1016/j.ijforecast.2020.02.005_b66
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 41
  start-page: 4235
  issue: 9
  year: 2014
  ident: 10.1016/j.ijforecast.2020.02.005_b49
  article-title: Neural network ensemble operators for time series forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.12.011
– volume: 17
  start-page: 481
  issue: 5–6
  year: 1998
  ident: 10.1016/j.ijforecast.2020.02.005_b2
  article-title: How effective are neural networks at forecasting and prediction? A review and evaluation
  publication-title: Journal of Forecasting
  doi: 10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q
– volume: 32
  start-page: 1120
  issue: 4
  year: 2016
  ident: 10.1016/j.ijforecast.2020.02.005_b6
  article-title: Cross-validation aggregation for combining autoregressive neural network forecasts
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2015.12.011
– volume: 264
  start-page: 967
  year: 2018
  ident: 10.1016/j.ijforecast.2020.02.005_b8
  article-title: The impact of special days in call arrivals forecasting: A neural network approach to modelling special days
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.07.015
– volume: 249
  start-page: 245
  issue: 1
  year: 2016
  ident: 10.1016/j.ijforecast.2020.02.005_b53
  article-title: Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.08.029
– volume: 39
  start-page: 7067
  issue: 8
  year: 2012
  ident: 10.1016/j.ijforecast.2020.02.005_b9
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.039
– ident: 10.1016/j.ijforecast.2020.02.005_b7
  doi: 10.1109/IJCNN.2010.5596686
– volume: 10
  start-page: 1897
  year: 1995
  ident: 10.1016/j.ijforecast.2020.02.005_b63
  article-title: Demand forecasting using fuzzy neural computation, with special emphasis on weekend and public holiday forecasting
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.476055
– start-page: 785
  year: 2016
  ident: 10.1016/j.ijforecast.2020.02.005_b18
– volume: 54
  start-page: 198
  issue: 3
  year: 2002
  ident: 10.1016/j.ijforecast.2020.02.005_b73
  article-title: How promotions work: SCAN*PRO-based evolutionary model building
  publication-title: Schmalenbach Business Review
  doi: 10.1007/BF03396653
– ident: 10.1016/j.ijforecast.2020.02.005_b19
  doi: 10.1109/IJCNN.2008.4633963
– volume: 29
  start-page: 594
  issue: 5–6
  year: 2010
  ident: 10.1016/j.ijforecast.2020.02.005_b3
  article-title: An empirical comparison of machine learning models for time series forecasting
  publication-title: Econometric Reviews
  doi: 10.1080/07474938.2010.481556
– volume: 170
  start-page: 321
  year: 2015
  ident: 10.1016/j.ijforecast.2020.02.005_b5
  article-title: A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2015.09.039
– volume: 24
  start-page: 630
  year: 2008
  ident: 10.1016/j.ijforecast.2020.02.005_b62
  article-title: Modeling and forecasting short-term electricity load: a comparison of methods with an application to brazilian data
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2008.08.003
– volume: 54
  start-page: 105
  year: 2016
  ident: 10.1016/j.ijforecast.2020.02.005_b56
  article-title: Application of hybrid computational intelligence models in short-term bus load forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.01.034
– volume: 66
  start-page: 299
  issue: 2
  year: 2015
  ident: 10.1016/j.ijforecast.2020.02.005_b67
  article-title: On the identification of sales forecasting models in the presence of promotions
  publication-title: The Journal of the Operational Research Society
  doi: 10.1057/jors.2013.174
– volume: 24
  start-page: 588
  year: 2008
  ident: 10.1016/j.ijforecast.2020.02.005_b16
  article-title: Forecasting the electricity load from one day to one week ahead for the spanish system operator
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2008.07.005
– volume: 27
  start-page: 635
  issue: 3
  year: 2011
  ident: 10.1016/j.ijforecast.2020.02.005_b22
  article-title: Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2011.04.001
– volume: 37
  start-page: 383
  issue: 3
  year: 2000
  ident: 10.1016/j.ijforecast.2020.02.005_b72
  article-title: The estimation of pre- and postpromotion dips with store-level scanner data
  publication-title: Journal of Marketing Research
  doi: 10.1509/jmkr.37.3.383.18782
– volume: 56
  start-page: 766
  issue: 5
  year: 2010
  ident: 10.1016/j.ijforecast.2020.02.005_b69
  article-title: Ordering behavior in retail stores and implications for automated replenishment
  publication-title: Management Science
  doi: 10.1287/mnsc.1090.1141
– volume: 1
  start-page: 125
  issue: 1
  year: 2014
  ident: 10.1016/j.ijforecast.2020.02.005_b31
  article-title: Probabilistic forecasting
  publication-title: Annual Review of Statistics and its Application
  doi: 10.1146/annurev-statistics-062713-085831
– volume: 32
  start-page: 788
  issue: 3
  year: 2016
  ident: 10.1016/j.ijforecast.2020.02.005_b47
  article-title: Evaluating predictive count data distributions in retail sales forecasting
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2015.12.004
– volume: 43
  start-page: 54
  issue: 1
  year: 2013
  ident: 10.1016/j.ijforecast.2020.02.005_b27
  article-title: An examination of the causes for retail stockouts
  publication-title: International Journal of Physical Distribution and Logistics Management
  doi: 10.1108/09600031311293255
– volume: 230
  start-page: 170
  year: 2013
  ident: 10.1016/j.ijforecast.2020.02.005_b45
  article-title: Modeling special-day effects for forecasting intraday electricity demand
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2013.03.039
– volume: 13
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.ijforecast.2020.02.005_b55
  article-title: Statistical and machine learning forecasting methods: Concerns and ways forward
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0194889
– volume: 237
  start-page: 152
  issue: 1
  year: 2014
  ident: 10.1016/j.ijforecast.2020.02.005_b57
  article-title: ‘Horses for courses’ in demand forecasting
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.02.036
– volume: 19
  start-page: 235
  issue: 4
  year: 2000
  ident: 10.1016/j.ijforecast.2020.02.005_b64
  article-title: Density forecasting: a survey
  publication-title: Journal of Forecasting
  doi: 10.1002/1099-131X(200007)19:4<235::AID-FOR772>3.0.CO;2-L
– volume: 18
  start-page: 301
  issue: 3
  year: 1999
  ident: 10.1016/j.ijforecast.2020.02.005_b21
  article-title: PromoCast™: A new forecasting method for promotion planning
  publication-title: Marketing Science
  doi: 10.1287/mksc.18.3.301
– ident: 10.1016/j.ijforecast.2020.02.005_b46
– volume: 172
  start-page: 65
  year: 2016
  ident: 10.1016/j.ijforecast.2020.02.005_b70
  article-title: Analysis and forecasting of demand during promotions for perishable items
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2015.10.022
– start-page: 3146
  year: 2017
  ident: 10.1016/j.ijforecast.2020.02.005_b44
  article-title: LightGBM: A highly efficient gradient boosting decision tree
– volume: 178
  start-page: 154
  issue: 1
  year: 2007
  ident: 10.1016/j.ijforecast.2020.02.005_b65
  article-title: Forecasting daily supermarket sales using exponentially weighted quantile regression
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.02.006
– volume: 120
  start-page: 70
  year: 2018
  ident: 10.1016/j.ijforecast.2020.02.005_b10
  article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2017.11.003
– volume: 14
  start-page: 35
  issue: 1
  year: 1998
  ident: 10.1016/j.ijforecast.2020.02.005_b76
  article-title: Forecasting with artificial neural networks:: The state of the art
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 29
  start-page: 739
  issue: 2
  year: 2018
  ident: 10.1016/j.ijforecast.2020.02.005_b36
  article-title: Big data analytics and demand forecasting in supply chains: a conceptual analysis
  publication-title: The International Journal of Logistics Management
  doi: 10.1108/IJLM-04-2017-0088
– volume: 76
  start-page: 140
  year: 2017
  ident: 10.1016/j.ijforecast.2020.02.005_b38
  article-title: Cluster-based hierarchical demand forecasting for perishable goods
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.01.022
– volume: Vol. 28
  start-page: 2962
  year: 2015
  ident: 10.1016/j.ijforecast.2020.02.005_b28
  article-title: Efficient and robust automated machine learning
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.ijforecast.2020.02.005_b12
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 237
  start-page: 41
  year: 2016
  ident: 10.1016/j.ijforecast.2020.02.005_b14
  article-title: Aslib: A benchmark library for algorithm selection
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2016.04.003
– volume: 184
  start-page: 1140
  issue: 3
  year: 2008
  ident: 10.1016/j.ijforecast.2020.02.005_b17
  article-title: Application of machine learning techniques for supply chain demand forecasting
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.12.004
– volume: 260
  start-page: 680
  issue: 2
  year: 2017
  ident: 10.1016/j.ijforecast.2020.02.005_b52
  article-title: A retail store SKU promotions optimization model for category multi-period profit maximization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.12.032
– volume: 36
  start-page: 12340
  issue: 10
  year: 2009
  ident: 10.1016/j.ijforecast.2020.02.005_b32
  article-title: SKU Demand forecasting in the presence of promotions
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.04.052
– start-page: 62
  year: 2012
  ident: 10.1016/j.ijforecast.2020.02.005_b15
  article-title: Machine learning strategies for time series forecasting
SSID ssj0005711
Score 2.5911841
Snippet Demand forecasting is an important task for retailers as it is required for various operational decisions. One key challenge is to forecast demand on special...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1420
SubjectTerms Classification
Comparative studies
Decision trees
Demand forecasting
Forecasting practice
Neural networks
Regression
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB1BOJRLW1oQaWm1hx7KwcTejZ2NeoraAkICVSqR4II13g8wDSaKE1Xpr2c2u6YtElKEOFm2dmStZ3bejPX2LcCnPtXwaaFUlKmEGhQp0wh7iJHlPLYoMI0XOrPHJ9nhsHt0lp6twEGzF8bRKkPu9zl9ka3Dk074mh0s6s64LDs_nZYIp6jlFKsOjVZhLUupKG_B2vDkx-DcK3v3IzfGtV6yR-ufAiNwejzTq7ym-tAorB23ksdewzN9DKhezKoxzn_jaPQPEO2_gqtmCp5_8mtvNi321J8H6o7PMMfX8DIUq2zgx27AiqneQNvv6GUhK9Tsc5Cu3n0LF9-wHM3ZZMFLZdrcYKVZM20CSeZo9pfsZsHgNCwcWXHJ3N9gZiiwsC5rdlsxihxTacrRzG0Fda_TOK83Ybj__fTrYRROcIhUV4hplGgdS0vrPBNWGcJFFAVKITI0iZU6jnUmOaWABOmqujLWiNRhIipjC22s2IJWdVuZbWDI-90Mqdy0ggCV2j5hUtdgF1lqLFrZhl7jrlwFeXN3ysYob3hs1_lfR-fO0XnMc3J0G5J7y7GX-FjC5ksTEfl_rswJiZaw5vdBtPQr3z3F6D2suzvPPtyB1nQyMx-oipoWH8MKuQN_Xx2s
  priority: 102
  providerName: Unpaywall
Title Daily retail demand forecasting using machine learning with emphasis on calendric special days
URI https://dx.doi.org/10.1016/j.ijforecast.2020.02.005
https://www.sciencedirect.com/science/article/abs/pii/S0169207020300224
UnpaywallVersion submittedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8200
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005711
  issn: 1872-8200
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8200
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005711
  issn: 1872-8200
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8200
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005711
  issn: 1872-8200
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8200
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005711
  issn: 1872-8200
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8200
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005711
  issn: 1872-8200
  databaseCode: AKRWK
  dateStart: 19850101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBZLeuhelnbbstm2iw57aA9ubMl2HHoKaUO2jxDaBrKXNWM9goPjhDhLyaW_vSNLzqaHhUBPwsZCYmY034z5NEPIdQ9j-CgTwotFgAlKkkQedAE8zZivgUPk13Vmv4_j0TT8MotmJ2TQ3IUxtErn-61Pr721e9Nx0uys87zz09QRYWixDO3UIJG5wR52TReDD38OaB7dwPYkjHue-dqxeSzHK19gZKgEVIZVyXxbvTN6DKKe3pdr2P2GojiAoOEzcuZiR9q323tOTlR5Ttr2gi11h7Si71wl6fcvyN0nyIsd3dQ0USrVEkpJm70gZlHDep_TZU2oVNR1kJhT83OWKtQzVHlFVyVFRapSosukle1XTyXsqpdkOvz8azDyXEMFT4Scb71ASj_ReOxiroVCmAKeQcJ5DCrQifR9GScMT2QAOIow8SUAJnwAQulMKs1fkVa5KtUFocB6YQwY_WmO-IZZGFeRyXezOFIadNIm3UaGqXDVxk3TiyJtaGWL9EH6qZF-6rMUpd8mwX7m2lbcOGLOx0ZN6T_WkyIwHDGb7TV79JKX_7Xka3Jqniwr8A1pbTf36i1GN9vsqjbfK_KkP_jxbWLGm6-jMY7T8aR_-xf2VP9S
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-DnoRn7g-c_Cgh7pt0na7eBIfrM-LCp4M0zykstbFrshe_O1OmtTHQVjwVGgbEmYm882ELzOE7HQxhk9yKYNURpigZFkSQAcgMIyFBjgkYV1n9uo67d3F5_fJ_QQ5au7CWFql9_3Op9fe2r9pe2m2B0XRvrF1RBhaLEM7tUg0SabjhHVsBrb_8YPn0YlcU8K0G9jfPZ3HkbyKJwwNtYTK0ipZ6Mp3Jn9h1MxbOYDRO_T7PzDodJ7M-eCRHrr1LZAJXS6SlrthS_0ureiuLyW9t0QejqHoj-hrzROlSj9DqWizFgQtamnvj_S5ZlRq6ltIPFJ7Oks1KhqqoqIvJUVN6lKhz6SVa1hPFYyqZXJ3enJ71At8R4VAxpwPg0ipMDO471JupEacAp5DxnkKOjKZCkOVZgy3ZAT4lHEWKgDM-ACkNrnShq-QqfKl1KuEAuvGKWD4ZzgCHKZhXCc24c3TRBswWYt0GhkK6cuN264XfdHwyp7Et_SFlb4ImUDpt0j0NXLgSm6MMeagUZP4ZT4CkWGM0exLs2NPufavKbfJTO_26lJcnl1frJNZ-8VRBDfI1PD1TW9iqDPMt2pT_gTnif2i
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB1BOJRLW1oQaWm1hx7KwcTejZ2NeoraAkICVSqR4II13g8wDSaKE1Xpr2c2u6YtElKEOFm2dmStZ3bejPX2LcCnPtXwaaFUlKmEGhQp0wh7iJHlPLYoMI0XOrPHJ9nhsHt0lp6twEGzF8bRKkPu9zl9ka3Dk074mh0s6s64LDs_nZYIp6jlFKsOjVZhLUupKG_B2vDkx-DcK3v3IzfGtV6yR-ufAiNwejzTq7ym-tAorB23ksdewzN9DKhezKoxzn_jaPQPEO2_gqtmCp5_8mtvNi321J8H6o7PMMfX8DIUq2zgx27AiqneQNvv6GUhK9Tsc5Cu3n0LF9-wHM3ZZMFLZdrcYKVZM20CSeZo9pfsZsHgNCwcWXHJ3N9gZiiwsC5rdlsxihxTacrRzG0Fda_TOK83Ybj__fTrYRROcIhUV4hplGgdS0vrPBNWGcJFFAVKITI0iZU6jnUmOaWABOmqujLWiNRhIipjC22s2IJWdVuZbWDI-90Mqdy0ggCV2j5hUtdgF1lqLFrZhl7jrlwFeXN3ysYob3hs1_lfR-fO0XnMc3J0G5J7y7GX-FjC5ksTEfl_rswJiZaw5vdBtPQr3z3F6D2suzvPPtyB1nQyMx-oipoWH8MKuQN_Xx2s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Daily+retail+demand+forecasting+using+machine+learning+with+emphasis+on+calendric+special+days&rft.jtitle=International+journal+of+forecasting&rft.au=Huber%2C+Jakob&rft.au=Stuckenschmidt%2C+Heiner&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0169-2070&rft.eissn=1872-8200&rft.volume=36&rft.issue=4&rft.spage=1420&rft.epage=1438&rft_id=info:doi/10.1016%2Fj.ijforecast.2020.02.005&rft.externalDocID=S0169207020300224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2070&client=summon