Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial

Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with...

Full description

Saved in:
Bibliographic Details
Published inJournal of pineal research Vol. 59; no. 2; pp. 221 - 229
Main Authors Amstrup, Anne Kristine, Sikjaer, Tanja, Heickendorff, Lene, Mosekilde, Leif, Rejnmark, Lars
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.09.2015
Subjects
Online AccessGet full text
ISSN0742-3098
1600-079X
1600-079X
DOI10.1111/jpi.12252

Cover

Abstract Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double‐blind RCT, we randomized 81 postmenopausal osteopenic women to 1‐yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1‐yr treatment, we measured bone mineral density (BMD) by dual X‐ray absorptiometry, quantitative computed tomography (QCT), and high‐resolution peripheral QCT (HR‐pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56–73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose‐dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24‐hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1‐yr treatment with melatonin increased BMD at femoral neck in a dose‐dependent manner, while high‐dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures.
AbstractList Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double‐blind RCT, we randomized 81 postmenopausal osteopenic women to 1‐yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1‐yr treatment, we measured bone mineral density (BMD) by dual X‐ray absorptiometry, quantitative computed tomography (QCT), and high‐resolution peripheral QCT (HR‐pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56–73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin ( P  < 0.05) in a dose‐dependent manner ( P  < 0.01), as BMD increased by 0.5% in the 1 mg/day group ( P  = 0.55) and by 2.3% ( P  < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% ( P  = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% ( P  = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24‐hr urinary calcium was decreased in response to melatonin by 12.2% ( P  = 0.02). In conclusion, 1‐yr treatment with melatonin increased BMD at femoral neck in a dose‐dependent manner, while high‐dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures.
Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double‐blind RCT, we randomized 81 postmenopausal osteopenic women to 1‐yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1‐yr treatment, we measured bone mineral density (BMD) by dual X‐ray absorptiometry, quantitative computed tomography (QCT), and high‐resolution peripheral QCT (HR‐pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56–73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose‐dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24‐hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1‐yr treatment with melatonin increased BMD at femoral neck in a dose‐dependent manner, while high‐dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures.
Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double-blind RCT, we randomized 81 postmenopausal osteopenic women to 1-yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1-yr treatment, we measured bone mineral density (BMD) by dual X-ray absorptiometry, quantitative computed tomography (QCT), and high-resolution peripheral QCT (HR-pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56-73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose-dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24-hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1-yr treatment with melatonin increased BMD at femoral neck in a dose-dependent manner, while high-dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures.
Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double-blind RCT, we randomized 81 postmenopausal osteopenic women to 1-yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1-yr treatment, we measured bone mineral density (BMD) by dual X-ray absorptiometry, quantitative computed tomography (QCT), and high-resolution peripheral QCT (HR-pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56-73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose-dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24-hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1-yr treatment with melatonin increased BMD at femoral neck in a dose-dependent manner, while high-dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures.Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double-blind RCT, we randomized 81 postmenopausal osteopenic women to 1-yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1-yr treatment, we measured bone mineral density (BMD) by dual X-ray absorptiometry, quantitative computed tomography (QCT), and high-resolution peripheral QCT (HR-pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56-73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose-dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24-hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1-yr treatment with melatonin increased BMD at femoral neck in a dose-dependent manner, while high-dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures.
Author Rejnmark, Lars
Mosekilde, Leif
Heickendorff, Lene
Amstrup, Anne Kristine
Sikjaer, Tanja
Author_xml – sequence: 1
  givenname: Anne Kristine
  surname: Amstrup
  fullname: Amstrup, Anne Kristine
  email: Address reprint requests to Anne Kristine Amstrup, Osteoporosis Clinic, Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, Tage-Hansens Gade 2, 8000 DK-Aarhus C, Denmark., anne_kristine_am@hotmail.com
  organization: Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, THG, Aarhus, Denmark
– sequence: 2
  givenname: Tanja
  surname: Sikjaer
  fullname: Sikjaer, Tanja
  organization: Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, THG, Aarhus, Denmark
– sequence: 3
  givenname: Lene
  surname: Heickendorff
  fullname: Heickendorff, Lene
  organization: Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
– sequence: 4
  givenname: Leif
  surname: Mosekilde
  fullname: Mosekilde, Leif
  organization: Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, THG, Aarhus, Denmark
– sequence: 5
  givenname: Lars
  surname: Rejnmark
  fullname: Rejnmark, Lars
  organization: Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, THG, Aarhus, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26036434$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFv1DAQhS1URLeFA38A-QiHtBPbibPcUIFSKKVIILhZTjJR3Tp2anu7XY78crzsLgcEvtgzft-TZt4B2XPeISFPSzgq8zm-nsxRyVjFHpBZWQMUIOff98gMpGAFh3mzTw5ivAaApmnqR2Sf1cBrwcWM_PyIVifvjKNmnIK_w0jb7E5H4zBoS3t00aQV1YmmK6QDjn7ddtjd0AxNPqYRnZ_0Iub20ueCLk26ovkD_YTO6JdU06Bd70fzA3vaeZeCtzY_UzDaPiYPB20jPtneh-Tr2zdfTt4V559Oz05enRed4JwVFRcMWo5V21WDZHXFSyFr1nHRiUHqiretrnoh-SDnOAcYGEPZwhwFa9oBen5Inm9885i3C4xJjSZ2aK126BdRlRJKDlA1LEufbaWLdsReTcGMOqzUbm9ZcLwRdMHHGHBQnUk6mfVo2lhVglono3Iy6ncymXjxF7Ez_Zd26740Flf_F6r3l2c7otgQJm_9_g-hw42qJZeV-nZxqsoPr5vLi89SNfwX9yWt8w
CitedBy_id crossref_primary_10_1016_j_bonr_2017_11_001
crossref_primary_10_1007_s00198_024_07261_8
crossref_primary_10_1007_s11657_020_00828_y
crossref_primary_10_1111_nbu_12356
crossref_primary_10_30565_medalanya_939161
crossref_primary_10_3389_fendo_2023_1281213
crossref_primary_10_1016_j_coph_2021_08_016
crossref_primary_10_1111_jpi_12814
crossref_primary_10_1111_jpi_12931
crossref_primary_10_1007_s00018_023_04736_5
crossref_primary_10_1016_j_eclinm_2023_102083
crossref_primary_10_1016_j_freeradbiomed_2018_10_402
crossref_primary_10_3390_biomedicines12030684
crossref_primary_10_3390_ijms17101771
crossref_primary_10_1007_s00198_021_06061_8
crossref_primary_10_5937_KgJSci2400004S
crossref_primary_10_1007_s00774_017_0896_6
crossref_primary_10_1007_s00198_023_06740_8
crossref_primary_10_2147_CIA_S283342
crossref_primary_10_1016_j_psj_2024_103934
crossref_primary_10_1186_s13287_019_1511_7
crossref_primary_10_1530_JOE_18_0707
crossref_primary_10_3390_jcm8091415
crossref_primary_10_1016_j_arr_2022_101717
crossref_primary_10_3390_ijms22094585
crossref_primary_10_1002_bem_22372
crossref_primary_10_1111_jpi_12360
crossref_primary_10_3330_hikakuseiriseika_34_2
crossref_primary_10_3390_ijms21144946
crossref_primary_10_3389_fcell_2021_672424
crossref_primary_10_7759_cureus_65885
crossref_primary_10_1007_s00223_018_0428_y
crossref_primary_10_3390_molecules23020336
crossref_primary_10_1016_j_phrs_2019_104337
crossref_primary_10_1016_j_coemr_2021_04_003
crossref_primary_10_3389_fendo_2022_826660
crossref_primary_10_1007_s00129_021_04844_y
crossref_primary_10_1016_j_actaastro_2022_10_020
crossref_primary_10_1089_ict_2022_29025_klu
crossref_primary_10_1126_scitranslmed_adj0085
crossref_primary_10_2147_CIA_S361519
crossref_primary_10_1210_endocr_bqab057
crossref_primary_10_1007_s00223_016_0179_6
crossref_primary_10_1111_jpi_12548
crossref_primary_10_1038_s41598_017_06304_x
crossref_primary_10_3390_antiox9111088
crossref_primary_10_1111_jpi_12423
crossref_primary_10_1016_j_freeradbiomed_2019_10_412
crossref_primary_10_1111_jpi_12422
crossref_primary_10_1111_jcmm_14490
crossref_primary_10_3390_nu16142356
crossref_primary_10_1080_10408398_2018_1487927
crossref_primary_10_1155_2022_7420726
crossref_primary_10_1155_2020_6797154
crossref_primary_10_1016_j_ejphar_2020_173577
crossref_primary_10_1016_j_jocn_2017_01_022
crossref_primary_10_1007_s00391_019_01640_1
crossref_primary_10_1007_s11657_018_0456_2
crossref_primary_10_1080_14397595_2019_1601854
crossref_primary_10_1186_s12937_015_0093_1
crossref_primary_10_3390_nu14193934
crossref_primary_10_1155_2019_5151678
crossref_primary_10_1016_j_actbio_2017_08_046
crossref_primary_10_1039_C8TB03361G
crossref_primary_10_1155_2019_4019619
crossref_primary_10_1016_j_arr_2022_101635
crossref_primary_10_17343_sdutfd_979473
crossref_primary_10_1186_s12964_024_02025_7
crossref_primary_10_1016_j_clnesp_2023_04_011
crossref_primary_10_1080_14740338_2022_2160444
crossref_primary_10_3389_fendo_2022_893678
crossref_primary_10_1016_j_biochi_2022_08_008
crossref_primary_10_1080_09712119_2019_1583570
crossref_primary_10_1007_s12020_019_01937_6
crossref_primary_10_1089_thy_2018_0318
crossref_primary_10_1016_j_acthis_2020_151596
crossref_primary_10_33667_2078_5631_2023_20_19_29
crossref_primary_10_1007_s00198_017_4127_8
crossref_primary_10_3390_agriculture15050553
crossref_primary_10_30629_0023_2149_2023_101_12_607_612
crossref_primary_10_1002_cbin_11240
crossref_primary_10_1111_jpi_12597
crossref_primary_10_1111_cen_12942
crossref_primary_10_1111_jpi_12594
crossref_primary_10_3389_fnut_2024_1445955
crossref_primary_10_1016_j_jot_2022_10_002
crossref_primary_10_1016_j_actbio_2017_01_034
crossref_primary_10_1016_j_metabol_2017_12_002
crossref_primary_10_3389_fphar_2022_866625
crossref_primary_10_1016_j_actbio_2021_07_017
crossref_primary_10_3390_ijms18040843
crossref_primary_10_1096_fj_202302582RR
crossref_primary_10_1111_jpi_12749
crossref_primary_10_1111_jpi_12743
crossref_primary_10_1111_jpi_12349
crossref_primary_10_18632_aging_101158
crossref_primary_10_1007_s00198_023_06836_1
crossref_primary_10_1111_jpi_12465
crossref_primary_10_1007_s10695_019_00748_w
crossref_primary_10_3390_ijms22179435
crossref_primary_10_1186_s13287_022_02878_0
crossref_primary_10_1096_fj_201900093RR
crossref_primary_10_1016_j_cellsig_2025_111754
crossref_primary_10_1007_s11920_018_0960_5
crossref_primary_10_1038_s41419_019_1949_7
Cites_doi 10.1359/jbmr.2002.17.7.1219
10.1210/jc.80.5.1560
10.1111/j.1600-079X.2012.01016.x
10.1016/S0891-5849(01)00610-4
10.1111/j.1600-079X.2011.00956.x
10.1111/j.1600-079X.2005.00263.x
10.1111/j.1600-079X.2011.00856.x
10.1210/en.138.11.4732
10.1111/j.1600-079X.1999.tb00603.x
10.1016/j.jss.2010.08.036
10.1186/1741-7015-8-51
10.1111/j.1600-079X.2010.00784.x
10.1111/jpi.12010
10.1111/jpi.12177
10.1093/gerona/53A.4.B293
10.1089/rej.2013.1542
10.1186/1471-2474-12-271
10.1111/j.1600-079X.2006.00318.x
10.1002/jbmr.1624
10.1111/j.1600-079X.2012.01007.x
10.1016/S8756-3282(98)00159-8
10.1007/s00223-010-9393-9
10.1016/S0001-2998(87)80024-7
10.1093/oxfordjournals.aje.a008800
10.1111/j.1600-079X.2011.00875.x
10.1007/s11914-003-0013-8
10.1111/j.1525-1497.2005.0243.x
10.1016/j.bbrc.2003.12.073
10.1002/ar.20925
10.1111/j.1600-079X.2006.00410.x
10.1111/j.1600-079X.2010.00803.x
10.1016/S8756-3282(02)00736-6
10.1016/j.cca.2009.10.010
10.1111/jpi.12162
10.1007/s00198-008-0820-y
ContentType Journal Article
Copyright 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/jpi.12252
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1600-079X
EndPage 229
ExternalDocumentID 26036434
10_1111_jpi_12252
JPI12252
ark_67375_WNG_1KD8PNQ7_8
Genre article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: A.P. Møller og hustru Chastine MC‐Kinney Møllers Foundation
– fundername: Karen Elise Jensens Foundation
– fundername: Danish Osteoporosis Patient Union and Toyota Foundation, Denmark
– fundername: Central Denmark Region
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
186
1OB
1OC
29L
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BQCPF
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4332-53420b3e5bc5f7265314762c34c4f7a53bba5d473f79e900f22e7b09e428bf0d3
IEDL.DBID DR2
ISSN 0742-3098
1600-079X
IngestDate Fri Sep 05 04:38:19 EDT 2025
Thu Apr 03 07:07:57 EDT 2025
Wed Oct 01 01:49:54 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Wed Jan 22 16:33:04 EST 2025
Sun Sep 21 06:22:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords clinical trial
bone mineral density
postmenopausal women
melatonin
osteoporosis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4332-53420b3e5bc5f7265314762c34c4f7a53bba5d473f79e900f22e7b09e428bf0d3
Notes ArticleID:JPI12252
Central Denmark Region
istex:7292143D7481B331F6D6B2B9D5930277D57BBBCA
Danish Osteoporosis Patient Union and Toyota Foundation, Denmark
ark:/67375/WNG-1KD8PNQ7-8
Karen Elise Jensens Foundation
A.P. Møller og hustru Chastine MC-Kinney Møllers Foundation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 26036434
PQID 1701300582
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1701300582
pubmed_primary_26036434
crossref_citationtrail_10_1111_jpi_12252
crossref_primary_10_1111_jpi_12252
wiley_primary_10_1111_jpi_12252_JPI12252
istex_primary_ark_67375_WNG_1KD8PNQ7_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of pineal research
PublicationTitleAlternate J. Pineal Res
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Hansen S, Brixen K, Gravholt CH. Compromised trabecular microarchitecture and lower finite element estimates of radius and tibia bone strength in adults with turner syndrome: a cross-sectional study using high-resolution-pQCT. J Bone Miner Res 2012; 27:1794-1803.
Karagas MR, Lu-Yao GL, Barrett JA et al. Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly. Am J Epidemiol 1996; 143:677-682.
Laib A, Ruegsegger P. Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 1999; 24:35-39.
Histing T, Anton C, Scheuer C et al. Melatonin impairs fracture healing by suppressing RANKL-mediated bone remodeling. J Surg Res 2012; 173:83-90.
Wehren LE, Magaziner J. Hip fracture: risk factors and outcomes. Curr Osteoporos Rep 2003; 1:78-85.
Hermann AP, Thomasen J, Vestergaard P et al. Assessment of calcium intake. A quick method compared to a 7 days food diary. Calcif Tissue Int 2009; 64(Suppl 1):S82.
Baek KH, Oh KW, Lee WY et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int 2010; 87:226-235.
Zhang L, Su P, Xu C et al. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression. J Pineal Res 2010; 49:364-372.
Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 2014; 57:131-146.
Ostrowska Z, Kos-Kudla B, Marek B et al. The relationship between the daily profile of chosen biochemical markers of bone metabolism and melatonin and other hormone secretion in rats under physiological conditions. Neuro Endocrinol Lett 2002; 23:417-425.
Zhang L, Zhang J, Ling Y et al. Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro. J Pineal Res 2013; 54:24-32.
Ostrowska Z, Kos-Kudla B, Nowak M et al. The relationship between bone metabolism, melatonin and other hormones in sham-operated and pinealectomized rats. Endocr Regul 2003; 37:211-224.
Kotlarczyk MP, Lassila HC, O'Neil CK et al. Melatonin osteoporosis prevention study (MOPS): a randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J Pineal Res 2012; 52:414-426.
Zhdanova IV, Wurtman RJ, Balcioglu A et al. Endogenous melatonin levels and the fate of exogenous melatonin: age effects. J Gerontol A Biol Sci Med Sci 1998; 53:B293-B298.
Marks R. Hip fracture epidemiological trends, outcomes, and risk factors, 1970-2009. Int J Gen Med 2010; 3:1-17.
Khoo BC, Brown K, Cann C et al. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int 2009; 20:1539-1545.
Hojskov CS, Heickendorff L, Moller HJ. High-throughput liquid-liquid extraction and LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory. Clin Chim Acta 2010; 411:114-116.
Son JH, Cho YC, Sung IY et al. Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. J Pineal Res 2014; 57:385-392.
Wade AG, Ford I, Crawford G et al. Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety. BMC Med 2010; 8:51.
Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J Pineal Res 2013; 54:245-257.
Stehle JH, Saade A, Rawashdeh O et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011; 51:17-43.
Satomura K, Tobiume S, Tokuyama R et al. Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res 2007; 42:231-239.
Mody N, Parhami F, Sarafian TA et al. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 2001; 31:509-519.
Tresguerres IF, Tamimi F, Eimar H et al. Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res 2014; 17:341-346.
Pistoia W, Van RB, Lochmuller EM et al. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 2002; 30:842-848.
Nakade O, Koyama H, Ariji H et al. Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J Pineal Res 1999; 27:106-110.
Koyama H, Nakade O, Takada Y et al. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 2002; 17:1219-1229.
Chan CW, Song Y, Ailenberg M et al. Studies of melatonin effects on epithelia using the human embryonic kidney-293 (HEK-293) cell line. Endocrinology 1997; 138:4732-4739.
Radio NM, Doctor JS, Witt-Enderby PA. Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 2006; 40:332-342.
Song Y, Tam PC, Poon AM et al. 2-[125I]iodomelatonin-binding sites in the human kidney and the effect of guanosine 5′-O-(3-thiotriphosphate). J Clin Endocrinol Metab 1995; 80:1560-1565.
Uslu S, Uysal A, Oktem G et al. Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats. Anal Quant Cytol Histol 2007; 29:317-325.
Buscemi N, Vandermeer B, Hooton N et al. The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta-analysis. J Gen Intern Med 2005; 20:1151-1158.
Turgut M, Kaplan S, Turgut AT et al. Morphological, stereological and radiological changes in pinealectomized chicken cervical vertebrae. J Pineal Res 2005; 39:392-399.
Egermann M, Gerhardt C, Barth A et al. Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord 2011; 12:271.
Genant HK, Block JE, Steiger P et al. Quantitative computed tomography in assessment of osteoporosis. Semin Nucl Med 1987; 17:316-333.
Sethi S, Radio NM, Kotlarczyk MP et al. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 2010; 49:222-238.
Witt-Enderby PA, Slater JP, Johnson NA et al. Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J Pineal Res 2012; 53:374-384.
Bondi CD, Khairnar R, Kamal K et al. An early development budget impact model for the use of melatonin in the treatment and prevention of osteoporosis. Clin Pharmacol Biopharm 2015; 4:132.
Park KH, Kang JW, Lee EM et al. Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 2011; 51:187-194.
Bai XC, Lu D, Bai J et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 2004; 314:197-207.
Li M, Zhao L, Liu J et al. Hydrogen peroxide induces G2 cell cycle arrest and inhibits cell proliferation in osteoblasts. Anat Rec (Hoboken) 2009; 292:1107-1113.
2002; 17
1997; 138
2015; 4
2009; 64
2009; 20
2002; 30
1999; 27
1999; 24
2005; 20
2003; 37
2011; 12
1996; 143
1987; 17
2012; 53
2012; 52
2007; 29
2012; 173
2010; 87
2010; 49
2004; 314
1995; 80
2006; 40
2013; 54
2009; 292
2010; 411
2002; 23
2011; 51
2014; 57
2012; 27
2014; 17
2003; 1
2007; 42
2010; 3
2005; 39
1998; 53
2001; 31
2010; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Marks R (e_1_2_8_15_1) 2010; 3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
Bondi CD (e_1_2_8_19_1) 2015; 4
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_13_1
Ostrowska Z (e_1_2_8_30_1) 2002; 23
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
Hermann AP (e_1_2_8_20_1) 2009; 64
e_1_2_8_37_1
Ostrowska Z (e_1_2_8_29_1) 2003; 37
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Uslu S (e_1_2_8_5_1) 2007; 29
References_xml – reference: Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 2014; 57:131-146.
– reference: Zhang L, Su P, Xu C et al. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression. J Pineal Res 2010; 49:364-372.
– reference: Park KH, Kang JW, Lee EM et al. Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 2011; 51:187-194.
– reference: Wehren LE, Magaziner J. Hip fracture: risk factors and outcomes. Curr Osteoporos Rep 2003; 1:78-85.
– reference: Pistoia W, Van RB, Lochmuller EM et al. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 2002; 30:842-848.
– reference: Zhdanova IV, Wurtman RJ, Balcioglu A et al. Endogenous melatonin levels and the fate of exogenous melatonin: age effects. J Gerontol A Biol Sci Med Sci 1998; 53:B293-B298.
– reference: Stehle JH, Saade A, Rawashdeh O et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011; 51:17-43.
– reference: Bai XC, Lu D, Bai J et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 2004; 314:197-207.
– reference: Son JH, Cho YC, Sung IY et al. Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. J Pineal Res 2014; 57:385-392.
– reference: Koyama H, Nakade O, Takada Y et al. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 2002; 17:1219-1229.
– reference: Ostrowska Z, Kos-Kudla B, Nowak M et al. The relationship between bone metabolism, melatonin and other hormones in sham-operated and pinealectomized rats. Endocr Regul 2003; 37:211-224.
– reference: Li M, Zhao L, Liu J et al. Hydrogen peroxide induces G2 cell cycle arrest and inhibits cell proliferation in osteoblasts. Anat Rec (Hoboken) 2009; 292:1107-1113.
– reference: Nakade O, Koyama H, Ariji H et al. Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J Pineal Res 1999; 27:106-110.
– reference: Genant HK, Block JE, Steiger P et al. Quantitative computed tomography in assessment of osteoporosis. Semin Nucl Med 1987; 17:316-333.
– reference: Histing T, Anton C, Scheuer C et al. Melatonin impairs fracture healing by suppressing RANKL-mediated bone remodeling. J Surg Res 2012; 173:83-90.
– reference: Sethi S, Radio NM, Kotlarczyk MP et al. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 2010; 49:222-238.
– reference: Wade AG, Ford I, Crawford G et al. Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety. BMC Med 2010; 8:51.
– reference: Karagas MR, Lu-Yao GL, Barrett JA et al. Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly. Am J Epidemiol 1996; 143:677-682.
– reference: Baek KH, Oh KW, Lee WY et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int 2010; 87:226-235.
– reference: Chan CW, Song Y, Ailenberg M et al. Studies of melatonin effects on epithelia using the human embryonic kidney-293 (HEK-293) cell line. Endocrinology 1997; 138:4732-4739.
– reference: Bondi CD, Khairnar R, Kamal K et al. An early development budget impact model for the use of melatonin in the treatment and prevention of osteoporosis. Clin Pharmacol Biopharm 2015; 4:132.
– reference: Marks R. Hip fracture epidemiological trends, outcomes, and risk factors, 1970-2009. Int J Gen Med 2010; 3:1-17.
– reference: Hermann AP, Thomasen J, Vestergaard P et al. Assessment of calcium intake. A quick method compared to a 7 days food diary. Calcif Tissue Int 2009; 64(Suppl 1):S82.
– reference: Satomura K, Tobiume S, Tokuyama R et al. Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res 2007; 42:231-239.
– reference: Radio NM, Doctor JS, Witt-Enderby PA. Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 2006; 40:332-342.
– reference: Hansen S, Brixen K, Gravholt CH. Compromised trabecular microarchitecture and lower finite element estimates of radius and tibia bone strength in adults with turner syndrome: a cross-sectional study using high-resolution-pQCT. J Bone Miner Res 2012; 27:1794-1803.
– reference: Mody N, Parhami F, Sarafian TA et al. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 2001; 31:509-519.
– reference: Egermann M, Gerhardt C, Barth A et al. Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord 2011; 12:271.
– reference: Uslu S, Uysal A, Oktem G et al. Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats. Anal Quant Cytol Histol 2007; 29:317-325.
– reference: Zhang L, Zhang J, Ling Y et al. Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro. J Pineal Res 2013; 54:24-32.
– reference: Hojskov CS, Heickendorff L, Moller HJ. High-throughput liquid-liquid extraction and LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory. Clin Chim Acta 2010; 411:114-116.
– reference: Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J Pineal Res 2013; 54:245-257.
– reference: Song Y, Tam PC, Poon AM et al. 2-[125I]iodomelatonin-binding sites in the human kidney and the effect of guanosine 5′-O-(3-thiotriphosphate). J Clin Endocrinol Metab 1995; 80:1560-1565.
– reference: Buscemi N, Vandermeer B, Hooton N et al. The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta-analysis. J Gen Intern Med 2005; 20:1151-1158.
– reference: Tresguerres IF, Tamimi F, Eimar H et al. Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res 2014; 17:341-346.
– reference: Ostrowska Z, Kos-Kudla B, Marek B et al. The relationship between the daily profile of chosen biochemical markers of bone metabolism and melatonin and other hormone secretion in rats under physiological conditions. Neuro Endocrinol Lett 2002; 23:417-425.
– reference: Witt-Enderby PA, Slater JP, Johnson NA et al. Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J Pineal Res 2012; 53:374-384.
– reference: Khoo BC, Brown K, Cann C et al. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int 2009; 20:1539-1545.
– reference: Laib A, Ruegsegger P. Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 1999; 24:35-39.
– reference: Kotlarczyk MP, Lassila HC, O'Neil CK et al. Melatonin osteoporosis prevention study (MOPS): a randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J Pineal Res 2012; 52:414-426.
– reference: Turgut M, Kaplan S, Turgut AT et al. Morphological, stereological and radiological changes in pinealectomized chicken cervical vertebrae. J Pineal Res 2005; 39:392-399.
– volume: 20
  start-page: 1151
  year: 2005
  end-page: 1158
  article-title: The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta‐analysis
  publication-title: J Gen Intern Med
– volume: 51
  start-page: 187
  year: 2011
  end-page: 194
  article-title: Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways
  publication-title: J Pineal Res
– volume: 80
  start-page: 1560
  year: 1995
  end-page: 1565
  article-title: 2‐[125I]iodomelatonin‐binding sites in the human kidney and the effect of guanosine 5′‐O‐(3‐thiotriphosphate)
  publication-title: J Clin Endocrinol Metab
– volume: 57
  start-page: 131
  year: 2014
  end-page: 146
  article-title: Melatonin: a well‐documented antioxidant with conditional pro‐oxidant actions
  publication-title: J Pineal Res
– volume: 57
  start-page: 385
  year: 2014
  end-page: 392
  article-title: Melatonin promotes osteoblast differentiation and mineralization of MC3T3‐E1 cells under hypoxic conditions through activation of PKD/p38 pathways
  publication-title: J Pineal Res
– volume: 53
  start-page: B293
  year: 1998
  end-page: B298
  article-title: Endogenous melatonin levels and the fate of exogenous melatonin: age effects
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 49
  start-page: 222
  year: 2010
  end-page: 238
  article-title: Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways
  publication-title: J Pineal Res
– volume: 3
  start-page: 1
  year: 2010
  end-page: 17
  article-title: Hip fracture epidemiological trends, outcomes, and risk factors, 1970–2009
  publication-title: Int J Gen Med
– volume: 87
  start-page: 226
  year: 2010
  end-page: 235
  article-title: Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures
  publication-title: Calcif Tissue Int
– volume: 17
  start-page: 341
  year: 2014
  end-page: 346
  article-title: Melatonin dietary supplement as an anti‐aging therapy for age‐related bone loss
  publication-title: Rejuvenation Res
– volume: 17
  start-page: 316
  year: 1987
  end-page: 333
  article-title: Quantitative computed tomography in assessment of osteoporosis
  publication-title: Semin Nucl Med
– volume: 12
  start-page: 271
  year: 2011
  article-title: Pinealectomy affects bone mineral density and structure–an experimental study in sheep
  publication-title: BMC Musculoskelet Disord
– volume: 52
  start-page: 414
  year: 2012
  end-page: 426
  article-title: Melatonin osteoporosis prevention study (MOPS): a randomized, double‐blind, placebo‐controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women
  publication-title: J Pineal Res
– volume: 49
  start-page: 364
  year: 2010
  end-page: 372
  article-title: Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression
  publication-title: J Pineal Res
– volume: 42
  start-page: 231
  year: 2007
  end-page: 239
  article-title: Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo
  publication-title: J Pineal Res
– volume: 138
  start-page: 4732
  year: 1997
  end-page: 4739
  article-title: Studies of melatonin effects on epithelia using the human embryonic kidney‐293 (HEK‐293) cell line
  publication-title: Endocrinology
– volume: 54
  start-page: 24
  year: 2013
  end-page: 32
  article-title: Sustained release of melatonin from poly (lactic‐co‐glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro
  publication-title: J Pineal Res
– volume: 1
  start-page: 78
  year: 2003
  end-page: 85
  article-title: Hip fracture: risk factors and outcomes
  publication-title: Curr Osteoporos Rep
– volume: 27
  start-page: 1794
  year: 2012
  end-page: 1803
  article-title: Compromised trabecular microarchitecture and lower finite element estimates of radius and tibia bone strength in adults with turner syndrome: a cross‐sectional study using high‐resolution‐pQCT
  publication-title: J Bone Miner Res
– volume: 39
  start-page: 392
  year: 2005
  end-page: 399
  article-title: Morphological, stereological and radiological changes in pinealectomized chicken cervical vertebrae
  publication-title: J Pineal Res
– volume: 53
  start-page: 374
  year: 2012
  end-page: 384
  article-title: Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice
  publication-title: J Pineal Res
– volume: 314
  start-page: 197
  year: 2004
  end-page: 207
  article-title: Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF‐kappaB
  publication-title: Biochem Biophys Res Commun
– volume: 292
  start-page: 1107
  year: 2009
  end-page: 1113
  article-title: Hydrogen peroxide induces G2 cell cycle arrest and inhibits cell proliferation in osteoblasts
  publication-title: Anat Rec (Hoboken)
– volume: 31
  start-page: 509
  year: 2001
  end-page: 519
  article-title: Oxidative stress modulates osteoblastic differentiation of vascular and bone cells
  publication-title: Free Radic Biol Med
– volume: 51
  start-page: 17
  year: 2011
  end-page: 43
  article-title: A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases
  publication-title: J Pineal Res
– volume: 64
  start-page: S82
  issue: Suppl 1
  year: 2009
  article-title: Assessment of calcium intake. A quick method compared to a 7 days food diary
  publication-title: Calcif Tissue Int
– volume: 27
  start-page: 106
  year: 1999
  end-page: 110
  article-title: Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro
  publication-title: J Pineal Res
– volume: 173
  start-page: 83
  year: 2012
  end-page: 90
  article-title: Melatonin impairs fracture healing by suppressing RANKL‐mediated bone remodeling
  publication-title: J Surg Res
– volume: 20
  start-page: 1539
  year: 2009
  end-page: 1545
  article-title: Comparison of QCT‐derived and DXA‐derived areal bone mineral density and T scores
  publication-title: Osteoporos Int
– volume: 54
  start-page: 245
  year: 2013
  end-page: 257
  article-title: On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK
  publication-title: J Pineal Res
– volume: 8
  start-page: 51
  year: 2010
  article-title: Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety
  publication-title: BMC Med
– volume: 40
  start-page: 332
  year: 2006
  end-page: 342
  article-title: Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade
  publication-title: J Pineal Res
– volume: 17
  start-page: 1219
  year: 2002
  end-page: 1229
  article-title: Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down‐regulation of the RANKL‐mediated osteoclast formation and activation
  publication-title: J Bone Miner Res
– volume: 411
  start-page: 114
  year: 2010
  end-page: 116
  article-title: High‐throughput liquid‐liquid extraction and LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory
  publication-title: Clin Chim Acta
– volume: 29
  start-page: 317
  year: 2007
  end-page: 325
  article-title: Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats
  publication-title: Anal Quant Cytol Histol
– volume: 143
  start-page: 677
  year: 1996
  end-page: 682
  article-title: Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly
  publication-title: Am J Epidemiol
– volume: 4
  start-page: 132
  year: 2015
  article-title: An early development budget impact model for the use of melatonin in the treatment and prevention of osteoporosis
  publication-title: Clin Pharmacol Biopharm
– volume: 24
  start-page: 35
  year: 1999
  end-page: 39
  article-title: Calibration of trabecular bone structure measurements of in vivo three‐dimensional peripheral quantitative computed tomography with 28‐microm‐resolution microcomputed tomography
  publication-title: Bone
– volume: 37
  start-page: 211
  year: 2003
  end-page: 224
  article-title: The relationship between bone metabolism, melatonin and other hormones in sham‐operated and pinealectomized rats
  publication-title: Endocr Regul
– volume: 30
  start-page: 842
  year: 2002
  end-page: 848
  article-title: Estimation of distal radius failure load with micro‐finite element analysis models based on three‐dimensional peripheral quantitative computed tomography images
  publication-title: Bone
– volume: 23
  start-page: 417
  year: 2002
  end-page: 425
  article-title: The relationship between the daily profile of chosen biochemical markers of bone metabolism and melatonin and other hormone secretion in rats under physiological conditions
  publication-title: Neuro Endocrinol Lett
– ident: e_1_2_8_11_1
  doi: 10.1359/jbmr.2002.17.7.1219
– ident: e_1_2_8_27_1
  doi: 10.1210/jc.80.5.1560
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1600-079X.2012.01016.x
– ident: e_1_2_8_35_1
  doi: 10.1016/S0891-5849(01)00610-4
– volume: 29
  start-page: 317
  year: 2007
  ident: e_1_2_8_5_1
  article-title: Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats
  publication-title: Anal Quant Cytol Histol
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1600-079X.2011.00956.x
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1600-079X.2005.00263.x
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1600-079X.2011.00856.x
– ident: e_1_2_8_28_1
  doi: 10.1210/en.138.11.4732
– volume: 4
  start-page: 132
  year: 2015
  ident: e_1_2_8_19_1
  article-title: An early development budget impact model for the use of melatonin in the treatment and prevention of osteoporosis
  publication-title: Clin Pharmacol Biopharm
– ident: e_1_2_8_39_1
  doi: 10.1111/j.1600-079X.1999.tb00603.x
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jss.2010.08.036
– ident: e_1_2_8_17_1
  doi: 10.1186/1741-7015-8-51
– ident: e_1_2_8_41_1
  doi: 10.1111/j.1600-079X.2010.00784.x
– ident: e_1_2_8_31_1
  doi: 10.1111/jpi.12010
– ident: e_1_2_8_42_1
  doi: 10.1111/jpi.12177
– ident: e_1_2_8_14_1
  doi: 10.1093/gerona/53A.4.B293
– ident: e_1_2_8_4_1
  doi: 10.1089/rej.2013.1542
– ident: e_1_2_8_12_1
  doi: 10.1186/1471-2474-12-271
– volume: 3
  start-page: 1
  year: 2010
  ident: e_1_2_8_15_1
  article-title: Hip fracture epidemiological trends, outcomes, and risk factors, 1970–2009
  publication-title: Int J Gen Med
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1600-079X.2006.00318.x
– ident: e_1_2_8_24_1
  doi: 10.1002/jbmr.1624
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1600-079X.2012.01007.x
– volume: 37
  start-page: 211
  year: 2003
  ident: e_1_2_8_29_1
  article-title: The relationship between bone metabolism, melatonin and other hormones in sham‐operated and pinealectomized rats
  publication-title: Endocr Regul
– ident: e_1_2_8_22_1
  doi: 10.1016/S8756-3282(98)00159-8
– ident: e_1_2_8_36_1
  doi: 10.1007/s00223-010-9393-9
– ident: e_1_2_8_37_1
  doi: 10.1016/S0001-2998(87)80024-7
– ident: e_1_2_8_26_1
  doi: 10.1093/oxfordjournals.aje.a008800
– volume: 23
  start-page: 417
  year: 2002
  ident: e_1_2_8_30_1
  article-title: The relationship between the daily profile of chosen biochemical markers of bone metabolism and melatonin and other hormone secretion in rats under physiological conditions
  publication-title: Neuro Endocrinol Lett
– ident: e_1_2_8_8_1
  doi: 10.1111/j.1600-079X.2011.00875.x
– ident: e_1_2_8_16_1
  doi: 10.1007/s11914-003-0013-8
– ident: e_1_2_8_18_1
  doi: 10.1111/j.1525-1497.2005.0243.x
– volume: 64
  start-page: S82
  issue: 1
  year: 2009
  ident: e_1_2_8_20_1
  article-title: Assessment of calcium intake. A quick method compared to a 7 days food diary
  publication-title: Calcif Tissue Int
– ident: e_1_2_8_33_1
  doi: 10.1016/j.bbrc.2003.12.073
– ident: e_1_2_8_34_1
  doi: 10.1002/ar.20925
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1600-079X.2006.00410.x
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1600-079X.2010.00803.x
– ident: e_1_2_8_23_1
  doi: 10.1016/S8756-3282(02)00736-6
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cca.2009.10.010
– ident: e_1_2_8_32_1
  doi: 10.1111/jpi.12162
– ident: e_1_2_8_21_1
  doi: 10.1007/s00198-008-0820-y
SSID ssj0008886
Score 2.4707582
Snippet Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 221
SubjectTerms Absorptiometry, Photon
Aged
Bone Density - drug effects
Bone Diseases, Metabolic - diagnostic imaging
Bone Diseases, Metabolic - drug therapy
Bone Diseases, Metabolic - metabolism
bone mineral density
clinical trial
Dose-Response Relationship, Drug
Double-Blind Method
Female
Femur Neck - diagnostic imaging
Femur Neck - metabolism
Humans
melatonin
Middle Aged
osteoporosis
postmenopausal women
Postmenopause - metabolism
Title Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial
URI https://api.istex.fr/ark:/67375/WNG-1KD8PNQ7-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpi.12252
https://www.ncbi.nlm.nih.gov/pubmed/26036434
https://www.proquest.com/docview/1701300582
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1600-079X
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0008886
  issn: 0742-3098
  databaseCode: ABDBF
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0742-3098
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1600-079X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008886
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuHCqzwKFBmEKi5ZJbGdOHCqoKUUdVUQFT0gRX5K0XazqyYr0R755Z1xHrSoSIhbFNmO7czYM-PP3xDyWkph8bguytDT4d6rqLAGfB5RGJNp7ViCl5MPp9n-MT84ESdr5N1wF6bjhxgDbqgZYb1GBVe6uarky2qSgDTi-pswEY5ov_6mjgLPLusoONOIxYXsWYUCimeoeW0vuoXT-vMmQ_O63Ro2nr275MfQ5Q5vMpusWj0xF3-wOf7nmO6RO71BSnc6CbpP1lz9gGzs1OCMz8_pNg0Q0RB73yC_DhE6hwFcWoVghGuoXtSOzqtAXk0twuHbc6paCoYl9Qjjhde1MzMKlZaLBkHt4KevGngd2B8oRoIpXjXBRF6VeksVhf3TLubVhbO0h9KfwmNIMPKQHO_tfnu_H_VJHCKD1GiRYDyNNXNCG-HzNAOd57AAG8YN97kSTGslLM-ZzwtXxLFPU5fruHDgF2kfW_aIrNcwkieEFl7G2iWFlaLgmnGpGOPW8ERn3lspN8mb4XeWpmc4x0Qbp-Xo6SyrMszvJnk1Fl12tB43FdoOMjGWUGczxMHlovw-_Vgmnz_Io-mXvIQPvxyEpgTtxCMXVbvFqimR7R4TAkho7HEnTWNr4EkysAc5dDvIxN87Uh4cfQoPT_-96DNyG2w70cHhnpP19mzltsB-avWLoCiXGbwXIw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAXKJRHeRqEKi5ZJbGdOIhLRSnbx64KakUvlRU7thRtN7vqZqW2R345M84DioqEuFnWJHGSGXtm_PkbQt5JKQrcrgsSjHS4c3mQFQZiHpEZk2htWYSHk0fjZHjC90_F6Qr52J2Fafgh-oQbWoafr9HAMSH9u5XPy0EE6ggT8Bruz6FZ7nz7RR4FsV3SkHDGAQsz2fIKeRxPd-mN1WgNP-zlba7mTc_VLz2798lZN-gGcTIZLGs9MNd_8Dn-71utk3utT0q3GyV6QFZs9ZBsbFcQj0-v6Bb1KFGfft8gP0aInsMcLi19PsIuqJ5Vlk5Lz19NC0TE11c0ryn4ltQhkhe6K2smFC6azxaIa4dQfbmAbk8AQTEZTPG0CdbyKvMPNKewhBazaXltC9qi6c-h6WuMPCInu5-PPw2Dto5DYJAdLRCMx6FmVmgjXBonYPYc5mDDuOEuzQXTOhcFT5lLM5uFoYtjm-owsxAaaRcW7DFZreBNnhKaORlqG2WFFBnXjMucMV4YHunEuULKTfK--5_KtCTnWGvjXPXBzrxU_vtukre96Lxh9rhNaMsrRS-RX0wQCpcK9X38RUUHO_Jo_DVV8OA3ndYoMFDcdckrO1suFBLeY00ACTd70qhTfzcIJhm4hByG7ZXi7wNR-0d7vvHs30VfkzvD49GhOtwbHzwnd8HVEw067gVZrS-W9iW4U7V-5a3mJ3TbGz8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEBYhgdKXXumRnmopoS9ebEvy0T6FptsczbItDc1DQFgXmM16TdYLTR77yzsjH21KCqVvxsi2ZM9I840_fUPI6ywTBn_XBQkiHe5cEeRGA-YRudaJUpZFuDn5aJLsHfODE3GyRt71e2FafYgh4Yae4edrdPDauN-dvC5HEVgjzL8bPAF0hRHRl1_aUQDtklaDMw5YmGedrJCn8fSXXlmMNvC9fr8u0rwauPqVZ3ybnPZ9bgkns9GqUSN9-Yec438O6g651UWkdKc1obtkzVb3yOZOBWh8fkG3qeeI-uT7JvlxhNw5zODS0mcj7JKqRWXpvPTq1dQgH765oEVDIbKkDnm8cLqyekbhonqxRFY7APXVEk57-QeKqWCKe02wkldZvKUFhQXULOblpTW049KfwaGvMHKfHI8_fH2_F3RVHAKN2miBYDwOFbNCaeHSOAGn5zADa8Y1d2khmFKFMDxlLs1tHoYujm2qwtwCMFIuNOwBWa9gJI8IzV0WKhvlJhM5V4xnBWPcaB6pxDmTZVvkTf85pe4kzrHSxpkcoE5dSv9-t8iroWnd6npc12jb28TQojifIREuFfLb5KOMDnez6eRzKuHBL3ujkeCe-M-lqOxitZQod48VATK42cPWmoa7AZRkEBBy6La3ib93RB5M9_3B439v-oLcmO6O5af9yeETchPiPNFS456S9eZ8ZZ9BLNWo595nfgIVbxnu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+improves+bone+mineral+density+at+the+femoral+neck+in+postmenopausal+women+with+osteopenia%3A+a+randomized+controlled+trial&rft.jtitle=Journal+of+pineal+research&rft.au=Amstrup%2C+Anne+Kristine&rft.au=Sikjaer%2C+Tanja&rft.au=Heickendorff%2C+Lene&rft.au=Mosekilde%2C+Leif&rft.date=2015-09-01&rft.issn=0742-3098&rft.eissn=1600-079X&rft.volume=59&rft.issue=2&rft.spage=221&rft.epage=229&rft_id=info:doi/10.1111%2Fjpi.12252&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jpi_12252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-3098&client=summon