Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial
Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with...
Saved in:
Published in | Journal of pineal research Vol. 59; no. 2; pp. 221 - 229 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.09.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0742-3098 1600-079X 1600-079X |
DOI | 10.1111/jpi.12252 |
Cover
Abstract | Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double‐blind RCT, we randomized 81 postmenopausal osteopenic women to 1‐yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1‐yr treatment, we measured bone mineral density (BMD) by dual X‐ray absorptiometry, quantitative computed tomography (QCT), and high‐resolution peripheral QCT (HR‐pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56–73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose‐dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24‐hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1‐yr treatment with melatonin increased BMD at femoral neck in a dose‐dependent manner, while high‐dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures. |
---|---|
AbstractList | Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double‐blind RCT, we randomized 81 postmenopausal osteopenic women to 1‐yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1‐yr treatment, we measured bone mineral density (BMD) by dual X‐ray absorptiometry, quantitative computed tomography (QCT), and high‐resolution peripheral QCT (HR‐pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56–73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (
P
< 0.05) in a dose‐dependent manner (
P
< 0.01), as BMD increased by 0.5% in the 1 mg/day group (
P
= 0.55) and by 2.3% (
P
< 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (
P
= 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (
P
= 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24‐hr urinary calcium was decreased in response to melatonin by 12.2% (
P
= 0.02). In conclusion, 1‐yr treatment with melatonin increased BMD at femoral neck in a dose‐dependent manner, while high‐dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures. Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double‐blind RCT, we randomized 81 postmenopausal osteopenic women to 1‐yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1‐yr treatment, we measured bone mineral density (BMD) by dual X‐ray absorptiometry, quantitative computed tomography (QCT), and high‐resolution peripheral QCT (HR‐pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56–73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose‐dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24‐hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1‐yr treatment with melatonin increased BMD at femoral neck in a dose‐dependent manner, while high‐dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures. Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double-blind RCT, we randomized 81 postmenopausal osteopenic women to 1-yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1-yr treatment, we measured bone mineral density (BMD) by dual X-ray absorptiometry, quantitative computed tomography (QCT), and high-resolution peripheral QCT (HR-pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56-73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose-dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24-hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1-yr treatment with melatonin increased BMD at femoral neck in a dose-dependent manner, while high-dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures. Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double-blind RCT, we randomized 81 postmenopausal osteopenic women to 1-yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1-yr treatment, we measured bone mineral density (BMD) by dual X-ray absorptiometry, quantitative computed tomography (QCT), and high-resolution peripheral QCT (HR-pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56-73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose-dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24-hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1-yr treatment with melatonin increased BMD at femoral neck in a dose-dependent manner, while high-dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures.Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By increasing age, the melatonin levels decrease, which may lead to a further imbalanced bone remodeling. We aimed to investigate whether treatment with melatonin could improve bone mass and integrity in humans. In a double-blind RCT, we randomized 81 postmenopausal osteopenic women to 1-yr nightly treatment with melatonin 1 mg (N = 20), 3 mg (N = 20), or placebo (N = 41). At baseline and after 1-yr treatment, we measured bone mineral density (BMD) by dual X-ray absorptiometry, quantitative computed tomography (QCT), and high-resolution peripheral QCT (HR-pQCT) and determined calciotropic hormones and bone markers. Mean age of the study subjects was 63 (range 56-73) yr. Compared to placebo, femoral neck BMD increased by 1.4% in response to melatonin (P < 0.05) in a dose-dependent manner (P < 0.01), as BMD increased by 0.5% in the 1 mg/day group (P = 0.55) and by 2.3% (P < 0.01) in the 3 mg/day group. In the melatonin group, trabecular thickness in tibia increased by 2.2% (P = 0.04), and volumetric bone mineral density (vBMD) in the spine, by 3.6% (P = 0.04) in the 3 mg/day. Treatment did not significantly affect BMD at other sites or levels of bone turnover markers; however, 24-hr urinary calcium was decreased in response to melatonin by 12.2% (P = 0.02). In conclusion, 1-yr treatment with melatonin increased BMD at femoral neck in a dose-dependent manner, while high-dose melatonin increased vBMD in the spine. Further studies are needed to assess the mechanisms of action and whether the positive effect of nighttime melatonin will protect against fractures. |
Author | Rejnmark, Lars Mosekilde, Leif Heickendorff, Lene Amstrup, Anne Kristine Sikjaer, Tanja |
Author_xml | – sequence: 1 givenname: Anne Kristine surname: Amstrup fullname: Amstrup, Anne Kristine email: Address reprint requests to Anne Kristine Amstrup, Osteoporosis Clinic, Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, Tage-Hansens Gade 2, 8000 DK-Aarhus C, Denmark., anne_kristine_am@hotmail.com organization: Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, THG, Aarhus, Denmark – sequence: 2 givenname: Tanja surname: Sikjaer fullname: Sikjaer, Tanja organization: Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, THG, Aarhus, Denmark – sequence: 3 givenname: Lene surname: Heickendorff fullname: Heickendorff, Lene organization: Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark – sequence: 4 givenname: Leif surname: Mosekilde fullname: Mosekilde, Leif organization: Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, THG, Aarhus, Denmark – sequence: 5 givenname: Lars surname: Rejnmark fullname: Rejnmark, Lars organization: Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, THG, Aarhus, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26036434$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFv1DAQhS1URLeFA38A-QiHtBPbibPcUIFSKKVIILhZTjJR3Tp2anu7XY78crzsLgcEvtgzft-TZt4B2XPeISFPSzgq8zm-nsxRyVjFHpBZWQMUIOff98gMpGAFh3mzTw5ivAaApmnqR2Sf1cBrwcWM_PyIVifvjKNmnIK_w0jb7E5H4zBoS3t00aQV1YmmK6QDjn7ddtjd0AxNPqYRnZ_0Iub20ueCLk26ovkD_YTO6JdU06Bd70fzA3vaeZeCtzY_UzDaPiYPB20jPtneh-Tr2zdfTt4V559Oz05enRed4JwVFRcMWo5V21WDZHXFSyFr1nHRiUHqiretrnoh-SDnOAcYGEPZwhwFa9oBen5Inm9885i3C4xJjSZ2aK126BdRlRJKDlA1LEufbaWLdsReTcGMOqzUbm9ZcLwRdMHHGHBQnUk6mfVo2lhVglono3Iy6ncymXjxF7Ez_Zd26740Flf_F6r3l2c7otgQJm_9_g-hw42qJZeV-nZxqsoPr5vLi89SNfwX9yWt8w |
CitedBy_id | crossref_primary_10_1016_j_bonr_2017_11_001 crossref_primary_10_1007_s00198_024_07261_8 crossref_primary_10_1007_s11657_020_00828_y crossref_primary_10_1111_nbu_12356 crossref_primary_10_30565_medalanya_939161 crossref_primary_10_3389_fendo_2023_1281213 crossref_primary_10_1016_j_coph_2021_08_016 crossref_primary_10_1111_jpi_12814 crossref_primary_10_1111_jpi_12931 crossref_primary_10_1007_s00018_023_04736_5 crossref_primary_10_1016_j_eclinm_2023_102083 crossref_primary_10_1016_j_freeradbiomed_2018_10_402 crossref_primary_10_3390_biomedicines12030684 crossref_primary_10_3390_ijms17101771 crossref_primary_10_1007_s00198_021_06061_8 crossref_primary_10_5937_KgJSci2400004S crossref_primary_10_1007_s00774_017_0896_6 crossref_primary_10_1007_s00198_023_06740_8 crossref_primary_10_2147_CIA_S283342 crossref_primary_10_1016_j_psj_2024_103934 crossref_primary_10_1186_s13287_019_1511_7 crossref_primary_10_1530_JOE_18_0707 crossref_primary_10_3390_jcm8091415 crossref_primary_10_1016_j_arr_2022_101717 crossref_primary_10_3390_ijms22094585 crossref_primary_10_1002_bem_22372 crossref_primary_10_1111_jpi_12360 crossref_primary_10_3330_hikakuseiriseika_34_2 crossref_primary_10_3390_ijms21144946 crossref_primary_10_3389_fcell_2021_672424 crossref_primary_10_7759_cureus_65885 crossref_primary_10_1007_s00223_018_0428_y crossref_primary_10_3390_molecules23020336 crossref_primary_10_1016_j_phrs_2019_104337 crossref_primary_10_1016_j_coemr_2021_04_003 crossref_primary_10_3389_fendo_2022_826660 crossref_primary_10_1007_s00129_021_04844_y crossref_primary_10_1016_j_actaastro_2022_10_020 crossref_primary_10_1089_ict_2022_29025_klu crossref_primary_10_1126_scitranslmed_adj0085 crossref_primary_10_2147_CIA_S361519 crossref_primary_10_1210_endocr_bqab057 crossref_primary_10_1007_s00223_016_0179_6 crossref_primary_10_1111_jpi_12548 crossref_primary_10_1038_s41598_017_06304_x crossref_primary_10_3390_antiox9111088 crossref_primary_10_1111_jpi_12423 crossref_primary_10_1016_j_freeradbiomed_2019_10_412 crossref_primary_10_1111_jpi_12422 crossref_primary_10_1111_jcmm_14490 crossref_primary_10_3390_nu16142356 crossref_primary_10_1080_10408398_2018_1487927 crossref_primary_10_1155_2022_7420726 crossref_primary_10_1155_2020_6797154 crossref_primary_10_1016_j_ejphar_2020_173577 crossref_primary_10_1016_j_jocn_2017_01_022 crossref_primary_10_1007_s00391_019_01640_1 crossref_primary_10_1007_s11657_018_0456_2 crossref_primary_10_1080_14397595_2019_1601854 crossref_primary_10_1186_s12937_015_0093_1 crossref_primary_10_3390_nu14193934 crossref_primary_10_1155_2019_5151678 crossref_primary_10_1016_j_actbio_2017_08_046 crossref_primary_10_1039_C8TB03361G crossref_primary_10_1155_2019_4019619 crossref_primary_10_1016_j_arr_2022_101635 crossref_primary_10_17343_sdutfd_979473 crossref_primary_10_1186_s12964_024_02025_7 crossref_primary_10_1016_j_clnesp_2023_04_011 crossref_primary_10_1080_14740338_2022_2160444 crossref_primary_10_3389_fendo_2022_893678 crossref_primary_10_1016_j_biochi_2022_08_008 crossref_primary_10_1080_09712119_2019_1583570 crossref_primary_10_1007_s12020_019_01937_6 crossref_primary_10_1089_thy_2018_0318 crossref_primary_10_1016_j_acthis_2020_151596 crossref_primary_10_33667_2078_5631_2023_20_19_29 crossref_primary_10_1007_s00198_017_4127_8 crossref_primary_10_3390_agriculture15050553 crossref_primary_10_30629_0023_2149_2023_101_12_607_612 crossref_primary_10_1002_cbin_11240 crossref_primary_10_1111_jpi_12597 crossref_primary_10_1111_cen_12942 crossref_primary_10_1111_jpi_12594 crossref_primary_10_3389_fnut_2024_1445955 crossref_primary_10_1016_j_jot_2022_10_002 crossref_primary_10_1016_j_actbio_2017_01_034 crossref_primary_10_1016_j_metabol_2017_12_002 crossref_primary_10_3389_fphar_2022_866625 crossref_primary_10_1016_j_actbio_2021_07_017 crossref_primary_10_3390_ijms18040843 crossref_primary_10_1096_fj_202302582RR crossref_primary_10_1111_jpi_12749 crossref_primary_10_1111_jpi_12743 crossref_primary_10_1111_jpi_12349 crossref_primary_10_18632_aging_101158 crossref_primary_10_1007_s00198_023_06836_1 crossref_primary_10_1111_jpi_12465 crossref_primary_10_1007_s10695_019_00748_w crossref_primary_10_3390_ijms22179435 crossref_primary_10_1186_s13287_022_02878_0 crossref_primary_10_1096_fj_201900093RR crossref_primary_10_1016_j_cellsig_2025_111754 crossref_primary_10_1007_s11920_018_0960_5 crossref_primary_10_1038_s41419_019_1949_7 |
Cites_doi | 10.1359/jbmr.2002.17.7.1219 10.1210/jc.80.5.1560 10.1111/j.1600-079X.2012.01016.x 10.1016/S0891-5849(01)00610-4 10.1111/j.1600-079X.2011.00956.x 10.1111/j.1600-079X.2005.00263.x 10.1111/j.1600-079X.2011.00856.x 10.1210/en.138.11.4732 10.1111/j.1600-079X.1999.tb00603.x 10.1016/j.jss.2010.08.036 10.1186/1741-7015-8-51 10.1111/j.1600-079X.2010.00784.x 10.1111/jpi.12010 10.1111/jpi.12177 10.1093/gerona/53A.4.B293 10.1089/rej.2013.1542 10.1186/1471-2474-12-271 10.1111/j.1600-079X.2006.00318.x 10.1002/jbmr.1624 10.1111/j.1600-079X.2012.01007.x 10.1016/S8756-3282(98)00159-8 10.1007/s00223-010-9393-9 10.1016/S0001-2998(87)80024-7 10.1093/oxfordjournals.aje.a008800 10.1111/j.1600-079X.2011.00875.x 10.1007/s11914-003-0013-8 10.1111/j.1525-1497.2005.0243.x 10.1016/j.bbrc.2003.12.073 10.1002/ar.20925 10.1111/j.1600-079X.2006.00410.x 10.1111/j.1600-079X.2010.00803.x 10.1016/S8756-3282(02)00736-6 10.1016/j.cca.2009.10.010 10.1111/jpi.12162 10.1007/s00198-008-0820-y |
ContentType | Journal Article |
Copyright | 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/jpi.12252 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1600-079X |
EndPage | 229 |
ExternalDocumentID | 26036434 10_1111_jpi_12252 JPI12252 ark_67375_WNG_1KD8PNQ7_8 |
Genre | article Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: A.P. Møller og hustru Chastine MC‐Kinney Møllers Foundation – fundername: Karen Elise Jensens Foundation – fundername: Danish Osteoporosis Patient Union and Toyota Foundation, Denmark – fundername: Central Denmark Region |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 186 1OB 1OC 29L 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAKAS AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BQCPF BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WIH WIJ WIK WNSPC WOHZO WOW WQJ WXI WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WRC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4332-53420b3e5bc5f7265314762c34c4f7a53bba5d473f79e900f22e7b09e428bf0d3 |
IEDL.DBID | DR2 |
ISSN | 0742-3098 1600-079X |
IngestDate | Fri Sep 05 04:38:19 EDT 2025 Thu Apr 03 07:07:57 EDT 2025 Wed Oct 01 01:49:54 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Wed Jan 22 16:33:04 EST 2025 Sun Sep 21 06:22:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | clinical trial bone mineral density postmenopausal women melatonin osteoporosis |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4332-53420b3e5bc5f7265314762c34c4f7a53bba5d473f79e900f22e7b09e428bf0d3 |
Notes | ArticleID:JPI12252 Central Denmark Region istex:7292143D7481B331F6D6B2B9D5930277D57BBBCA Danish Osteoporosis Patient Union and Toyota Foundation, Denmark ark:/67375/WNG-1KD8PNQ7-8 Karen Elise Jensens Foundation A.P. Møller og hustru Chastine MC-Kinney Møllers Foundation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
PMID | 26036434 |
PQID | 1701300582 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1701300582 pubmed_primary_26036434 crossref_citationtrail_10_1111_jpi_12252 crossref_primary_10_1111_jpi_12252 wiley_primary_10_1111_jpi_12252_JPI12252 istex_primary_ark_67375_WNG_1KD8PNQ7_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2015 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of pineal research |
PublicationTitleAlternate | J. Pineal Res |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Hansen S, Brixen K, Gravholt CH. Compromised trabecular microarchitecture and lower finite element estimates of radius and tibia bone strength in adults with turner syndrome: a cross-sectional study using high-resolution-pQCT. J Bone Miner Res 2012; 27:1794-1803. Karagas MR, Lu-Yao GL, Barrett JA et al. Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly. Am J Epidemiol 1996; 143:677-682. Laib A, Ruegsegger P. Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 1999; 24:35-39. Histing T, Anton C, Scheuer C et al. Melatonin impairs fracture healing by suppressing RANKL-mediated bone remodeling. J Surg Res 2012; 173:83-90. Wehren LE, Magaziner J. Hip fracture: risk factors and outcomes. Curr Osteoporos Rep 2003; 1:78-85. Hermann AP, Thomasen J, Vestergaard P et al. Assessment of calcium intake. A quick method compared to a 7 days food diary. Calcif Tissue Int 2009; 64(Suppl 1):S82. Baek KH, Oh KW, Lee WY et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int 2010; 87:226-235. Zhang L, Su P, Xu C et al. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression. J Pineal Res 2010; 49:364-372. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 2014; 57:131-146. Ostrowska Z, Kos-Kudla B, Marek B et al. The relationship between the daily profile of chosen biochemical markers of bone metabolism and melatonin and other hormone secretion in rats under physiological conditions. Neuro Endocrinol Lett 2002; 23:417-425. Zhang L, Zhang J, Ling Y et al. Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro. J Pineal Res 2013; 54:24-32. Ostrowska Z, Kos-Kudla B, Nowak M et al. The relationship between bone metabolism, melatonin and other hormones in sham-operated and pinealectomized rats. Endocr Regul 2003; 37:211-224. Kotlarczyk MP, Lassila HC, O'Neil CK et al. Melatonin osteoporosis prevention study (MOPS): a randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J Pineal Res 2012; 52:414-426. Zhdanova IV, Wurtman RJ, Balcioglu A et al. Endogenous melatonin levels and the fate of exogenous melatonin: age effects. J Gerontol A Biol Sci Med Sci 1998; 53:B293-B298. Marks R. Hip fracture epidemiological trends, outcomes, and risk factors, 1970-2009. Int J Gen Med 2010; 3:1-17. Khoo BC, Brown K, Cann C et al. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int 2009; 20:1539-1545. Hojskov CS, Heickendorff L, Moller HJ. High-throughput liquid-liquid extraction and LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory. Clin Chim Acta 2010; 411:114-116. Son JH, Cho YC, Sung IY et al. Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. J Pineal Res 2014; 57:385-392. Wade AG, Ford I, Crawford G et al. Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety. BMC Med 2010; 8:51. Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J Pineal Res 2013; 54:245-257. Stehle JH, Saade A, Rawashdeh O et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011; 51:17-43. Satomura K, Tobiume S, Tokuyama R et al. Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res 2007; 42:231-239. Mody N, Parhami F, Sarafian TA et al. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 2001; 31:509-519. Tresguerres IF, Tamimi F, Eimar H et al. Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res 2014; 17:341-346. Pistoia W, Van RB, Lochmuller EM et al. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 2002; 30:842-848. Nakade O, Koyama H, Ariji H et al. Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J Pineal Res 1999; 27:106-110. Koyama H, Nakade O, Takada Y et al. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 2002; 17:1219-1229. Chan CW, Song Y, Ailenberg M et al. Studies of melatonin effects on epithelia using the human embryonic kidney-293 (HEK-293) cell line. Endocrinology 1997; 138:4732-4739. Radio NM, Doctor JS, Witt-Enderby PA. Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 2006; 40:332-342. Song Y, Tam PC, Poon AM et al. 2-[125I]iodomelatonin-binding sites in the human kidney and the effect of guanosine 5′-O-(3-thiotriphosphate). J Clin Endocrinol Metab 1995; 80:1560-1565. Uslu S, Uysal A, Oktem G et al. Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats. Anal Quant Cytol Histol 2007; 29:317-325. Buscemi N, Vandermeer B, Hooton N et al. The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta-analysis. J Gen Intern Med 2005; 20:1151-1158. Turgut M, Kaplan S, Turgut AT et al. Morphological, stereological and radiological changes in pinealectomized chicken cervical vertebrae. J Pineal Res 2005; 39:392-399. Egermann M, Gerhardt C, Barth A et al. Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord 2011; 12:271. Genant HK, Block JE, Steiger P et al. Quantitative computed tomography in assessment of osteoporosis. Semin Nucl Med 1987; 17:316-333. Sethi S, Radio NM, Kotlarczyk MP et al. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 2010; 49:222-238. Witt-Enderby PA, Slater JP, Johnson NA et al. Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J Pineal Res 2012; 53:374-384. Bondi CD, Khairnar R, Kamal K et al. An early development budget impact model for the use of melatonin in the treatment and prevention of osteoporosis. Clin Pharmacol Biopharm 2015; 4:132. Park KH, Kang JW, Lee EM et al. Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 2011; 51:187-194. Bai XC, Lu D, Bai J et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 2004; 314:197-207. Li M, Zhao L, Liu J et al. Hydrogen peroxide induces G2 cell cycle arrest and inhibits cell proliferation in osteoblasts. Anat Rec (Hoboken) 2009; 292:1107-1113. 2002; 17 1997; 138 2015; 4 2009; 64 2009; 20 2002; 30 1999; 27 1999; 24 2005; 20 2003; 37 2011; 12 1996; 143 1987; 17 2012; 53 2012; 52 2007; 29 2012; 173 2010; 87 2010; 49 2004; 314 1995; 80 2006; 40 2013; 54 2009; 292 2010; 411 2002; 23 2011; 51 2014; 57 2012; 27 2014; 17 2003; 1 2007; 42 2010; 3 2005; 39 1998; 53 2001; 31 2010; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 Marks R (e_1_2_8_15_1) 2010; 3 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 Bondi CD (e_1_2_8_19_1) 2015; 4 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_13_1 Ostrowska Z (e_1_2_8_30_1) 2002; 23 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_38_1 e_1_2_8_16_1 Hermann AP (e_1_2_8_20_1) 2009; 64 e_1_2_8_37_1 Ostrowska Z (e_1_2_8_29_1) 2003; 37 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Uslu S (e_1_2_8_5_1) 2007; 29 |
References_xml | – reference: Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 2014; 57:131-146. – reference: Zhang L, Su P, Xu C et al. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression. J Pineal Res 2010; 49:364-372. – reference: Park KH, Kang JW, Lee EM et al. Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 2011; 51:187-194. – reference: Wehren LE, Magaziner J. Hip fracture: risk factors and outcomes. Curr Osteoporos Rep 2003; 1:78-85. – reference: Pistoia W, Van RB, Lochmuller EM et al. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 2002; 30:842-848. – reference: Zhdanova IV, Wurtman RJ, Balcioglu A et al. Endogenous melatonin levels and the fate of exogenous melatonin: age effects. J Gerontol A Biol Sci Med Sci 1998; 53:B293-B298. – reference: Stehle JH, Saade A, Rawashdeh O et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 2011; 51:17-43. – reference: Bai XC, Lu D, Bai J et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 2004; 314:197-207. – reference: Son JH, Cho YC, Sung IY et al. Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. J Pineal Res 2014; 57:385-392. – reference: Koyama H, Nakade O, Takada Y et al. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 2002; 17:1219-1229. – reference: Ostrowska Z, Kos-Kudla B, Nowak M et al. The relationship between bone metabolism, melatonin and other hormones in sham-operated and pinealectomized rats. Endocr Regul 2003; 37:211-224. – reference: Li M, Zhao L, Liu J et al. Hydrogen peroxide induces G2 cell cycle arrest and inhibits cell proliferation in osteoblasts. Anat Rec (Hoboken) 2009; 292:1107-1113. – reference: Nakade O, Koyama H, Ariji H et al. Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J Pineal Res 1999; 27:106-110. – reference: Genant HK, Block JE, Steiger P et al. Quantitative computed tomography in assessment of osteoporosis. Semin Nucl Med 1987; 17:316-333. – reference: Histing T, Anton C, Scheuer C et al. Melatonin impairs fracture healing by suppressing RANKL-mediated bone remodeling. J Surg Res 2012; 173:83-90. – reference: Sethi S, Radio NM, Kotlarczyk MP et al. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 2010; 49:222-238. – reference: Wade AG, Ford I, Crawford G et al. Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety. BMC Med 2010; 8:51. – reference: Karagas MR, Lu-Yao GL, Barrett JA et al. Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly. Am J Epidemiol 1996; 143:677-682. – reference: Baek KH, Oh KW, Lee WY et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int 2010; 87:226-235. – reference: Chan CW, Song Y, Ailenberg M et al. Studies of melatonin effects on epithelia using the human embryonic kidney-293 (HEK-293) cell line. Endocrinology 1997; 138:4732-4739. – reference: Bondi CD, Khairnar R, Kamal K et al. An early development budget impact model for the use of melatonin in the treatment and prevention of osteoporosis. Clin Pharmacol Biopharm 2015; 4:132. – reference: Marks R. Hip fracture epidemiological trends, outcomes, and risk factors, 1970-2009. Int J Gen Med 2010; 3:1-17. – reference: Hermann AP, Thomasen J, Vestergaard P et al. Assessment of calcium intake. A quick method compared to a 7 days food diary. Calcif Tissue Int 2009; 64(Suppl 1):S82. – reference: Satomura K, Tobiume S, Tokuyama R et al. Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res 2007; 42:231-239. – reference: Radio NM, Doctor JS, Witt-Enderby PA. Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 2006; 40:332-342. – reference: Hansen S, Brixen K, Gravholt CH. Compromised trabecular microarchitecture and lower finite element estimates of radius and tibia bone strength in adults with turner syndrome: a cross-sectional study using high-resolution-pQCT. J Bone Miner Res 2012; 27:1794-1803. – reference: Mody N, Parhami F, Sarafian TA et al. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 2001; 31:509-519. – reference: Egermann M, Gerhardt C, Barth A et al. Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord 2011; 12:271. – reference: Uslu S, Uysal A, Oktem G et al. Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats. Anal Quant Cytol Histol 2007; 29:317-325. – reference: Zhang L, Zhang J, Ling Y et al. Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro. J Pineal Res 2013; 54:24-32. – reference: Hojskov CS, Heickendorff L, Moller HJ. High-throughput liquid-liquid extraction and LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory. Clin Chim Acta 2010; 411:114-116. – reference: Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J Pineal Res 2013; 54:245-257. – reference: Song Y, Tam PC, Poon AM et al. 2-[125I]iodomelatonin-binding sites in the human kidney and the effect of guanosine 5′-O-(3-thiotriphosphate). J Clin Endocrinol Metab 1995; 80:1560-1565. – reference: Buscemi N, Vandermeer B, Hooton N et al. The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta-analysis. J Gen Intern Med 2005; 20:1151-1158. – reference: Tresguerres IF, Tamimi F, Eimar H et al. Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res 2014; 17:341-346. – reference: Ostrowska Z, Kos-Kudla B, Marek B et al. The relationship between the daily profile of chosen biochemical markers of bone metabolism and melatonin and other hormone secretion in rats under physiological conditions. Neuro Endocrinol Lett 2002; 23:417-425. – reference: Witt-Enderby PA, Slater JP, Johnson NA et al. Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J Pineal Res 2012; 53:374-384. – reference: Khoo BC, Brown K, Cann C et al. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int 2009; 20:1539-1545. – reference: Laib A, Ruegsegger P. Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 1999; 24:35-39. – reference: Kotlarczyk MP, Lassila HC, O'Neil CK et al. Melatonin osteoporosis prevention study (MOPS): a randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J Pineal Res 2012; 52:414-426. – reference: Turgut M, Kaplan S, Turgut AT et al. Morphological, stereological and radiological changes in pinealectomized chicken cervical vertebrae. J Pineal Res 2005; 39:392-399. – volume: 20 start-page: 1151 year: 2005 end-page: 1158 article-title: The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta‐analysis publication-title: J Gen Intern Med – volume: 51 start-page: 187 year: 2011 end-page: 194 article-title: Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways publication-title: J Pineal Res – volume: 80 start-page: 1560 year: 1995 end-page: 1565 article-title: 2‐[125I]iodomelatonin‐binding sites in the human kidney and the effect of guanosine 5′‐O‐(3‐thiotriphosphate) publication-title: J Clin Endocrinol Metab – volume: 57 start-page: 131 year: 2014 end-page: 146 article-title: Melatonin: a well‐documented antioxidant with conditional pro‐oxidant actions publication-title: J Pineal Res – volume: 57 start-page: 385 year: 2014 end-page: 392 article-title: Melatonin promotes osteoblast differentiation and mineralization of MC3T3‐E1 cells under hypoxic conditions through activation of PKD/p38 pathways publication-title: J Pineal Res – volume: 53 start-page: B293 year: 1998 end-page: B298 article-title: Endogenous melatonin levels and the fate of exogenous melatonin: age effects publication-title: J Gerontol A Biol Sci Med Sci – volume: 49 start-page: 222 year: 2010 end-page: 238 article-title: Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways publication-title: J Pineal Res – volume: 3 start-page: 1 year: 2010 end-page: 17 article-title: Hip fracture epidemiological trends, outcomes, and risk factors, 1970–2009 publication-title: Int J Gen Med – volume: 87 start-page: 226 year: 2010 end-page: 235 article-title: Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures publication-title: Calcif Tissue Int – volume: 17 start-page: 341 year: 2014 end-page: 346 article-title: Melatonin dietary supplement as an anti‐aging therapy for age‐related bone loss publication-title: Rejuvenation Res – volume: 17 start-page: 316 year: 1987 end-page: 333 article-title: Quantitative computed tomography in assessment of osteoporosis publication-title: Semin Nucl Med – volume: 12 start-page: 271 year: 2011 article-title: Pinealectomy affects bone mineral density and structure–an experimental study in sheep publication-title: BMC Musculoskelet Disord – volume: 52 start-page: 414 year: 2012 end-page: 426 article-title: Melatonin osteoporosis prevention study (MOPS): a randomized, double‐blind, placebo‐controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women publication-title: J Pineal Res – volume: 49 start-page: 364 year: 2010 end-page: 372 article-title: Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression publication-title: J Pineal Res – volume: 42 start-page: 231 year: 2007 end-page: 239 article-title: Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo publication-title: J Pineal Res – volume: 138 start-page: 4732 year: 1997 end-page: 4739 article-title: Studies of melatonin effects on epithelia using the human embryonic kidney‐293 (HEK‐293) cell line publication-title: Endocrinology – volume: 54 start-page: 24 year: 2013 end-page: 32 article-title: Sustained release of melatonin from poly (lactic‐co‐glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro publication-title: J Pineal Res – volume: 1 start-page: 78 year: 2003 end-page: 85 article-title: Hip fracture: risk factors and outcomes publication-title: Curr Osteoporos Rep – volume: 27 start-page: 1794 year: 2012 end-page: 1803 article-title: Compromised trabecular microarchitecture and lower finite element estimates of radius and tibia bone strength in adults with turner syndrome: a cross‐sectional study using high‐resolution‐pQCT publication-title: J Bone Miner Res – volume: 39 start-page: 392 year: 2005 end-page: 399 article-title: Morphological, stereological and radiological changes in pinealectomized chicken cervical vertebrae publication-title: J Pineal Res – volume: 53 start-page: 374 year: 2012 end-page: 384 article-title: Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice publication-title: J Pineal Res – volume: 314 start-page: 197 year: 2004 end-page: 207 article-title: Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF‐kappaB publication-title: Biochem Biophys Res Commun – volume: 292 start-page: 1107 year: 2009 end-page: 1113 article-title: Hydrogen peroxide induces G2 cell cycle arrest and inhibits cell proliferation in osteoblasts publication-title: Anat Rec (Hoboken) – volume: 31 start-page: 509 year: 2001 end-page: 519 article-title: Oxidative stress modulates osteoblastic differentiation of vascular and bone cells publication-title: Free Radic Biol Med – volume: 51 start-page: 17 year: 2011 end-page: 43 article-title: A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases publication-title: J Pineal Res – volume: 64 start-page: S82 issue: Suppl 1 year: 2009 article-title: Assessment of calcium intake. A quick method compared to a 7 days food diary publication-title: Calcif Tissue Int – volume: 27 start-page: 106 year: 1999 end-page: 110 article-title: Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro publication-title: J Pineal Res – volume: 173 start-page: 83 year: 2012 end-page: 90 article-title: Melatonin impairs fracture healing by suppressing RANKL‐mediated bone remodeling publication-title: J Surg Res – volume: 20 start-page: 1539 year: 2009 end-page: 1545 article-title: Comparison of QCT‐derived and DXA‐derived areal bone mineral density and T scores publication-title: Osteoporos Int – volume: 54 start-page: 245 year: 2013 end-page: 257 article-title: On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK publication-title: J Pineal Res – volume: 8 start-page: 51 year: 2010 article-title: Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety publication-title: BMC Med – volume: 40 start-page: 332 year: 2006 end-page: 342 article-title: Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade publication-title: J Pineal Res – volume: 17 start-page: 1219 year: 2002 end-page: 1229 article-title: Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down‐regulation of the RANKL‐mediated osteoclast formation and activation publication-title: J Bone Miner Res – volume: 411 start-page: 114 year: 2010 end-page: 116 article-title: High‐throughput liquid‐liquid extraction and LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory publication-title: Clin Chim Acta – volume: 29 start-page: 317 year: 2007 end-page: 325 article-title: Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats publication-title: Anal Quant Cytol Histol – volume: 143 start-page: 677 year: 1996 end-page: 682 article-title: Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly publication-title: Am J Epidemiol – volume: 4 start-page: 132 year: 2015 article-title: An early development budget impact model for the use of melatonin in the treatment and prevention of osteoporosis publication-title: Clin Pharmacol Biopharm – volume: 24 start-page: 35 year: 1999 end-page: 39 article-title: Calibration of trabecular bone structure measurements of in vivo three‐dimensional peripheral quantitative computed tomography with 28‐microm‐resolution microcomputed tomography publication-title: Bone – volume: 37 start-page: 211 year: 2003 end-page: 224 article-title: The relationship between bone metabolism, melatonin and other hormones in sham‐operated and pinealectomized rats publication-title: Endocr Regul – volume: 30 start-page: 842 year: 2002 end-page: 848 article-title: Estimation of distal radius failure load with micro‐finite element analysis models based on three‐dimensional peripheral quantitative computed tomography images publication-title: Bone – volume: 23 start-page: 417 year: 2002 end-page: 425 article-title: The relationship between the daily profile of chosen biochemical markers of bone metabolism and melatonin and other hormone secretion in rats under physiological conditions publication-title: Neuro Endocrinol Lett – ident: e_1_2_8_11_1 doi: 10.1359/jbmr.2002.17.7.1219 – ident: e_1_2_8_27_1 doi: 10.1210/jc.80.5.1560 – ident: e_1_2_8_7_1 doi: 10.1111/j.1600-079X.2012.01016.x – ident: e_1_2_8_35_1 doi: 10.1016/S0891-5849(01)00610-4 – volume: 29 start-page: 317 year: 2007 ident: e_1_2_8_5_1 article-title: Constructive effect of exogenous melatonin against osteoporosis after ovariectomy in rats publication-title: Anal Quant Cytol Histol – ident: e_1_2_8_6_1 doi: 10.1111/j.1600-079X.2011.00956.x – ident: e_1_2_8_13_1 doi: 10.1111/j.1600-079X.2005.00263.x – ident: e_1_2_8_2_1 doi: 10.1111/j.1600-079X.2011.00856.x – ident: e_1_2_8_28_1 doi: 10.1210/en.138.11.4732 – volume: 4 start-page: 132 year: 2015 ident: e_1_2_8_19_1 article-title: An early development budget impact model for the use of melatonin in the treatment and prevention of osteoporosis publication-title: Clin Pharmacol Biopharm – ident: e_1_2_8_39_1 doi: 10.1111/j.1600-079X.1999.tb00603.x – ident: e_1_2_8_10_1 doi: 10.1016/j.jss.2010.08.036 – ident: e_1_2_8_17_1 doi: 10.1186/1741-7015-8-51 – ident: e_1_2_8_41_1 doi: 10.1111/j.1600-079X.2010.00784.x – ident: e_1_2_8_31_1 doi: 10.1111/jpi.12010 – ident: e_1_2_8_42_1 doi: 10.1111/jpi.12177 – ident: e_1_2_8_14_1 doi: 10.1093/gerona/53A.4.B293 – ident: e_1_2_8_4_1 doi: 10.1089/rej.2013.1542 – ident: e_1_2_8_12_1 doi: 10.1186/1471-2474-12-271 – volume: 3 start-page: 1 year: 2010 ident: e_1_2_8_15_1 article-title: Hip fracture epidemiological trends, outcomes, and risk factors, 1970–2009 publication-title: Int J Gen Med – ident: e_1_2_8_40_1 doi: 10.1111/j.1600-079X.2006.00318.x – ident: e_1_2_8_24_1 doi: 10.1002/jbmr.1624 – ident: e_1_2_8_38_1 doi: 10.1111/j.1600-079X.2012.01007.x – volume: 37 start-page: 211 year: 2003 ident: e_1_2_8_29_1 article-title: The relationship between bone metabolism, melatonin and other hormones in sham‐operated and pinealectomized rats publication-title: Endocr Regul – ident: e_1_2_8_22_1 doi: 10.1016/S8756-3282(98)00159-8 – ident: e_1_2_8_36_1 doi: 10.1007/s00223-010-9393-9 – ident: e_1_2_8_37_1 doi: 10.1016/S0001-2998(87)80024-7 – ident: e_1_2_8_26_1 doi: 10.1093/oxfordjournals.aje.a008800 – volume: 23 start-page: 417 year: 2002 ident: e_1_2_8_30_1 article-title: The relationship between the daily profile of chosen biochemical markers of bone metabolism and melatonin and other hormone secretion in rats under physiological conditions publication-title: Neuro Endocrinol Lett – ident: e_1_2_8_8_1 doi: 10.1111/j.1600-079X.2011.00875.x – ident: e_1_2_8_16_1 doi: 10.1007/s11914-003-0013-8 – ident: e_1_2_8_18_1 doi: 10.1111/j.1525-1497.2005.0243.x – volume: 64 start-page: S82 issue: 1 year: 2009 ident: e_1_2_8_20_1 article-title: Assessment of calcium intake. A quick method compared to a 7 days food diary publication-title: Calcif Tissue Int – ident: e_1_2_8_33_1 doi: 10.1016/j.bbrc.2003.12.073 – ident: e_1_2_8_34_1 doi: 10.1002/ar.20925 – ident: e_1_2_8_3_1 doi: 10.1111/j.1600-079X.2006.00410.x – ident: e_1_2_8_9_1 doi: 10.1111/j.1600-079X.2010.00803.x – ident: e_1_2_8_23_1 doi: 10.1016/S8756-3282(02)00736-6 – ident: e_1_2_8_25_1 doi: 10.1016/j.cca.2009.10.010 – ident: e_1_2_8_32_1 doi: 10.1111/jpi.12162 – ident: e_1_2_8_21_1 doi: 10.1007/s00198-008-0820-y |
SSID | ssj0008886 |
Score | 2.4707582 |
Snippet | Melatonin is known for its regulation of circadian rhythm. Recently, studies have shown that melatonin may have a positive effect on the skeleton. By... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 221 |
SubjectTerms | Absorptiometry, Photon Aged Bone Density - drug effects Bone Diseases, Metabolic - diagnostic imaging Bone Diseases, Metabolic - drug therapy Bone Diseases, Metabolic - metabolism bone mineral density clinical trial Dose-Response Relationship, Drug Double-Blind Method Female Femur Neck - diagnostic imaging Femur Neck - metabolism Humans melatonin Middle Aged osteoporosis postmenopausal women Postmenopause - metabolism |
Title | Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial |
URI | https://api.istex.fr/ark:/67375/WNG-1KD8PNQ7-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpi.12252 https://www.ncbi.nlm.nih.gov/pubmed/26036434 https://www.proquest.com/docview/1701300582 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1600-079X dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0008886 issn: 0742-3098 databaseCode: ABDBF dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0742-3098 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1600-079X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008886 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuHCqzwKFBmEKi5ZJbGdOHCqoKUUdVUQFT0gRX5K0XazqyYr0R755Z1xHrSoSIhbFNmO7czYM-PP3xDyWkph8bguytDT4d6rqLAGfB5RGJNp7ViCl5MPp9n-MT84ESdr5N1wF6bjhxgDbqgZYb1GBVe6uarky2qSgDTi-pswEY5ov_6mjgLPLusoONOIxYXsWYUCimeoeW0vuoXT-vMmQ_O63Ro2nr275MfQ5Q5vMpusWj0xF3-wOf7nmO6RO71BSnc6CbpP1lz9gGzs1OCMz8_pNg0Q0RB73yC_DhE6hwFcWoVghGuoXtSOzqtAXk0twuHbc6paCoYl9Qjjhde1MzMKlZaLBkHt4KevGngd2B8oRoIpXjXBRF6VeksVhf3TLubVhbO0h9KfwmNIMPKQHO_tfnu_H_VJHCKD1GiRYDyNNXNCG-HzNAOd57AAG8YN97kSTGslLM-ZzwtXxLFPU5fruHDgF2kfW_aIrNcwkieEFl7G2iWFlaLgmnGpGOPW8ERn3lspN8mb4XeWpmc4x0Qbp-Xo6SyrMszvJnk1Fl12tB43FdoOMjGWUGczxMHlovw-_Vgmnz_Io-mXvIQPvxyEpgTtxCMXVbvFqimR7R4TAkho7HEnTWNr4EkysAc5dDvIxN87Uh4cfQoPT_-96DNyG2w70cHhnpP19mzltsB-avWLoCiXGbwXIw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAXKJRHeRqEKi5ZJbGdOIhLRSnbx64KakUvlRU7thRtN7vqZqW2R345M84DioqEuFnWJHGSGXtm_PkbQt5JKQrcrgsSjHS4c3mQFQZiHpEZk2htWYSHk0fjZHjC90_F6Qr52J2Fafgh-oQbWoafr9HAMSH9u5XPy0EE6ggT8Bruz6FZ7nz7RR4FsV3SkHDGAQsz2fIKeRxPd-mN1WgNP-zlba7mTc_VLz2798lZN-gGcTIZLGs9MNd_8Dn-71utk3utT0q3GyV6QFZs9ZBsbFcQj0-v6Bb1KFGfft8gP0aInsMcLi19PsIuqJ5Vlk5Lz19NC0TE11c0ryn4ltQhkhe6K2smFC6azxaIa4dQfbmAbk8AQTEZTPG0CdbyKvMPNKewhBazaXltC9qi6c-h6WuMPCInu5-PPw2Dto5DYJAdLRCMx6FmVmgjXBonYPYc5mDDuOEuzQXTOhcFT5lLM5uFoYtjm-owsxAaaRcW7DFZreBNnhKaORlqG2WFFBnXjMucMV4YHunEuULKTfK--5_KtCTnWGvjXPXBzrxU_vtukre96Lxh9rhNaMsrRS-RX0wQCpcK9X38RUUHO_Jo_DVV8OA3ndYoMFDcdckrO1suFBLeY00ACTd70qhTfzcIJhm4hByG7ZXi7wNR-0d7vvHs30VfkzvD49GhOtwbHzwnd8HVEw067gVZrS-W9iW4U7V-5a3mJ3TbGz8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEBYhgdKXXumRnmopoS9ebEvy0T6FptsczbItDc1DQFgXmM16TdYLTR77yzsjH21KCqVvxsi2ZM9I840_fUPI6ywTBn_XBQkiHe5cEeRGA-YRudaJUpZFuDn5aJLsHfODE3GyRt71e2FafYgh4Yae4edrdPDauN-dvC5HEVgjzL8bPAF0hRHRl1_aUQDtklaDMw5YmGedrJCn8fSXXlmMNvC9fr8u0rwauPqVZ3ybnPZ9bgkns9GqUSN9-Yec438O6g651UWkdKc1obtkzVb3yOZOBWh8fkG3qeeI-uT7JvlxhNw5zODS0mcj7JKqRWXpvPTq1dQgH765oEVDIbKkDnm8cLqyekbhonqxRFY7APXVEk57-QeKqWCKe02wkldZvKUFhQXULOblpTW049KfwaGvMHKfHI8_fH2_F3RVHAKN2miBYDwOFbNCaeHSOAGn5zADa8Y1d2khmFKFMDxlLs1tHoYujm2qwtwCMFIuNOwBWa9gJI8IzV0WKhvlJhM5V4xnBWPcaB6pxDmTZVvkTf85pe4kzrHSxpkcoE5dSv9-t8iroWnd6npc12jb28TQojifIREuFfLb5KOMDnez6eRzKuHBL3ujkeCe-M-lqOxitZQod48VATK42cPWmoa7AZRkEBBy6La3ib93RB5M9_3B439v-oLcmO6O5af9yeETchPiPNFS456S9eZ8ZZ9BLNWo595nfgIVbxnu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+improves+bone+mineral+density+at+the+femoral+neck+in+postmenopausal+women+with+osteopenia%3A+a+randomized+controlled+trial&rft.jtitle=Journal+of+pineal+research&rft.au=Amstrup%2C+Anne+Kristine&rft.au=Sikjaer%2C+Tanja&rft.au=Heickendorff%2C+Lene&rft.au=Mosekilde%2C+Leif&rft.date=2015-09-01&rft.issn=0742-3098&rft.eissn=1600-079X&rft.volume=59&rft.issue=2&rft.spage=221&rft.epage=229&rft_id=info:doi/10.1111%2Fjpi.12252&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jpi_12252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-3098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-3098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-3098&client=summon |