Streptococcus pyogenes infection of tonsil explants is associated with a human β-defensin 1 response from control but not recurrent acute tonsillitis patients
Summary Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linke...
Saved in:
Published in | Molecular oral microbiology Vol. 27; no. 3; pp. 160 - 171 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.06.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 2041-1006 2041-1014 2041-1014 |
DOI | 10.1111/j.2041-1014.2012.640.x |
Cover
Abstract | Summary
Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP‐18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP‐18/LL‐37, human β‐defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes. |
---|---|
AbstractList | Summary
Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP‐18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP‐18/LL‐37, human β‐defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes. Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP-18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP-18/LL-37, human β-defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes. Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes , a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP‐18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes . The HaCaT data supported the reduced expression of hCAP ‐ 18/LL‐37, human β‐defensin 1 (HBD1; P < 0.01) and HBD2 ( P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression ( P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes . Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP-18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP-18/LL-37, human β-defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes.Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP-18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP-18/LL-37, human β-defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes. Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP-18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP-18/LL-37, human beta -defensin 1 (HBD1; P<0.01) and HBD2 (P<0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P<0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes. |
Author | Hirst, B.H. Hall, J. Smith, W.D. Bell, S. Townes, C.L. Abbot, E.L. Wilson, J.A. Howard, A. |
Author_xml | – sequence: 1 givenname: S. surname: Bell fullname: Bell, S. organization: Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK – sequence: 2 givenname: A. surname: Howard fullname: Howard, A. organization: Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK – sequence: 3 givenname: J.A. surname: Wilson fullname: Wilson, J.A. organization: Faculty of Medical Sciences, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK – sequence: 4 givenname: E.L. surname: Abbot fullname: Abbot, E.L. organization: Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK – sequence: 5 givenname: W.D. surname: Smith fullname: Smith, W.D. organization: Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK – sequence: 6 givenname: C.L. surname: Townes fullname: Townes, C.L. organization: Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK – sequence: 7 givenname: B.H. surname: Hirst fullname: Hirst, B.H. organization: Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK – sequence: 8 givenname: J. surname: Hall fullname: Hall, J. organization: Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22520386$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUUtuFDEUbKEgEkKuEHnJpgf_unsGsUFRCJ-ELPhEYmO53c_EQ4_d2G5l5jTcgYNwJl4zwyzYEG9c8qt6JVc9Lg588FAUp4zOGJ5nyxmnkpWMMomI8Vkt6Wz9oDjaPx_sMa0Pi5OUlhSPYLJpmkfFIecVp2JeHxU_PuQIQw4mGDMmMmzCV_CQiPMWTHbBk2BJDj65nsB66LXPOExEpxSM0xk6cufyLdHkdlxpT379LDuwgHxPGImQBtQCsTGsiAk-x9CTdszEh4xTM8YIPhNtxgw7m95l3D_o7HCSnhQPre4TnOzu4-LTq_OPZ6_Ly-uLN2cvL0sjhaBlJToz79B5wTorDe-YqKxmhkneNdCIZs4scEabmtm2qQxDSE1rQTa8XdhOHBdPt3uHGL6PkLJauWSgxw9DGJOaQsUwec3vQaULhlFzgdTTHXVsV9CpIbqVjhv1N38k1FuCiSGlCHZPYVRNXaulmor846-mrhV2rdYofPGP0Lisp8Jy1K7_v_z5Vn7netjc01RdXV8hQHG5FbuUYb0X6_hN1Rh1pW7eX6j555vqy7u3UknxG21R1B0 |
CitedBy_id | crossref_primary_10_1093_cid_cit359 crossref_primary_10_1080_10520295_2020_1752936 crossref_primary_10_1016_j_ijporl_2018_01_041 crossref_primary_10_1002_term_2590 crossref_primary_10_1189_jlb_4MR0617_227RR crossref_primary_10_1093_jac_dkt128 crossref_primary_10_1128_spectrum_01609_24 crossref_primary_10_1111_2049_632X_12183 crossref_primary_10_1016_j_ijporl_2016_03_044 crossref_primary_10_1126_scitranslmed_aau3776 crossref_primary_10_1371_journal_pone_0152995 crossref_primary_10_17116_otorino201580365_70 crossref_primary_10_3390_biom13081239 crossref_primary_10_3389_fcimb_2018_00160 crossref_primary_10_1371_journal_pone_0117535 crossref_primary_10_1016_j_heliyon_2024_e32116 crossref_primary_10_1016_j_ijporl_2016_01_025 |
Cites_doi | 10.1074/jbc.M607210200 10.1016/j.ijporl.2010.11.012 10.1111/j.0019-2805.2004.01837.x 10.1111/j.1462-5822.2007.00918.x 10.1128/IAI.00449-08 10.1017/S0022215107006184 10.1016/j.cellimm.2009.11.010 10.1034/j.1601-0825.2002.1o816.x 10.1093/infdis/175.2.392 10.1038/ni.1825 10.1111/j.1365-2567.2006.02399.x 10.1111/j.1462-5822.2008.01227.x 10.1902/jop.2005.76.8.1293 10.1016/0014-5793(95)00687-5 10.4049/jimmunol.180.11.7565 10.1038/nature09674 10.1007/3-540-29916-5_2 10.1016/j.ijporl.2005.07.025 10.1016/S0065-2164(07)00008-1 10.1128/JB.184.8.2181-2191.2002 10.1093/fampra/13.3.317 10.1016/j.bbrc.2009.07.046 10.1038/gene.2009.75 10.1016/j.febslet.2006.08.083 10.1016/j.mimet.2009.09.012 10.1007/s00405-005-1004-4 10.1128/IAI.70.6.3053-3060.2002 10.1099/00222615-39-3-165 10.1034/j.1398-9995.2003.00180.x 10.1177/0022034510364491 10.1016/j.molimm.2004.11.001 10.1128/IAI.73.11.7281-7289.2005 10.1007/3-540-29916-5_3 10.1007/s00405-009-1086-5 10.1111/j.1365-2567.2007.02615.x 10.1073/pnas.0503671102 10.1074/jbc.M805406200 10.1177/10454411970080020601 10.1016/j.biocel.2010.01.021 10.1074/jbc.M301995200 10.1016/j.ijmm.2009.08.011 |
ContentType | Journal Article |
Copyright | 2012 John Wiley & Sons A/S 2012 John Wiley & Sons A/S. |
Copyright_xml | – notice: 2012 John Wiley & Sons A/S – notice: 2012 John Wiley & Sons A/S. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QL 7T5 7T7 8FD C1K FR3 H94 P64 |
DOI | 10.1111/j.2041-1014.2012.640.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1014 |
EndPage | 171 |
ExternalDocumentID | 22520386 10_1111_j_2041_1014_2012_640_x MOM640 ark_67375_WNG_8VW5ZKJ4_4 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0400849 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 31~ 33P 34H 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 5HH 5LA 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCUV ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBD EBS EJD ESTFP F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MM. MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OVD P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WBNRW WIH WIJ WIK WOHZO WPGGZ WXSBR XG1 ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QL 7T5 7T7 8FD C1K FR3 H94 P64 |
ID | FETCH-LOGICAL-c4330-53dc8ddef91df4c2d135fa1c142d7e73781fe210761fb75c11070cbfe472b9fd3 |
IEDL.DBID | DR2 |
ISSN | 2041-1006 2041-1014 |
IngestDate | Mon Sep 08 15:22:01 EDT 2025 Mon Sep 08 07:37:30 EDT 2025 Thu Apr 03 07:00:29 EDT 2025 Thu Apr 24 23:07:02 EDT 2025 Tue Jul 01 03:55:12 EDT 2025 Wed Jan 22 16:51:22 EST 2025 Tue Sep 09 05:32:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012 John Wiley & Sons A/S. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4330-53dc8ddef91df4c2d135fa1c142d7e73781fe210761fb75c11070cbfe472b9fd3 |
Notes | ark:/67375/WNG-8VW5ZKJ4-4 ArticleID:MOM640 istex:1BF03BB9DB9CD275F3C9EFEA9FD660566AB085A5 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 22520386 |
PQID | 1009131423 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1014100262 proquest_miscellaneous_1009131423 pubmed_primary_22520386 crossref_primary_10_1111_j_2041_1014_2012_640_x crossref_citationtrail_10_1111_j_2041_1014_2012_640_x wiley_primary_10_1111_j_2041_1014_2012_640_x_MOM640 istex_primary_ark_67375_WNG_8VW5ZKJ4_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06 June 2012 2012-06-00 2012-Jun 20120601 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Denmark |
PublicationTitle | Molecular oral microbiology |
PublicationTitleAlternate | Mol Oral Microbiol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Song, J.J., Hwang, K.S., Woo, J.S. et al. (2006) Expression of cathelicidin in recurrent throat infection. Int J Pediatr Otorhinolaryngol 70: 487-492. Howard, A., Townes, C., Milona, P. et al. (2010) Expression and functional analyses of liver expressed antimicrobial peptide-2 (LEAP-2) variant forms in human tissues. Cell Immunol 261: 128-133. Schroeder, B.O. and Wu, Z., Nuding, S. et al. (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469: 419-423. Bowdish, D.M., Davidson, D.J., Hancock, R.E. (2006) Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 306: 27-66. Little, P. and Williamson, I. (1996) Sore throat management in general practice. Fam Pract 13: 317-321. Schaefer, A.S., Richter, G.M., Northnagel, M. et al. (2010) A 3′ UTR transition within DEFB1 is associated with chronic and aggressive periodontitis. Genes Immun 11: 45-54. Reid, D., Morton, R., Salkeld, L., Bentley, J. (2011) Vitamin D and tonsil disease - preliminary observations. Int J Pediatr Otorhinolaryngol 75: 261-264. Salzman, N.H., Hung, K., Haribhai, D. et al. (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11: 76-83. Jenkinson, H.F. and Lamont, R.J. (1997) Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8: 175-200. Devine, D.A. and Cosseau, C. (2008) Host defense peptides in the oral cavity. Adv Appl Microbiol 63: 281-322. Carapetis, J.R., Steer, A.C., Mulholland, E.K., Weber, M. (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685-694. Ji, S., Shin, J.E., Kim, Y.S., Oh, J.E., Min, B.M., Choi, Y. (2009) Toll-like receptor 2 and NALP2 mediate induction of human beta-defensins by Fusobacterium nucleatum in gingival epithelial cells. Infect Immun 77: 1044-1052. Quinn, G.A. and Cole, A.M. (2007) Suppression of innate immunity by a nasal carriage strain of Staphylococcus aureus increases its colonization on nasal epithelium. Immunology 122: 80-89. Barnett, T.C. and Scott, J.R. (2002) Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J Bacteriol 184: 2181-2191. Frick, I.M., Akesson, P., Rasmussen, M., Schmidtchen, A., Bjork, L. (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278: 16561-16566. Pazgier, M., Prahl, A., Hoover, D.M., Lubrowski, J. (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282: 1819-1829. Lazarevic, V., Whiteson, K., Huse, S. et al. (2009) Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods 79: 266-271. Claeys, S., de Belder, T., Holtappels, G. et al. (2003) Human beta-defensins and toll-like receptors in the upper airway. Allergy 58: 748-753. Koslowski, M.J., Beisner, J., Stance, E.F., Wehkamp, J. (2010) Innate antimicrobial host defense in small intestinal Crohn's disease. Int J Med Microbiol 300: 34-40. Schauber, J., Dorschner, R.A., Yamasaki, K. et al. (2006) Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 118: 509-519. Zilbauer, M., Dorrell, N., Boughan, P.K. et al. (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73: 7281-7289. Bensch, K.W., Raida, M., Magert, J.H., Schulze-Knappe, P., Forssman, W.G. (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368: 331-335. Muotiala, A., Seppala, H., Huovinen, P., Vuopio-Varkila, J. (1997) Molecular comparison of group A streptococci of T1M1 serotype from invasive and noninvasive infections in Finland. J Infect Dis 175: 392-399. Morrison, G., Kilanowski, F., Davidson, D., Dorin, J. (2002) Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 70: 3053-3060. Agerberth, B. and Gudmundsson, G.H. (2006) Host antimicrobial defence peptides in human disease. Curr Top Microbiol Immunol 306: 67-90. Fernie-King, B.A., Seilly, D.J., Lachmann, P.J. (2004) The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins. Immunology 111: 444-452. Ball, S.L., Siou, G.P., Wilson, J.H., Howard, A., Hirst, B.H., Hall, J. (2007) Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils. J Laryngol Otol 121: 973-978. Prado-Montes de Oca, E. (2010) Human beta-defensin 1: a restless warrior against allergies, infections and cancer. Int J Biochem Cell Biol 42: 800-804. Ozturk, A., Famili, P., Vieira, A.R. et al. (2010) The antimicrobial peptide DEFB1 is associated with caries. J Dent Res 89: 631-636. Di Nardo, A., Yamasaki, K., Dorschner, R.A., Lai, Y., Gallo, R.L. (2008) Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J Immunol 180: 7565-7573. Wehkamp, J., Chu, H., Shen, B. et al. (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580: 5344-5350. Abbot, E.L., Smith, W.D., Siou, G.P. et al. (2007) Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol 9: 1822-1833. Chakraborty, K., Ghosh, S., Koley, H. et al. (2008) Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol 10: 2520-2537. Race, P.R., Bentley, M.L., Melvin, J.A. et al. (2009) Crystal structure of Streptococcus pyogenes sortase A: implications for sortase mechanism. J Biol Chem 284: 6924-6933. Joly, S., Organ, C.C., Johnson, G.K., McCray, P.B. Jr, Guthmiller, J.M. (2005) Correlation between beta-defensin expression and induction profiles in gingival keratinocytes. Mol Immunol 42: 1073-1084. Lukomski, S., Hoe, N.P., Abdi, I. et al. (2000) Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect Immun 68: 535-542. Schwaab, M., Gurr, A., Hansen, S. et al. (2010) Human beta-defensins in different states of diseases of the tonsilla palatina. Eur Arch Otorhinolaryngol 267: 821-830. Colman, G., Tanna, A., Efstratiou, A., Gaworzewska, E.T. (1993) The serotypes of Streptococcus pyogenes present in Britain during 1980-1990 and their association with disease. J Med Microbiol 39: 165-178. Townes, C.L., Michailidis, G., Hall, J. (2009) The interaction of the antimicrobial peptide cLEAP-2 and the bacterial membrane. Biochem Biophys Res Commun 387: 500-503. Vankeerberghen, A., Nuytten, H., Dierickx, K., Quirynen, M., Cassimen, J.J., Cuppens, H. (2005) Differential induction of human beta-defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells. J Periodontol 76: 1293-1303. Meyer, J.E., Beier, U.H., Gorogh, T., Schreiber, S., Beck, C., Mauve, S. (2006) Defensin and chemokine expression patterns in the palatine tonsil: a model of their local interaction. Eur Arch Otorhinolaryngol 263: 319-326. 2006; 70 2010; 11 2007; 282 2000; 68 2007; 121 1997; 175 2007; 122 2010; 267 2011; 75 2003; 58 2005; 42 2008; 10 2010; 261 1996; 13 2003; 278 2006; 118 1997; 8 2010; 89 2008; 180 2004; 111 2009; 77 2009; 79 2010; 42 2006; 306 1993; 39 2011; 469 2002; 184 2005; 5 2005; 73 2007; 9 2006; 580 2009; 387 1995; 368 300 2006; 263 2005; 76 2002; 70 2008; 63 2009; 284 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Koslowski M.J. (e_1_2_6_20_1); 300 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Salzman, N.H., Hung, K., Haribhai, D. et al. (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11: 76-83. – reference: Abbot, E.L., Smith, W.D., Siou, G.P. et al. (2007) Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol 9: 1822-1833. – reference: Schroeder, B.O. and Wu, Z., Nuding, S. et al. (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469: 419-423. – reference: Quinn, G.A. and Cole, A.M. (2007) Suppression of innate immunity by a nasal carriage strain of Staphylococcus aureus increases its colonization on nasal epithelium. Immunology 122: 80-89. – reference: Prado-Montes de Oca, E. (2010) Human beta-defensin 1: a restless warrior against allergies, infections and cancer. Int J Biochem Cell Biol 42: 800-804. – reference: Bowdish, D.M., Davidson, D.J., Hancock, R.E. (2006) Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 306: 27-66. – reference: Lazarevic, V., Whiteson, K., Huse, S. et al. (2009) Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods 79: 266-271. – reference: Schwaab, M., Gurr, A., Hansen, S. et al. (2010) Human beta-defensins in different states of diseases of the tonsilla palatina. Eur Arch Otorhinolaryngol 267: 821-830. – reference: Jenkinson, H.F. and Lamont, R.J. (1997) Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8: 175-200. – reference: Little, P. and Williamson, I. (1996) Sore throat management in general practice. Fam Pract 13: 317-321. – reference: Race, P.R., Bentley, M.L., Melvin, J.A. et al. (2009) Crystal structure of Streptococcus pyogenes sortase A: implications for sortase mechanism. J Biol Chem 284: 6924-6933. – reference: Vankeerberghen, A., Nuytten, H., Dierickx, K., Quirynen, M., Cassimen, J.J., Cuppens, H. (2005) Differential induction of human beta-defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells. J Periodontol 76: 1293-1303. – reference: Schaefer, A.S., Richter, G.M., Northnagel, M. et al. (2010) A 3′ UTR transition within DEFB1 is associated with chronic and aggressive periodontitis. Genes Immun 11: 45-54. – reference: Schauber, J., Dorschner, R.A., Yamasaki, K. et al. (2006) Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 118: 509-519. – reference: Colman, G., Tanna, A., Efstratiou, A., Gaworzewska, E.T. (1993) The serotypes of Streptococcus pyogenes present in Britain during 1980-1990 and their association with disease. J Med Microbiol 39: 165-178. – reference: Carapetis, J.R., Steer, A.C., Mulholland, E.K., Weber, M. (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685-694. – reference: Townes, C.L., Michailidis, G., Hall, J. (2009) The interaction of the antimicrobial peptide cLEAP-2 and the bacterial membrane. Biochem Biophys Res Commun 387: 500-503. – reference: Frick, I.M., Akesson, P., Rasmussen, M., Schmidtchen, A., Bjork, L. (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278: 16561-16566. – reference: Pazgier, M., Prahl, A., Hoover, D.M., Lubrowski, J. (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282: 1819-1829. – reference: Claeys, S., de Belder, T., Holtappels, G. et al. (2003) Human beta-defensins and toll-like receptors in the upper airway. Allergy 58: 748-753. – reference: Chakraborty, K., Ghosh, S., Koley, H. et al. (2008) Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol 10: 2520-2537. – reference: Lukomski, S., Hoe, N.P., Abdi, I. et al. (2000) Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect Immun 68: 535-542. – reference: Di Nardo, A., Yamasaki, K., Dorschner, R.A., Lai, Y., Gallo, R.L. (2008) Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J Immunol 180: 7565-7573. – reference: Meyer, J.E., Beier, U.H., Gorogh, T., Schreiber, S., Beck, C., Mauve, S. (2006) Defensin and chemokine expression patterns in the palatine tonsil: a model of their local interaction. Eur Arch Otorhinolaryngol 263: 319-326. – reference: Joly, S., Organ, C.C., Johnson, G.K., McCray, P.B. Jr, Guthmiller, J.M. (2005) Correlation between beta-defensin expression and induction profiles in gingival keratinocytes. Mol Immunol 42: 1073-1084. – reference: Devine, D.A. and Cosseau, C. (2008) Host defense peptides in the oral cavity. Adv Appl Microbiol 63: 281-322. – reference: Barnett, T.C. and Scott, J.R. (2002) Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J Bacteriol 184: 2181-2191. – reference: Zilbauer, M., Dorrell, N., Boughan, P.K. et al. (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73: 7281-7289. – reference: Agerberth, B. and Gudmundsson, G.H. (2006) Host antimicrobial defence peptides in human disease. Curr Top Microbiol Immunol 306: 67-90. – reference: Reid, D., Morton, R., Salkeld, L., Bentley, J. (2011) Vitamin D and tonsil disease - preliminary observations. Int J Pediatr Otorhinolaryngol 75: 261-264. – reference: Wehkamp, J., Chu, H., Shen, B. et al. (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580: 5344-5350. – reference: Ozturk, A., Famili, P., Vieira, A.R. et al. (2010) The antimicrobial peptide DEFB1 is associated with caries. J Dent Res 89: 631-636. – reference: Ji, S., Shin, J.E., Kim, Y.S., Oh, J.E., Min, B.M., Choi, Y. (2009) Toll-like receptor 2 and NALP2 mediate induction of human beta-defensins by Fusobacterium nucleatum in gingival epithelial cells. Infect Immun 77: 1044-1052. – reference: Fernie-King, B.A., Seilly, D.J., Lachmann, P.J. (2004) The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins. Immunology 111: 444-452. – reference: Song, J.J., Hwang, K.S., Woo, J.S. et al. (2006) Expression of cathelicidin in recurrent throat infection. Int J Pediatr Otorhinolaryngol 70: 487-492. – reference: Morrison, G., Kilanowski, F., Davidson, D., Dorin, J. (2002) Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 70: 3053-3060. – reference: Koslowski, M.J., Beisner, J., Stance, E.F., Wehkamp, J. (2010) Innate antimicrobial host defense in small intestinal Crohn's disease. Int J Med Microbiol 300: 34-40. – reference: Bensch, K.W., Raida, M., Magert, J.H., Schulze-Knappe, P., Forssman, W.G. (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368: 331-335. – reference: Muotiala, A., Seppala, H., Huovinen, P., Vuopio-Varkila, J. (1997) Molecular comparison of group A streptococci of T1M1 serotype from invasive and noninvasive infections in Finland. J Infect Dis 175: 392-399. – reference: Ball, S.L., Siou, G.P., Wilson, J.H., Howard, A., Hirst, B.H., Hall, J. (2007) Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils. J Laryngol Otol 121: 973-978. – reference: Howard, A., Townes, C., Milona, P. et al. (2010) Expression and functional analyses of liver expressed antimicrobial peptide-2 (LEAP-2) variant forms in human tissues. Cell Immunol 261: 128-133. – volume: 68 start-page: 535 year: 2000 end-page: 542 article-title: Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 significantly decreases mouse mucosal colonization publication-title: Infect Immun – volume: 11 start-page: 45 year: 2010 end-page: 54 article-title: A 3′ UTR transition within DEFB1 is associated with chronic and aggressive periodontitis publication-title: Genes Immun – volume: 63 start-page: 281 year: 2008 end-page: 322 article-title: Host defense peptides in the oral cavity publication-title: Adv Appl Microbiol – volume: 387 start-page: 500 year: 2009 end-page: 503 article-title: The interaction of the antimicrobial peptide cLEAP‐2 and the bacterial membrane publication-title: Biochem Biophys Res Commun – volume: 89 start-page: 631 year: 2010 end-page: 636 article-title: The antimicrobial peptide DEFB1 is associated with caries publication-title: J Dent Res – volume: 10 start-page: 2520 year: 2008 end-page: 2537 article-title: Bacterial exotoxins downregulate cathelicidin (hCAP‐18/LL‐37) and human beta‐defensin 1 (HBD‐1) expression in the intestinal epithelial cells publication-title: Cell Microbiol – volume: 122 start-page: 80 year: 2007 end-page: 89 article-title: Suppression of innate immunity by a nasal carriage strain of increases its colonization on nasal epithelium publication-title: Immunology – volume: 300 start-page: 34 end-page: 40 article-title: Innate antimicrobial host defense in small intestinal Crohn’s disease publication-title: Int J Med Microbiol – volume: 175 start-page: 392 year: 1997 end-page: 399 article-title: Molecular comparison of group A streptococci of T1M1 serotype from invasive and noninvasive infections in Finland publication-title: J Infect Dis – volume: 306 start-page: 67 year: 2006 end-page: 90 article-title: Host antimicrobial defence peptides in human disease publication-title: Curr Top Microbiol Immunol – volume: 13 start-page: 317 year: 1996 end-page: 321 article-title: Sore throat management in general practice publication-title: Fam Pract – volume: 75 start-page: 261 year: 2011 end-page: 264 article-title: Vitamin D and tonsil disease – preliminary observations publication-title: Int J Pediatr Otorhinolaryngol – volume: 118 start-page: 509 year: 2006 end-page: 519 article-title: Control of the innate epithelial antimicrobial response is cell‐type specific and dependent on relevant microenvironmental stimuli publication-title: Immunology – volume: 184 start-page: 2181 year: 2002 end-page: 2191 article-title: Differential recognition of surface proteins in by two sortase gene homologs publication-title: J Bacteriol – volume: 284 start-page: 6924 year: 2009 end-page: 6933 article-title: Crystal structure of sortase A: implications for sortase mechanism publication-title: J Biol Chem – volume: 278 start-page: 16561 year: 2003 end-page: 16566 article-title: SIC, a secreted protein of that inactivates antibacterial peptides publication-title: J Biol Chem – volume: 368 start-page: 331 year: 1995 end-page: 335 article-title: hBD‐1: a novel beta‐defensin from human plasma publication-title: FEBS Lett – volume: 77 start-page: 1044 year: 2009 end-page: 1052 article-title: Toll‐like receptor 2 and NALP2 mediate induction of human beta‐defensins by in gingival epithelial cells publication-title: Infect Immun – volume: 42 start-page: 1073 year: 2005 end-page: 1084 article-title: Correlation between beta‐defensin expression and induction profiles in gingival keratinocytes publication-title: Mol Immunol – volume: 11 start-page: 76 year: 2010 end-page: 83 article-title: Enteric defensins are essential regulators of intestinal microbial ecology publication-title: Nat Immunol – volume: 263 start-page: 319 year: 2006 end-page: 326 article-title: Defensin and chemokine expression patterns in the palatine tonsil: a model of their local interaction publication-title: Eur Arch Otorhinolaryngol – volume: 121 start-page: 973 year: 2007 end-page: 978 article-title: Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils publication-title: J Laryngol Otol – volume: 70 start-page: 3053 year: 2002 end-page: 3060 article-title: Characterization of the mouse beta defensin 1, Defb1, mutant mouse model publication-title: Infect Immun – volume: 267 start-page: 821 year: 2010 end-page: 830 article-title: Human beta‐defensins in different states of diseases of the tonsilla palatina publication-title: Eur Arch Otorhinolaryngol – volume: 73 start-page: 7281 year: 2005 end-page: 7289 article-title: Intestinal innate immunity to results in induction of bactericidal human beta‐defensins 2 and 3 publication-title: Infect Immun – volume: 39 start-page: 165 year: 1993 end-page: 178 article-title: The serotypes of present in Britain during 1980–1990 and their association with disease publication-title: J Med Microbiol – volume: 261 start-page: 128 year: 2010 end-page: 133 article-title: Expression and functional analyses of liver expressed antimicrobial peptide‐2 (LEAP‐2) variant forms in human tissues publication-title: Cell Immunol – volume: 5 start-page: 685 year: 2005 end-page: 694 article-title: The global burden of group A streptococcal diseases publication-title: Lancet Infect Dis – volume: 282 start-page: 1819 year: 2007 end-page: 1829 article-title: Studies of the biological properties of human beta‐defensin 1 publication-title: J Biol Chem – volume: 8 start-page: 175 year: 1997 end-page: 200 article-title: Streptococcal adhesion and colonization publication-title: Crit Rev Oral Biol Med – volume: 42 start-page: 800 year: 2010 end-page: 804 article-title: Human beta‐defensin 1: a restless warrior against allergies, infections and cancer publication-title: Int J Biochem Cell Biol – volume: 70 start-page: 487 year: 2006 end-page: 492 article-title: Expression of cathelicidin in recurrent throat infection publication-title: Int J Pediatr Otorhinolaryngol – volume: 306 start-page: 27 year: 2006 end-page: 66 article-title: Immunomodulatory properties of defensins and cathelicidins publication-title: Curr Top Microbiol Immunol – volume: 58 start-page: 748 year: 2003 end-page: 753 article-title: Human beta‐defensins and toll‐like receptors in the upper airway publication-title: Allergy – volume: 469 start-page: 419 year: 2011 end-page: 423 article-title: Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta‐defensin 1 publication-title: Nature – volume: 111 start-page: 444 year: 2004 end-page: 452 article-title: The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins publication-title: Immunology – volume: 9 start-page: 1822 year: 2007 end-page: 1833 article-title: Pili mediate specific adhesion of to human tonsil and skin publication-title: Cell Microbiol – volume: 79 start-page: 266 year: 2009 end-page: 271 article-title: Metagenomic study of the oral microbiota by Illumina high‐throughput sequencing publication-title: J Microbiol Methods – volume: 580 start-page: 5344 year: 2006 end-page: 5350 article-title: Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues publication-title: FEBS Lett – volume: 180 start-page: 7565 year: 2008 end-page: 7573 article-title: Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin publication-title: J Immunol – volume: 76 start-page: 1293 year: 2005 end-page: 1303 article-title: Differential induction of human beta‐defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells publication-title: J Periodontol – ident: e_1_2_6_28_1 doi: 10.1074/jbc.M607210200 – ident: e_1_2_6_32_1 doi: 10.1016/j.ijporl.2010.11.012 – ident: e_1_2_6_14_1 doi: 10.1111/j.0019-2805.2004.01837.x – ident: e_1_2_6_2_1 doi: 10.1111/j.1462-5822.2007.00918.x – ident: e_1_2_6_18_1 doi: 10.1128/IAI.00449-08 – ident: e_1_2_6_4_1 doi: 10.1017/S0022215107006184 – ident: e_1_2_6_16_1 doi: 10.1016/j.cellimm.2009.11.010 – ident: e_1_2_6_8_1 doi: 10.1034/j.1601-0825.2002.1o816.x – ident: e_1_2_6_26_1 doi: 10.1093/infdis/175.2.392 – ident: e_1_2_6_33_1 doi: 10.1038/ni.1825 – ident: e_1_2_6_35_1 doi: 10.1111/j.1365-2567.2006.02399.x – ident: e_1_2_6_9_1 doi: 10.1111/j.1462-5822.2008.01227.x – ident: e_1_2_6_40_1 doi: 10.1902/jop.2005.76.8.1293 – ident: e_1_2_6_6_1 doi: 10.1016/0014-5793(95)00687-5 – ident: e_1_2_6_13_1 doi: 10.4049/jimmunol.180.11.7565 – ident: e_1_2_6_36_1 doi: 10.1038/nature09674 – ident: e_1_2_6_7_1 doi: 10.1007/3-540-29916-5_2 – ident: e_1_2_6_38_1 doi: 10.1016/j.ijporl.2005.07.025 – ident: e_1_2_6_12_1 doi: 10.1016/S0065-2164(07)00008-1 – ident: e_1_2_6_5_1 doi: 10.1128/JB.184.8.2181-2191.2002 – ident: e_1_2_6_22_1 doi: 10.1093/fampra/13.3.317 – ident: e_1_2_6_39_1 doi: 10.1016/j.bbrc.2009.07.046 – ident: e_1_2_6_34_1 doi: 10.1038/gene.2009.75 – ident: e_1_2_6_41_1 doi: 10.1016/j.febslet.2006.08.083 – ident: e_1_2_6_21_1 doi: 10.1016/j.mimet.2009.09.012 – ident: e_1_2_6_24_1 doi: 10.1007/s00405-005-1004-4 – ident: e_1_2_6_25_1 doi: 10.1128/IAI.70.6.3053-3060.2002 – ident: e_1_2_6_11_1 doi: 10.1099/00222615-39-3-165 – ident: e_1_2_6_10_1 doi: 10.1034/j.1398-9995.2003.00180.x – ident: e_1_2_6_27_1 doi: 10.1177/0022034510364491 – ident: e_1_2_6_19_1 doi: 10.1016/j.molimm.2004.11.001 – ident: e_1_2_6_42_1 doi: 10.1128/IAI.73.11.7281-7289.2005 – ident: e_1_2_6_3_1 doi: 10.1007/3-540-29916-5_3 – ident: e_1_2_6_37_1 doi: 10.1007/s00405-009-1086-5 – ident: e_1_2_6_30_1 doi: 10.1111/j.1365-2567.2007.02615.x – ident: e_1_2_6_23_1 doi: 10.1073/pnas.0503671102 – ident: e_1_2_6_31_1 doi: 10.1074/jbc.M805406200 – ident: e_1_2_6_17_1 doi: 10.1177/10454411970080020601 – ident: e_1_2_6_29_1 doi: 10.1016/j.biocel.2010.01.021 – ident: e_1_2_6_15_1 doi: 10.1074/jbc.M301995200 – volume: 300 start-page: 34 ident: e_1_2_6_20_1 article-title: Innate antimicrobial host defense in small intestinal Crohn’s disease publication-title: Int J Med Microbiol doi: 10.1016/j.ijmm.2009.08.011 |
SSID | ssj0000314777 |
Score | 2.0581903 |
Snippet | Summary
Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from... Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from microbial... Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 160 |
SubjectTerms | Animal models Anti-Infective Agents - analysis Antimicrobial Cationic Peptides - analysis Bacterial Adhesion - immunology beta-Defensins - analysis Blood Proteins - analysis Cell Line Child Child, Preschool Cohort Studies Data processing Defensins Epithelial Cells - immunology Epithelial Cells - microbiology Epithelium Explants Gene expression host defence peptides human β-defensin 1 Humans Immunity, Innate - immunology Palatine Tonsil - immunology Recurrence Recurrent infection Statistical analysis Streptococcal Infections - immunology Streptococcus Streptococcus pyogenes Streptococcus pyogenes - immunology Surgery Tissue Culture Techniques Tonsillectomy Tonsillitis Tonsillitis - immunology Tonsillitis - microbiology |
Title | Streptococcus pyogenes infection of tonsil explants is associated with a human β-defensin 1 response from control but not recurrent acute tonsillitis patients |
URI | https://api.istex.fr/ark:/67375/WNG-8VW5ZKJ4-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.2041-1014.2012.640.x https://www.ncbi.nlm.nih.gov/pubmed/22520386 https://www.proquest.com/docview/1009131423 https://www.proquest.com/docview/1014100262 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3datRAFB5KRfBG6_9alRHEu6yZn2SSS1HrUtkKYm3xZsj8ldIlWTYJbL3yEXwFX8EH8SF8EudkkshKURHvQpLJZCbnnDnn5JvvIPRYCZMaJnjkvQkXccdtlCvFI-p4amiSCd1VLZkfpLNDvn-cHG-h2bAXJvBDjAk30IzOXoOCF6reUHIac4BjEUiNEDpNeTwFb5KwFEj0X7ylY7IFONpFV4WxbxOn_W7hgOq56EkbC9UlmPP1RV7oplPbrUp719DpMJ4ARjmbto2a6o-_UD3-jwHvoKu964qfBVm7jrZseQNdDsUsz2-iL_CDe9lU3sLqtsbL8-oE7Cge4F4lrhxuAI-7wHa9XAAAB5_WuOgFxBoMSWFc4K5uIP729funz8Y6QNiXmOBVQPNaDDticA-xx6ptcFk1_qoOTFO40G1j-44A2-dfJXDH1rfQ4d7Ld89nUV8AItKcsThKmNGZt78uJ8ZxTQ1hiSuIJpwaYQUTGXHWx6zCy5kSiYZYNtbKWS6oyp1ht9F2WZX2LsLWkcwVmmVA96-MLlzqY6mEqdw_Vzs6QcnwtaXu2dGhSMdC_oySYPoBEsclTL_00y_XE_R0bLcM_CB_bPGkE6bx9mJ1Bug6kcijg1cye3-UfHi9zyWfoEeDtEmv8_Ajpyht1dbAM50TL9KU_e4eQPD6CNsP7U4Q1bFHb8NpzLJ0glgncH_55nL-Zu4P7v1Tq110Bc4FlN19tN2sWvvA-3ONetjp6g_LWUBa |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwELVQqwpegHIpy9VIiLcs8SVx8ogQZWm7i4RaWvFixTcEXSWr3UTa8sQn8Av8Ah_CR_AleOJs0KIKEOItUuI4dmbGM-PjMwg9UsKkhgkeeW_CRdxxG-VK8Yg6nhqaZEK3VUvGk3R0xPdOkpOOUgjOwgR-iD7hBprR2mtQcEhIr2k5jTngsQjkRggdpjweendys92sA__oNe3TLcDSLto6jF2jOO3OCwdcz3mvWluqNmHWl-f5oetubbsu7V5BH1YjCnCU02FTq6H--AvZ438Z8lV0ufNe8dMgbtvogi2voa1Qz_LsOvoCe9yzuvJGVjcLPDur3oEpxSvEV4krh2uA5E6xXc6mgMHB7xe46GTEGgx5YVzgtnQg_vb1-6fPxjoA2ZeY4HkA9FoMh2Jwh7LHqqlxWdX-rg5kU7jQTW27jgDe5z8l0McubqCj3eeHz0ZRVwMi0pyxOEqY0Zk3wS4nxnFNDWGJK4gmnBphBRMZcdaHrcKLmhKJhnA21spZLqjKnWE30UZZlfYWwtaRzBWaZcD4r4wuXOrDqYSp3L9XOzpAyep3S90RpEOdjqn8GSjB9AMqjkuYfumnXy4H6EnfbhYoQv7Y4nErTf3jxfwUAHYikceTFzJ7c5y83d_jkg_Qw5W4Sa_2sJdTlLZqFkA1nRMv05T97hkA8fog2w9tJ8hq36M34zRmWTpArJW4v_xyOX419he3_6nVA3RxdDg-kAcvJ_t30CW4H0B3d9FGPW_sPe_e1ep-q7g_AL8jRHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LjtQwELVGMwKx4f9pvkZC7NIkthMnSwQ0zQzdIMQwIzZW_EOjaSVRdyL1sOIIXIErcBAOwUlwxUlQoxEgxC5SYid2qspV5edXCD2QXCeachY4b8IGzDITZFKygFiWaBKnXLVVS2bzZLrPdg_jwy007c_CeH6IIeEGmtHaa1DwStsNJSchAzhWBKmRiIwTFo6dN7nDErdmgnv0hgzZFiBp520Zxq5RmHTHhT2s57SuNlaqHZj09Wlu6KZX2y5LkwvoqB-QR6Mcj5tajtXHX7ge_8eIL6Lzne-KH3thu4S2THEZnfHVLE-uoC-ww13VpTOxqlnh6qT8AIYU93ivApcW1wDIXWCzrhaAwMFHK5x3EmI0hqwwznFbOBB_-_r902dtLEDsCxzhpYfzGgxHYnCHsceyqXFR1u6u8lRTOFdNbboXAbjPfYonj11dRfuTZ2-fTIOuAkSgGKVhEFOtUmeAbRZpyxTREY1tHqmIEc0NpzyNrHFBK3eCJnmsIJgNlbSGcSIzq-k1tF2UhbmBsLFRanNFU-D7l1rlNnHBVExl5vpVloxQ3P9toTp6dKjSsRA_wySYfsDEMQHTL9z0i_UIPRraVZ4g5I8tHrbCNDyeL48BXsdjcTB_LtJ3B_H7vV0m2Ajd76VNOKWHnZy8MGWzAqLpLHIiTejvngEIrwux3dCue1Ed3uiMOAlpmowQbQXuL79czF7N3MXNf2p1D519_XQiXr6Y791C5-C2R9zdRtv1sjF3nG9Xy7ut2v4AtZRDJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streptococcus+pyogenes+infection+of+tonsil+explants+is+associated+with+a+human+%CE%B2-defensin+1+response+from+control+but+not+recurrent+acute+tonsillitis+patients&rft.jtitle=Molecular+oral+microbiology&rft.au=Bell%2C+S&rft.au=Howard%2C+A&rft.au=Wilson%2C+J+A&rft.au=Abbot%2C+E+L&rft.date=2012-06-01&rft.issn=2041-1014&rft.eissn=2041-1014&rft.volume=27&rft.issue=3&rft.spage=160&rft_id=info:doi/10.1111%2Fj.2041-1014.2012.640.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1006&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1006&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1006&client=summon |