Streptococcus pyogenes infection of tonsil explants is associated with a human β-defensin 1 response from control but not recurrent acute tonsillitis patients

Summary Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linke...

Full description

Saved in:
Bibliographic Details
Published inMolecular oral microbiology Vol. 27; no. 3; pp. 160 - 171
Main Authors Bell, S., Howard, A., Wilson, J.A., Abbot, E.L., Smith, W.D., Townes, C.L., Hirst, B.H., Hall, J.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.06.2012
Subjects
Online AccessGet full text
ISSN2041-1006
2041-1014
2041-1014
DOI10.1111/j.2041-1014.2012.640.x

Cover

Abstract Summary Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP‐18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP‐18/LL‐37, human β‐defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes.
AbstractList Summary Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP‐18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP‐18/LL‐37, human β‐defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes.
Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP-18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP-18/LL-37, human β-defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes.
Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes , a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP‐18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes . The HaCaT data supported the reduced expression of hCAP ‐ 18/LL‐37, human β‐defensin 1 (HBD1; P  < 0.01) and HBD2 ( P  < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression ( P  < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes .
Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP-18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP-18/LL-37, human β-defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes.Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP-18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP-18/LL-37, human β-defensin 1 (HBD1;P < 0.01) and HBD2 (P < 0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P < 0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes.
Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial attachment and invasion. Recurrent acute tonsillitis (RAT), in which patients suffer repeated symptomatic tonsil infections, is linked to Streptococcus pyogenes, a group A streptococcus, and may reflect the impaired expression of such peptides. To address this, the defensin and hCAP-18 messenger RNA expression profiles of 54 tonsils excised from control and RAT patients undergoing tonsillectomy were quantified and compared. Marked variation in expression was observed between individuals from the two groups, but statistically no significant differences were identified, suggesting that at the time of surgery the tonsil epithelial HDP barrier was not compromised in RAT subjects. Surgical removal of the tonsils occurs in a quiescent phase of disease, and so to assess the effects of an active bacterial infection, HaCaT cells an in vitro model of the tonsil epithelium, and explants of patient tonsils maintained in vitro were challenged with S. pyogenes. The HaCaT data supported the reduced expression of hCAP-18/LL-37, human beta -defensin 1 (HBD1; P<0.01) and HBD2 (P<0.05), consistent with decreased protection of the epithelial barrier. The tonsil explant data, although not as definitive, showed similar trends apart from HBD1 expression, which in the control tonsils but not the RAT patient tonsils was characterized by increased expression (P<0.01). These data suggest that in vivo HBD1 may play a critical role in protecting the tonsil epithelia from S. pyogenes.
Author Hirst, B.H.
Hall, J.
Smith, W.D.
Bell, S.
Townes, C.L.
Abbot, E.L.
Wilson, J.A.
Howard, A.
Author_xml – sequence: 1
  givenname: S.
  surname: Bell
  fullname: Bell, S.
  organization:  Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
– sequence: 2
  givenname: A.
  surname: Howard
  fullname: Howard, A.
  organization:  Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
– sequence: 3
  givenname: J.A.
  surname: Wilson
  fullname: Wilson, J.A.
  organization:  Faculty of Medical Sciences, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
– sequence: 4
  givenname: E.L.
  surname: Abbot
  fullname: Abbot, E.L.
  organization:  Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
– sequence: 5
  givenname: W.D.
  surname: Smith
  fullname: Smith, W.D.
  organization:  Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
– sequence: 6
  givenname: C.L.
  surname: Townes
  fullname: Townes, C.L.
  organization:  Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
– sequence: 7
  givenname: B.H.
  surname: Hirst
  fullname: Hirst, B.H.
  organization:  Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
– sequence: 8
  givenname: J.
  surname: Hall
  fullname: Hall, J.
  organization:  Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22520386$$D View this record in MEDLINE/PubMed
BookMark eNqNUUtuFDEUbKEgEkKuEHnJpgf_unsGsUFRCJ-ELPhEYmO53c_EQ4_d2G5l5jTcgYNwJl4zwyzYEG9c8qt6JVc9Lg588FAUp4zOGJ5nyxmnkpWMMomI8Vkt6Wz9oDjaPx_sMa0Pi5OUlhSPYLJpmkfFIecVp2JeHxU_PuQIQw4mGDMmMmzCV_CQiPMWTHbBk2BJDj65nsB66LXPOExEpxSM0xk6cufyLdHkdlxpT379LDuwgHxPGImQBtQCsTGsiAk-x9CTdszEh4xTM8YIPhNtxgw7m95l3D_o7HCSnhQPre4TnOzu4-LTq_OPZ6_Ly-uLN2cvL0sjhaBlJToz79B5wTorDe-YqKxmhkneNdCIZs4scEabmtm2qQxDSE1rQTa8XdhOHBdPt3uHGL6PkLJauWSgxw9DGJOaQsUwec3vQaULhlFzgdTTHXVsV9CpIbqVjhv1N38k1FuCiSGlCHZPYVRNXaulmor846-mrhV2rdYofPGP0Lisp8Jy1K7_v_z5Vn7netjc01RdXV8hQHG5FbuUYb0X6_hN1Rh1pW7eX6j555vqy7u3UknxG21R1B0
CitedBy_id crossref_primary_10_1093_cid_cit359
crossref_primary_10_1080_10520295_2020_1752936
crossref_primary_10_1016_j_ijporl_2018_01_041
crossref_primary_10_1002_term_2590
crossref_primary_10_1189_jlb_4MR0617_227RR
crossref_primary_10_1093_jac_dkt128
crossref_primary_10_1128_spectrum_01609_24
crossref_primary_10_1111_2049_632X_12183
crossref_primary_10_1016_j_ijporl_2016_03_044
crossref_primary_10_1126_scitranslmed_aau3776
crossref_primary_10_1371_journal_pone_0152995
crossref_primary_10_17116_otorino201580365_70
crossref_primary_10_3390_biom13081239
crossref_primary_10_3389_fcimb_2018_00160
crossref_primary_10_1371_journal_pone_0117535
crossref_primary_10_1016_j_heliyon_2024_e32116
crossref_primary_10_1016_j_ijporl_2016_01_025
Cites_doi 10.1074/jbc.M607210200
10.1016/j.ijporl.2010.11.012
10.1111/j.0019-2805.2004.01837.x
10.1111/j.1462-5822.2007.00918.x
10.1128/IAI.00449-08
10.1017/S0022215107006184
10.1016/j.cellimm.2009.11.010
10.1034/j.1601-0825.2002.1o816.x
10.1093/infdis/175.2.392
10.1038/ni.1825
10.1111/j.1365-2567.2006.02399.x
10.1111/j.1462-5822.2008.01227.x
10.1902/jop.2005.76.8.1293
10.1016/0014-5793(95)00687-5
10.4049/jimmunol.180.11.7565
10.1038/nature09674
10.1007/3-540-29916-5_2
10.1016/j.ijporl.2005.07.025
10.1016/S0065-2164(07)00008-1
10.1128/JB.184.8.2181-2191.2002
10.1093/fampra/13.3.317
10.1016/j.bbrc.2009.07.046
10.1038/gene.2009.75
10.1016/j.febslet.2006.08.083
10.1016/j.mimet.2009.09.012
10.1007/s00405-005-1004-4
10.1128/IAI.70.6.3053-3060.2002
10.1099/00222615-39-3-165
10.1034/j.1398-9995.2003.00180.x
10.1177/0022034510364491
10.1016/j.molimm.2004.11.001
10.1128/IAI.73.11.7281-7289.2005
10.1007/3-540-29916-5_3
10.1007/s00405-009-1086-5
10.1111/j.1365-2567.2007.02615.x
10.1073/pnas.0503671102
10.1074/jbc.M805406200
10.1177/10454411970080020601
10.1016/j.biocel.2010.01.021
10.1074/jbc.M301995200
10.1016/j.ijmm.2009.08.011
ContentType Journal Article
Copyright 2012 John Wiley & Sons A/S
2012 John Wiley & Sons A/S.
Copyright_xml – notice: 2012 John Wiley & Sons A/S
– notice: 2012 John Wiley & Sons A/S.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QL
7T5
7T7
8FD
C1K
FR3
H94
P64
DOI 10.1111/j.2041-1014.2012.640.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1014
EndPage 171
ExternalDocumentID 22520386
10_1111_j_2041_1014_2012_640_x
MOM640
ark_67375_WNG_8VW5ZKJ4_4
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0400849
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
31~
33P
34H
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
5HH
5LA
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
ESTFP
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM.
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WBNRW
WIH
WIJ
WIK
WOHZO
WPGGZ
WXSBR
XG1
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QL
7T5
7T7
8FD
C1K
FR3
H94
P64
ID FETCH-LOGICAL-c4330-53dc8ddef91df4c2d135fa1c142d7e73781fe210761fb75c11070cbfe472b9fd3
IEDL.DBID DR2
ISSN 2041-1006
2041-1014
IngestDate Mon Sep 08 15:22:01 EDT 2025
Mon Sep 08 07:37:30 EDT 2025
Thu Apr 03 07:00:29 EDT 2025
Thu Apr 24 23:07:02 EDT 2025
Tue Jul 01 03:55:12 EDT 2025
Wed Jan 22 16:51:22 EST 2025
Tue Sep 09 05:32:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012 John Wiley & Sons A/S.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4330-53dc8ddef91df4c2d135fa1c142d7e73781fe210761fb75c11070cbfe472b9fd3
Notes ark:/67375/WNG-8VW5ZKJ4-4
ArticleID:MOM640
istex:1BF03BB9DB9CD275F3C9EFEA9FD660566AB085A5
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 22520386
PQID 1009131423
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1014100262
proquest_miscellaneous_1009131423
pubmed_primary_22520386
crossref_primary_10_1111_j_2041_1014_2012_640_x
crossref_citationtrail_10_1111_j_2041_1014_2012_640_x
wiley_primary_10_1111_j_2041_1014_2012_640_x_MOM640
istex_primary_ark_67375_WNG_8VW5ZKJ4_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06
June 2012
2012-06-00
2012-Jun
20120601
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Denmark
PublicationTitle Molecular oral microbiology
PublicationTitleAlternate Mol Oral Microbiol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Song, J.J., Hwang, K.S., Woo, J.S. et al. (2006) Expression of cathelicidin in recurrent throat infection. Int J Pediatr Otorhinolaryngol 70: 487-492.
Howard, A., Townes, C., Milona, P. et al. (2010) Expression and functional analyses of liver expressed antimicrobial peptide-2 (LEAP-2) variant forms in human tissues. Cell Immunol 261: 128-133.
Schroeder, B.O. and Wu, Z., Nuding, S. et al. (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469: 419-423.
Bowdish, D.M., Davidson, D.J., Hancock, R.E. (2006) Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 306: 27-66.
Little, P. and Williamson, I. (1996) Sore throat management in general practice. Fam Pract 13: 317-321.
Schaefer, A.S., Richter, G.M., Northnagel, M. et al. (2010) A 3′ UTR transition within DEFB1 is associated with chronic and aggressive periodontitis. Genes Immun 11: 45-54.
Reid, D., Morton, R., Salkeld, L., Bentley, J. (2011) Vitamin D and tonsil disease - preliminary observations. Int J Pediatr Otorhinolaryngol 75: 261-264.
Salzman, N.H., Hung, K., Haribhai, D. et al. (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11: 76-83.
Jenkinson, H.F. and Lamont, R.J. (1997) Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8: 175-200.
Devine, D.A. and Cosseau, C. (2008) Host defense peptides in the oral cavity. Adv Appl Microbiol 63: 281-322.
Carapetis, J.R., Steer, A.C., Mulholland, E.K., Weber, M. (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685-694.
Ji, S., Shin, J.E., Kim, Y.S., Oh, J.E., Min, B.M., Choi, Y. (2009) Toll-like receptor 2 and NALP2 mediate induction of human beta-defensins by Fusobacterium nucleatum in gingival epithelial cells. Infect Immun 77: 1044-1052.
Quinn, G.A. and Cole, A.M. (2007) Suppression of innate immunity by a nasal carriage strain of Staphylococcus aureus increases its colonization on nasal epithelium. Immunology 122: 80-89.
Barnett, T.C. and Scott, J.R. (2002) Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J Bacteriol 184: 2181-2191.
Frick, I.M., Akesson, P., Rasmussen, M., Schmidtchen, A., Bjork, L. (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278: 16561-16566.
Pazgier, M., Prahl, A., Hoover, D.M., Lubrowski, J. (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282: 1819-1829.
Lazarevic, V., Whiteson, K., Huse, S. et al. (2009) Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods 79: 266-271.
Claeys, S., de Belder, T., Holtappels, G. et al. (2003) Human beta-defensins and toll-like receptors in the upper airway. Allergy 58: 748-753.
Koslowski, M.J., Beisner, J., Stance, E.F., Wehkamp, J. (2010) Innate antimicrobial host defense in small intestinal Crohn's disease. Int J Med Microbiol 300: 34-40.
Schauber, J., Dorschner, R.A., Yamasaki, K. et al. (2006) Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 118: 509-519.
Zilbauer, M., Dorrell, N., Boughan, P.K. et al. (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73: 7281-7289.
Bensch, K.W., Raida, M., Magert, J.H., Schulze-Knappe, P., Forssman, W.G. (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368: 331-335.
Muotiala, A., Seppala, H., Huovinen, P., Vuopio-Varkila, J. (1997) Molecular comparison of group A streptococci of T1M1 serotype from invasive and noninvasive infections in Finland. J Infect Dis 175: 392-399.
Morrison, G., Kilanowski, F., Davidson, D., Dorin, J. (2002) Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 70: 3053-3060.
Agerberth, B. and Gudmundsson, G.H. (2006) Host antimicrobial defence peptides in human disease. Curr Top Microbiol Immunol 306: 67-90.
Fernie-King, B.A., Seilly, D.J., Lachmann, P.J. (2004) The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins. Immunology 111: 444-452.
Ball, S.L., Siou, G.P., Wilson, J.H., Howard, A., Hirst, B.H., Hall, J. (2007) Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils. J Laryngol Otol 121: 973-978.
Prado-Montes de Oca, E. (2010) Human beta-defensin 1: a restless warrior against allergies, infections and cancer. Int J Biochem Cell Biol 42: 800-804.
Ozturk, A., Famili, P., Vieira, A.R. et al. (2010) The antimicrobial peptide DEFB1 is associated with caries. J Dent Res 89: 631-636.
Di Nardo, A., Yamasaki, K., Dorschner, R.A., Lai, Y., Gallo, R.L. (2008) Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J Immunol 180: 7565-7573.
Wehkamp, J., Chu, H., Shen, B. et al. (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580: 5344-5350.
Abbot, E.L., Smith, W.D., Siou, G.P. et al. (2007) Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol 9: 1822-1833.
Chakraborty, K., Ghosh, S., Koley, H. et al. (2008) Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol 10: 2520-2537.
Race, P.R., Bentley, M.L., Melvin, J.A. et al. (2009) Crystal structure of Streptococcus pyogenes sortase A: implications for sortase mechanism. J Biol Chem 284: 6924-6933.
Joly, S., Organ, C.C., Johnson, G.K., McCray, P.B. Jr, Guthmiller, J.M. (2005) Correlation between beta-defensin expression and induction profiles in gingival keratinocytes. Mol Immunol 42: 1073-1084.
Lukomski, S., Hoe, N.P., Abdi, I. et al. (2000) Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect Immun 68: 535-542.
Schwaab, M., Gurr, A., Hansen, S. et al. (2010) Human beta-defensins in different states of diseases of the tonsilla palatina. Eur Arch Otorhinolaryngol 267: 821-830.
Colman, G., Tanna, A., Efstratiou, A., Gaworzewska, E.T. (1993) The serotypes of Streptococcus pyogenes present in Britain during 1980-1990 and their association with disease. J Med Microbiol 39: 165-178.
Townes, C.L., Michailidis, G., Hall, J. (2009) The interaction of the antimicrobial peptide cLEAP-2 and the bacterial membrane. Biochem Biophys Res Commun 387: 500-503.
Vankeerberghen, A., Nuytten, H., Dierickx, K., Quirynen, M., Cassimen, J.J., Cuppens, H. (2005) Differential induction of human beta-defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells. J Periodontol 76: 1293-1303.
Meyer, J.E., Beier, U.H., Gorogh, T., Schreiber, S., Beck, C., Mauve, S. (2006) Defensin and chemokine expression patterns in the palatine tonsil: a model of their local interaction. Eur Arch Otorhinolaryngol 263: 319-326.
2006; 70
2010; 11
2007; 282
2000; 68
2007; 121
1997; 175
2007; 122
2010; 267
2011; 75
2003; 58
2005; 42
2008; 10
2010; 261
1996; 13
2003; 278
2006; 118
1997; 8
2010; 89
2008; 180
2004; 111
2009; 77
2009; 79
2010; 42
2006; 306
1993; 39
2011; 469
2002; 184
2005; 5
2005; 73
2007; 9
2006; 580
2009; 387
1995; 368
300
2006; 263
2005; 76
2002; 70
2008; 63
2009; 284
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Koslowski M.J. (e_1_2_6_20_1); 300
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Salzman, N.H., Hung, K., Haribhai, D. et al. (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11: 76-83.
– reference: Abbot, E.L., Smith, W.D., Siou, G.P. et al. (2007) Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol 9: 1822-1833.
– reference: Schroeder, B.O. and Wu, Z., Nuding, S. et al. (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469: 419-423.
– reference: Quinn, G.A. and Cole, A.M. (2007) Suppression of innate immunity by a nasal carriage strain of Staphylococcus aureus increases its colonization on nasal epithelium. Immunology 122: 80-89.
– reference: Prado-Montes de Oca, E. (2010) Human beta-defensin 1: a restless warrior against allergies, infections and cancer. Int J Biochem Cell Biol 42: 800-804.
– reference: Bowdish, D.M., Davidson, D.J., Hancock, R.E. (2006) Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 306: 27-66.
– reference: Lazarevic, V., Whiteson, K., Huse, S. et al. (2009) Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods 79: 266-271.
– reference: Schwaab, M., Gurr, A., Hansen, S. et al. (2010) Human beta-defensins in different states of diseases of the tonsilla palatina. Eur Arch Otorhinolaryngol 267: 821-830.
– reference: Jenkinson, H.F. and Lamont, R.J. (1997) Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8: 175-200.
– reference: Little, P. and Williamson, I. (1996) Sore throat management in general practice. Fam Pract 13: 317-321.
– reference: Race, P.R., Bentley, M.L., Melvin, J.A. et al. (2009) Crystal structure of Streptococcus pyogenes sortase A: implications for sortase mechanism. J Biol Chem 284: 6924-6933.
– reference: Vankeerberghen, A., Nuytten, H., Dierickx, K., Quirynen, M., Cassimen, J.J., Cuppens, H. (2005) Differential induction of human beta-defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells. J Periodontol 76: 1293-1303.
– reference: Schaefer, A.S., Richter, G.M., Northnagel, M. et al. (2010) A 3′ UTR transition within DEFB1 is associated with chronic and aggressive periodontitis. Genes Immun 11: 45-54.
– reference: Schauber, J., Dorschner, R.A., Yamasaki, K. et al. (2006) Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 118: 509-519.
– reference: Colman, G., Tanna, A., Efstratiou, A., Gaworzewska, E.T. (1993) The serotypes of Streptococcus pyogenes present in Britain during 1980-1990 and their association with disease. J Med Microbiol 39: 165-178.
– reference: Carapetis, J.R., Steer, A.C., Mulholland, E.K., Weber, M. (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685-694.
– reference: Townes, C.L., Michailidis, G., Hall, J. (2009) The interaction of the antimicrobial peptide cLEAP-2 and the bacterial membrane. Biochem Biophys Res Commun 387: 500-503.
– reference: Frick, I.M., Akesson, P., Rasmussen, M., Schmidtchen, A., Bjork, L. (2003) SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278: 16561-16566.
– reference: Pazgier, M., Prahl, A., Hoover, D.M., Lubrowski, J. (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282: 1819-1829.
– reference: Claeys, S., de Belder, T., Holtappels, G. et al. (2003) Human beta-defensins and toll-like receptors in the upper airway. Allergy 58: 748-753.
– reference: Chakraborty, K., Ghosh, S., Koley, H. et al. (2008) Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol 10: 2520-2537.
– reference: Lukomski, S., Hoe, N.P., Abdi, I. et al. (2000) Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect Immun 68: 535-542.
– reference: Di Nardo, A., Yamasaki, K., Dorschner, R.A., Lai, Y., Gallo, R.L. (2008) Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J Immunol 180: 7565-7573.
– reference: Meyer, J.E., Beier, U.H., Gorogh, T., Schreiber, S., Beck, C., Mauve, S. (2006) Defensin and chemokine expression patterns in the palatine tonsil: a model of their local interaction. Eur Arch Otorhinolaryngol 263: 319-326.
– reference: Joly, S., Organ, C.C., Johnson, G.K., McCray, P.B. Jr, Guthmiller, J.M. (2005) Correlation between beta-defensin expression and induction profiles in gingival keratinocytes. Mol Immunol 42: 1073-1084.
– reference: Devine, D.A. and Cosseau, C. (2008) Host defense peptides in the oral cavity. Adv Appl Microbiol 63: 281-322.
– reference: Barnett, T.C. and Scott, J.R. (2002) Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J Bacteriol 184: 2181-2191.
– reference: Zilbauer, M., Dorrell, N., Boughan, P.K. et al. (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73: 7281-7289.
– reference: Agerberth, B. and Gudmundsson, G.H. (2006) Host antimicrobial defence peptides in human disease. Curr Top Microbiol Immunol 306: 67-90.
– reference: Reid, D., Morton, R., Salkeld, L., Bentley, J. (2011) Vitamin D and tonsil disease - preliminary observations. Int J Pediatr Otorhinolaryngol 75: 261-264.
– reference: Wehkamp, J., Chu, H., Shen, B. et al. (2006) Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 580: 5344-5350.
– reference: Ozturk, A., Famili, P., Vieira, A.R. et al. (2010) The antimicrobial peptide DEFB1 is associated with caries. J Dent Res 89: 631-636.
– reference: Ji, S., Shin, J.E., Kim, Y.S., Oh, J.E., Min, B.M., Choi, Y. (2009) Toll-like receptor 2 and NALP2 mediate induction of human beta-defensins by Fusobacterium nucleatum in gingival epithelial cells. Infect Immun 77: 1044-1052.
– reference: Fernie-King, B.A., Seilly, D.J., Lachmann, P.J. (2004) The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins. Immunology 111: 444-452.
– reference: Song, J.J., Hwang, K.S., Woo, J.S. et al. (2006) Expression of cathelicidin in recurrent throat infection. Int J Pediatr Otorhinolaryngol 70: 487-492.
– reference: Morrison, G., Kilanowski, F., Davidson, D., Dorin, J. (2002) Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 70: 3053-3060.
– reference: Koslowski, M.J., Beisner, J., Stance, E.F., Wehkamp, J. (2010) Innate antimicrobial host defense in small intestinal Crohn's disease. Int J Med Microbiol 300: 34-40.
– reference: Bensch, K.W., Raida, M., Magert, J.H., Schulze-Knappe, P., Forssman, W.G. (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368: 331-335.
– reference: Muotiala, A., Seppala, H., Huovinen, P., Vuopio-Varkila, J. (1997) Molecular comparison of group A streptococci of T1M1 serotype from invasive and noninvasive infections in Finland. J Infect Dis 175: 392-399.
– reference: Ball, S.L., Siou, G.P., Wilson, J.H., Howard, A., Hirst, B.H., Hall, J. (2007) Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils. J Laryngol Otol 121: 973-978.
– reference: Howard, A., Townes, C., Milona, P. et al. (2010) Expression and functional analyses of liver expressed antimicrobial peptide-2 (LEAP-2) variant forms in human tissues. Cell Immunol 261: 128-133.
– volume: 68
  start-page: 535
  year: 2000
  end-page: 542
  article-title: Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 significantly decreases mouse mucosal colonization
  publication-title: Infect Immun
– volume: 11
  start-page: 45
  year: 2010
  end-page: 54
  article-title: A 3′ UTR transition within DEFB1 is associated with chronic and aggressive periodontitis
  publication-title: Genes Immun
– volume: 63
  start-page: 281
  year: 2008
  end-page: 322
  article-title: Host defense peptides in the oral cavity
  publication-title: Adv Appl Microbiol
– volume: 387
  start-page: 500
  year: 2009
  end-page: 503
  article-title: The interaction of the antimicrobial peptide cLEAP‐2 and the bacterial membrane
  publication-title: Biochem Biophys Res Commun
– volume: 89
  start-page: 631
  year: 2010
  end-page: 636
  article-title: The antimicrobial peptide DEFB1 is associated with caries
  publication-title: J Dent Res
– volume: 10
  start-page: 2520
  year: 2008
  end-page: 2537
  article-title: Bacterial exotoxins downregulate cathelicidin (hCAP‐18/LL‐37) and human beta‐defensin 1 (HBD‐1) expression in the intestinal epithelial cells
  publication-title: Cell Microbiol
– volume: 122
  start-page: 80
  year: 2007
  end-page: 89
  article-title: Suppression of innate immunity by a nasal carriage strain of increases its colonization on nasal epithelium
  publication-title: Immunology
– volume: 300
  start-page: 34
  end-page: 40
  article-title: Innate antimicrobial host defense in small intestinal Crohn’s disease
  publication-title: Int J Med Microbiol
– volume: 175
  start-page: 392
  year: 1997
  end-page: 399
  article-title: Molecular comparison of group A streptococci of T1M1 serotype from invasive and noninvasive infections in Finland
  publication-title: J Infect Dis
– volume: 306
  start-page: 67
  year: 2006
  end-page: 90
  article-title: Host antimicrobial defence peptides in human disease
  publication-title: Curr Top Microbiol Immunol
– volume: 13
  start-page: 317
  year: 1996
  end-page: 321
  article-title: Sore throat management in general practice
  publication-title: Fam Pract
– volume: 75
  start-page: 261
  year: 2011
  end-page: 264
  article-title: Vitamin D and tonsil disease – preliminary observations
  publication-title: Int J Pediatr Otorhinolaryngol
– volume: 118
  start-page: 509
  year: 2006
  end-page: 519
  article-title: Control of the innate epithelial antimicrobial response is cell‐type specific and dependent on relevant microenvironmental stimuli
  publication-title: Immunology
– volume: 184
  start-page: 2181
  year: 2002
  end-page: 2191
  article-title: Differential recognition of surface proteins in by two sortase gene homologs
  publication-title: J Bacteriol
– volume: 284
  start-page: 6924
  year: 2009
  end-page: 6933
  article-title: Crystal structure of sortase A: implications for sortase mechanism
  publication-title: J Biol Chem
– volume: 278
  start-page: 16561
  year: 2003
  end-page: 16566
  article-title: SIC, a secreted protein of that inactivates antibacterial peptides
  publication-title: J Biol Chem
– volume: 368
  start-page: 331
  year: 1995
  end-page: 335
  article-title: hBD‐1: a novel beta‐defensin from human plasma
  publication-title: FEBS Lett
– volume: 77
  start-page: 1044
  year: 2009
  end-page: 1052
  article-title: Toll‐like receptor 2 and NALP2 mediate induction of human beta‐defensins by in gingival epithelial cells
  publication-title: Infect Immun
– volume: 42
  start-page: 1073
  year: 2005
  end-page: 1084
  article-title: Correlation between beta‐defensin expression and induction profiles in gingival keratinocytes
  publication-title: Mol Immunol
– volume: 11
  start-page: 76
  year: 2010
  end-page: 83
  article-title: Enteric defensins are essential regulators of intestinal microbial ecology
  publication-title: Nat Immunol
– volume: 263
  start-page: 319
  year: 2006
  end-page: 326
  article-title: Defensin and chemokine expression patterns in the palatine tonsil: a model of their local interaction
  publication-title: Eur Arch Otorhinolaryngol
– volume: 121
  start-page: 973
  year: 2007
  end-page: 978
  article-title: Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils
  publication-title: J Laryngol Otol
– volume: 70
  start-page: 3053
  year: 2002
  end-page: 3060
  article-title: Characterization of the mouse beta defensin 1, Defb1, mutant mouse model
  publication-title: Infect Immun
– volume: 267
  start-page: 821
  year: 2010
  end-page: 830
  article-title: Human beta‐defensins in different states of diseases of the tonsilla palatina
  publication-title: Eur Arch Otorhinolaryngol
– volume: 73
  start-page: 7281
  year: 2005
  end-page: 7289
  article-title: Intestinal innate immunity to results in induction of bactericidal human beta‐defensins 2 and 3
  publication-title: Infect Immun
– volume: 39
  start-page: 165
  year: 1993
  end-page: 178
  article-title: The serotypes of present in Britain during 1980–1990 and their association with disease
  publication-title: J Med Microbiol
– volume: 261
  start-page: 128
  year: 2010
  end-page: 133
  article-title: Expression and functional analyses of liver expressed antimicrobial peptide‐2 (LEAP‐2) variant forms in human tissues
  publication-title: Cell Immunol
– volume: 5
  start-page: 685
  year: 2005
  end-page: 694
  article-title: The global burden of group A streptococcal diseases
  publication-title: Lancet Infect Dis
– volume: 282
  start-page: 1819
  year: 2007
  end-page: 1829
  article-title: Studies of the biological properties of human beta‐defensin 1
  publication-title: J Biol Chem
– volume: 8
  start-page: 175
  year: 1997
  end-page: 200
  article-title: Streptococcal adhesion and colonization
  publication-title: Crit Rev Oral Biol Med
– volume: 42
  start-page: 800
  year: 2010
  end-page: 804
  article-title: Human beta‐defensin 1: a restless warrior against allergies, infections and cancer
  publication-title: Int J Biochem Cell Biol
– volume: 70
  start-page: 487
  year: 2006
  end-page: 492
  article-title: Expression of cathelicidin in recurrent throat infection
  publication-title: Int J Pediatr Otorhinolaryngol
– volume: 306
  start-page: 27
  year: 2006
  end-page: 66
  article-title: Immunomodulatory properties of defensins and cathelicidins
  publication-title: Curr Top Microbiol Immunol
– volume: 58
  start-page: 748
  year: 2003
  end-page: 753
  article-title: Human beta‐defensins and toll‐like receptors in the upper airway
  publication-title: Allergy
– volume: 469
  start-page: 419
  year: 2011
  end-page: 423
  article-title: Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta‐defensin 1
  publication-title: Nature
– volume: 111
  start-page: 444
  year: 2004
  end-page: 452
  article-title: The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins
  publication-title: Immunology
– volume: 9
  start-page: 1822
  year: 2007
  end-page: 1833
  article-title: Pili mediate specific adhesion of to human tonsil and skin
  publication-title: Cell Microbiol
– volume: 79
  start-page: 266
  year: 2009
  end-page: 271
  article-title: Metagenomic study of the oral microbiota by Illumina high‐throughput sequencing
  publication-title: J Microbiol Methods
– volume: 580
  start-page: 5344
  year: 2006
  end-page: 5350
  article-title: Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues
  publication-title: FEBS Lett
– volume: 180
  start-page: 7565
  year: 2008
  end-page: 7573
  article-title: Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin
  publication-title: J Immunol
– volume: 76
  start-page: 1293
  year: 2005
  end-page: 1303
  article-title: Differential induction of human beta‐defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells
  publication-title: J Periodontol
– ident: e_1_2_6_28_1
  doi: 10.1074/jbc.M607210200
– ident: e_1_2_6_32_1
  doi: 10.1016/j.ijporl.2010.11.012
– ident: e_1_2_6_14_1
  doi: 10.1111/j.0019-2805.2004.01837.x
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1462-5822.2007.00918.x
– ident: e_1_2_6_18_1
  doi: 10.1128/IAI.00449-08
– ident: e_1_2_6_4_1
  doi: 10.1017/S0022215107006184
– ident: e_1_2_6_16_1
  doi: 10.1016/j.cellimm.2009.11.010
– ident: e_1_2_6_8_1
  doi: 10.1034/j.1601-0825.2002.1o816.x
– ident: e_1_2_6_26_1
  doi: 10.1093/infdis/175.2.392
– ident: e_1_2_6_33_1
  doi: 10.1038/ni.1825
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1365-2567.2006.02399.x
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1462-5822.2008.01227.x
– ident: e_1_2_6_40_1
  doi: 10.1902/jop.2005.76.8.1293
– ident: e_1_2_6_6_1
  doi: 10.1016/0014-5793(95)00687-5
– ident: e_1_2_6_13_1
  doi: 10.4049/jimmunol.180.11.7565
– ident: e_1_2_6_36_1
  doi: 10.1038/nature09674
– ident: e_1_2_6_7_1
  doi: 10.1007/3-540-29916-5_2
– ident: e_1_2_6_38_1
  doi: 10.1016/j.ijporl.2005.07.025
– ident: e_1_2_6_12_1
  doi: 10.1016/S0065-2164(07)00008-1
– ident: e_1_2_6_5_1
  doi: 10.1128/JB.184.8.2181-2191.2002
– ident: e_1_2_6_22_1
  doi: 10.1093/fampra/13.3.317
– ident: e_1_2_6_39_1
  doi: 10.1016/j.bbrc.2009.07.046
– ident: e_1_2_6_34_1
  doi: 10.1038/gene.2009.75
– ident: e_1_2_6_41_1
  doi: 10.1016/j.febslet.2006.08.083
– ident: e_1_2_6_21_1
  doi: 10.1016/j.mimet.2009.09.012
– ident: e_1_2_6_24_1
  doi: 10.1007/s00405-005-1004-4
– ident: e_1_2_6_25_1
  doi: 10.1128/IAI.70.6.3053-3060.2002
– ident: e_1_2_6_11_1
  doi: 10.1099/00222615-39-3-165
– ident: e_1_2_6_10_1
  doi: 10.1034/j.1398-9995.2003.00180.x
– ident: e_1_2_6_27_1
  doi: 10.1177/0022034510364491
– ident: e_1_2_6_19_1
  doi: 10.1016/j.molimm.2004.11.001
– ident: e_1_2_6_42_1
  doi: 10.1128/IAI.73.11.7281-7289.2005
– ident: e_1_2_6_3_1
  doi: 10.1007/3-540-29916-5_3
– ident: e_1_2_6_37_1
  doi: 10.1007/s00405-009-1086-5
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1365-2567.2007.02615.x
– ident: e_1_2_6_23_1
  doi: 10.1073/pnas.0503671102
– ident: e_1_2_6_31_1
  doi: 10.1074/jbc.M805406200
– ident: e_1_2_6_17_1
  doi: 10.1177/10454411970080020601
– ident: e_1_2_6_29_1
  doi: 10.1016/j.biocel.2010.01.021
– ident: e_1_2_6_15_1
  doi: 10.1074/jbc.M301995200
– volume: 300
  start-page: 34
  ident: e_1_2_6_20_1
  article-title: Innate antimicrobial host defense in small intestinal Crohn’s disease
  publication-title: Int J Med Microbiol
  doi: 10.1016/j.ijmm.2009.08.011
SSID ssj0000314777
Score 2.0581903
Snippet Summary Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from...
Host defence peptides (HDP), including the defensins and hCAP‐18, function as part of the innate immune defences, protecting the host epithelia from microbial...
Host defence peptides (HDP), including the defensins and hCAP-18, function as part of the innate immune defences, protecting the host epithelia from microbial...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 160
SubjectTerms Animal models
Anti-Infective Agents - analysis
Antimicrobial Cationic Peptides - analysis
Bacterial Adhesion - immunology
beta-Defensins - analysis
Blood Proteins - analysis
Cell Line
Child
Child, Preschool
Cohort Studies
Data processing
Defensins
Epithelial Cells - immunology
Epithelial Cells - microbiology
Epithelium
Explants
Gene expression
host defence peptides
human β-defensin 1
Humans
Immunity, Innate - immunology
Palatine Tonsil - immunology
Recurrence
Recurrent infection
Statistical analysis
Streptococcal Infections - immunology
Streptococcus
Streptococcus pyogenes
Streptococcus pyogenes - immunology
Surgery
Tissue Culture Techniques
Tonsillectomy
Tonsillitis
Tonsillitis - immunology
Tonsillitis - microbiology
Title Streptococcus pyogenes infection of tonsil explants is associated with a human β-defensin 1 response from control but not recurrent acute tonsillitis patients
URI https://api.istex.fr/ark:/67375/WNG-8VW5ZKJ4-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.2041-1014.2012.640.x
https://www.ncbi.nlm.nih.gov/pubmed/22520386
https://www.proquest.com/docview/1009131423
https://www.proquest.com/docview/1014100262
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3datRAFB5KRfBG6_9alRHEu6yZn2SSS1HrUtkKYm3xZsj8ldIlWTYJbL3yEXwFX8EH8SF8EudkkshKURHvQpLJZCbnnDnn5JvvIPRYCZMaJnjkvQkXccdtlCvFI-p4amiSCd1VLZkfpLNDvn-cHG-h2bAXJvBDjAk30IzOXoOCF6reUHIac4BjEUiNEDpNeTwFb5KwFEj0X7ylY7IFONpFV4WxbxOn_W7hgOq56EkbC9UlmPP1RV7oplPbrUp719DpMJ4ARjmbto2a6o-_UD3-jwHvoKu964qfBVm7jrZseQNdDsUsz2-iL_CDe9lU3sLqtsbL8-oE7Cge4F4lrhxuAI-7wHa9XAAAB5_WuOgFxBoMSWFc4K5uIP729funz8Y6QNiXmOBVQPNaDDticA-xx6ptcFk1_qoOTFO40G1j-44A2-dfJXDH1rfQ4d7Ld89nUV8AItKcsThKmNGZt78uJ8ZxTQ1hiSuIJpwaYQUTGXHWx6zCy5kSiYZYNtbKWS6oyp1ht9F2WZX2LsLWkcwVmmVA96-MLlzqY6mEqdw_Vzs6QcnwtaXu2dGhSMdC_oySYPoBEsclTL_00y_XE_R0bLcM_CB_bPGkE6bx9mJ1Bug6kcijg1cye3-UfHi9zyWfoEeDtEmv8_Ajpyht1dbAM50TL9KU_e4eQPD6CNsP7U4Q1bFHb8NpzLJ0glgncH_55nL-Zu4P7v1Tq110Bc4FlN19tN2sWvvA-3ONetjp6g_LWUBa
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtQwELVQqwpegHIpy9VIiLcs8SVx8ogQZWm7i4RaWvFixTcEXSWr3UTa8sQn8Av8Ah_CR_AleOJs0KIKEOItUuI4dmbGM-PjMwg9UsKkhgkeeW_CRdxxG-VK8Yg6nhqaZEK3VUvGk3R0xPdOkpOOUgjOwgR-iD7hBprR2mtQcEhIr2k5jTngsQjkRggdpjweendys92sA__oNe3TLcDSLto6jF2jOO3OCwdcz3mvWluqNmHWl-f5oetubbsu7V5BH1YjCnCU02FTq6H--AvZ438Z8lV0ufNe8dMgbtvogi2voa1Qz_LsOvoCe9yzuvJGVjcLPDur3oEpxSvEV4krh2uA5E6xXc6mgMHB7xe46GTEGgx5YVzgtnQg_vb1-6fPxjoA2ZeY4HkA9FoMh2Jwh7LHqqlxWdX-rg5kU7jQTW27jgDe5z8l0McubqCj3eeHz0ZRVwMi0pyxOEqY0Zk3wS4nxnFNDWGJK4gmnBphBRMZcdaHrcKLmhKJhnA21spZLqjKnWE30UZZlfYWwtaRzBWaZcD4r4wuXOrDqYSp3L9XOzpAyep3S90RpEOdjqn8GSjB9AMqjkuYfumnXy4H6EnfbhYoQv7Y4nErTf3jxfwUAHYikceTFzJ7c5y83d_jkg_Qw5W4Sa_2sJdTlLZqFkA1nRMv05T97hkA8fog2w9tJ8hq36M34zRmWTpArJW4v_xyOX419he3_6nVA3RxdDg-kAcvJ_t30CW4H0B3d9FGPW_sPe_e1ep-q7g_AL8jRHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LjtQwELVGMwKx4f9pvkZC7NIkthMnSwQ0zQzdIMQwIzZW_EOjaSVRdyL1sOIIXIErcBAOwUlwxUlQoxEgxC5SYid2qspV5edXCD2QXCeachY4b8IGzDITZFKygFiWaBKnXLVVS2bzZLrPdg_jwy007c_CeH6IIeEGmtHaa1DwStsNJSchAzhWBKmRiIwTFo6dN7nDErdmgnv0hgzZFiBp520Zxq5RmHTHhT2s57SuNlaqHZj09Wlu6KZX2y5LkwvoqB-QR6Mcj5tajtXHX7ge_8eIL6Lzne-KH3thu4S2THEZnfHVLE-uoC-ww13VpTOxqlnh6qT8AIYU93ivApcW1wDIXWCzrhaAwMFHK5x3EmI0hqwwznFbOBB_-_r902dtLEDsCxzhpYfzGgxHYnCHsceyqXFR1u6u8lRTOFdNbboXAbjPfYonj11dRfuTZ2-fTIOuAkSgGKVhEFOtUmeAbRZpyxTREY1tHqmIEc0NpzyNrHFBK3eCJnmsIJgNlbSGcSIzq-k1tF2UhbmBsLFRanNFU-D7l1rlNnHBVExl5vpVloxQ3P9toTp6dKjSsRA_wySYfsDEMQHTL9z0i_UIPRraVZ4g5I8tHrbCNDyeL48BXsdjcTB_LtJ3B_H7vV0m2Ajd76VNOKWHnZy8MGWzAqLpLHIiTejvngEIrwux3dCue1Ed3uiMOAlpmowQbQXuL79czF7N3MXNf2p1D519_XQiXr6Y791C5-C2R9zdRtv1sjF3nG9Xy7ut2v4AtZRDJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streptococcus+pyogenes+infection+of+tonsil+explants+is+associated+with+a+human+%CE%B2-defensin+1+response+from+control+but+not+recurrent+acute+tonsillitis+patients&rft.jtitle=Molecular+oral+microbiology&rft.au=Bell%2C+S&rft.au=Howard%2C+A&rft.au=Wilson%2C+J+A&rft.au=Abbot%2C+E+L&rft.date=2012-06-01&rft.issn=2041-1014&rft.eissn=2041-1014&rft.volume=27&rft.issue=3&rft.spage=160&rft_id=info:doi/10.1111%2Fj.2041-1014.2012.640.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1006&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1006&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1006&client=summon