Auto-Calibrated Gaze Estimation Using Human Gaze Patterns
We present a novel method to auto-calibrate gaze estimators based on gaze patterns obtained from other viewers. Our method is based on the observation that the gaze patterns of humans are indicative of where a new viewer will look at. When a new viewer is looking at a stimulus, we first estimate a t...
        Saved in:
      
    
          | Published in | International journal of computer vision Vol. 124; no. 2; pp. 223 - 236 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.09.2017
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0920-5691 1573-1405 1573-1405  | 
| DOI | 10.1007/s11263-017-1014-x | 
Cover
| Abstract | We present a novel method to auto-calibrate gaze estimators based on gaze patterns obtained from other viewers. Our method is based on the observation that the gaze patterns of humans are indicative of where a new viewer will look at. When a new viewer is looking at a stimulus, we first estimate a topology of gaze points (initial gaze points). Next, these points are transformed so that they match the gaze patterns of other humans to find the correct gaze points. In a flexible uncalibrated setup with a web camera and no chin rest, the proposed method is tested on ten subjects and ten images. The method estimates the gaze points after looking at a stimulus for a few seconds with an average error below
4
.
5
∘
. Although the reported performance is lower than what could be achieved with dedicated hardware or calibrated setup, the proposed method still provides sufficient accuracy to trace the viewer attention. This is promising considering the fact that auto-calibration is done in a flexible setup , without the use of a chin rest, and based only on a few seconds of gaze initialization data. To the best of our knowledge, this is the first work to use human gaze patterns in order to auto-calibrate gaze estimators. | 
    
|---|---|
| AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We present a novel method to auto-calibrate gaze estimators based on gaze patterns obtained from other viewers. Our method is based on the observation that the gaze patterns of humans are indicative of where a new viewer will look at. When a new viewer is looking at a stimulus, we first estimate a topology of gaze points (initial gaze points). Next, these points are transformed so that they match the gaze patterns of other humans to find the correct gaze points. In a flexible uncalibrated setup with a web camera and no chin rest, the proposed method is tested on ten subjects and ten images. The method estimates the gaze points after looking at a stimulus for a few seconds with an average error below ... Although the reported performance is lower than what could be achieved with dedicated hardware or calibrated setup, the proposed method still provides sufficient accuracy to trace the viewer attention. This is promising considering the fact that auto-calibration is done in a flexible setup , without the use of a chin rest, and based only on a few seconds of gaze initialization data. To the best of our knowledge, this is the first work to use human gaze patterns in order to auto-calibrate gaze estimators. We present a novel method to auto-calibrate gaze estimators based on gaze patterns obtained from other viewers. Our method is based on the observation that the gaze patterns of humans are indicative of where a new viewer will look at. When a new viewer is looking at a stimulus, we first estimate a topology of gaze points (initial gaze points). Next, these points are transformed so that they match the gaze patterns of other humans to find the correct gaze points. In a flexible uncalibrated setup with a web camera and no chin rest, the proposed method is tested on ten subjects and ten images. The method estimates the gaze points after looking at a stimulus for a few seconds with an average error below 4 . 5 ∘ . Although the reported performance is lower than what could be achieved with dedicated hardware or calibrated setup, the proposed method still provides sufficient accuracy to trace the viewer attention. This is promising considering the fact that auto-calibration is done in a flexible setup , without the use of a chin rest, and based only on a few seconds of gaze initialization data. To the best of our knowledge, this is the first work to use human gaze patterns in order to auto-calibrate gaze estimators. We present a novel method to auto-calibrate gaze estimators based on gaze patterns obtained from other viewers. Our method is based on the observation that the gaze patterns of humans are indicative of where a new viewer will look at. When a new viewer is looking at a stimulus, we first estimate a topology of gaze points (initial gaze points). Next, these points are transformed so that they match the gaze patterns of other humans to find the correct gaze points. In a flexible uncalibrated setup with a web camera and no chin rest, the proposed method is tested on ten subjects and ten images. The method estimates the gaze points after looking at a stimulus for a few seconds with an average error below [Formula omitted]. Although the reported performance is lower than what could be achieved with dedicated hardware or calibrated setup, the proposed method still provides sufficient accuracy to trace the viewer attention. This is promising considering the fact that auto-calibration is done in a flexible setup, without the use of a chin rest, and based only on a few seconds of gaze initialization data. To the best of our knowledge, this is the first work to use human gaze patterns in order to auto-calibrate gaze estimators.  | 
    
| Audience | Academic | 
    
| Author | Valenti, Roberto Alnajar, Fares Gevers, Theo Ghebreab, Sennay  | 
    
| Author_xml | – sequence: 1 givenname: Fares surname: Alnajar fullname: Alnajar, Fares email: F.Alnajar@uva.nl organization: Informatics Institute, Faculty of Science, University of Amsterdam – sequence: 2 givenname: Theo surname: Gevers fullname: Gevers, Theo organization: Informatics Institute, Faculty of Science, University of Amsterdam – sequence: 3 givenname: Roberto surname: Valenti fullname: Valenti, Roberto organization: Informatics Institute, Faculty of Science, University of Amsterdam – sequence: 4 givenname: Sennay surname: Ghebreab fullname: Ghebreab, Sennay organization: Amsterdam University College  | 
    
| BookMark | eNqNkc1qGzEURkVJobabB-jO0FUXcq9-ZhQtjUmTQKAhidfiWtYYhbHGlTTEztNX7njRFBKKFgLpO9L5pDE5C11whHxhMGMA6ntijNeCAlOUAZN0_4GMWKUEZRKqMzICzYFWtWafyDilJwDgF1yMiJ73uaMLbP0qYnbr6RW-uOllyn6L2Xdhukw-bKbX_RbDsHeHObsY0mfyscE2ufPTPCHLH5ePi2t6-_PqZjG_pVYKnmkjhapWTgmpkct1w6CyqFbIteSS28Y6LRlwUBqF1rYSWLwaRKskCljXYkL4cG4fdnh4xrY1u1js4sEwMMfyZihvSnlzLG_2Bfo6QLvY_epdyuap62MonoZpXkF9wTWU1GxIbbB1xoemyxFtGWu39bY8cOPL-lxqraSq2dHl2yugZLLb5w32KZmbh_vXWTZkbexSiq75L231D2N9_vMPRcy375KnV0rllrBx8a_Cb0K_AYSyqM4 | 
    
| CitedBy_id | crossref_primary_10_1016_j_knosys_2021_107630 crossref_primary_10_3390_s23010381 crossref_primary_10_1109_TCDS_2021_3066465 crossref_primary_10_1109_TII_2023_3276322 crossref_primary_10_3390_s19010216 crossref_primary_10_1109_TII_2024_3413292 crossref_primary_10_3389_fpsyg_2024_1309047 crossref_primary_10_3390_s24041237 crossref_primary_10_1007_s11042_020_08638_7 crossref_primary_10_1109_ACCESS_2020_2999633  | 
    
| Cites_doi | 10.1109/TPAMI.2012.101 10.1109/ICCV.2013.24 10.1126/science.290.5500.2323 10.1145/1344471.1344531 10.1167/9.4.29 10.1109/CVPR.2011.5995675 10.1007/s11263-013-0620-5 10.1109/ACV.2002.1182170 10.1109/ICIP.2015.7351256 10.1109/CVPR.2010.5539984 10.1109/TPAMI.2011.251 10.1145/507072.507076 10.1016/j.imavis.2005.06.001 10.1088/0954-898X_14_3_302 10.1109/ICCV.2011.6126237 10.1109/TPAMI.2009.30 10.1109/TPAMI.2007.70773 10.1109/TSMC.1978.4309999 10.1109/ICCV.2009.5459462 10.1109/TBME.2005.863952 10.1007/s11263-005-4632-7 10.1109/CVPR.2014.235  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2017 COPYRIGHT 2017 Springer International Journal of Computer Vision is a copyright of Springer, 2017.  | 
    
| Copyright_xml | – notice: The Author(s) 2017 – notice: COPYRIGHT 2017 Springer – notice: International Journal of Computer Vision is a copyright of Springer, 2017.  | 
    
| DBID | C6C AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PYYUZ Q9U ADTOC UNPAY  | 
    
| DOI | 10.1007/s11263-017-1014-x | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection (via ProQuest) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate) | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Computer Science  | 
    
| EISSN | 1573-1405 | 
    
| EndPage | 236 | 
    
| ExternalDocumentID | 10.1007/s11263-017-1014-x A499747616 10_1007_s11263_017_1014_x  | 
    
| GrantInformation_xml | – fundername: University of Amsterdam | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c432t-f4375be7349a24df105ca7ba294242cfce94102079a399c53a823faac74a30d63 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 0920-5691 1573-1405  | 
    
| IngestDate | Sun Oct 26 04:02:43 EDT 2025 Sun Jul 13 04:07:07 EDT 2025 Mon Oct 20 16:31:00 EDT 2025 Thu Oct 16 14:45:46 EDT 2025 Thu Apr 24 23:07:26 EDT 2025 Wed Oct 01 05:08:41 EDT 2025 Fri Feb 21 02:26:39 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Eye gaze estimation Auto-calibration Calibration free  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c432t-f4375be7349a24df105ca7ba294242cfce94102079a399c53a823faac74a30d63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://doi.org/10.1007/s11263-017-1014-x | 
    
| PQID | 1925068290 | 
    
| PQPubID | 1456341 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s11263_017_1014_x proquest_journals_1925068290 gale_infotracacademiconefile_A499747616 gale_incontextgauss_ISR_A499747616 crossref_primary_10_1007_s11263_017_1014_x crossref_citationtrail_10_1007_s11263_017_1014_x springer_journals_10_1007_s11263_017_1014_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20170900 2017-9-00 20170901  | 
    
| PublicationDateYYYYMMDD | 2017-09-01 | 
    
| PublicationDate_xml | – month: 9 year: 2017 text: 20170900  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | International journal of computer vision | 
    
| PublicationTitleAbbrev | Int J Comput Vis | 
    
| PublicationYear | 2017 | 
    
| Publisher | Springer US Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V  | 
    
| References | RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience20002292323232610.1126/science.290.5500.2323 ValentiRGeversTAccurate eye center location through invariant isocentric patternsIEEE Transactions on Pattern Analysis and Machine Intelligence20123491785179810.1109/TPAMI.2011.251 Chen, J., & Ji, Q. (2011). Probabilistic gaze estimation without active personal calibration. In IEEE computer vision and pattern recognition (CVPR) (pp. 609–616). TamuraHMoriSYamawakiTTextural features corresponding to visual perceptionIEEE Systems, Man and Cybernetics1978846047310.1109/TSMC.1978.4309999 Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2879–2886). Alnajar, F., Gevers, T., Valenti, R., & Ghebreab, S. (2013). Calibration-free gaze estimation using human gaze patterns. In IEEE international conference on computer vision (ICCV) (pp. 137–144). Guestrin, E. D., & Eizenman, M. (2008). Remote point-of-gaze estimation requiring a single-point calibration for applications with infants. In Symposium on eye tracking research and applications (ETRA) (pp. 267–274). Judd, T., Ehinger, K., Durand, F., & Torralba, A. (2009). Learning to predict where humans look. In IEEE international conference on computer vision (ICCV) (pp. 2106–2113). Draelos, M., Qiu, Q., Bronstein, A., & Sapiro, G. (2015). Intel realsense= real low cost gaze. In International conference on image processing. GeusebroekJ-MSmeuldersAWMA six-stimulus theory for stochastic textureInternational Journal of Computer Vision20056271610.1007/s11263-005-4632-7 GuestrinEDEizenmanMGeneral theory of remote gaze estimation using the pupil center and corneal reflectionsIEEE Transactions on Biomedical Engineering20065361124113310.1109/TBME.2005.863952 TorralbaAOlivaAStatistics of natural image categoriesNetwork: Computation in Neural Systems20031439141210.1088/0954-898X_14_3_302 SmithKBaSOOdobezJGatica-PerezDTracking the visual focus of attention for a varying number of wandering peopleIEEE Transactions on Pattern Analysis and Machine Intelligence20083071212122910.1109/TPAMI.2007.70773 Hansen, D. W., Hansen, J. P., Nielsen, M., Johansen, A. S., & Stegmann, M. B. (2002). Eye typing using Markov and active appearance models. In Sixth IEEE workshop on applications of computer vision (pp. 132–136). Uijlings, J. R. R., Van De Sande, K. E. A., Gevers, T., & Smeulders, A. W. M. (2013). Selective search for object recognition. International journal of computer vision, 104, 154–171 WedelMPietersRA review of eye-tracking research in marketing. Review of marketing research2008New YorkEmerald Group Publishing Limited Lu, F., Sugano, Y., Okabe, T., & Sato, Y. (2011). Inferring human gaze from appearance via adaptive linear regression. In IEEE international conference on computer vision (ICCV) (pp. 153–160). Russell, B., Torralba, A., Murphy, K., & Freeman, W. (2005). Labelme: A database and web-based tool for image annotation. In MIT AI Lab Memo AIM-2005-025, MIT CSAIL. Scholte, H. S., Ghebreab, S., Waldorp, L., Smeulders, A. W. M., & Lamme, V. A. F. (2009). Brain responses strongly correlate with Weibull image statistics when processing natural images. Journal of Vision, 9, 1–9 Harel, J., Koch, C., & Perona, P. (2006). Graph-based visual saliency. In Advances in neural information processing systems (NIPS) (pp. 545–552). SuganoYMatsushitaYSatoYAppearance-based gaze estimation using visual saliencyIEEE Transactions on Pattern Analysis and Machine Intelligence201335232934110.1109/TPAMI.2012.101 Tan, K., Kriegman, D., & Ahuja, N. (2002). Appearance-based eye gaze estimation. In Applications of computer vision (pp. 191–195). Tobii Technology: http://www.tobii.com/. Sugano, Y., Matsushita, Y., & Sato, Y. (2010). Calibration-free gaze sensing using saliency maps. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2667–2674). Majaranta, P., & Rih, K.-J. (2002). Twenty years of eye typing: Systems and design issues. In Symposium on eye tracking research and applications (ETRA) (pp. 15–22). HansenDWJiQIn the eye of the beholder: A survey of models for eyes and gazeIEEE Transactions on Pattern Analysis and Machine Intelligence201032347850010.1109/TPAMI.2009.30 Xiong, C., Huang, L., & Liu, C. (2015). Remote gaze estimation based on 3D face structure and iris centers under natural light. Multimedia Tools and Applications, 75, 1–15. Sugano, Y., Matsushita, Y., & Sato, Y. (2014). Learning-by-synthesis for appearance-based 3D gaze estimation. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1821–1828). VillanuevaACabezaRPortaSEye tracking: Pupil orientation geometrical modelingImage and Vision Computing200624766367910.1016/j.imavis.2005.06.001 1014_CR7 1014_CR6 K Smith (1014_CR16) 2008; 30 1014_CR9 A Torralba (1014_CR23) 2003; 14 1014_CR15 1014_CR17 Y Sugano (1014_CR18) 2013; 35 1014_CR3 1014_CR2 1014_CR19 1014_CR1 A Villanueva (1014_CR26) 2006; 24 1014_CR10 H Tamura (1014_CR20) 1978; 8 1014_CR12 R Valenti (1014_CR25) 2012; 34 J-M Geusebroek (1014_CR4) 2005; 62 1014_CR11 1014_CR14 M Wedel (1014_CR27) 2008 ST Roweis (1014_CR13) 2000; 229 1014_CR29 1014_CR28 1014_CR21 1014_CR22 DW Hansen (1014_CR8) 2010; 32 1014_CR24 ED Guestrin (1014_CR5) 2006; 53  | 
    
| References_xml | – reference: Sugano, Y., Matsushita, Y., & Sato, Y. (2010). Calibration-free gaze sensing using saliency maps. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2667–2674). – reference: Scholte, H. S., Ghebreab, S., Waldorp, L., Smeulders, A. W. M., & Lamme, V. A. F. (2009). Brain responses strongly correlate with Weibull image statistics when processing natural images. Journal of Vision, 9, 1–9 – reference: SmithKBaSOOdobezJGatica-PerezDTracking the visual focus of attention for a varying number of wandering peopleIEEE Transactions on Pattern Analysis and Machine Intelligence20083071212122910.1109/TPAMI.2007.70773 – reference: RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience20002292323232610.1126/science.290.5500.2323 – reference: SuganoYMatsushitaYSatoYAppearance-based gaze estimation using visual saliencyIEEE Transactions on Pattern Analysis and Machine Intelligence201335232934110.1109/TPAMI.2012.101 – reference: Uijlings, J. R. R., Van De Sande, K. E. A., Gevers, T., & Smeulders, A. W. M. (2013). Selective search for object recognition. International journal of computer vision, 104, 154–171 – reference: ValentiRGeversTAccurate eye center location through invariant isocentric patternsIEEE Transactions on Pattern Analysis and Machine Intelligence20123491785179810.1109/TPAMI.2011.251 – reference: VillanuevaACabezaRPortaSEye tracking: Pupil orientation geometrical modelingImage and Vision Computing200624766367910.1016/j.imavis.2005.06.001 – reference: Guestrin, E. D., & Eizenman, M. (2008). Remote point-of-gaze estimation requiring a single-point calibration for applications with infants. In Symposium on eye tracking research and applications (ETRA) (pp. 267–274). – reference: Hansen, D. W., Hansen, J. P., Nielsen, M., Johansen, A. S., & Stegmann, M. B. (2002). Eye typing using Markov and active appearance models. In Sixth IEEE workshop on applications of computer vision (pp. 132–136). – reference: Tan, K., Kriegman, D., & Ahuja, N. (2002). Appearance-based eye gaze estimation. In Applications of computer vision (pp. 191–195). – reference: HansenDWJiQIn the eye of the beholder: A survey of models for eyes and gazeIEEE Transactions on Pattern Analysis and Machine Intelligence201032347850010.1109/TPAMI.2009.30 – reference: GeusebroekJ-MSmeuldersAWMA six-stimulus theory for stochastic textureInternational Journal of Computer Vision20056271610.1007/s11263-005-4632-7 – reference: GuestrinEDEizenmanMGeneral theory of remote gaze estimation using the pupil center and corneal reflectionsIEEE Transactions on Biomedical Engineering20065361124113310.1109/TBME.2005.863952 – reference: Lu, F., Sugano, Y., Okabe, T., & Sato, Y. (2011). Inferring human gaze from appearance via adaptive linear regression. In IEEE international conference on computer vision (ICCV) (pp. 153–160). – reference: Sugano, Y., Matsushita, Y., & Sato, Y. (2014). Learning-by-synthesis for appearance-based 3D gaze estimation. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1821–1828). – reference: Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2879–2886). – reference: Tobii Technology: http://www.tobii.com/. – reference: TamuraHMoriSYamawakiTTextural features corresponding to visual perceptionIEEE Systems, Man and Cybernetics1978846047310.1109/TSMC.1978.4309999 – reference: Chen, J., & Ji, Q. (2011). Probabilistic gaze estimation without active personal calibration. In IEEE computer vision and pattern recognition (CVPR) (pp. 609–616). – reference: Xiong, C., Huang, L., & Liu, C. (2015). Remote gaze estimation based on 3D face structure and iris centers under natural light. Multimedia Tools and Applications, 75, 1–15. – reference: Harel, J., Koch, C., & Perona, P. (2006). Graph-based visual saliency. In Advances in neural information processing systems (NIPS) (pp. 545–552). – reference: WedelMPietersRA review of eye-tracking research in marketing. Review of marketing research2008New YorkEmerald Group Publishing Limited – reference: Draelos, M., Qiu, Q., Bronstein, A., & Sapiro, G. (2015). Intel realsense= real low cost gaze. In International conference on image processing. – reference: Judd, T., Ehinger, K., Durand, F., & Torralba, A. (2009). Learning to predict where humans look. In IEEE international conference on computer vision (ICCV) (pp. 2106–2113). – reference: Majaranta, P., & Rih, K.-J. (2002). Twenty years of eye typing: Systems and design issues. In Symposium on eye tracking research and applications (ETRA) (pp. 15–22). – reference: TorralbaAOlivaAStatistics of natural image categoriesNetwork: Computation in Neural Systems20031439141210.1088/0954-898X_14_3_302 – reference: Alnajar, F., Gevers, T., Valenti, R., & Ghebreab, S. (2013). Calibration-free gaze estimation using human gaze patterns. In IEEE international conference on computer vision (ICCV) (pp. 137–144). – reference: Russell, B., Torralba, A., Murphy, K., & Freeman, W. (2005). Labelme: A database and web-based tool for image annotation. In MIT AI Lab Memo AIM-2005-025, MIT CSAIL. – volume: 35 start-page: 329 issue: 2 year: 2013 ident: 1014_CR18 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.101 – ident: 1014_CR14 – ident: 1014_CR1 doi: 10.1109/ICCV.2013.24 – volume: 229 start-page: 2323 year: 2000 ident: 1014_CR13 publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: 1014_CR6 doi: 10.1145/1344471.1344531 – ident: 1014_CR15 doi: 10.1167/9.4.29 – ident: 1014_CR2 doi: 10.1109/CVPR.2011.5995675 – ident: 1014_CR28 – ident: 1014_CR24 doi: 10.1007/s11263-013-0620-5 – ident: 1014_CR7 doi: 10.1109/ACV.2002.1182170 – ident: 1014_CR3 doi: 10.1109/ICIP.2015.7351256 – ident: 1014_CR17 doi: 10.1109/CVPR.2010.5539984 – ident: 1014_CR22 – volume: 34 start-page: 1785 issue: 9 year: 2012 ident: 1014_CR25 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.251 – ident: 1014_CR12 doi: 10.1145/507072.507076 – volume: 24 start-page: 663 issue: 7 year: 2006 ident: 1014_CR26 publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2005.06.001 – volume: 14 start-page: 391 year: 2003 ident: 1014_CR23 publication-title: Network: Computation in Neural Systems doi: 10.1088/0954-898X_14_3_302 – ident: 1014_CR11 doi: 10.1109/ICCV.2011.6126237 – volume: 32 start-page: 478 issue: 3 year: 2010 ident: 1014_CR8 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2009.30 – volume: 30 start-page: 1212 issue: 7 year: 2008 ident: 1014_CR16 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.70773 – volume: 8 start-page: 460 year: 1978 ident: 1014_CR20 publication-title: IEEE Systems, Man and Cybernetics doi: 10.1109/TSMC.1978.4309999 – volume-title: A review of eye-tracking research in marketing. Review of marketing research year: 2008 ident: 1014_CR27 – ident: 1014_CR9 – ident: 1014_CR10 doi: 10.1109/ICCV.2009.5459462 – ident: 1014_CR29 – ident: 1014_CR21 – volume: 53 start-page: 1124 issue: 6 year: 2006 ident: 1014_CR5 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2005.863952 – volume: 62 start-page: 7 year: 2005 ident: 1014_CR4 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-005-4632-7 – ident: 1014_CR19 doi: 10.1109/CVPR.2014.235  | 
    
| SSID | ssj0002823 | 
    
| Score | 2.3139343 | 
    
| Snippet | We present a novel method to auto-calibrate gaze estimators based on gaze patterns obtained from other viewers. Our method is based on the observation that the... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We present a novel method to auto-calibrate gaze estimators based on gaze patterns...  | 
    
| SourceID | unpaywall proquest gale crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 223 | 
    
| SubjectTerms | Artificial Intelligence Calibration Chin Computer Imaging Computer Science Estimators Image Processing and Computer Vision Image processing systems Pattern Recognition Pattern Recognition and Graphics Topology Vision  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1RT9swED5B-wA8wDaYVihTNCFNAlmkiROTh2kqUys2iaoqQ-LNsp2ElyotpBXl33OX2G2ZBHuNHcXxnc-ffXffAZwQxBWB4cw3ImM8NRdM47bHjIh1B0WuE0P3HdeD-OqW_7mL7jZg4HJhKKzS2cTKUKcTQ3fk54hEIj8mt9_P6QOjqlHkXXUlNJQtrZD-qCjGNqEZEDNWA5qXvcFwtLTNeMCoi8vjoSmKk47zc1bJdJ2AfJpotal-LVu82qn-tddrjtMd2JoXU_X8pMbjtb2p_wF2Laj0urUWfISNrPgEexZgenb5lvjI1XBwz_Yh6c5nE0YZWppII1KPon-8Hi78OqfRq2IKvOquv24bVoycRXkAt_3e319XzJZTYIaHwYzlPBSRzkTIExXwNEdkZZTQKkg47tMmN1nCEW74IlEoQBOFCicrV8oIrkI_jcPP0CgmRfYFvMCYKIsErjAleKpCjThJC8ISXBt8oQW-mzppLNc4lbwYyxVLMs22xNmmIDMuFy04Xb4yrYk23uv8jeQhicCioAiZezUvS_n7ZiS7eITDI1LciVvw3XbKJ_hxHFedcIC_QJxXr3q2nVylXcKlXClcC86crNea3x7b2VId_v8nh-9_-gi2A9LIKqitDY3Z4zw7RhQ001-tar8AZx_-3Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-V8jDxAGwDUQRTNE2aNOSSxnZMHivUCiYNoW2V4MmynYQHqrQiifj467nLByuVAKG9xufEH-fzz7m7nwG-EcRVgRPMdyphInZHzOK2x5wK7QCn3EaO_nf8OgtPJuLnhbzowKjNhami3VuXZJ3TQCxNWXE4j9MFr35OqS8UCaQY3TbL7vpYvgKroURI3oXVydn58LLi2cPjkQyjmjdVcYYHCtl6N6sUuqX3PNuflq30grt0DT6U2dzc35rpdGFHGm_UkSN5RWRIgSjX_bKwffewRPP4353dhPUGs3rDWsk-QifJPsFGg1-9xjrk-Ki9IqJ99hmiYVnMGCWAWeKkiD0KLvJGaFfqlEmvClnwKldCXXZeEX5m-RZMxqO_xyesua2BOcGDgqWCK2kTxUVkAhGnCNycUdYEkUAY4FKXRALRjK8ig_rhJDdHAU-NcUoY7sch34ZuNsuSHfAC52QiFS5go0RsuEUYZhVBFWEdVuiB386Rdg2VOd2oMdX_SJhpxDSOGMWwCX3Xgx9PVeY1j8drwl9p4jXxY2QUgHNlyjzXp39-6yGeEPEEFg7CHnxvhNIZfhzbVeczYBeIUuuZ5F6rQLqxELlGZC39kNzYPThodWCh-OW2HTzp3ds92X2X9B50i5sy2UeYVdgvzSJ6BLiPHJk priority: 102 providerName: Unpaywall  | 
    
| Title | Auto-Calibrated Gaze Estimation Using Human Gaze Patterns | 
    
| URI | https://link.springer.com/article/10.1007/s11263-017-1014-x https://www.proquest.com/docview/1925068290 https://link.springer.com/content/pdf/10.1007%2Fs11263-017-1014-x.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 124 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-1405 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-1405 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: PROQUEST customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1405 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1405 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002823 issn: 1573-1405 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54eVAfvIvzMooIghLs2rSxj1U2bziGOtCnkKStL6MbdkP9957Ty5ziBV9ayKVNcpKcLzk3gH2CuMIxnNlGxIxH5oRpZHvMCF83kOQ6MHTfcdP2L7r86sF7KJ1Fky3MF_n9cUYmLqTxIxhFlWUIF2c9SiK5rH823nTx5FBEjcfTkOcHjUqA-d0nPrGgrxvxhER0AeZG6UC9vaheb4LptJZhsUSLVliQdwWm4nQVlkrkaJXrMsOkKjhDlbYGQTga9hmZXmnyBhFZpNZjNXFFF8aKVq4sYOWX-EVeJ3e1mWbr0G01788uWBkngRnuOkOWcFd4OhYuD5TDowQhk1FCKyfgyIBNYuKAI46wRaCQMsZzFQ5WopQRXLl25LsbMJP203gTLMcYL_YELh0leKRcjQBICwIJXBusUAO7GjppSifiFMuiJz_cH9NoSxxt0h7j8rUGh-Mqg8KDxm-F94gekjxTpKT68qRGWSYv725liGczPPv4Db8GB2WhpI8_x3YVlgTYBXJm9ankTkVXWa7NTCKm9WyfBMg1OKpoPZH9c9uOxtPh755s_evb2zDv0ATNldd2YGb4PIp3Ee0MdR2mT1rndZgNzx-vm_g-bbY7t_V89uOz64SY1m13wsd3qdz31A | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcEThQDm0pQ91C20j1KpSkdWs48TkgKptu2iXxwpRkLi5tpNwWWUXsivg5_i2ziT2slQqnLj6Ecee8Tw8L4BPJOJKbgULrcyZyOwWM8j2mJWJaSPITWrpveNgkPROxO5pfLoANz4WhtwqPU2sCXU2svRG_g0lkThMyOz3fXzOqGoUWVd9CQ3tSitk23WKMRfYsZdfX6IKV233fyG8P3O-0z3-2WOuygCzIuITVohIxiaXkUg1F1mBAofV0mieCmRftrB5KpALhzLVuC8bR3qLR4XWVgodhVkS4XefwJLA-aj8Lf3oDg6PZrwAFZqmmD0qaXGStr1dtQ7ea3OyoSKXoHq57OoOZ_yXP8wZaldgeVqO9fWlHg7neOHOC3jmhNig02DdKizk5Ut47gTawJGLCpt8zQjf9grSznQyYhQRZihJRRaQt1HQRULTxFAGtQ9DUNsWmr7DOgNoWb2Gk0c52DewWI7K_C0E3No4jyXeaC1FpiODcpmRJLsIY3FCC0J_dMq63OZUYmOobrMy02krPG1yahPqqgVfZ1PGTWKP-wZvEDwUJcwoySPnTE-rSvV_H6kOqoyokiXtpAVf3KBihIvjfzUBDrgFyrF1Z-S6h6tyJKNStwjegk0P67nu___b5gwdHt7Ju_uX_gjLveODfbXfH-ytwVNO2Fk71K3D4uRimr9HCWxiPjg0D-DPY9-sv5RKOyg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8FSKBOyBwQZatw4ixIS0ylrqOPHygFDFVlYG0wRM6puxnWQvVdotrdb9tf067pK465AYT3v1Rxz7zvfh-wJ4TyKu5FYw38qUicTuM4Nsj1kZmS6C3MSW3ju-n0RHZ-LrMBw24MbFwpBbpaOJJaFOxpbeyPdQEgn9iMx-e1ntFnF60P80uWBUQYosra6cRoUix-n1FapvxcfBAcJ6h_P-4a_PR6yuMMCsCPiUZSKQoUllIGLNRZKhsGG1NJrHAlmXzWwaC-TAvow17smGgd7nQaa1lUIHfhIF-N1H8FhSFneKUu9_WXABVGWqMvaonoVR3HUW1TJsr8vJeor8gSrlsvkdnvg3Z1gy0a7A01k-0ddXejRa4oL9F_C8Fl-9XoVvL6GR5muwWouyXk0oCmxy1SJc2zrEvdl0zCgWzFB6isQjPyPvEElMFT3pld4LXmlVqPpOy9yfefEKzh7kWF9DMx_n6QZ43NowDSXeZS1FogODEpmRJLUIY3FCC3x3dMrWWc2puMZI3eZjptNWeNrkzibUvAW7iymTKqXHfYPfETwUpcrICenO9awo1ODnD9VDZRGVsagbteBDPSgb4-L4X1VoA26BsmvdGdl2cFU1sSjULWq3oONgvdT973_rLNDh_zvZvH_pt_AE75P6Njg53oJnnJCz9KRrQ3N6OUu3UfSamjcljnvw-6Ev1R_XJDjC | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-V8jDxAGwDUQRTNE2aNOSSxnZMHivUCiYNoW2V4MmynYQHqrQiifj467nLByuVAKG9xufEH-fzz7m7nwG-EcRVgRPMdyphInZHzOK2x5wK7QCn3EaO_nf8OgtPJuLnhbzowKjNhami3VuXZJ3TQCxNWXE4j9MFr35OqS8UCaQY3TbL7vpYvgKroURI3oXVydn58LLi2cPjkQyjmjdVcYYHCtl6N6sUuqX3PNuflq30grt0DT6U2dzc35rpdGFHGm_UkSN5RWRIgSjX_bKwffewRPP4353dhPUGs3rDWsk-QifJPsFGg1-9xjrk-Ki9IqJ99hmiYVnMGCWAWeKkiD0KLvJGaFfqlEmvClnwKldCXXZeEX5m-RZMxqO_xyesua2BOcGDgqWCK2kTxUVkAhGnCNycUdYEkUAY4FKXRALRjK8ig_rhJDdHAU-NcUoY7sch34ZuNsuSHfAC52QiFS5go0RsuEUYZhVBFWEdVuiB386Rdg2VOd2oMdX_SJhpxDSOGMWwCX3Xgx9PVeY1j8drwl9p4jXxY2QUgHNlyjzXp39-6yGeEPEEFg7CHnxvhNIZfhzbVeczYBeIUuuZ5F6rQLqxELlGZC39kNzYPThodWCh-OW2HTzp3ds92X2X9B50i5sy2UeYVdgvzSJ6BLiPHJk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-Calibrated+Gaze+Estimation+Using+Human+Gaze+Patterns&rft.jtitle=International+journal+of+computer+vision&rft.au=Alnajar%2C+Fares&rft.au=Gevers%2C+Theo&rft.au=Valenti%2C+Roberto&rft.au=Ghebreab%2C+Sennay&rft.date=2017-09-01&rft.pub=Springer&rft.issn=0920-5691&rft.volume=124&rft.issue=2&rft.spage=223&rft_id=info:doi/10.1007%2Fs11263-017-1014-x&rft.externalDBID=ISR&rft.externalDocID=A499747616 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |