A Novel You Only Listen Once (YOLO) Deep Learning Model for Automatic Prominent Bowel Sounds Detection: Feasibility Study in Healthy Subjects

Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inacc...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 15; p. 4735
Main Authors Kalahasty, Rohan, Yerrapragada, Gayathri, Lee, Jieun, Gopalakrishnan, Keerthy, Kaur, Avneet, Muddaloor, Pratyusha, Sood, Divyanshi, Parikh, Charmy, Gohri, Jay, Panjwani, Gianeshwaree Alias Rachna, Asadimanesh, Naghmeh, Ansari, Rabiah Aslam, Rapolu, Swetha, Elangovan, Poonguzhali, Karuppiah, Shiva Sankari, Dasari, Vijaya M., Helgeson, Scott A., Akshintala, Venkata S., Arunachalam, Shivaram P.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.07.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25154735

Cover

Abstract Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO® stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software®. Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model’s capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed.
AbstractList Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO® stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software®. Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model’s capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed.
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software . Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model's capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed.
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO® stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software®. Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model's capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed.Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO® stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software®. Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model's capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed.
Author Gopalakrishnan, Keerthy
Dasari, Vijaya M.
Elangovan, Poonguzhali
Gohri, Jay
Asadimanesh, Naghmeh
Yerrapragada, Gayathri
Parikh, Charmy
Lee, Jieun
Kalahasty, Rohan
Muddaloor, Pratyusha
Ansari, Rabiah Aslam
Panjwani, Gianeshwaree Alias Rachna
Sood, Divyanshi
Kaur, Avneet
Helgeson, Scott A.
Rapolu, Swetha
Akshintala, Venkata S.
Arunachalam, Shivaram P.
Karuppiah, Shiva Sankari
AuthorAffiliation 3 Department of Internal Medicine, MedStar Union Memorial Hospital, Baltimore, MD 21218, USA
8 Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
7 North Texas Gastroenterology, Denton, TX 76201, USA
5 Department of Internal Medicine, UCHealth Parkview Medical Center, Pueblo, CO 81003, USA
2 Department of Internal Medicine, Wright Medical Center, Scranton, PA 18503, USA
1 Digital Engineering & Artificial Intelligence Laboratory (DEAL), Mayo Clinic, Jacksonville, FL 32224, USA jay.gohri26@gmail.com (J.G.); rachnakukreja7@gmail.com (G.A.R.P.); helgeson.scott@mayo.edu (S.A.H.)
6 Department of Internal Medicine, Mercy Catholic Medical Center, Darby, PA 19023, USA; charmyparikh18@gmail.com
10 Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
4 Department of Internal Medicine, Lower Bucks Hospital, Bristol, PA 19007, USA
9 Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Jackson
AuthorAffiliation_xml – name: 1 Digital Engineering & Artificial Intelligence Laboratory (DEAL), Mayo Clinic, Jacksonville, FL 32224, USA jay.gohri26@gmail.com (J.G.); rachnakukreja7@gmail.com (G.A.R.P.); helgeson.scott@mayo.edu (S.A.H.)
– name: 4 Department of Internal Medicine, Lower Bucks Hospital, Bristol, PA 19007, USA
– name: 6 Department of Internal Medicine, Mercy Catholic Medical Center, Darby, PA 19023, USA; charmyparikh18@gmail.com
– name: 3 Department of Internal Medicine, MedStar Union Memorial Hospital, Baltimore, MD 21218, USA
– name: 8 Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
– name: 2 Department of Internal Medicine, Wright Medical Center, Scranton, PA 18503, USA
– name: 5 Department of Internal Medicine, UCHealth Parkview Medical Center, Pueblo, CO 81003, USA
– name: 7 North Texas Gastroenterology, Denton, TX 76201, USA
– name: 9 Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
– name: 10 Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
Author_xml – sequence: 1
  givenname: Rohan
  surname: Kalahasty
  fullname: Kalahasty, Rohan
– sequence: 2
  givenname: Gayathri
  surname: Yerrapragada
  fullname: Yerrapragada, Gayathri
– sequence: 3
  givenname: Jieun
  surname: Lee
  fullname: Lee, Jieun
– sequence: 4
  givenname: Keerthy
  surname: Gopalakrishnan
  fullname: Gopalakrishnan, Keerthy
– sequence: 5
  givenname: Avneet
  surname: Kaur
  fullname: Kaur, Avneet
– sequence: 6
  givenname: Pratyusha
  surname: Muddaloor
  fullname: Muddaloor, Pratyusha
– sequence: 7
  givenname: Divyanshi
  surname: Sood
  fullname: Sood, Divyanshi
– sequence: 8
  givenname: Charmy
  surname: Parikh
  fullname: Parikh, Charmy
– sequence: 9
  givenname: Jay
  orcidid: 0009-0007-8585-8143
  surname: Gohri
  fullname: Gohri, Jay
– sequence: 10
  givenname: Gianeshwaree Alias Rachna
  orcidid: 0000-0001-6631-2988
  surname: Panjwani
  fullname: Panjwani, Gianeshwaree Alias Rachna
– sequence: 11
  givenname: Naghmeh
  surname: Asadimanesh
  fullname: Asadimanesh, Naghmeh
– sequence: 12
  givenname: Rabiah Aslam
  surname: Ansari
  fullname: Ansari, Rabiah Aslam
– sequence: 13
  givenname: Swetha
  surname: Rapolu
  fullname: Rapolu, Swetha
– sequence: 14
  givenname: Poonguzhali
  surname: Elangovan
  fullname: Elangovan, Poonguzhali
– sequence: 15
  givenname: Shiva Sankari
  surname: Karuppiah
  fullname: Karuppiah, Shiva Sankari
– sequence: 16
  givenname: Vijaya M.
  surname: Dasari
  fullname: Dasari, Vijaya M.
– sequence: 17
  givenname: Scott A.
  orcidid: 0000-0001-7590-2293
  surname: Helgeson
  fullname: Helgeson, Scott A.
– sequence: 18
  givenname: Venkata S.
  surname: Akshintala
  fullname: Akshintala, Venkata S.
– sequence: 19
  givenname: Shivaram P.
  orcidid: 0000-0003-3251-5415
  surname: Arunachalam
  fullname: Arunachalam, Shivaram P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40807899$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vEzEQhleoiH7AgT-ALHFpkQJef-yue0GhUFopEKTCoSfLa8-2jhw72N5W-RH8Z0xTopYD8sGjmcev3pnxfrXjg4eqelnjt5QK_C4RXnPWUv6k2qsZYZOOELzzIN6t9lNaYEwopd2zapfhDredEHvVryn6Gm7Aocsworl3azSzKYMvsQZ0eDmfzY_QR4AVmoGK3vor9CWYwg8houmYw1Jlq9G3GJbWg8_oQ7gt1YswepPKwww62-CP0SmoZHvrbF6jizyaNbIenYFy-bokxn5RwPS8ejool-DF_X1Q_Tj99P3kbDKbfz4_mc4mmlGSJ0A7xYTmmDaN0S2DngnDFeMDtFybdgBVC1UPvGl7rTtqeNv1fBDEcNw1xNCD6nyja4JayFW0SxXXMigr7xIhXkkVS18OpMJGG9W0jeoNw4p1lBACrWn00GAAWrTebLRGv1LrW-XcVrDG8s9-5HY_BX6_gVdjvwSjy8Sico8cPK54ey2vwo2sCWWCNKIoHN4rxPBzhJTl0iYNzikPYUySEioYJrXoCvr6H3QRxujLYO8o3PFyCvXqoaWtl79_pABHG0DHkFKE4T_9_QamVstt
Cites_doi 10.1023/A:1010651602095
10.1186/s12938-021-00969-2
10.1056/NEJM184906270402101
10.1152/ajplegacy.1905.14.4.339
10.1109/JBHI.2022.3151927
10.1055/s-0042-108434
10.1038/nrgastro.2018.7
10.1016/j.jsurg.2014.02.003
10.3390/s21227602
10.1053/j.gastro.2010.10.015
10.3748/wjg.v18.i33.4585
10.1016/S0002-9610(01)00589-X
10.1038/s41575-018-0030-9
10.12968/bjon.2009.18.18.44555
10.1109/EHB47216.2019.8969901
10.4077/CJP.2010.AMK055
10.1109/LSP.2003.817171
10.1007/s10620-010-1485-x
10.1134/S036211970601018X
10.1016/j.gtc.2021.12.003
10.1053/j.gastro.2021.10.017
10.1109/BIOCAS.2018.8584723
10.1016/j.compbiomed.2014.05.013
10.1159/000319372
10.1055/s-0038-1677003
10.1055/s-0043-109430
10.1023/A:1018859110022
10.1088/2057-1976/2/4/045012
10.3390/s23042302
10.4253/wjge.v10.i10.239
10.1186/s13643-018-0789-3
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s25154735
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_a0dcda676abd40a483222e7d6cf60ee3
10.3390/s25154735
PMC12349269
40807899
10_3390_s25154735
Genre Journal Article
GrantInformation_xml – fundername: Mayo Clinic, Office of Digital Innovation
  grantid: NA
– fundername: Mayo Clinic Office of Digital Innovation
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c432t-e38a49c50366dc74eb49d5a45fe75cd7fea19a1f567bcc83d578b5f92d50862d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:45:02 EDT 2025
Sun Oct 26 04:01:10 EDT 2025
Tue Sep 30 17:02:54 EDT 2025
Thu Oct 02 21:51:37 EDT 2025
Tue Oct 07 07:25:27 EDT 2025
Thu Sep 04 05:03:06 EDT 2025
Thu Oct 16 04:42:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords CNN
Mel-frequency Cepstral Coefficients (MFCC)
bowel sounds
You Only Listen Once (YOLO)
phonoenterogram (PEG)
artificial intelligence
GI diseases
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-e38a49c50366dc74eb49d5a45fe75cd7fea19a1f567bcc83d578b5f92d50862d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-6631-2988
0000-0003-3251-5415
0009-0007-8585-8143
0000-0001-7590-2293
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25154735
PMID 40807899
PQID 3239085858
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_a0dcda676abd40a483222e7d6cf60ee3
unpaywall_primary_10_3390_s25154735
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12349269
proquest_miscellaneous_3239402198
proquest_journals_3239085858
pubmed_primary_40807899
crossref_primary_10_3390_s25154735
PublicationCentury 2000
PublicationDate 2025-07-31
PublicationDateYYYYMMDD 2025-07-31
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-31
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Parkman (ref_31) 2011; 140
Gu (ref_5) 2010; 27
Emoto (ref_22) 2016; 2
Wang (ref_17) 2022; 26
ref_33
ref_10
Craine (ref_18) 2001; 46
Kavic (ref_13) 2001; 181
Harnsberger (ref_4) 2019; 32
Alagappan (ref_19) 2018; 10
Inderjeeth (ref_24) 2018; 7
Keller (ref_30) 2018; 15
Bernal (ref_21) 2016; 48
Hejazi (ref_32) 2011; 56
Cannon (ref_7) 1905; 14
Mori (ref_20) 2017; 49
Ching (ref_2) 2012; 18
Felder (ref_3) 2014; 71
Liu (ref_6) 2010; 53
ref_25
Baid (ref_1) 2009; 18
Gergely (ref_11) 2022; 51
Safronov (ref_15) 2006; 32
Craine (ref_14) 1999; 44
Hadjileontiadis (ref_23) 2003; 10
Peery (ref_12) 2022; 162
ref_29
Zhao (ref_16) 2022; 69
ref_28
Fox (ref_8) 2018; 15
ref_26
Hooker (ref_9) 1849; 40
Ulusar (ref_27) 2014; 51
References_xml – volume: 46
  start-page: 1974
  year: 2001
  ident: ref_18
  article-title: Enterotachogram Analysis to Distinguish Irritable Bowel Syndrome from Crohn’s Disease
  publication-title: Dig. Dis. Sci.
  doi: 10.1023/A:1010651602095
– ident: ref_29
  doi: 10.1186/s12938-021-00969-2
– volume: 40
  start-page: 409
  year: 1849
  ident: ref_9
  article-title: Dr. Hooker’s Essay on Intestinal Auscultation
  publication-title: Boston Med. Surg. J.
  doi: 10.1056/NEJM184906270402101
– volume: 14
  start-page: 339
  year: 1905
  ident: ref_7
  article-title: Auscultation of the rhythmic sounds produced by the stomach and intestines
  publication-title: Am. J. Physiol.-Leg. Content
  doi: 10.1152/ajplegacy.1905.14.4.339
– volume: 26
  start-page: 2951
  year: 2022
  ident: ref_17
  article-title: Flexible Dual-Channel Digital Auscultation Patch with Active Noise Reduction for Bowel Sound Monitoring and Application
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3151927
– volume: 48
  start-page: 837
  year: 2016
  ident: ref_21
  article-title: Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps
  publication-title: Endoscopy
  doi: 10.1055/s-0042-108434
– volume: 15
  start-page: 291
  year: 2018
  ident: ref_30
  article-title: Advances in the diagnosis and classification of gastric and intestinal motility disorders
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2018.7
– volume: 71
  start-page: 768
  year: 2014
  ident: ref_3
  article-title: Usefulness of Bowel Sound Auscultation: A Prospective Evaluation
  publication-title: J. Surg. Educ.
  doi: 10.1016/j.jsurg.2014.02.003
– ident: ref_28
  doi: 10.3390/s21227602
– volume: 140
  start-page: 101
  year: 2011
  ident: ref_31
  article-title: Clinical Features of Idiopathic Gastroparesis Vary with Sex, Body Mass, Symptom Onset, Delay in Gastric Emptying, and Gastroparesis Severity
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.10.015
– volume: 18
  start-page: 4585
  year: 2012
  ident: ref_2
  article-title: Spectral analysis of bowel sounds in intestinal obstruction using an electronic stethoscope
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v18.i33.4585
– volume: 181
  start-page: 319
  year: 2001
  ident: ref_13
  article-title: Complications of endoscopy
  publication-title: Am. J. Surg.
  doi: 10.1016/S0002-9610(01)00589-X
– volume: 15
  start-page: 568
  year: 2018
  ident: ref_8
  article-title: Clinical measurement of gastrointestinal motility and function: Who, when and which test?
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-018-0030-9
– volume: 18
  start-page: 1125
  year: 2009
  ident: ref_1
  article-title: A critical review of auscultating bowel sounds
  publication-title: Br. J. Nurs.
  doi: 10.12968/bjon.2009.18.18.44555
– ident: ref_25
  doi: 10.1109/EHB47216.2019.8969901
– volume: 53
  start-page: 245
  year: 2010
  ident: ref_6
  article-title: Oscillating Gas Bubbles as the Origin of Bowel Sounds: A Combined Acoustic and Imaging Study
  publication-title: Chin. J. Physiol.
  doi: 10.4077/CJP.2010.AMK055
– volume: 10
  start-page: 311
  year: 2003
  ident: ref_23
  article-title: Detection of explosive lung and bowel sounds by means of fractal dimension
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2003.817171
– volume: 56
  start-page: 1147
  year: 2011
  ident: ref_32
  article-title: Does Grading the Severity of Gastroparesis Based on Scintigraphic Gastric Emptying Predict the Treatment Outcome of Patients with Gastroparesis?
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-010-1485-x
– volume: 32
  start-page: 122
  year: 2006
  ident: ref_15
  article-title: Computer phonoenterography in the assessment of the motor-evacuatory function of the gastrointestinal tract in healthy children
  publication-title: Hum. Physiol.
  doi: 10.1134/S036211970601018X
– ident: ref_10
– volume: 51
  start-page: 213
  year: 2022
  ident: ref_11
  article-title: Tools for the Diagnosis and Management of Crohn’s Disease
  publication-title: Gastroenterol. Clin. N. Am.
  doi: 10.1016/j.gtc.2021.12.003
– volume: 162
  start-page: 621
  year: 2022
  ident: ref_12
  article-title: Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2021
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2021.10.017
– ident: ref_26
  doi: 10.1109/BIOCAS.2018.8584723
– volume: 51
  start-page: 223
  year: 2014
  ident: ref_27
  article-title: Recovery of gastrointestinal tract motility detection using Naive Bayesian and minimum statistics
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.05.013
– volume: 27
  start-page: 422
  year: 2010
  ident: ref_5
  article-title: How Useful Are Bowel Sounds in Assessing the Abdomen?
  publication-title: Dig. Surg.
  doi: 10.1159/000319372
– volume: 32
  start-page: 166
  year: 2019
  ident: ref_4
  article-title: Postoperative Ileus
  publication-title: Clin. Colon Rectal Surg.
  doi: 10.1055/s-0038-1677003
– volume: 49
  start-page: 813
  year: 2017
  ident: ref_20
  article-title: Computer-aided diagnosis for colonoscopy
  publication-title: Endoscopy
  doi: 10.1055/s-0043-109430
– volume: 44
  start-page: 1887
  year: 1999
  ident: ref_14
  article-title: Computerized Auscultation Applied to Irritable Bowel Syndrome
  publication-title: Dig. Dis. Sci.
  doi: 10.1023/A:1018859110022
– volume: 2
  start-page: 045012
  year: 2016
  ident: ref_22
  article-title: Evaluation of human bowel motility using non-contact microphones
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/2/4/045012
– ident: ref_33
  doi: 10.3390/s23042302
– volume: 69
  start-page: 629
  year: 2022
  ident: ref_16
  article-title: A Binarized CNN-Based Bowel Sound Recognition Algorithm with Time-Domain Histogram Features for Wearable Healthcare Systems
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 10
  start-page: 239
  year: 2018
  ident: ref_19
  article-title: Artificial intelligence in gastrointestinal endoscopy: The future is almost here
  publication-title: World J. Gastrointest. Endosc.
  doi: 10.4253/wjge.v10.i10.239
– volume: 7
  start-page: 124
  year: 2018
  ident: ref_24
  article-title: The potential of computerised analysis of bowel sounds for diagnosis of gastrointestinal conditions: A systematic review
  publication-title: Syst. Rev.
  doi: 10.1186/s13643-018-0789-3
SSID ssj0023338
Score 2.462781
Snippet Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4735
SubjectTerms Abdomen
Accuracy
Adult
Artificial intelligence
Auscultation
bowel sounds
Data collection
Datasets
Deep Learning
Endoscopy
Feasibility Studies
Female
Fourier transforms
Gastroenterology
Gastrointestinal Diseases - diagnosis
GI diseases
Healthy Volunteers
Humans
Machine learning
Male
Mel-frequency Cepstral Coefficients (MFCC)
phonoenterogram (PEG)
Sound
You Only Listen Once (YOLO)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXdoQeZxgEPUJH4k4bYFqgqVLhJUKqfIjwlUCs6qm1Dtj-A_M3ay0a4AceEW-ZFYnhnNN_bkG0Je1Lm0tRUiTlSuYo6AP9aQibhkJlO6sKBqf6D_4VQen_H35-J8o9SXzwkb6IGHjTtQiTVWyVwqbXmiuNfADHIrTS0TgMDzmRTlOpgaQy2GkdfAI8QwqD9YohcPRXa3vE8g6f8Tsvw9QfJ67xZqdaWaZsP7HO2SWyNspLNhubfJNXB3yM0NMsG75OeMnrY_oKFowHTumhU98SJ0-GyAvvwyP5m_om8BFnTkVP1KfSG0hiJspbO-awN5K_142X7Hl7qOHrZX2PvJ111a4sQuJG251xRR45hTu6I-DXFFLxwdfmfChl77k53lPXJ29O7zm-N4LLYQG86yLgZWKF4agR5NWpNz0Ly0QnFRQy6MzWtQaanSWshcG1Mwi6auRV1mVvioyLL7ZMe1Dh4S6ulJZZGBNhIfEAFxzbhQomQ6VSlARJ6thVAtBk6NCmMRL6lqklREDr14pgGeBjs0oHJUo3JU_1KOiOyvhVuNtrmsWIYf8tehRUSeTt1oVf6qRDlo-2EMRtZpiWMeDLowrYQngaO_jEixpSVbS93ucRffAnM3wgRP0IhTn08K9fctePQ_tmCP3Mh8yeJwHL1PdrrLHh4jjur0k2AyvwADph4v
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELbK9gF4QNwECjLHAzxETWI7BxJCu9CqQmW3Aiq1T5GvlErBWXYTqv0R_GdmkmzoiuPN8hFZmcMz4_E3hLwoktgURgg_kIn0ORj8vrKR8DOmI6lSY2WBAf2P0_jgmH84ESdbZLp-C4NplWud2CpqU2mMke-yCLxzvMRK386_-1g1Cm9X1yU0ZF9awbxpIcaukO0IkbFGZHuyNz36NLhgDDyyDl-Iwed2l3C6t8V3N06lFrz_bxbnn4mTVxs3l6sLWZaXTqX9m-RGb07ScUf_W2TLutvk-iWQwTvk55hOqx-2pCDYdObKFT1E0jpoa0tfns4OZ6_oe2vntMdaPaNYIK2kYM7ScVNXLagrPVpU3-CjrqaT6gJGP2M9piUsrNtkLveagjXZ59quKKYnrui5o90zJ-hoFEZ8lnfJ8f7el3cHfl-EwdecRbVvWSp5pgWcdLHRCbeKZ0ZILgqbCG2Swsowk2Eh4kRpnTIDKkCJIouMQG_JsHtk5CpnHxCKsKVxGlmlY2iAZcQV40KKjKlQhtZ65NmaCPm8w9rIwUdBSuUDpTwyQfIMExAeu-2oFmd5L225DIw2Mk5iqQwPJEe1FdnExLqIA2uZR3bWxM17mV3mvznMI0-HYZA2vEKRzlZNNwc87jCDOfc7Xhh2woMWuz_zSLrBJRtb3Rxx519bRG8wHxC4EZY-Hxjq37_g4f93_4hci7BIcRuA3iGjetHYx2A51epJLw6_AP4UGyg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFB5BegAO7IuhoGE5wMH1MottLigFqgqVpBJEak_WbC4RYRwldqvwH_jPvLEdK2GRkLhZnhkvyTfvfW_85nsIvSgSrgvNmB-KRPgUCL8vTcz8jKhYyFQbUbgF_Y8jfjihH07YycYufpdWCaH4tDHSbheWDx4sDGIWRCxwZXKDuS7enHdrSU5mMuNpxJLLaIczYOMDtDMZHQ9Pm01F3ehWUIhAdB8swZ031Xa33FCj1v8nivl7puSV2s7F6kLMZhtu6OAGEusXaLNPvu7VldxT33_RdvyfN7yJrnccFQ9bUN1Cl4y9ja5tKBfeQT-GeFSemxkGa4HHdrbCRw4vFo6VwS9Px0fjV_idMXPcCbieYVd1bYaBI-NhXZWNUiw-XpTf4KK2wvvlBbR-ckWeljCwajLE7GsMFLVL4F1hl_O4wlOL271TcKKWbhlpeRdNDt5_fnvod5UdfEVJXPmGpIJmioH75Fol1EiaaSYoK0zClE4KI6JMRAXjiVQqJRrsimRFFmvmQjBN7qGBLa15gLDTQuVpbKTicAB0i0pCmWAZkZGIjPHQs_Ufnc9bAY8cAh-HhrxHg4f2HQT6Dk5zuzlRLs7ybgrnItRKC55wITUNBXW2MDaJ5qrgoTHEQ7trAOWdIVjmJIYbuW-vqYee9s0whd13GWFNWbd9IIyPMuhzv8Vb_yQ0bAoCZB5Kt5C49ajbLXb6pZEJB07i1CBh6PMetH__CR7-U69H6GrsCiA3i9u7aFAtavMYWFkln3QT7yd8uDLK
  priority: 102
  providerName: Unpaywall
Title A Novel You Only Listen Once (YOLO) Deep Learning Model for Automatic Prominent Bowel Sounds Detection: Feasibility Study in Healthy Subjects
URI https://www.ncbi.nlm.nih.gov/pubmed/40807899
https://www.proquest.com/docview/3239085858
https://www.proquest.com/docview/3239402198
https://pubmed.ncbi.nlm.nih.gov/PMC12349269
https://www.mdpi.com/1424-8220/25/15/4735/pdf?version=1753968157
https://doaj.org/article/a0dcda676abd40a483222e7d6cf60ee3
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLa6HIADYidQRmY5wCEli50FCaEZ6FChdmYEjDQ9Rd7SVkqdYSah5Efwn3lOMlEjyo1LZNlOYvm9l7f45XsIvUrDQKaSUtthIbMJGPw2Vx61Y194jEdSsdQE9I8nweGcfFnQxRba1NhsN3B9rWtn6knNV9n-rx_VBxD498bjBJf97Rp0dF1CdxvtgoKKTQWHY9IdJng-uGENqFB_ek8V1Yj915mZf2dL3ij1klWXLMuuqKLxHXS7tSHxsCH6XbSl9D106wqy4H30e4gn-U-VYZBmPNVZhY8MPTW0hcKvT6ZH0zf4k1JL3AKsnmJTFS3DYMPiYVnkNZIrnq3yC3ioLvAov4TRb6YI0xpuLOoMLv0OgwnZJthW2OQkVvhc4-bfJugouQnzrB-g-fjg-8dDu628YAvie4Wt_IiRWFBQb4EUIVGcxJIyQlMVUiHDVDE3Zm5Kg5ALEfkS5J7TNPYkNS6S9B-iHZ1r9Rhhg1UaRJ7iIoAGmEOE-4QyGvvcZa5SFnqxIUKybAA2EnBMDKWSjlIWGhnydBMMJnbdka9Ok1bEEuZIIVkQBoxL4jBivlWeCmUg0sBRyrfQ3oa4yYbPEt-DF5mz0chCz7thEDFzbsK0ystmDrjZbgxzHjW80K2EODVgf2yhqMclvaX2R_T5WQ3jDTaDQWuEW192DPXvLXjyP7bgKbrpmfrFdWx6D-0Uq1I9A6Oq4AO0HS5CuEbjzwO0OzqYzL4O6gDFoBYm6JtPZsOTP_a8KZU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6Vcig9IPYaCgybBAeriWfGCxJCKaVKaZog0UrhZGZ5LpXMOCQOUX4Ef4XfyBvbSRux3HqzZrFGfou_N_Pme4Q8z6LQZEYIvyUj6XME_L6CQPgJ04FUsQGZuQ39o37YPeEfhmK4Rn4t7sK4tMqFT6wctSm02yPfYQFG5-4QK347-u67qlHudHVRQqNWi0OYzzBkm7w52EP5vgiC_ffH77p-U1XA15wFpQ8sljzRAl13aHTEQfHECMlFBpHQJspAthPZzkQYKa1jZlCnlciSwAgH_w3D914hVzlDX4L2Ew3PAzyG8V7NXsRwsTsTxA5Vad-Vf15VGuBvePbPtMyNqR3J-Uzm-YV_3v4Ncr0Bq7RTa9dNsgb2Ftm8QGF4m_zs0H7xA3KKboMObD6nPac4Fp810JefB73BK7oHMKINk-spdeXXcopgmXamZVFRxtKP4-IbvtSWdLeYYe8nV-1pghPLKlXMvqaIVZtM3jl1yY9zemZpfYkKG6bK7SdN7pCTSxHGXbJuCwtbhDpS1DAOQOkQHxB3ccW4kCJhqi3bAB55uhBCOqqZPFKMgJyk0qWkPLLrxLMc4Mi3q4ZifJo2tpzKltFGhlEoleEtyZ1TDCAyoc7CFgDzyPZCuGnjESbpuf565MmyG23ZHdBIC8W0HoPxfDvBMfdqXViuhLeqygCJR-IVLVlZ6mqPPfta8YUjOHG0kDj12VKh_v0J7v9_9Y_JRvf4qJf2DvqHD8i1wJVDrra6t8l6OZ7CQ8RopXpUGQYlXy7bEn8D-GlSMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIkF5QJwlUGC5JHiw4nh3fSAhlBKiloakUqkUnswe41IprEPiEOVH8If4dczaTtqI461v1h7WynP4m93Zbwh5nkWhyYwQni8j6XEE_J6CQHgJ04FUsQGZuQ39j_1w75h_GIrhBvm1vAvj0iqXPrF01CbXbo-8yQKMzt0hVtzM6rSIw0737fi75ypIuZPWZTmNSkUOYDHH8G36Zr-Dsn4RBN33n97teXWFAU9zFhQesFjyRAt046HREQfFEyMkFxlEQpsoA9lKZCsTYaS0jplB_VYiSwIjXChgGL73ErkcMZa4dMJoeBbsMYz9KiYj7PSbU8QRZZnftf9fWSbgb9j2zxTNqzM7lou5HI3O_f-6N8j1GrjSdqVpN8kG2Fvk2jk6w9vkZ5v28x8wouhC6MCOFrTnlMjiswb68vOgN3hFOwBjWrO6nlBXim1EETjT9qzIS_pYejjJv-FLbUF38zn2HrnKT1OcWJRpY_Y1RdxaZ_UuqEuEXNBTS6sLVdgwU25vaXqHHF-IMO6STZtbuEeoI0gN4wCUDvEBMRhXjAspEqZasgXQIE-XQkjHFatHitGQk1S6klSD7DrxrAY4Iu6yIZ-cpLVdp9I32sgwCqUy3JfcOcgAIhPqLPQBWIPsLIWb1t5hmp7pcoM8WXWjXbvDGmkhn1VjMLZvJThmu9KF1Uq4X1YJSBokXtOStaWu99jTryV3OAIVRxGJU5-tFOrfn-D-_1f_mFxBG0x7-_2DB2QrcJWRy13vHbJZTGbwEOFaoR6VdkHJl4s2xN-3MlZ2
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFB5BegAO7IuhoGE5wMH1MottLigFqgqVpBJEak_WbC4RYRwldqvwH_jPvLEdK2GRkLhZnhkvyTfvfW_85nsIvSgSrgvNmB-KRPgUCL8vTcz8jKhYyFQbUbgF_Y8jfjihH07YycYufpdWCaH4tDHSbheWDx4sDGIWRCxwZXKDuS7enHdrSU5mMuNpxJLLaIczYOMDtDMZHQ9Pm01F3ehWUIhAdB8swZ031Xa33FCj1v8nivl7puSV2s7F6kLMZhtu6OAGEusXaLNPvu7VldxT33_RdvyfN7yJrnccFQ9bUN1Cl4y9ja5tKBfeQT-GeFSemxkGa4HHdrbCRw4vFo6VwS9Px0fjV_idMXPcCbieYVd1bYaBI-NhXZWNUiw-XpTf4KK2wvvlBbR-ckWeljCwajLE7GsMFLVL4F1hl_O4wlOL271TcKKWbhlpeRdNDt5_fnvod5UdfEVJXPmGpIJmioH75Fol1EiaaSYoK0zClE4KI6JMRAXjiVQqJRrsimRFFmvmQjBN7qGBLa15gLDTQuVpbKTicAB0i0pCmWAZkZGIjPHQs_Ufnc9bAY8cAh-HhrxHg4f2HQT6Dk5zuzlRLs7ybgrnItRKC55wITUNBXW2MDaJ5qrgoTHEQ7trAOWdIVjmJIYbuW-vqYee9s0whd13GWFNWbd9IIyPMuhzv8Vb_yQ0bAoCZB5Kt5C49ajbLXb6pZEJB07i1CBh6PMetH__CR7-U69H6GrsCiA3i9u7aFAtavMYWFkln3QT7yd8uDLK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+You+Only+Listen+Once+%28YOLO%29+Deep+Learning+Model+for+Automatic+Prominent+Bowel+Sounds+Detection%3A+Feasibility+Study+in+Healthy+Subjects&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Rohan+Kalahasty&rft.au=Gayathri+Yerrapragada&rft.au=Jieun+Lee&rft.au=Keerthy+Gopalakrishnan&rft.date=2025-07-31&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=15&rft.spage=4735&rft_id=info:doi/10.3390%2Fs25154735&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a0dcda676abd40a483222e7d6cf60ee3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon