Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials
Recent advances in additive manufacturing facilitated the fabrication of parts with great geometrical complexity and relatively small size, and allowed for the fabrication of topologies that could not have been achieved using traditional fabrication techniques. In this work, we explore the topology-...
Saved in:
Published in | Additive manufacturing Vol. 19; pp. 167 - 183 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2214-8604 2214-7810 |
DOI | 10.1016/j.addma.2017.12.006 |
Cover
Abstract | Recent advances in additive manufacturing facilitated the fabrication of parts with great geometrical complexity and relatively small size, and allowed for the fabrication of topologies that could not have been achieved using traditional fabrication techniques. In this work, we explore the topology-property relationship of several classes of periodic cellular materials; the first class is strut-based structures, while the second and third classes are derived from the mathematically created triply periodic minimal surfaces, namely; the skeletal-TPMS and sheet-TPMS cellular structures. Powder bed fusion technology was employed to fabricate the cellular structures of various relative densities out of Maraging steel. Scanning electron microscope (SEM) was also employed to assess the quality of the printed parts. Compressive testing was performed to deduce the mechanical properties of the considered cellular structures. Results showed that the sheet-TPMS based cellular structures exhibited a near stretching-dominated deformation behavior, while skeletal-TPMS showed a bending-dominated behavior. On the other hand, the Kelvin and Gibson-Ashby strut-based topologies exhibited a mixed mode of deformation while the Octet-truss showed a stretching-dominated behavior. Overall the sheet-TPMS based cellular structures showed superior mechanical properties among all the tested structures. The most interesting observation is that sheet-based Diamond TPMS structure showed the best mechanical performance with nearly independence of relative density. It was also observed that at decreased volume fractions the effect of geometry on the mechanical properties is more pronounced. |
---|---|
AbstractList | Recent advances in additive manufacturing facilitated the fabrication of parts with great geometrical complexity and relatively small size, and allowed for the fabrication of topologies that could not have been achieved using traditional fabrication techniques. In this work, we explore the topology-property relationship of several classes of periodic cellular materials; the first class is strut-based structures, while the second and third classes are derived from the mathematically created triply periodic minimal surfaces, namely; the skeletal-TPMS and sheet-TPMS cellular structures. Powder bed fusion technology was employed to fabricate the cellular structures of various relative densities out of Maraging steel. Scanning electron microscope (SEM) was also employed to assess the quality of the printed parts. Compressive testing was performed to deduce the mechanical properties of the considered cellular structures. Results showed that the sheet-TPMS based cellular structures exhibited a near stretching-dominated deformation behavior, while skeletal-TPMS showed a bending-dominated behavior. On the other hand, the Kelvin and Gibson-Ashby strut-based topologies exhibited a mixed mode of deformation while the Octet-truss showed a stretching-dominated behavior. Overall the sheet-TPMS based cellular structures showed superior mechanical properties among all the tested structures. The most interesting observation is that sheet-based Diamond TPMS structure showed the best mechanical performance with nearly independence of relative density. It was also observed that at decreased volume fractions the effect of geometry on the mechanical properties is more pronounced. |
Author | Al-Ketan, Oraib Rowshan, Reza Abu Al-Rub, Rashid K. |
Author_xml | – sequence: 1 givenname: Oraib surname: Al-Ketan fullname: Al-Ketan, Oraib organization: Institute Center for Energy, Mechanical and Materials Engineering Department, Masdar Institute of Science and Technology, Abu Dhabi, UAE – sequence: 2 givenname: Reza surname: Rowshan fullname: Rowshan, Reza organization: Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE – sequence: 3 givenname: Rashid K. surname: Abu Al-Rub fullname: Abu Al-Rub, Rashid K. email: rabualrub@masdar.ac.ae organization: Institute Center for Energy, Mechanical and Materials Engineering Department, Masdar Institute of Science and Technology, Abu Dhabi, UAE |
BookMark | eNqFkD1PwzAQhi1UJD5_AYt_AAl2nDjxwIDKp1SJpcyWY1-oixNXtovUgf-OC0wMMN3p3ntOuucEzSY_AUIXlJSUUH61LpUxoyorQtuSViUh_AAdVxWti7ajZPbTd5zUR-g8xjUhhDasFV11jD6WfuOdf90VI-iVmqxWDm-C30BIOxzAqWT9FFd2g_2A2W3O7JTA4JjCNl3i-AYOknKXWE15uAJIuFcxL-QL1hur8bjPXW40OLd1KuBRpRwqF8_Q4ZALnP_UU_Ryf7ecPxaL54en-c2i0DWrUiFI2xtBFIe2MR0BU3edFk3NuBGMNqodqBpETaAlome8gZ7XvGOV6KloGKfsFInvuzr4GAMMUtv09VkKyjpJidyrlGv5pVLuVUpayawys-wXmxWMKuz-oa6_KchvvVsIMmoLkwZjA-gkjbd_8p8quJId |
CitedBy_id | crossref_primary_10_1016_j_mseb_2022_116013 crossref_primary_10_1016_j_rinma_2021_100242 crossref_primary_10_1002_ente_202301287 crossref_primary_10_1016_j_applthermaleng_2023_120797 crossref_primary_10_1007_s40870_024_00425_x crossref_primary_10_1007_s40964_019_00073_x crossref_primary_10_1016_j_jmbbm_2021_104380 crossref_primary_10_1007_s00170_019_04753_4 crossref_primary_10_1111_jace_19978 crossref_primary_10_1088_1757_899X_1199_1_012072 crossref_primary_10_1080_15376494_2024_2340066 crossref_primary_10_1177_0021955X231224775 crossref_primary_10_1021_acsbiomaterials_3c00457 crossref_primary_10_1080_15376494_2018_1538470 crossref_primary_10_1016_j_procir_2020_09_148 crossref_primary_10_1016_j_msea_2019_138035 crossref_primary_10_1115_1_4044494 crossref_primary_10_1002_adem_201900524 crossref_primary_10_1007_s40430_025_05439_7 crossref_primary_10_1016_j_addma_2018_10_047 crossref_primary_10_1007_s11837_023_05866_8 crossref_primary_10_1080_15376494_2022_2081749 crossref_primary_10_1088_1361_665X_abdcfe crossref_primary_10_1111_jace_16474 crossref_primary_10_1063_1_5066578 crossref_primary_10_1080_10255842_2024_2326929 crossref_primary_10_1142_S2424913021430025 crossref_primary_10_1007_s42242_024_00269_3 crossref_primary_10_1093_jcde_qwac052 crossref_primary_10_1002_adem_202402012 crossref_primary_10_1002_adem_202402495 crossref_primary_10_1002_adem_202400518 crossref_primary_10_1007_s40964_025_01025_4 crossref_primary_10_1016_j_ijmecsci_2021_106331 crossref_primary_10_1002_adma_202308715 crossref_primary_10_1002_srin_202000411 crossref_primary_10_1007_s40962_024_01471_w crossref_primary_10_1088_1758_5090_ad905f crossref_primary_10_1080_15376494_2022_2068207 crossref_primary_10_1002_adem_202401397 crossref_primary_10_3788_LOP240861 crossref_primary_10_1051_epjconf_202125001022 crossref_primary_10_1002_adem_202301589 crossref_primary_10_1080_15376494_2021_1949509 crossref_primary_10_1016_j_compositesb_2022_109837 crossref_primary_10_1016_j_bioactmat_2018_12_003 crossref_primary_10_1038_s41598_021_98631_3 crossref_primary_10_1016_j_cad_2019_06_007 crossref_primary_10_1016_j_cirpj_2020_11_003 crossref_primary_10_1002_adem_202201499 crossref_primary_10_1002_app_56551 crossref_primary_10_1016_j_euromechflu_2019_09_015 crossref_primary_10_1038_s44334_025_00020_5 crossref_primary_10_1007_s00158_021_02871_w crossref_primary_10_1007_s11837_024_06372_1 crossref_primary_10_1002_pat_6430 crossref_primary_10_1016_j_matdes_2020_108883 crossref_primary_10_1115_1_4065201 crossref_primary_10_1021_jacsau_4c00555 crossref_primary_10_1007_s40430_024_05216_y crossref_primary_10_1080_17452759_2023_2166851 crossref_primary_10_1007_s00170_024_13670_0 crossref_primary_10_1021_acssuschemeng_9b04980 crossref_primary_10_1021_acsami_1c14076 crossref_primary_10_1088_1361_651X_ad3a00 crossref_primary_10_1016_j_autcon_2020_103324 crossref_primary_10_1021_acs_iecr_1c00215 crossref_primary_10_15625_0866_7136_17999 crossref_primary_10_1016_j_dt_2025_01_003 crossref_primary_10_1177_14644207241241774 crossref_primary_10_1177_00325899241273503 crossref_primary_10_1016_j_actbio_2019_05_046 crossref_primary_10_1007_s40033_024_00650_7 crossref_primary_10_1051_matecconf_202235702012 crossref_primary_10_1007_s10853_018_2285_5 crossref_primary_10_17341_gazimmfd_1168768 crossref_primary_10_2139_ssrn_4103089 crossref_primary_10_26599_JAC_2023_9220787 crossref_primary_10_1088_2631_7990_ac5be6 crossref_primary_10_1080_10667857_2021_1999558 crossref_primary_10_1007_s11665_019_03982_8 crossref_primary_10_1021_acsbiomaterials_1c01438 crossref_primary_10_1007_s42242_021_00162_3 crossref_primary_10_1080_17452759_2024_2435562 crossref_primary_10_1016_j_ijengsci_2023_103961 crossref_primary_10_1016_j_matdes_2022_111036 crossref_primary_10_1016_j_ijplas_2020_102852 crossref_primary_10_1080_13588265_2021_1959171 crossref_primary_10_1080_15376494_2021_1919803 crossref_primary_10_1115_1_4062881 crossref_primary_10_1002_smll_202100336 crossref_primary_10_1016_j_jmatprotec_2019_116367 crossref_primary_10_1016_j_matdes_2019_107685 crossref_primary_10_1080_17452759_2023_2283027 crossref_primary_10_1177_14644207211012726 crossref_primary_10_3389_fbioe_2023_1117954 crossref_primary_10_2139_ssrn_4170545 crossref_primary_10_1002_adhm_202202766 crossref_primary_10_3389_fbioe_2023_1260639 crossref_primary_10_1002_admt_202500118 crossref_primary_10_1016_j_csite_2021_101315 crossref_primary_10_1007_s40964_021_00180_8 crossref_primary_10_1080_15376494_2023_2277846 crossref_primary_10_46519_ij3dptdi_949677 crossref_primary_10_1002_adem_202100879 crossref_primary_10_1080_15397734_2024_2407416 crossref_primary_10_4028_www_scientific_net_MSF_993_857 crossref_primary_10_1088_2053_1591_abcc5d crossref_primary_10_1088_1361_6463_ad91bf crossref_primary_10_1007_s00170_022_10578_5 crossref_primary_10_1002_mdp2_205 crossref_primary_10_1016_j_matdes_2018_05_058 crossref_primary_10_1177_09544062211059068 crossref_primary_10_1063_5_0101412 crossref_primary_10_1021_acsomega_3c00874 crossref_primary_10_2139_ssrn_4202187 crossref_primary_10_1002_smll_202206391 crossref_primary_10_1016_j_apsusc_2023_158107 crossref_primary_10_1002_adem_202100527 crossref_primary_10_1016_j_ijmecsci_2019_105262 crossref_primary_10_1088_1361_6633_aceeee crossref_primary_10_1007_s00170_021_07514_4 crossref_primary_10_1364_AO_410350 crossref_primary_10_1007_s42242_019_00054_7 crossref_primary_10_1016_j_msec_2018_06_051 crossref_primary_10_1016_j_bioactmat_2020_11_003 crossref_primary_10_1016_j_coelec_2020_02_011 crossref_primary_10_1080_15376494_2024_2303724 crossref_primary_10_1108_RPJ_10_2018_0270 crossref_primary_10_1063_5_0247913 crossref_primary_10_1016_j_ijmecsci_2021_106762 crossref_primary_10_1016_j_jmbbm_2020_103727 crossref_primary_10_1080_14686996_2021_1907222 crossref_primary_10_18311_jmmf_2022_31230 crossref_primary_10_1177_1099636220905551 crossref_primary_10_1016_j_matdes_2020_108709 crossref_primary_10_1016_j_ijmecsci_2020_105480 crossref_primary_10_1007_s00170_020_05706_y crossref_primary_10_1007_s40964_024_00866_9 crossref_primary_10_3389_fbioe_2020_00609 crossref_primary_10_1016_j_matdes_2020_109100 crossref_primary_10_1021_acsami_3c04637 crossref_primary_10_1002_adem_201900396 crossref_primary_10_1007_s00170_020_05255_4 crossref_primary_10_1088_1757_899X_1243_1_012010 crossref_primary_10_1080_17452759_2022_2125879 crossref_primary_10_1016_j_cirp_2020_04_060 crossref_primary_10_1126_science_abj9472 crossref_primary_10_1016_j_prostr_2021_10_064 crossref_primary_10_1007_s41230_024_4026_5 crossref_primary_10_1142_S0219455424502614 crossref_primary_10_1016_j_matdes_2022_110688 crossref_primary_10_1016_j_matdes_2018_09_029 crossref_primary_10_1016_j_compositesb_2020_107773 crossref_primary_10_1080_15376494_2022_2135145 crossref_primary_10_1016_j_addma_2018_02_020 crossref_primary_10_1007_s00586_023_07674_9 crossref_primary_10_1615_HighTempMatProc_2024051730 crossref_primary_10_1080_15376494_2022_2138651 crossref_primary_10_1088_2053_1591_ad8b99 crossref_primary_10_1080_15376494_2021_1948151 crossref_primary_10_1021_acsami_2c19456 crossref_primary_10_1016_j_matdes_2018_08_056 crossref_primary_10_1002_adem_201800029 crossref_primary_10_1016_j_matdes_2023_112224 crossref_primary_10_1299_transjsme_23_00213 crossref_primary_10_1080_17452759_2020_1740747 crossref_primary_10_1177_10996362241298144 crossref_primary_10_1002_adem_202201780 crossref_primary_10_1002_adem_202201540 crossref_primary_10_1016_j_prostr_2024_02_046 crossref_primary_10_1002_adem_202000957 crossref_primary_10_30939_ijastech__1360762 crossref_primary_10_1061_JENMDT_EMENG_7511 crossref_primary_10_1007_s40870_019_00219_6 crossref_primary_10_1016_j_msea_2020_139714 crossref_primary_10_1016_j_ijmecsci_2021_106285 crossref_primary_10_1007_s00170_022_09651_w crossref_primary_10_1016_j_cej_2018_10_060 crossref_primary_10_1016_j_matdes_2021_110173 crossref_primary_10_1080_15397734_2024_2364890 crossref_primary_10_1002_adem_202101379 crossref_primary_10_1016_j_addma_2020_101430 crossref_primary_10_1088_1757_899X_1199_1_012009 crossref_primary_10_1021_acsabm_8b00052 crossref_primary_10_33737_jgpps_166418 crossref_primary_10_1016_j_pmatsci_2019_100578 crossref_primary_10_1007_s12540_024_01874_8 crossref_primary_10_1016_j_actbio_2019_07_049 crossref_primary_10_1002_advs_202305232 crossref_primary_10_1108_RPJ_02_2023_0048 crossref_primary_10_1002_adem_202300340 crossref_primary_10_2139_ssrn_4150322 crossref_primary_10_1177_10812865221104236 crossref_primary_10_2140_jomms_2024_19_819 crossref_primary_10_1088_2631_7990_ad88e3 crossref_primary_10_1177_09544089231160030 crossref_primary_10_1088_2631_8695_ad7109 crossref_primary_10_1002_eng2_13003 crossref_primary_10_1002_adem_202301303 crossref_primary_10_1080_10910344_2023_2253027 |
Cites_doi | 10.1016/j.msec.2014.07.047 10.1016/j.matdes.2017.03.018 10.1016/j.actbio.2013.10.024 10.1016/j.jmbbm.2015.06.012 10.1016/j.mechmat.2003.02.001 10.1016/j.biomaterials.2016.01.012 10.1016/j.actbio.2017.02.024 10.1016/j.biomaterials.2011.06.012 10.1002/adma.200400131 10.1016/S1359-6454(98)00072-X 10.1007/s12541-015-0330-8 10.1016/j.jmps.2017.07.003 10.1016/S1359-6454(97)00421-7 10.1016/j.compscitech.2015.08.021 10.1002/admt.201600235 10.1098/rspa.2003.1269 10.1016/j.matdes.2013.10.027 10.1016/j.ijsolstr.2016.01.011 10.1016/j.ijmecsci.2017.03.017 10.1016/j.jmatprotec.2013.12.004 10.1016/j.actbio.2015.10.048 10.1016/j.actbio.2008.03.013 10.1016/j.compositesa.2016.02.009 10.1002/jbm.b.31219 10.3390/ma8041871 10.1007/BF00266127 10.1016/j.ijsolstr.2014.06.024 10.1016/j.jmbbm.2015.06.024 10.1016/j.addma.2014.12.008 10.1016/j.desal.2017.10.010 10.1103/PhysRevE.72.056319 10.1007/s12541-014-0583-7 10.1016/j.jmbbm.2013.05.011 10.1016/j.ijmecsci.2014.12.004 10.1021/ie0490886 10.1016/j.addma.2017.04.003 10.1016/j.jmbbm.2016.09.018 10.1016/S0022-5096(01)00010-2 10.1016/j.msec.2012.12.092 10.1016/j.ijimpeng.2007.10.005 10.1016/j.mechmat.2016.01.004 10.1002/bit.20368 10.1016/j.biomaterials.2011.07.019 10.1016/S1359-6454(00)00379-7 10.1016/S1359-6454(98)00031-7 10.1016/j.compstruct.2015.06.082 10.1016/j.actbio.2010.09.034 10.1007/s12541-015-0263-2 10.1016/S0079-6425(00)00018-9 10.1016/j.jmbbm.2016.04.041 10.1016/j.ijplas.2017.03.005 10.1002/adma.201504469 10.1016/j.msea.2015.01.063 10.1016/j.msea.2016.05.075 10.1126/science.1252291 10.1002/adma.201501546 10.1016/j.media.2006.06.001 10.1016/j.compstruct.2017.05.026 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.addma.2017.12.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
EndPage | 183 |
ExternalDocumentID | 10_1016_j_addma_2017_12_006 S2214860417303767 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c432t-907bd90a6e75d80ed488c95436d9315a7f1af940e709b365eb6468329b1953613 |
IEDL.DBID | AIKHN |
ISSN | 2214-8604 |
IngestDate | Tue Jul 01 01:46:55 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Fri Feb 23 02:34:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Powder bed fusion Additive manufacturing (AM) Architected materials Triply periodic minimal surfaces (TPMS) Selective laser sintering (SLS) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c432t-907bd90a6e75d80ed488c95436d9315a7f1af940e709b365eb6468329b1953613 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1016_j_addma_2017_12_006 crossref_primary_10_1016_j_addma_2017_12_006 elsevier_sciencedirect_doi_10_1016_j_addma_2017_12_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationTitle | Additive manufacturing |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yoo (bib0190) 2014; 15 Ha, Vaia, Lynn, Costantino, Shin, Smith, Matsudaira, Thomas (bib0245) 2004; 16 Deshpande, Ashby, Fleck (bib0075) 2001; 49 Ahmadi, Yavari, Wauthle, Pouran, Schrooten, Weinans, Zadpoor (bib0120) 2015; 8 Han, Lee, Kang (bib0310) 2015; 27 Abueidda, Bakir, Abu Al-Rub, Bergström, Sobh, Jasiuk (bib0135) 2017; 122 Yoo (bib0210) 2011; 32 Alsalla, Hao, Smith (bib0260) 2016; 669 Simone, Gibson (bib0055) 1998; 46 Jung, Torquato (bib0175) 2005; 72 Boomsma, Poulikakos, Zwick (bib0040) 2003; 35 Giani, Groppi, Tronconi (bib0035) 2005; 44 Rajagopalan, Robb (bib0220) 2006; 10 Haack, Butcher, Kim, Lu (bib0050) 2001 Freyman, Yannas, Gibson (bib0020) 2001; 46 Kapfer, Hyde, Mecke, Arns, Schröder-Turk (bib0185) 2011; 32 Lee, Khan, Abu Al-Rub (bib0305) 2017; 95 Jain, Pradeep (bib0025) 2005; 90 Giannitelli, Accoto, Trombetta, Rainer (bib0090) 2014; 10 Pattanayak, Fukuda, Matsushita, Takemoto, Fujibayashi, Sasaki, Nishida, Nakamura, Kokubo (bib0015) 2011; 7 Bobbert, Lietaert, Eftekhari, Pouran, Ahmadi, Weinans, Zadpoor (bib0165) 2017; 53 Brandt (bib0080) 2016 Babaee, Viard, Wang, Fang, Bertoldi (bib0240) 2015; 28 Abueidda, Abu Al-Rub, Dalaq, Lee, Khan, Jasiuk (bib0125) 2016; 95 Montillet, Comiti, Legrand (bib0030) 1993; 23 Kadkhodapour, Montazerian, Darabi, Anaraki, Ahmadi, Zadpoor, Schmauder (bib0115) 2015; 50 Abueidda, Abu Al-Rub, Dalaq, Younes, Al Ghaferi, Shah (bib0130) 2015; 118 Mullen, Stamp, Brooks, Jones, Sutcliffe (bib0105) 2009; 89 Liu, Kamm, García-Moreno, Banhart, Pasini (bib0270) 2017; 107 Lu, Stone, Ashby (bib0045) 1998; 46 Sreedhar, Thomas, Al-Ketan, Rowshan, Hernandez, Abu Al-Rub, Arafat (bib0200) 2018; 425 Al‐Ketan, Abu Al‐Rub, Rowshan (bib0150) 2017; 2 I. Jin, L.D., Kenny, H. Sang, Method of producing lightweight foamed metal. Google Patents, 1990. Arabnejad, Johnston, Pura, Singh, Tanzer, Pasini (bib0110) 2016; 30 Yan, Hao, Hussein, Bubb, Young, Raymont (bib0225) 2014; 214 Wang, Xu, Zhou, Xu, Leary, Choong, Qian, Brandt, Xie (bib0085) 2016; 83 Yoo (bib0195) 2015; 16 Zheng, Lee, Weisgraber, Shusteff, DeOtte, Duoss, Kuntz, Biener, Ge, Jackson (bib0325) 2014; 344 Torquato, Donev (bib0235) 2004; 460 Maskery, Aboulkhair, Aremu, Tuck, Ashcroft (bib0320) 2017; 16 Yan, Hao, Hussein, Young, Huang, Zhu (bib0250) 2015; 628 Dalaq, Abueidda, Abu Al-Rub (bib0170) 2016; 84 McKown, Shen, Brookes, Sutcliffe, Cantwell, Langdon, Nurick, Theobald (bib0100) 2008; 35 Yan, Hao, Hussein, Young, Raymont (bib0230) 2014; 55 Wauthle, Vrancken, Beynaerts, Jorissen, Schrooten, Kruth, Van Humbeeck (bib0275) 2015; 5 Yan, Hao, Hussein, Young (bib0255) 2015; 51 Abueidda, Dalaq, Abu Al-Rub, Younes (bib0145) 2015; 92 Heinl, Müller, Körner, Singer, Müller (bib0010) 2008; 4 Abu Al-Rub (bib0290) 2017 Kadkhodapour, Montazerian, Darabi, Zargarian, Schmauder (bib0285) 2016; 70 Deshpande, Fleck, Ashby (bib0095) 2001; 49 Abueidda, Dalaq, Abu Al-Rub, Jasiuk (bib0140) 2015; 133 Simone, Gibson (bib0065) 1998; 46 Yoo, Kim (bib0215) 2015; 16 Al-Ketan, Soliman, AlQubaisi, Abu Al-Rub (bib0160) 2017 Sallica-Leva, Jardini, Fogagnolo (bib0280) 2013; 26 Al-Ketan, Assad, Abu Al-Rub (bib0155) 2017; 176 Dalaq, Abueidda, Abu Al-Rub, Jasiuk (bib0295) 2016; 83 Khan, Abu Al-Rub (bib0300) 2017; 126 Khaderi, Deshpande, Fleck (bib0070) 2014; 51 Gibson, Ashby (bib0005) 1999 Kadkhodapour, Montazerian, Raeisi (bib0180) 2014; 43 Al‐Ketan, Abu Al‐Rub (bib0315) 2016 Yoo (bib0205) 2013; 33 Bagheri, Melancon, Liu, Johnston, Pasini (bib0265) 2017; 70 Abueidda (10.1016/j.addma.2017.12.006_bib0135) 2017; 122 Bobbert (10.1016/j.addma.2017.12.006_bib0165) 2017; 53 Wauthle (10.1016/j.addma.2017.12.006_bib0275) 2015; 5 Ha (10.1016/j.addma.2017.12.006_bib0245) 2004; 16 Dalaq (10.1016/j.addma.2017.12.006_bib0170) 2016; 84 Abu Al-Rub (10.1016/j.addma.2017.12.006_bib0290) 2017 Kadkhodapour (10.1016/j.addma.2017.12.006_bib0115) 2015; 50 Deshpande (10.1016/j.addma.2017.12.006_bib0075) 2001; 49 Al-Ketan (10.1016/j.addma.2017.12.006_bib0160) 2017 Yan (10.1016/j.addma.2017.12.006_bib0230) 2014; 55 Zheng (10.1016/j.addma.2017.12.006_bib0325) 2014; 344 Al‐Ketan (10.1016/j.addma.2017.12.006_bib0150) 2017; 2 Maskery (10.1016/j.addma.2017.12.006_bib0320) 2017; 16 Wang (10.1016/j.addma.2017.12.006_bib0085) 2016; 83 Pattanayak (10.1016/j.addma.2017.12.006_bib0015) 2011; 7 10.1016/j.addma.2017.12.006_bib0060 Dalaq (10.1016/j.addma.2017.12.006_bib0295) 2016; 83 Boomsma (10.1016/j.addma.2017.12.006_bib0040) 2003; 35 Yoo (10.1016/j.addma.2017.12.006_bib0190) 2014; 15 Bagheri (10.1016/j.addma.2017.12.006_bib0265) 2017; 70 Han (10.1016/j.addma.2017.12.006_bib0310) 2015; 27 Haack (10.1016/j.addma.2017.12.006_bib0050) 2001 Simone (10.1016/j.addma.2017.12.006_bib0055) 1998; 46 Khan (10.1016/j.addma.2017.12.006_bib0300) 2017; 126 Abueidda (10.1016/j.addma.2017.12.006_bib0125) 2016; 95 Abueidda (10.1016/j.addma.2017.12.006_bib0145) 2015; 92 Kadkhodapour (10.1016/j.addma.2017.12.006_bib0180) 2014; 43 Torquato (10.1016/j.addma.2017.12.006_bib0235) 2004; 460 Simone (10.1016/j.addma.2017.12.006_bib0065) 1998; 46 Lu (10.1016/j.addma.2017.12.006_bib0045) 1998; 46 Yoo (10.1016/j.addma.2017.12.006_bib0210) 2011; 32 Abueidda (10.1016/j.addma.2017.12.006_bib0140) 2015; 133 Khaderi (10.1016/j.addma.2017.12.006_bib0070) 2014; 51 Alsalla (10.1016/j.addma.2017.12.006_bib0260) 2016; 669 Kapfer (10.1016/j.addma.2017.12.006_bib0185) 2011; 32 Babaee (10.1016/j.addma.2017.12.006_bib0240) 2015; 28 Montillet (10.1016/j.addma.2017.12.006_bib0030) 1993; 23 Sreedhar (10.1016/j.addma.2017.12.006_bib0200) 2018; 425 Lee (10.1016/j.addma.2017.12.006_bib0305) 2017; 95 Brandt (10.1016/j.addma.2017.12.006_bib0080) 2016 Arabnejad (10.1016/j.addma.2017.12.006_bib0110) 2016; 30 Gibson (10.1016/j.addma.2017.12.006_bib0005) 1999 Yan (10.1016/j.addma.2017.12.006_bib0250) 2015; 628 Al-Ketan (10.1016/j.addma.2017.12.006_bib0155) 2017; 176 Jung (10.1016/j.addma.2017.12.006_bib0175) 2005; 72 Kadkhodapour (10.1016/j.addma.2017.12.006_bib0285) 2016; 70 Rajagopalan (10.1016/j.addma.2017.12.006_bib0220) 2006; 10 Giani (10.1016/j.addma.2017.12.006_bib0035) 2005; 44 Giannitelli (10.1016/j.addma.2017.12.006_bib0090) 2014; 10 Ahmadi (10.1016/j.addma.2017.12.006_bib0120) 2015; 8 Yan (10.1016/j.addma.2017.12.006_bib0225) 2014; 214 Yoo (10.1016/j.addma.2017.12.006_bib0205) 2013; 33 Jain (10.1016/j.addma.2017.12.006_bib0025) 2005; 90 Mullen (10.1016/j.addma.2017.12.006_bib0105) 2009; 89 Abueidda (10.1016/j.addma.2017.12.006_bib0130) 2015; 118 McKown (10.1016/j.addma.2017.12.006_bib0100) 2008; 35 Freyman (10.1016/j.addma.2017.12.006_bib0020) 2001; 46 Heinl (10.1016/j.addma.2017.12.006_bib0010) 2008; 4 Deshpande (10.1016/j.addma.2017.12.006_bib0095) 2001; 49 Al‐Ketan (10.1016/j.addma.2017.12.006_bib0315) 2016 Yoo (10.1016/j.addma.2017.12.006_bib0195) 2015; 16 Yoo (10.1016/j.addma.2017.12.006_bib0215) 2015; 16 Liu (10.1016/j.addma.2017.12.006_bib0270) 2017; 107 Sallica-Leva (10.1016/j.addma.2017.12.006_bib0280) 2013; 26 Yan (10.1016/j.addma.2017.12.006_bib0255) 2015; 51 |
References_xml | – start-page: 1700549 year: 2017 ident: bib0160 article-title: Nature-inspired lightweight cellular co-continuous composites with architected periodic gyroidal structures publication-title: Adv. Eng. Mater. – volume: 10 start-page: 693 year: 2006 end-page: 712 ident: bib0220 article-title: Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds publication-title: Med. Image Anal. – volume: 50 start-page: 180 year: 2015 end-page: 191 ident: bib0115 article-title: Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell publication-title: J. Mech. Behav. Biomed. Mater. – volume: 10 start-page: 580 year: 2014 end-page: 594 ident: bib0090 article-title: Current trends in the design of scaffolds for computer-aided tissue engineering publication-title: Acta Biomater. – volume: 8 start-page: 1871 year: 2015 end-page: 1896 ident: bib0120 article-title: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties publication-title: Materials – volume: 32 start-page: 6875 year: 2011 end-page: 6882 ident: bib0185 article-title: Minimal surface scaffold designs for tissue engineering publication-title: Biomaterials – volume: 214 start-page: 856 year: 2014 end-page: 864 ident: bib0225 article-title: Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering publication-title: J. Mater. Process. Technol. – volume: 16 start-page: 24 year: 2017 end-page: 29 ident: bib0320 article-title: Compressive failure modes and energy absorption in additively manufactured double gyroid lattices publication-title: Addit. Manuf. – volume: 133 start-page: 85 year: 2015 end-page: 97 ident: bib0140 article-title: Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites publication-title: Compos. Struct. – volume: 70 start-page: 17 year: 2017 end-page: 27 ident: bib0265 article-title: Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting publication-title: J. Mech. Behav. Biomed. Mater. – volume: 118 start-page: 127 year: 2015 end-page: 134 ident: bib0130 article-title: Electrical conductivity of 3D periodic architectured interpenetrating phase composites with carbon nanostructured-epoxy reinforcements publication-title: Compos. Sci. Technol. – volume: 26 start-page: 98 year: 2013 end-page: 108 ident: bib0280 article-title: Microstructure and mechanical behavior of porous Ti–6Al–4 V parts obtained by selective laser melting publication-title: J. Mech. Behav. Biomed. Mater. – volume: 176 start-page: 9 year: 2017 end-page: 19 ident: bib0155 article-title: Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures publication-title: Compos. Struct. – volume: 44 start-page: 4993 year: 2005 end-page: 5002 ident: bib0035 article-title: Mass-transfer characterization of metallic foams as supports for structured catalysts publication-title: Ind. Eng. Chem. Res. – volume: 107 start-page: 160 year: 2017 end-page: 184 ident: bib0270 article-title: Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by selective laser melting publication-title: J. Mech. Phys. Solids – volume: 46 start-page: 3619 year: 1998 end-page: 3635 ident: bib0045 article-title: Heat transfer in open-cell metal foams publication-title: Acta Mater. – volume: 90 start-page: 59 year: 2005 end-page: 63 ident: bib0025 article-title: Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter publication-title: Biotechnol. Bioeng. – volume: 51 start-page: 61 year: 2015 end-page: 73 ident: bib0255 article-title: Ti–6Al–4 V triply periodic minimal surface structures for bone implants fabricated via selective laser melting publication-title: J. Mech. Behav. Biomed. Mater. – volume: 628 start-page: 238 year: 2015 end-page: 246 ident: bib0250 article-title: Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering publication-title: Mater. Sci. Eng.: A – volume: 70 start-page: 28 year: 2016 end-page: 42 ident: bib0285 article-title: The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials publication-title: J. Mech. Behav. Biomed. Mater. – volume: 89 start-page: 325 year: 2009 end-page: 334 ident: bib0105 article-title: Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in‐growth constructs, suitable for orthopedic applications publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 84 start-page: 266 year: 2016 end-page: 280 ident: bib0170 article-title: Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements publication-title: Comp. Part A: Appl. Sci. Manuf. – volume: 49 start-page: 1747 year: 2001 end-page: 1769 ident: bib0095 article-title: Effective properties of the octet-truss lattice material publication-title: J. Mech. Phys. Solids – volume: 7 start-page: 1398 year: 2011 end-page: 1406 ident: bib0015 article-title: Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments publication-title: Acta Biomater. – year: 2016 ident: bib0080 article-title: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications – volume: 46 start-page: 273 year: 2001 end-page: 282 ident: bib0020 article-title: Cellular materials as porous scaffolds for tissue engineering publication-title: Prog. Mater. Sci. – volume: 35 start-page: 795 year: 2008 end-page: 810 ident: bib0100 article-title: The quasi-static and blast loading response of lattice structures publication-title: Int. J. Impact Eng. – start-page: 1 year: 2017 end-page: 18 ident: bib0290 article-title: Thermo-electro-mechanical properties of interpenetrating phase composites with periodic architectured reinforcements publication-title: From Creep Damage Mechanics to Homogenization Methods – volume: 83 start-page: 169 year: 2016 end-page: 182 ident: bib0295 article-title: Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements publication-title: Int. J. Solids Struct. – volume: 460 start-page: 1849 year: 2004 end-page: 1856 ident: bib0235 article-title: Minimal surfaces and multifunctionality publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences – volume: 43 start-page: 587 year: 2014 end-page: 597 ident: bib0180 article-title: Investigating internal architecture effect in plastic deformation and failure for TPMS-based scaffolds using simulation methods and experimental procedure publication-title: Mater. Sci. Eng. C – volume: 669 start-page: 1 year: 2016 end-page: 6 ident: bib0260 article-title: Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique publication-title: Mater. Sci. Eng.: A – volume: 95 start-page: 1 year: 2017 end-page: 20 ident: bib0305 article-title: Stiffness and Yield Strength of Architectured Foams Based on the Schwarz Primitive Triply Periodic Minimal Surface publication-title: Int. J. Plast. – volume: 46 start-page: 2139 year: 1998 end-page: 2150 ident: bib0055 article-title: Effects of solid distribution on the stiffness and strength of metallic foams publication-title: Acta Mater. – volume: 30 start-page: 345 year: 2016 end-page: 356 ident: bib0110 article-title: High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints publication-title: Acta Biomater. – volume: 28 start-page: 1631 year: 2015 end-page: 1635 ident: bib0240 article-title: Harnessing deformation to switch on and off the propagation of sound publication-title: Adv. Mater. – volume: 425 start-page: 12 year: 2018 end-page: 21 ident: bib0200 article-title: 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF publication-title: Desalination – volume: 27 start-page: 5506 year: 2015 end-page: 5511 ident: bib0310 article-title: A new type of low density material: shellular publication-title: Adv. Mater. – volume: 4 start-page: 1536 year: 2008 end-page: 1544 ident: bib0010 article-title: Cellular Ti–6Al–4üV structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting publication-title: Acta Biomater. – volume: 344 start-page: 1373 year: 2014 end-page: 1377 ident: bib0325 article-title: Ultralight, ultrastiff mechanical metamaterials publication-title: Science – reference: I. Jin, L.D., Kenny, H. Sang, Method of producing lightweight foamed metal. Google Patents, 1990. – volume: 16 start-page: 2021 year: 2015 end-page: 2032 ident: bib0215 article-title: An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function publication-title: Int. J. Precis. Eng. Manuf. – volume: 33 start-page: 1759 year: 2013 end-page: 1772 ident: bib0205 article-title: New paradigms in hierarchical porous scaffold design for tissue engineering publication-title: Mater. Sci. Eng.: C – year: 2001 ident: bib0050 article-title: Novel lightweight metal foam heat exchangers publication-title: 2001 ASME Congress Proceedings – volume: 16 start-page: 2577 year: 2015 end-page: 2589 ident: bib0195 article-title: New paradigms in cellular material design and fabrication publication-title: Int. J. Precis. Eng. Manuf. – volume: 83 start-page: 127 year: 2016 end-page: 141 ident: bib0085 article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review publication-title: Biomaterials – volume: 2 start-page: 1600235 year: 2017 ident: bib0150 article-title: Mechanical properties of a new type of architected interpenetrating phase composite materials publication-title: Adv. Mater. Technol. – volume: 35 start-page: 1161 year: 2003 end-page: 1176 ident: bib0040 article-title: Metal foams as compact high performance heat exchangers publication-title: Mech. Mater. – volume: 46 start-page: 3929 year: 1998 end-page: 3935 ident: bib0065 article-title: The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams publication-title: Acta Mater. – volume: 5 start-page: 77 year: 2015 end-page: 84 ident: bib0275 article-title: Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4 V lattice structures publication-title: Addit. Manuf. – volume: 72 start-page: 056319 year: 2005 ident: bib0175 article-title: Fluid permeabilities of triply periodic minimal surfaces publication-title: Phys. Rev. E – volume: 122 start-page: 255 year: 2017 end-page: 267 ident: bib0135 article-title: Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures publication-title: Mater. Des. – volume: 53 start-page: 572 year: 2017 end-page: 584 ident: bib0165 article-title: Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties publication-title: Acta Biomater. – volume: 23 start-page: 1045 year: 1993 end-page: 1050 ident: bib0030 article-title: Application of metallic foams in electrochemical reactors of filter-press type Part I: flow characterization publication-title: J. Appl. Electrochem. – volume: 15 start-page: 2205 year: 2014 end-page: 2217 ident: bib0190 article-title: Recent trends and challenges in computer-aided design of additive manufacturing-based biomimetic scaffolds and bioartificial organs publication-title: Int. J. Precis. Eng. Manuf. – volume: 92 start-page: 80 year: 2015 end-page: 89 ident: bib0145 article-title: Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements publication-title: Int. J. Mech. Sci. – volume: 126 start-page: 106 year: 2017 end-page: 119 ident: bib0300 article-title: Time dependent response of architectured Neovius foams publication-title: Int. J. Mech. Sci. – year: 2016 ident: bib0315 article-title: Experimental investigations on the mechanical properties of new type of interpenetrating phase composite based on Schwartz Primitive triply periodic minimal surfaces publication-title: ECCM 2016 – Proceeding of the 17th European Conference on Composite Materials – volume: 95 start-page: 102 year: 2016 end-page: 115 ident: bib0125 article-title: Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces publication-title: Mech. Mater. – volume: 55 start-page: 533 year: 2014 end-page: 541 ident: bib0230 article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting publication-title: Mater. Des. – volume: 16 start-page: 1091 year: 2004 end-page: 1094 ident: bib0245 article-title: Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton publication-title: Adv. Mater. – volume: 32 start-page: 7741 year: 2011 end-page: 7754 ident: bib0210 article-title: Porous scaffold design using the distance field and triply periodic minimal surface models publication-title: Biomaterials – volume: 51 start-page: 3866 year: 2014 end-page: 3877 ident: bib0070 article-title: The stiffness and strength of the gyroid lattice publication-title: Int. J. Solids Struct. – year: 1999 ident: bib0005 article-title: Cellular Solids: Structure and Properties Cambridge – volume: 49 start-page: 1035 year: 2001 end-page: 1040 ident: bib0075 article-title: Foam topology: bending versus stretching dominated architectures publication-title: Acta Mater. – volume: 43 start-page: 587 year: 2014 ident: 10.1016/j.addma.2017.12.006_bib0180 article-title: Investigating internal architecture effect in plastic deformation and failure for TPMS-based scaffolds using simulation methods and experimental procedure publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.07.047 – volume: 122 start-page: 255 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0135 article-title: Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.03.018 – volume: 10 start-page: 580 year: 2014 ident: 10.1016/j.addma.2017.12.006_bib0090 article-title: Current trends in the design of scaffolds for computer-aided tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.10.024 – volume: 50 start-page: 180 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0115 article-title: Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.06.012 – volume: 35 start-page: 1161 year: 2003 ident: 10.1016/j.addma.2017.12.006_bib0040 article-title: Metal foams as compact high performance heat exchangers publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2003.02.001 – year: 2016 ident: 10.1016/j.addma.2017.12.006_bib0315 article-title: Experimental investigations on the mechanical properties of new type of interpenetrating phase composite based on Schwartz Primitive triply periodic minimal surfaces – volume: 83 start-page: 127 year: 2016 ident: 10.1016/j.addma.2017.12.006_bib0085 article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.012 – volume: 53 start-page: 572 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0165 article-title: Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.02.024 – ident: 10.1016/j.addma.2017.12.006_bib0060 – volume: 32 start-page: 6875 year: 2011 ident: 10.1016/j.addma.2017.12.006_bib0185 article-title: Minimal surface scaffold designs for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.06.012 – volume: 16 start-page: 1091 year: 2004 ident: 10.1016/j.addma.2017.12.006_bib0245 article-title: Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton publication-title: Adv. Mater. doi: 10.1002/adma.200400131 – volume: 46 start-page: 3929 year: 1998 ident: 10.1016/j.addma.2017.12.006_bib0065 article-title: The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00072-X – volume: 16 start-page: 2577 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0195 article-title: New paradigms in cellular material design and fabrication publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-015-0330-8 – start-page: 1700549 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0160 article-title: Nature-inspired lightweight cellular co-continuous composites with architected periodic gyroidal structures publication-title: Adv. Eng. Mater. – volume: 107 start-page: 160 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0270 article-title: Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by selective laser melting publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.07.003 – volume: 46 start-page: 2139 year: 1998 ident: 10.1016/j.addma.2017.12.006_bib0055 article-title: Effects of solid distribution on the stiffness and strength of metallic foams publication-title: Acta Mater. doi: 10.1016/S1359-6454(97)00421-7 – volume: 118 start-page: 127 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0130 article-title: Electrical conductivity of 3D periodic architectured interpenetrating phase composites with carbon nanostructured-epoxy reinforcements publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2015.08.021 – volume: 2 start-page: 1600235 issue: 2 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0150 article-title: Mechanical properties of a new type of architected interpenetrating phase composite materials publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600235 – volume: 460 start-page: 1849 year: 2004 ident: 10.1016/j.addma.2017.12.006_bib0235 article-title: Minimal surfaces and multifunctionality publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2003.1269 – volume: 55 start-page: 533 year: 2014 ident: 10.1016/j.addma.2017.12.006_bib0230 article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.10.027 – volume: 83 start-page: 169 year: 2016 ident: 10.1016/j.addma.2017.12.006_bib0295 article-title: Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.01.011 – volume: 126 start-page: 106 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0300 article-title: Time dependent response of architectured Neovius foams publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.03.017 – volume: 214 start-page: 856 year: 2014 ident: 10.1016/j.addma.2017.12.006_bib0225 article-title: Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2013.12.004 – volume: 30 start-page: 345 year: 2016 ident: 10.1016/j.addma.2017.12.006_bib0110 article-title: High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.10.048 – volume: 4 start-page: 1536 year: 2008 ident: 10.1016/j.addma.2017.12.006_bib0010 article-title: Cellular Ti–6Al–4üV structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.03.013 – year: 1999 ident: 10.1016/j.addma.2017.12.006_bib0005 – volume: 84 start-page: 266 year: 2016 ident: 10.1016/j.addma.2017.12.006_bib0170 article-title: Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements publication-title: Comp. Part A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2016.02.009 – volume: 89 start-page: 325 year: 2009 ident: 10.1016/j.addma.2017.12.006_bib0105 article-title: Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in‐growth constructs, suitable for orthopedic applications publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.31219 – volume: 8 start-page: 1871 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0120 article-title: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties publication-title: Materials doi: 10.3390/ma8041871 – volume: 23 start-page: 1045 year: 1993 ident: 10.1016/j.addma.2017.12.006_bib0030 article-title: Application of metallic foams in electrochemical reactors of filter-press type Part I: flow characterization publication-title: J. Appl. Electrochem. doi: 10.1007/BF00266127 – volume: 51 start-page: 3866 year: 2014 ident: 10.1016/j.addma.2017.12.006_bib0070 article-title: The stiffness and strength of the gyroid lattice publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.06.024 – volume: 51 start-page: 61 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0255 article-title: Ti–6Al–4 V triply periodic minimal surface structures for bone implants fabricated via selective laser melting publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.06.024 – volume: 5 start-page: 77 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0275 article-title: Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4 V lattice structures publication-title: Addit. Manuf. doi: 10.1016/j.addma.2014.12.008 – volume: 425 start-page: 12 year: 2018 ident: 10.1016/j.addma.2017.12.006_bib0200 article-title: 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF publication-title: Desalination doi: 10.1016/j.desal.2017.10.010 – volume: 72 start-page: 056319 year: 2005 ident: 10.1016/j.addma.2017.12.006_bib0175 article-title: Fluid permeabilities of triply periodic minimal surfaces publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.056319 – volume: 15 start-page: 2205 year: 2014 ident: 10.1016/j.addma.2017.12.006_bib0190 article-title: Recent trends and challenges in computer-aided design of additive manufacturing-based biomimetic scaffolds and bioartificial organs publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-014-0583-7 – volume: 26 start-page: 98 year: 2013 ident: 10.1016/j.addma.2017.12.006_bib0280 article-title: Microstructure and mechanical behavior of porous Ti–6Al–4 V parts obtained by selective laser melting publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2013.05.011 – volume: 92 start-page: 80 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0145 article-title: Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2014.12.004 – volume: 44 start-page: 4993 year: 2005 ident: 10.1016/j.addma.2017.12.006_bib0035 article-title: Mass-transfer characterization of metallic foams as supports for structured catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0490886 – volume: 16 start-page: 24 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0320 article-title: Compressive failure modes and energy absorption in additively manufactured double gyroid lattices publication-title: Addit. Manuf. doi: 10.1016/j.addma.2017.04.003 – volume: 70 start-page: 28 year: 2016 ident: 10.1016/j.addma.2017.12.006_bib0285 article-title: The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.09.018 – volume: 49 start-page: 1747 year: 2001 ident: 10.1016/j.addma.2017.12.006_bib0095 article-title: Effective properties of the octet-truss lattice material publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(01)00010-2 – volume: 33 start-page: 1759 year: 2013 ident: 10.1016/j.addma.2017.12.006_bib0205 article-title: New paradigms in hierarchical porous scaffold design for tissue engineering publication-title: Mater. Sci. Eng.: C doi: 10.1016/j.msec.2012.12.092 – volume: 35 start-page: 795 year: 2008 ident: 10.1016/j.addma.2017.12.006_bib0100 article-title: The quasi-static and blast loading response of lattice structures publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2007.10.005 – volume: 95 start-page: 102 year: 2016 ident: 10.1016/j.addma.2017.12.006_bib0125 article-title: Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2016.01.004 – volume: 90 start-page: 59 year: 2005 ident: 10.1016/j.addma.2017.12.006_bib0025 article-title: Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20368 – volume: 32 start-page: 7741 year: 2011 ident: 10.1016/j.addma.2017.12.006_bib0210 article-title: Porous scaffold design using the distance field and triply periodic minimal surface models publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.07.019 – volume: 49 start-page: 1035 year: 2001 ident: 10.1016/j.addma.2017.12.006_bib0075 article-title: Foam topology: bending versus stretching dominated architectures publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00379-7 – volume: 46 start-page: 3619 year: 1998 ident: 10.1016/j.addma.2017.12.006_bib0045 article-title: Heat transfer in open-cell metal foams publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00031-7 – volume: 133 start-page: 85 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0140 article-title: Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.06.082 – volume: 7 start-page: 1398 year: 2011 ident: 10.1016/j.addma.2017.12.006_bib0015 article-title: Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.09.034 – year: 2016 ident: 10.1016/j.addma.2017.12.006_bib0080 – volume: 16 start-page: 2021 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0215 article-title: An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-015-0263-2 – start-page: 1 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0290 article-title: Thermo-electro-mechanical properties of interpenetrating phase composites with periodic architectured reinforcements – volume: 46 start-page: 273 year: 2001 ident: 10.1016/j.addma.2017.12.006_bib0020 article-title: Cellular materials as porous scaffolds for tissue engineering publication-title: Prog. Mater. Sci. doi: 10.1016/S0079-6425(00)00018-9 – volume: 70 start-page: 17 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0265 article-title: Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.04.041 – volume: 95 start-page: 1 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0305 article-title: Stiffness and Yield Strength of Architectured Foams Based on the Schwarz Primitive Triply Periodic Minimal Surface publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.03.005 – year: 2001 ident: 10.1016/j.addma.2017.12.006_bib0050 article-title: Novel lightweight metal foam heat exchangers publication-title: 2001 ASME Congress Proceedings – volume: 28 start-page: 1631 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0240 article-title: Harnessing deformation to switch on and off the propagation of sound publication-title: Adv. Mater. doi: 10.1002/adma.201504469 – volume: 628 start-page: 238 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0250 article-title: Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2015.01.063 – volume: 669 start-page: 1 year: 2016 ident: 10.1016/j.addma.2017.12.006_bib0260 article-title: Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2016.05.075 – volume: 344 start-page: 1373 year: 2014 ident: 10.1016/j.addma.2017.12.006_bib0325 article-title: Ultralight, ultrastiff mechanical metamaterials publication-title: Science doi: 10.1126/science.1252291 – volume: 27 start-page: 5506 year: 2015 ident: 10.1016/j.addma.2017.12.006_bib0310 article-title: A new type of low density material: shellular publication-title: Adv. Mater. doi: 10.1002/adma.201501546 – volume: 10 start-page: 693 year: 2006 ident: 10.1016/j.addma.2017.12.006_bib0220 article-title: Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds publication-title: Med. Image Anal. doi: 10.1016/j.media.2006.06.001 – volume: 176 start-page: 9 year: 2017 ident: 10.1016/j.addma.2017.12.006_bib0155 article-title: Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.05.026 |
SSID | ssj0001537982 |
Score | 2.606987 |
Snippet | Recent advances in additive manufacturing facilitated the fabrication of parts with great geometrical complexity and relatively small size, and allowed for the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 167 |
SubjectTerms | Additive manufacturing (AM) Architected materials Powder bed fusion Selective laser sintering (SLS) Triply periodic minimal surfaces (TPMS) |
Title | Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials |
URI | https://dx.doi.org/10.1016/j.addma.2017.12.006 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoEB8RTlUXlgrGmcOHYyIh4qILoAEpuVOK4o9CXIwgC_nbs8oEioA1vi-KTo7uzvcjl_B3A8jK1MAme5RoNzGdmIJ4jD3Auz2HOZ9mzRvu12oPoP8voxfGzAWX0Whsoqq72_3NOL3boa6VXa7M1Ho96d7wvqoCQFOilxkqxAy0e0j5rQOr266Q9-Ui1hoOOibRSJcJKp-YeKSi9c4gUFkdBFZpCaH_2FUQu4c7kB61XAyE7Ld9qEhptuwdoCjeA2fNyXnQ7e-cTRQV7SO5tTlv01f2evdbnb02jOZkMWnDNK5mGkyYg8Nu-ytxfEHgzCuyyZ4uCTczkjdMsY0SDPspFlE3o-xgtK9FPlKsNIt3TeHXi4vLg_6_OqrQK3MvBzjp_DKRoiUU6HWYQGwTVs41AGKosDESZ6KJJhLD2nvTgNVOhSJRUu_DilX24I_7vQnM6mbg-YFBlO1NrqLJKJ8lNL52BTSxRC2gqvDX6tSGMrznFqfTE2dXHZsym0b0j7RvgGtd-G7rfQvKTcWD5d1RYyvzzHICgsE9z_r-ABrOJdVCZiDqGJtnJHGJrkaQdWTj5Fp3LAL4js4rw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YGxpnHixMmIClWBtgut1M1KHFcN9KWSpQP8du7ygCIhBrbI9knR3dl3uZy_j5DrUaBF6BjNJBicCV_7LIQ4zCw3DiwTS0tn9G3dntceiMehO6yQZnkXBtsqi7M_P9Oz07oYaRTabCySpPFs2xwZlAQHJ0VMkg2yKZDmAJz65oN_F1pcRwYZaRQKMJQo0YeyPi_Y4BkAEZdZXRCpj36LUGtRp7VHdot0kd7mb7RPKmZ2QHbWQAQPyXs_5zlYsanBa7yodbrAGvsyXdFl2ew2ThZ0PqLOHcVSHuSZFKFj0zp9e4XIAyl4nYYzGBwbk1KMbTFFEOR5nGg6xfkJPGCZH_tWKeS5uesekUHrvt9ss4JUgWnh2CmDj-EIzBB6RrqxD-aAHawDVzheHDjcDeWIh6NAWEZaQeR4rok84cG2DyL84QbB_5hUZ_OZOSFU8BgWSqll7IvQsyONt2AjjQBCUnOrRuxSkUoXiONIfDFRZWvZi8q0r1D7itsKtF8j9S-hRQ648fdyr7SQ-uE3CkLCX4Kn_xW8IlvtfrejOg-9pzOyDTN-XpI5J1Wwm7mAJCWNLjMn_ARageN- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology-mechanical+property+relationship+of+3D+printed+strut%2C+skeletal%2C+and+sheet+based+periodic+metallic+cellular+materials&rft.jtitle=Additive+manufacturing&rft.au=Al-Ketan%2C+Oraib&rft.au=Rowshan%2C+Reza&rft.au=Abu+Al-Rub%2C+Rashid+K.&rft.date=2018-01-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=19&rft.spage=167&rft.epage=183&rft_id=info:doi/10.1016%2Fj.addma.2017.12.006&rft.externalDocID=S2214860417303767 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |