A recursive Riccati interior-point method for chance-constrained stochastic model predictive control

This study covers the model predictive control of linear discrete-time systems subject to stochastic additive disturbances and state chance constraints. The stochastic optimal control problem is reformulated in a dynamic programming fashion to obtain a closed-loop performance and is solved using the...

Full description

Saved in:
Bibliographic Details
Published inSICE Journal of Control Measurement and System Integration Vol. 16; no. 1; pp. 273 - 285
Main Authors Zhang, Jingyu, Ohtsuka, Toshiyuki
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 31.12.2023
Subjects
Online AccessGet full text
ISSN1882-4889
1884-9970
1884-9970
DOI10.1080/18824889.2023.2241163

Cover

Abstract This study covers the model predictive control of linear discrete-time systems subject to stochastic additive disturbances and state chance constraints. The stochastic optimal control problem is reformulated in a dynamic programming fashion to obtain a closed-loop performance and is solved using the interior-point method combined with a Riccati-based approach. The proposed method eliminates active sets in conventional explicit model predictive control and does not suffer from the curse of dimensionality because it finds the value function and feedback policy only for a given initial state using the interior-point method. Moreover, the proposed method is proven to converge globally to the optimal solution Q-superlinearly. The numerical experiment shows that the proposed method achieves a less conservative performance with a low computational complexity compared to existing methods.
AbstractList This study covers the model predictive control of linear discrete-time systems subject to stochastic additive disturbances and state chance constraints. The stochastic optimal control problem is reformulated in a dynamic programming fashion to obtain a closed-loop performance and is solved using the interior-point method combined with a Riccati-based approach. The proposed method eliminates active sets in conventional explicit model predictive control and does not suffer from the curse of dimensionality because it finds the value function and feedback policy only for a given initial state using the interior-point method. Moreover, the proposed method is proven to converge globally to the optimal solution Q-superlinearly. The numerical experiment shows that the proposed method achieves a less conservative performance with a low computational complexity compared to existing methods.
Author Ohtsuka, Toshiyuki
Zhang, Jingyu
Author_xml – sequence: 1
  givenname: Jingyu
  orcidid: 0000-0003-3134-7544
  surname: Zhang
  fullname: Zhang, Jingyu
  organization: Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
– sequence: 2
  givenname: Toshiyuki
  surname: Ohtsuka
  fullname: Ohtsuka, Toshiyuki
  organization: Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
BookMark eNqNkM1KJTEQhYM4MI7jIwzkBfqaVKe707gS8Q8EYZhZh7pJZYz07VySqPj2pr3qwo2zqqqTOqfC94Ptz3Emxn5JsZJCi2OpNSitxxUIaFcASsq-3WMHVVfNOA5i_7WHZln6zo5yvhdCwCjlMMoD5k55IvuQcngk_jtYiyXwMBdKIaZmG2vLN1TuouM-Jm7vcLbU2DjnkjDM5Hgusaq5BMs30dHEt4lcsGUJrHslxekn--ZxynT0Vg_Z34vzP2dXzc3t5fXZ6U1jVQul6fwafKd68oPVzllEWrfKaRyhvpD2rehQDL5OAjo19th56VCTlVL1g28P2fUu10W8N9sUNpieTcRgXoWY_hlM9aMTGfKj66GvsDyovgV0g7SEawCtHaxVzep3WQ_zFp-fcJo-AqUwC3rzjt4s6M0b-mo82Rltijkn8saGUqkuKDBMX7q7T-7_u_oCiNSdDA
CitedBy_id crossref_primary_10_1109_TCST_2024_3477294
Cites_doi 10.1016/S0005-1098(99)00214-9
10.1109/LCSYS.7782633
10.1109/CDC.1998.758479
10.1126/science.153.3731.34
10.5220/0001143902220229
10.1109/TAC.2014.2310066
10.1016/j.arcontrol.2017.11.001
10.1109/TIV
10.1016/j.jprocont.2016.03.005
10.1109/TAC.2002.805683
10.1109/TAC.2009.2017970
10.1214/aoms/1177705673
10.1109/ACC.2010.5530453
10.1109/TAC.1974.1100635
10.1080/00207176608921369
10.2514/3.20223
10.1016/j.automatica.2014.10.128
10.1287/mnsc.6.1.73
10.1109/MCS.2012.2234964
10.1016/j.automatica.2008.06.017
10.1109/ICRA.2017.7989086
10.1109/TCST.2013.2272178
10.1007/BF01581253
10.1007/BF02275347
10.1007/s11590-007-0056-3
10.1007/BF01582151
10.1109/TCST.2021.3049416
10.1002/(ISSN)1099-1239
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1080/18824889.2023.2241163
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1884-9970
EndPage 285
ExternalDocumentID oai_doaj_org_article_ef9d626116f24632ad71ceab2288d2b4
10.1080/18824889.2023.2241163
10_1080_18824889_2023_2241163
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c432t-5fb2f546ef7c8ddcaaeb34d8a92fb2e8f305a07f2fb025496a5f1da8ec11467f3
IEDL.DBID DOA
ISSN 1882-4889
1884-9970
IngestDate Fri Oct 03 12:44:23 EDT 2025
Tue Aug 19 20:39:02 EDT 2025
Tue Jul 01 03:11:05 EDT 2025
Thu Apr 24 22:52:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-5fb2f546ef7c8ddcaaeb34d8a92fb2e8f305a07f2fb025496a5f1da8ec11467f3
ORCID 0000-0003-3134-7544
OpenAccessLink https://doaj.org/article/ef9d626116f24632ad71ceab2288d2b4
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_ef9d626116f24632ad71ceab2288d2b4
unpaywall_primary_10_1080_18824889_2023_2241163
crossref_citationtrail_10_1080_18824889_2023_2241163
crossref_primary_10_1080_18824889_2023_2241163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationTitle SICE Journal of Control Measurement and System Integration
PublicationYear 2023
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
Nocedal J (e_1_3_2_27_1) 2006
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
Löfberg J. (e_1_3_2_10_1) 2003
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_8_1
  doi: 10.1016/S0005-1098(99)00214-9
– ident: e_1_3_2_11_1
  doi: 10.1109/LCSYS.7782633
– ident: e_1_3_2_9_1
  doi: 10.1109/CDC.1998.758479
– ident: e_1_3_2_6_1
  doi: 10.1126/science.153.3731.34
– ident: e_1_3_2_14_1
  doi: 10.5220/0001143902220229
– ident: e_1_3_2_24_1
  doi: 10.1109/TAC.2014.2310066
– ident: e_1_3_2_7_1
  doi: 10.1016/j.arcontrol.2017.11.001
– ident: e_1_3_2_18_1
  doi: 10.1109/TIV
– ident: e_1_3_2_5_1
  doi: 10.1016/j.jprocont.2016.03.005
– ident: e_1_3_2_12_1
  doi: 10.1109/TAC.2002.805683
– volume-title: Numerical optimization
  year: 2006
  ident: e_1_3_2_27_1
– ident: e_1_3_2_22_1
  doi: 10.1109/TAC.2009.2017970
– ident: e_1_3_2_21_1
  doi: 10.1214/aoms/1177705673
– ident: e_1_3_2_16_1
  doi: 10.1109/ACC.2010.5530453
– ident: e_1_3_2_25_1
  doi: 10.1109/TAC.1974.1100635
– ident: e_1_3_2_13_1
  doi: 10.1080/00207176608921369
– ident: e_1_3_2_15_1
  doi: 10.2514/3.20223
– ident: e_1_3_2_2_1
  doi: 10.1016/j.automatica.2014.10.128
– ident: e_1_3_2_4_1
  doi: 10.1287/mnsc.6.1.73
– ident: e_1_3_2_3_1
  doi: 10.1109/MCS.2012.2234964
– ident: e_1_3_2_23_1
  doi: 10.1016/j.automatica.2008.06.017
– ident: e_1_3_2_31_1
– ident: e_1_3_2_17_1
  doi: 10.1109/ICRA.2017.7989086
– volume-title: Minimax approaches to robust model predictive control
  year: 2003
  ident: e_1_3_2_10_1
– ident: e_1_3_2_32_1
  doi: 10.1109/TCST.2013.2272178
– ident: e_1_3_2_30_1
  doi: 10.1007/BF01581253
– ident: e_1_3_2_28_1
  doi: 10.1007/BF02275347
– ident: e_1_3_2_26_1
  doi: 10.1007/s11590-007-0056-3
– ident: e_1_3_2_29_1
  doi: 10.1007/BF01582151
– ident: e_1_3_2_19_1
  doi: 10.1109/TCST.2021.3049416
– ident: e_1_3_2_20_1
  doi: 10.1002/(ISSN)1099-1239
SSID ssj0002911791
ssj0000547452
Score 2.2590616
Snippet This study covers the model predictive control of linear discrete-time systems subject to stochastic additive disturbances and state chance constraints. The...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 273
SubjectTerms chance constraint
closed-loop policy
model predictive control
stochastic dynamic programming
stochastic systems
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6SzaHJoU3Tlm4fQYdetdmVZVs-lLItCSGQEEoXkkMxeoaQxTbGS2kP_e2d8WNJCyHpITfLtiwkj2a-sWe-AfiAJimNtLU88hIdFLRYXBkluY5FSEyW6MhRgvPpWXK8kCcX8cUGfB9yYSisknzo0BFFtLqaNnflwhARdzBDVIhyR2kmIpqQDUJQ8alAbT9viwx-bGqKVy5xrc2qQQi1CVtJjFB9BFuLs_P5JTlhhCzpId2x5FmWTocMn7vG-Mt2tRT_O_BkVVT65w-9XN6yS0fP4Pcwoy4c5WayaszE_vqH7PHRprwLT3tEy-adCD6HDV_swc4tnsMX4Oaspu_6FCrPvl5b-kzIiKiivi5rXpV4yLpS1gwxNKNkZOu5JehKFSy8YwhR8SxxSrO2dg-ravrDRLqa9dH2L2FxdPjtyzHvyztwKyPR8DgYEWKZ-JBa5ZzVGh176ZTOBF7xKqAq0tM0YItS9lFu4jBzWnlLmdRpiF7BqCgL_xqYU2kkg3WJDh4RESpOLezUxsagOhI-HYMcXlxue-5zmsAyn_UUqcMC57TAeb_AY5isu1Ud-cd9HT6TVKxvJu7u9kRZX-W9Ksh9yBy6kXh_EDKJhHbpzHpthFDKCSPHcLCWqYcN--a_e7yFbWp2jJXvYETi8x7RVWP2-z3yBy_YGoY
  priority: 102
  providerName: Unpaywall
Title A recursive Riccati interior-point method for chance-constrained stochastic model predictive control
URI https://www.tandfonline.com/doi/pdf/10.1080/18824889.2023.2241163?needAccess=true&role=button
https://doaj.org/article/ef9d626116f24632ad71ceab2288d2b4
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1884-9970
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002911791
  issn: 1884-9970
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1884-9970
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000547452
  issn: 1882-4889
  databaseCode: 0YH
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHqSg-MT6KHvwmrb7SLI5VrEUwSJioZ7CZh9QKG0ILeK_dyZJSzzVg7dkk80ms7M7325mviHkAUxSLLQxgXASFihgsQKVKRnokPsoSyItLAY4v06i8VS-zMJZI9UX-oRV9MCV4PrOJxZAN2OR5zISXNuYGaczzpWyPCuZQAcqaSymcA7mCVKdsW3Ijhr0GUBJUFaMTeGih4aLReKXMSo5-9vkaLPM9feXXiwahmZ0Sk5qhEiH1ZudkQO3PCftBm_gBbFDWuA-Obqe0_e5wW03isQPxXxVBPkKDmmVGpoCJqUY3GtcYBAKYkYIZylAPihFjmZa5sKheYF_bHDuo7X3-iWZjp4_nsZBnS4hMFLwdRD6jPtQRs7HRllrtIaFsrRKJxyuOOVhaOtB7OEMQ-ChH0LPrFbOYGRy7MUVaS1XS3dNqFWxkN7YSHsHCAMmIs3NwIRZBsObu7hD5FZuqam5xPEDFimrKUe34k5R3Gkt7g7p7arlFZnGvgqP2Cm7m5ELuywADUlrDUn3aUiH9Hdd-rdmb_6j2VtyjM9kgL-qLZs70loXG3cPIGaddUt97ZLD6eRt-PkD4FDsVQ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6SzaHJoU3Tlm4fQYdetdmVZVs-lLItCSGQEEoXkkMxeoaQxTbGS2kP_e2d8WNJCyHpITfLtiwkj2a-sWe-AfiAJimNtLU88hIdFLRYXBkluY5FSEyW6MhRgvPpWXK8kCcX8cUGfB9yYSisknzo0BFFtLqaNnflwhARdzBDVIhyR2kmIpqQDUJQ8alAbT9viwx-bGqKVy5xrc2qQQi1CVtJjFB9BFuLs_P5JTlhhCzpId2x5FmWTocMn7vG-Mt2tRT_O_BkVVT65w-9XN6yS0fP4Pcwoy4c5WayaszE_vqH7PHRprwLT3tEy-adCD6HDV_swc4tnsMX4Oaspu_6FCrPvl5b-kzIiKiivi5rXpV4yLpS1gwxNKNkZOu5JehKFSy8YwhR8SxxSrO2dg-ravrDRLqa9dH2L2FxdPjtyzHvyztwKyPR8DgYEWKZ-JBa5ZzVGh176ZTOBF7xKqAq0tM0YItS9lFu4jBzWnlLmdRpiF7BqCgL_xqYU2kkg3WJDh4RESpOLezUxsagOhI-HYMcXlxue-5zmsAyn_UUqcMC57TAeb_AY5isu1Ud-cd9HT6TVKxvJu7u9kRZX-W9Ksh9yBy6kXh_EDKJhHbpzHpthFDKCSPHcLCWqYcN--a_e7yFbWp2jJXvYETi8x7RVWP2-z3yBy_YGoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+recursive+Riccati+interior-point+method+for+chance-constrained+stochastic+model+predictive+control&rft.jtitle=SICE+journal+of+control%2C+measurement%2C+and+system+integration+Online&rft.au=Jingyu+Zhang&rft.au=Toshiyuki+Ohtsuka&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=1884-9970&rft.volume=16&rft.issue=1&rft.spage=273&rft.epage=285&rft_id=info:doi/10.1080%2F18824889.2023.2241163&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ef9d626116f24632ad71ceab2288d2b4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-4889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-4889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-4889&client=summon