A recursive Riccati interior-point method for chance-constrained stochastic model predictive control
This study covers the model predictive control of linear discrete-time systems subject to stochastic additive disturbances and state chance constraints. The stochastic optimal control problem is reformulated in a dynamic programming fashion to obtain a closed-loop performance and is solved using the...
Saved in:
| Published in | SICE Journal of Control Measurement and System Integration Vol. 16; no. 1; pp. 273 - 285 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Taylor & Francis Group
31.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1882-4889 1884-9970 1884-9970 |
| DOI | 10.1080/18824889.2023.2241163 |
Cover
| Abstract | This study covers the model predictive control of linear discrete-time systems subject to stochastic additive disturbances and state chance constraints. The stochastic optimal control problem is reformulated in a dynamic programming fashion to obtain a closed-loop performance and is solved using the interior-point method combined with a Riccati-based approach. The proposed method eliminates active sets in conventional explicit model predictive control and does not suffer from the curse of dimensionality because it finds the value function and feedback policy only for a given initial state using the interior-point method. Moreover, the proposed method is proven to converge globally to the optimal solution Q-superlinearly. The numerical experiment shows that the proposed method achieves a less conservative performance with a low computational complexity compared to existing methods. |
|---|---|
| AbstractList | This study covers the model predictive control of linear discrete-time systems subject to stochastic additive disturbances and state chance constraints. The stochastic optimal control problem is reformulated in a dynamic programming fashion to obtain a closed-loop performance and is solved using the interior-point method combined with a Riccati-based approach. The proposed method eliminates active sets in conventional explicit model predictive control and does not suffer from the curse of dimensionality because it finds the value function and feedback policy only for a given initial state using the interior-point method. Moreover, the proposed method is proven to converge globally to the optimal solution Q-superlinearly. The numerical experiment shows that the proposed method achieves a less conservative performance with a low computational complexity compared to existing methods. |
| Author | Ohtsuka, Toshiyuki Zhang, Jingyu |
| Author_xml | – sequence: 1 givenname: Jingyu orcidid: 0000-0003-3134-7544 surname: Zhang fullname: Zhang, Jingyu organization: Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan – sequence: 2 givenname: Toshiyuki surname: Ohtsuka fullname: Ohtsuka, Toshiyuki organization: Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan |
| BookMark | eNqNkM1KJTEQhYM4MI7jIwzkBfqaVKe707gS8Q8EYZhZh7pJZYz07VySqPj2pr3qwo2zqqqTOqfC94Ptz3Emxn5JsZJCi2OpNSitxxUIaFcASsq-3WMHVVfNOA5i_7WHZln6zo5yvhdCwCjlMMoD5k55IvuQcngk_jtYiyXwMBdKIaZmG2vLN1TuouM-Jm7vcLbU2DjnkjDM5Hgusaq5BMs30dHEt4lcsGUJrHslxekn--ZxynT0Vg_Z34vzP2dXzc3t5fXZ6U1jVQul6fwafKd68oPVzllEWrfKaRyhvpD2rehQDL5OAjo19th56VCTlVL1g28P2fUu10W8N9sUNpieTcRgXoWY_hlM9aMTGfKj66GvsDyovgV0g7SEawCtHaxVzep3WQ_zFp-fcJo-AqUwC3rzjt4s6M0b-mo82Rltijkn8saGUqkuKDBMX7q7T-7_u_oCiNSdDA |
| CitedBy_id | crossref_primary_10_1109_TCST_2024_3477294 |
| Cites_doi | 10.1016/S0005-1098(99)00214-9 10.1109/LCSYS.7782633 10.1109/CDC.1998.758479 10.1126/science.153.3731.34 10.5220/0001143902220229 10.1109/TAC.2014.2310066 10.1016/j.arcontrol.2017.11.001 10.1109/TIV 10.1016/j.jprocont.2016.03.005 10.1109/TAC.2002.805683 10.1109/TAC.2009.2017970 10.1214/aoms/1177705673 10.1109/ACC.2010.5530453 10.1109/TAC.1974.1100635 10.1080/00207176608921369 10.2514/3.20223 10.1016/j.automatica.2014.10.128 10.1287/mnsc.6.1.73 10.1109/MCS.2012.2234964 10.1016/j.automatica.2008.06.017 10.1109/ICRA.2017.7989086 10.1109/TCST.2013.2272178 10.1007/BF01581253 10.1007/BF02275347 10.1007/s11590-007-0056-3 10.1007/BF01582151 10.1109/TCST.2021.3049416 10.1002/(ISSN)1099-1239 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1080/18824889.2023.2241163 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1884-9970 |
| EndPage | 285 |
| ExternalDocumentID | oai_doaj_org_article_ef9d626116f24632ad71ceab2288d2b4 10.1080/18824889.2023.2241163 10_1080_18824889_2023_2241163 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c432t-5fb2f546ef7c8ddcaaeb34d8a92fb2e8f305a07f2fb025496a5f1da8ec11467f3 |
| IEDL.DBID | DOA |
| ISSN | 1882-4889 1884-9970 |
| IngestDate | Fri Oct 03 12:44:23 EDT 2025 Tue Aug 19 20:39:02 EDT 2025 Tue Jul 01 03:11:05 EDT 2025 Thu Apr 24 22:52:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c432t-5fb2f546ef7c8ddcaaeb34d8a92fb2e8f305a07f2fb025496a5f1da8ec11467f3 |
| ORCID | 0000-0003-3134-7544 |
| OpenAccessLink | https://doaj.org/article/ef9d626116f24632ad71ceab2288d2b4 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ef9d626116f24632ad71ceab2288d2b4 unpaywall_primary_10_1080_18824889_2023_2241163 crossref_citationtrail_10_1080_18824889_2023_2241163 crossref_primary_10_1080_18824889_2023_2241163 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-31 |
| PublicationDateYYYYMMDD | 2023-12-31 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | SICE Journal of Control Measurement and System Integration |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis Group |
| References | e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 Nocedal J (e_1_3_2_27_1) 2006 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 Löfberg J. (e_1_3_2_10_1) 2003 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 |
| References_xml | – ident: e_1_3_2_8_1 doi: 10.1016/S0005-1098(99)00214-9 – ident: e_1_3_2_11_1 doi: 10.1109/LCSYS.7782633 – ident: e_1_3_2_9_1 doi: 10.1109/CDC.1998.758479 – ident: e_1_3_2_6_1 doi: 10.1126/science.153.3731.34 – ident: e_1_3_2_14_1 doi: 10.5220/0001143902220229 – ident: e_1_3_2_24_1 doi: 10.1109/TAC.2014.2310066 – ident: e_1_3_2_7_1 doi: 10.1016/j.arcontrol.2017.11.001 – ident: e_1_3_2_18_1 doi: 10.1109/TIV – ident: e_1_3_2_5_1 doi: 10.1016/j.jprocont.2016.03.005 – ident: e_1_3_2_12_1 doi: 10.1109/TAC.2002.805683 – volume-title: Numerical optimization year: 2006 ident: e_1_3_2_27_1 – ident: e_1_3_2_22_1 doi: 10.1109/TAC.2009.2017970 – ident: e_1_3_2_21_1 doi: 10.1214/aoms/1177705673 – ident: e_1_3_2_16_1 doi: 10.1109/ACC.2010.5530453 – ident: e_1_3_2_25_1 doi: 10.1109/TAC.1974.1100635 – ident: e_1_3_2_13_1 doi: 10.1080/00207176608921369 – ident: e_1_3_2_15_1 doi: 10.2514/3.20223 – ident: e_1_3_2_2_1 doi: 10.1016/j.automatica.2014.10.128 – ident: e_1_3_2_4_1 doi: 10.1287/mnsc.6.1.73 – ident: e_1_3_2_3_1 doi: 10.1109/MCS.2012.2234964 – ident: e_1_3_2_23_1 doi: 10.1016/j.automatica.2008.06.017 – ident: e_1_3_2_31_1 – ident: e_1_3_2_17_1 doi: 10.1109/ICRA.2017.7989086 – volume-title: Minimax approaches to robust model predictive control year: 2003 ident: e_1_3_2_10_1 – ident: e_1_3_2_32_1 doi: 10.1109/TCST.2013.2272178 – ident: e_1_3_2_30_1 doi: 10.1007/BF01581253 – ident: e_1_3_2_28_1 doi: 10.1007/BF02275347 – ident: e_1_3_2_26_1 doi: 10.1007/s11590-007-0056-3 – ident: e_1_3_2_29_1 doi: 10.1007/BF01582151 – ident: e_1_3_2_19_1 doi: 10.1109/TCST.2021.3049416 – ident: e_1_3_2_20_1 doi: 10.1002/(ISSN)1099-1239 |
| SSID | ssj0002911791 ssj0000547452 |
| Score | 2.2590616 |
| Snippet | This study covers the model predictive control of linear discrete-time systems subject to stochastic additive disturbances and state chance constraints. The... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 273 |
| SubjectTerms | chance constraint closed-loop policy model predictive control stochastic dynamic programming stochastic systems |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6SzaHJoU3Tlm4fQYdetdmVZVs-lLItCSGQEEoXkkMxeoaQxTbGS2kP_e2d8WNJCyHpITfLtiwkj2a-sWe-AfiAJimNtLU88hIdFLRYXBkluY5FSEyW6MhRgvPpWXK8kCcX8cUGfB9yYSisknzo0BFFtLqaNnflwhARdzBDVIhyR2kmIpqQDUJQ8alAbT9viwx-bGqKVy5xrc2qQQi1CVtJjFB9BFuLs_P5JTlhhCzpId2x5FmWTocMn7vG-Mt2tRT_O_BkVVT65w-9XN6yS0fP4Pcwoy4c5WayaszE_vqH7PHRprwLT3tEy-adCD6HDV_swc4tnsMX4Oaspu_6FCrPvl5b-kzIiKiivi5rXpV4yLpS1gwxNKNkZOu5JehKFSy8YwhR8SxxSrO2dg-ravrDRLqa9dH2L2FxdPjtyzHvyztwKyPR8DgYEWKZ-JBa5ZzVGh176ZTOBF7xKqAq0tM0YItS9lFu4jBzWnlLmdRpiF7BqCgL_xqYU2kkg3WJDh4RESpOLezUxsagOhI-HYMcXlxue-5zmsAyn_UUqcMC57TAeb_AY5isu1Ud-cd9HT6TVKxvJu7u9kRZX-W9Ksh9yBy6kXh_EDKJhHbpzHpthFDKCSPHcLCWqYcN--a_e7yFbWp2jJXvYETi8x7RVWP2-z3yBy_YGoY priority: 102 providerName: Unpaywall |
| Title | A recursive Riccati interior-point method for chance-constrained stochastic model predictive control |
| URI | https://www.tandfonline.com/doi/pdf/10.1080/18824889.2023.2241163?needAccess=true&role=button https://doaj.org/article/ef9d626116f24632ad71ceab2288d2b4 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1884-9970 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002911791 issn: 1884-9970 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1884-9970 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000547452 issn: 1882-4889 databaseCode: 0YH dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHqSg-MT6KHvwmrb7SLI5VrEUwSJioZ7CZh9QKG0ILeK_dyZJSzzVg7dkk80ms7M7325mviHkAUxSLLQxgXASFihgsQKVKRnokPsoSyItLAY4v06i8VS-zMJZI9UX-oRV9MCV4PrOJxZAN2OR5zISXNuYGaczzpWyPCuZQAcqaSymcA7mCVKdsW3Ijhr0GUBJUFaMTeGih4aLReKXMSo5-9vkaLPM9feXXiwahmZ0Sk5qhEiH1ZudkQO3PCftBm_gBbFDWuA-Obqe0_e5wW03isQPxXxVBPkKDmmVGpoCJqUY3GtcYBAKYkYIZylAPihFjmZa5sKheYF_bHDuo7X3-iWZjp4_nsZBnS4hMFLwdRD6jPtQRs7HRllrtIaFsrRKJxyuOOVhaOtB7OEMQ-ChH0LPrFbOYGRy7MUVaS1XS3dNqFWxkN7YSHsHCAMmIs3NwIRZBsObu7hD5FZuqam5xPEDFimrKUe34k5R3Gkt7g7p7arlFZnGvgqP2Cm7m5ELuywADUlrDUn3aUiH9Hdd-rdmb_6j2VtyjM9kgL-qLZs70loXG3cPIGaddUt97ZLD6eRt-PkD4FDsVQ |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6SzaHJoU3Tlm4fQYdetdmVZVs-lLItCSGQEEoXkkMxeoaQxTbGS2kP_e2d8WNJCyHpITfLtiwkj2a-sWe-AfiAJimNtLU88hIdFLRYXBkluY5FSEyW6MhRgvPpWXK8kCcX8cUGfB9yYSisknzo0BFFtLqaNnflwhARdzBDVIhyR2kmIpqQDUJQ8alAbT9viwx-bGqKVy5xrc2qQQi1CVtJjFB9BFuLs_P5JTlhhCzpId2x5FmWTocMn7vG-Mt2tRT_O_BkVVT65w-9XN6yS0fP4Pcwoy4c5WayaszE_vqH7PHRprwLT3tEy-adCD6HDV_swc4tnsMX4Oaspu_6FCrPvl5b-kzIiKiivi5rXpV4yLpS1gwxNKNkZOu5JehKFSy8YwhR8SxxSrO2dg-ravrDRLqa9dH2L2FxdPjtyzHvyztwKyPR8DgYEWKZ-JBa5ZzVGh176ZTOBF7xKqAq0tM0YItS9lFu4jBzWnlLmdRpiF7BqCgL_xqYU2kkg3WJDh4RESpOLezUxsagOhI-HYMcXlxue-5zmsAyn_UUqcMC57TAeb_AY5isu1Ud-cd9HT6TVKxvJu7u9kRZX-W9Ksh9yBy6kXh_EDKJhHbpzHpthFDKCSPHcLCWqYcN--a_e7yFbWp2jJXvYETi8x7RVWP2-z3yBy_YGoY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+recursive+Riccati+interior-point+method+for+chance-constrained+stochastic+model+predictive+control&rft.jtitle=SICE+journal+of+control%2C+measurement%2C+and+system+integration+Online&rft.au=Jingyu+Zhang&rft.au=Toshiyuki+Ohtsuka&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=1884-9970&rft.volume=16&rft.issue=1&rft.spage=273&rft.epage=285&rft_id=info:doi/10.1080%2F18824889.2023.2241163&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ef9d626116f24632ad71ceab2288d2b4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-4889&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-4889&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-4889&client=summon |