A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models

This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for developing artificial neural network (ANN) models. This method is a modified version of the Kennard-Stone (KS) algorithm. With this method, bett...

Full description

Saved in:
Bibliographic Details
Published inChemical product and process modeling Vol. 7; no. 1
Main Authors Saptoro, Agus, Tadé, Moses O., Vuthaluru, Hari
Format Journal Article
LanguageEnglish
Published De Gruyter 31.07.2012
Subjects
Online AccessGet full text
ISSN1934-2659
2194-6159
1934-2659
DOI10.1515/1934-2659.1645

Cover

Abstract This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for developing artificial neural network (ANN) models. This method is a modified version of the Kennard-Stone (KS) algorithm. With this method, better data splitting, in terms of data representation and enhanced performance of developed ANN models, can be achieved. Compared with standard KS algorithm and another improved KS algorithm (data division based on joint x - y distances (SPXY) method), the proposed method has also shown a better performance. Therefore, the proposed technique can be used as an advantageous alternative to other existing methods of data splitting for developing ANN models. Care should be taken when dealing with large amount of dataset since they may increase the computational load for MDKS due to its variance-covariance matrix calculations.
AbstractList This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for developing artificial neural network (ANN) models. This method is a modified version of the Kennard-Stone (KS) algorithm. With this method, better data splitting, in terms of data representation and enhanced performance of developed ANN models, can be achieved. Compared with standard KS algorithm and another improved KS algorithm (data division based on joint x - y distances (SPXY) method), the proposed method has also shown a better performance. Therefore, the proposed technique can be used as an advantageous alternative to other existing methods of data splitting for developing ANN models. Care should be taken when dealing with large amount of dataset since they may increase the computational load for MDKS due to its variance-covariance matrix calculations.
Author Tadé, Moses O.
Vuthaluru, Hari
Saptoro, Agus
Author_xml – sequence: 1
  givenname: Agus
  surname: Saptoro
  fullname: Saptoro, Agus
  organization: Curtin University, Australia
– sequence: 2
  givenname: Moses O.
  surname: Tadé
  fullname: Tadé, Moses O.
  organization: Curtin University, Australia
– sequence: 3
  givenname: Hari
  surname: Vuthaluru
  fullname: Vuthaluru, Hari
  organization: Curtin University, Australia
BookMark eNqFkMtOwzAQRS1UJCiwZe0fSBvXsZMsIwoU8SiPIpaWk4yL2zSuHAfo3-O0CCEkxGpG4zn3em4f9WpTA0KnJBwQRtiQpDQKRpylA8IjtocOvwe9H_0B6jfNIgzZiEfpITIZvjWlVhpKfA11LW0ZPDkvjLNqbqx2ryusjMXTtdMrWeGxftONNjU2Co-lk9vHMbxBZda6nuPMOi9WaL96B63dFvdu7LKzgao5RvtKVg2cfNUj9HxxPjubBDfTy6uz7CYoIjpyQVTmlLGc53GcguSkUEBjoFwCJHGZJjwBBbKMgPEkpyEUJCcyjVLgKlfAJD1Cw51uW6_l5l1WlVhbf4HdCBKKLi_RRSK6SESXlyeiHVFY0zQWlCi0k87f6qzU1d_Y4Bf2r0-yA_ynHNgS5rbd-EYsTGtrn8kfYEw8GuxQ3Tj4-DaSdil4TGMmHmYeeCGT0eRxJu7pJ6t_occ
CitedBy_id crossref_primary_10_3390_rs14195054
crossref_primary_10_5424_sjar_2018162_11805
crossref_primary_10_1038_s41598_025_91235_1
crossref_primary_10_1007_s11042_020_10384_9
crossref_primary_10_1016_j_saa_2018_07_067
crossref_primary_10_32628_CSEIT2139028
crossref_primary_10_3390_app10228226
crossref_primary_10_3390_molecules24142559
crossref_primary_10_1016_j_sciaf_2022_e01291
crossref_primary_10_1080_10942912_2018_1453838
crossref_primary_10_1364_AO_455024
crossref_primary_10_1364_AO_430980
crossref_primary_10_1080_00032719_2020_1719126
crossref_primary_10_1016_j_proche_2014_05_027
crossref_primary_10_1080_23312009_2018_1432520
crossref_primary_10_1007_s11030_016_9684_9
crossref_primary_10_1021_acs_jcim_3c01338
crossref_primary_10_1080_00032719_2017_1416622
crossref_primary_10_1007_s42977_023_00188_x
crossref_primary_10_1080_10298436_2022_2095385
crossref_primary_10_1080_10942912_2019_1588299
crossref_primary_10_1007_s10845_013_0734_1
crossref_primary_10_3389_fpls_2022_927832
crossref_primary_10_1016_j_foodchem_2014_07_008
crossref_primary_10_3390_s25041264
crossref_primary_10_3390_foods12142756
crossref_primary_10_1021_acs_jctc_2c00915
crossref_primary_10_1007_s00170_014_6679_5
crossref_primary_10_1002_cem_3376
crossref_primary_10_23736_S2724_542X_20_02669_5
crossref_primary_10_1038_s41598_024_59734_9
crossref_primary_10_3390_app10175754
crossref_primary_10_1038_s41598_017_16254_z
crossref_primary_10_1080_00032719_2019_1692857
crossref_primary_10_3389_fonc_2021_790894
crossref_primary_10_1038_srep32368
crossref_primary_10_1108_EC_03_2014_0047
crossref_primary_10_1080_00032719_2017_1385618
crossref_primary_10_1109_ACCESS_2020_3007862
crossref_primary_10_3390_s18030742
crossref_primary_10_1080_10942912_2020_1716793
crossref_primary_10_1590_0103_8478cr20201072
crossref_primary_10_3136_fstr_22_267
crossref_primary_10_1515_psr_2019_0137
crossref_primary_10_1016_j_foodchem_2021_129717
crossref_primary_10_1080_17538947_2023_2192005
crossref_primary_10_3390_catal10040361
crossref_primary_10_3390_s20113074
crossref_primary_10_1007_s12145_023_01013_8
crossref_primary_10_1111_2041_210X_13143
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1515/1934-2659.1645
DatabaseName Istex
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1934-2659
ExternalDocumentID oai:espace.curtin.edu.au:20.500.11937/45101
10_1515_1934_2659_1645
10_1515_1934_2659_164571
ark_67375_QT4_2W1H2HRT_P
GroupedDBID -~S
0R~
1WD
29B
4.4
5GY
6J9
9-L
AAAEU
AAAVF
AACIX
AAFPC
AAGVJ
AAILP
AAKRG
AALGR
AAONY
AAPJK
AAQCX
AASQH
AASQN
AAWFC
AAXCG
AAXMT
ABABW
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABLVI
ABPLS
ABRQL
ABUVI
ABVMU
ABWLS
ABXMZ
ACEFL
ACGFO
ACGFS
ACHNZ
ACMKP
ACONX
ACPMA
ACXLN
ACZBO
ADALX
ADEQT
ADGQD
ADGYE
ADOZN
ADUQZ
AEDGQ
AEGVQ
AEICA
AEJQW
AEKEB
AEMOE
AEQDQ
AEQLX
AERZL
AEXIE
AFAUI
AFBAA
AFBQV
AFCXV
AFGNR
AFQUK
AFYRI
AGBEV
AGGNV
AGWTP
AHCWZ
AHVWV
AHXUK
AIERV
AIKXB
AJATJ
AJPIC
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
AMAVY
ASPBG
ASYPN
AVWKF
AZFZN
AZMOX
BAKPI
BBCWN
BBDJO
BCIFA
BDLBQ
BSCLL
CS3
DASCH
DBYYV
EBS
EJD
FEDTE
FSTRU
HH5
HVGLF
HZ~
IY9
K.~
KDIRW
LG7
MV1
NQBSW
O9-
P2P
QD8
SA.
T2Y
UK5
WTRAM
~Z8
ACDEB
ACRPL
ACUND
ADNMO
ADNPR
AECWL
AFBDD
AFSHE
AGQPQ
AGQYU
AIWOI
CKPZI
DSRVY
LVMAB
AAYXX
CITATION
8AO
ADTOC
H13
ROL
RYL
SLJYH
UNPAY
ID FETCH-LOGICAL-c432t-4db355b6b779ea61cfe37e36aee87d9868efead4e568b30ec1b1a949e6fbfe5a3
IEDL.DBID UNPAY
ISSN 1934-2659
2194-6159
IngestDate Sun Oct 26 04:07:44 EDT 2025
Wed Oct 01 04:34:32 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Sat Sep 06 17:03:56 EDT 2025
Wed Oct 30 09:30:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-4db355b6b779ea61cfe37e36aee87d9868efead4e568b30ec1b1a949e6fbfe5a3
Notes istex:64514D6F5B7BD8FCCFCA46108456A6AC997C547E
ark:/67375/QT4-2W1H2HRT-P
ArticleID:1934-2659.1645
1934-2659.1645.pdf
OpenAccessLink https://proxy.k.utb.cz/login?url=https://espace.curtin.edu.au/bitstream/20.500.11937/45101/2/217844_70585_PUB-SE-DCE-FM-71008.pdf
PageCount 16
ParticipantIDs unpaywall_primary_10_1515_1934_2659_1645
crossref_citationtrail_10_1515_1934_2659_1645
crossref_primary_10_1515_1934_2659_1645
walterdegruyter_journals_10_1515_1934_2659_164571
istex_primary_ark_67375_QT4_2W1H2HRT_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-7-31
PublicationDateYYYYMMDD 2012-07-31
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-7-31
  day: 31
PublicationDecade 2010
PublicationTitle Chemical product and process modeling
PublicationYear 2012
Publisher De Gruyter
Publisher_xml – name: De Gruyter
SSID ssj0052649
Score 2.2896407
Snippet This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for...
SourceID unpaywall
crossref
walterdegruyter
istex
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms ANN models
data division
kennard-stone algorithm
MDKS
Title A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models
URI https://api.istex.fr/ark:/67375/QT4-2W1H2HRT-P/fulltext.pdf
https://www.degruyter.com/doi/10.1515/1934-2659.1645
https://espace.curtin.edu.au/bitstream/20.500.11937/45101/2/217844_70585_PUB-SE-DCE-FM-71008.pdf
UnpaywallVersion submittedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAZK
  databaseName: De Gruyter Journals (UEF Package)
  customDbUrl:
  eissn: 1934-2659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0052649
  issn: 1934-2659
  databaseCode: AGBEV
  dateStart: 20060501
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a7QF6GN-iDKYcEHBx2iSOnRyztaVC6iiohXHy7MQZ1fqlLtEYN_5znvMlmDTBhVMU2bGT-Pf8fv54PwO8CmgcpizQBL01J0YRnOA9IzSWSoYBk8w38c6TEzae0_en_ukenNWxMBrtyJyskZsY-nq-Qi0yEzkhVzhUt_2-sXP0qj1q8NRze8iqA0oF7yP1FdP5EfZEZHA8JKMJKbRr7G2S3oE285Gtt6A9P5lGX8vFZkpcVpynhnZLcRTlh5WuI3r5XpNu45DC_8NvtU0TfO_A3Xy9lddXcrnswP5Vsb6d6PNdfp3V66mFmxrdh5_1B5a7Uy7sPFN2_OOG9uP__AMPYL_iuFZUgvIh7On1I-j8pnz4GDaRNdkkixQJsGX6erN1t9AFt6Ll-Wa3yL6tLKTT1gfs0VZY1mBRBsFbm9QayEwWiYMm4Kuoq9TCsIzcSHEp9rebatD9P4H5aDg7HpPq7AcSU8_NCE0UMiHFFOehlsyJU-1x7TGpdcATBFGgUzQCqn0WKK-vY0c5MqShZqlKtS-9p9Ba41s_AytUoRPwmMWeR00APTJ0GUiWIjfW3HF4F0jdsiKuhNHN-RxLYQZIiARhkCAMEoRBQhfeNPm3pSTIrTlfF0BpssndhdlIx33xcYb5vjhjd_xpJqZdeNsg6a9lOjeAJqpe5_KWJ7jz_N-LP4B7SAndcvb6BbSyXa5fIu3K1CG0o3dHw8-HlQX9As9SH7Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_B-jD6ML5FGR9-QMBLWtI4dvxY6EaAdXyoY3uzbMfZqqXN1CUa46_nnKRRGZqQ4CmKcnac89n3s3P3M8CLiBqRssh66K255xjBPbxnHjVKKxExxUKX7zzZZ_EB_XgUHq3lwriwysQeL8vLomZIHSS5Kd1GWcs1gB54gLCDekMWij7C_XBwUsyzm9DBxQrFwdkZvX-78301H4fo8kVD1_hn0d_cUcdp9kcXNsvFmbq8UFnWha2L6rd126Y177N7G8yq3XXQyWm_LHTf_LxC6fh_H3YHthpwSka1Nd2FG3ZxD7prlIX3IR-RSZ7MUkSuxE3SLua2IvQmo-w4X86KkzlBHEw-41Q0x7rGszp7neQpGatCVQ_HbaZW9a6axII4npDqUgWmu9eg334AB7s703ex1xza4BkaDAuPJhohjGaac2EV801qA24DpqyNeIK9H9kUrZfakEU6eGONr30lqLAs1akNVfAQNhbY6kdAhBZ-xA0zQUBd5jtCaxUpliKotdz3eQ-8Vd9J0zCau4M1MulWNqhN6bQpnTal02YPXrXyZzWXx7WSLytTaMXU8tRFwPFQfp2i3KEfD-NvU_mlB69bW_lrnf4VU5LNdHF-TQnuP_6HMs9hM55O9uTeh_1P23ALAd6w3ot-AhvFsrRPEUQV-lkzSn4BhlIVwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BKwF9GF9DlE8_IOAlLW4cO3ksdKV8bAzUwd4s27FHta6pukRj--t3TtJoDE1I8BRFOTvO-XL3i3P3M8CLmJnE8dgGGK1F4BnBAzznATNKqyTmike-3nl7h0_22Mf9aJ1NeFynVab2YFWc5hVDaj_NTOEXyhquAYzAfYQdLBjwKOkh3I_6y9RdhzbGes5a0B6-f7v1fe2OI4z4Sc3W-GfL36JR2yv2VwduFoulOj1R83kHNk7Kv9bNkC4En_Ft0OthVzknh70i1z1zdonR8b-e6w5s1NCUDCtbugvX7OIedC4QFt6HbEi2s3TmELcS76J9xm1J502G84NsNct_HhFEweQLOqIj7Gs0q2rXSebISOWqvDhq6rTKe1UUFsSzhJSHMi3d3waj9ibsjbem7yZBvWVDYFg4yAOWagQwmmshEqs4Nc6GwoZcWRuLFOc-tg5tl9mIxzp8Yw3VVCUssdxpZyMVPoDWAkf9EEiiExoLw00YMl_3jsBaxYo7hLRWUCq6EKynTpqaz9xvqzGX_rsGlSm9MqVXpvTK7MKrRn5ZMXlcKfmytIRGTK0Off6biOTXKcr9oJPB5NtU7nbhdWMqf-2TXrIkWTuL4ytaCProH9o8hxu7o7H8_GHn02O4hehuUC1EP4FWvirsU0RQuX5WvyPnYhUUeQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFH4a2gP0MKwjyiYfEHBx2ySOnRzLdKoKqUNBrRhOxk6coZpuKomG4cY_59lZBCON4MIpiuzYSfw9v8_L-wzwMmJJnPHIUPTWglpFcIr3nLJEaRVHXPHQxjtPT_lkwd6dhWcH8KWOhTFoR_ZkjcLG0NfzFXqZ28gJtcahei8cWDtHr9pnFk99v4-sOmJMigFSXzlbvMWeiI6OT-h4Sp12TW-XZregzUNk6y1oL05nw8_lYjOjPnfnqaHdMhxFhXGl64hevt-k93BIEf7ht9q2Cb534Hax2amrS7VadeDw0q1vp-Z8X1zl9Xqqc1Pju_Cz_sByd8pFr8h1L_lxTfvxf_6Be3BYcVwyLEF5Hw7M5gF0flM-fAjbIZlu02WGBJjYvt5u3XW64GS4Ot_ul_nXNUE6Td5jj7bGskbLMgiebDMyUrlyiaMm4MvVVWphECs34i5uf7utBt3_I1iMT-bHE1qd_UATFvg5ZalGJqS5FiI2intJZgJhAq6MiUSKIIpMhkbATMgjHQxM4mlPxSw2PNOZCVVwBK0NvvVjILGOvUgkPAkCZgPokaGrSPEMubERnie6QOuWlUkljG7P51hJO0BCJEiLBGmRIC0SuvC6yb8rJUFuzPnKAaXJpvYXdiOdCOWHOeb75E38yce5nHXhTYOkv5bpXQOarHqdbzc8Ibwn_178U7iDlNAvZ6-fQSvfF-Y50q5cv6gs5xfaDh4s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Modified+Kennard-Stone+Algorithm+for+Optimal+Division+of+Data+for+Developing+Artificial+Neural+Network+Models&rft.jtitle=Chemical+product+and+process+modeling&rft.au=Saptoro%2C+Agus&rft.au=Tad%C3%A9%2C+Moses+O.&rft.au=Vuthaluru%2C+Hari&rft.date=2012-07-31&rft.issn=1934-2659&rft.eissn=1934-2659&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1515%2F1934-2659.1645&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_1934_2659_1645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-2659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-2659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-2659&client=summon