A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models
This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for developing artificial neural network (ANN) models. This method is a modified version of the Kennard-Stone (KS) algorithm. With this method, bett...
        Saved in:
      
    
          | Published in | Chemical product and process modeling Vol. 7; no. 1 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            De Gruyter
    
        31.07.2012
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1934-2659 2194-6159 1934-2659  | 
| DOI | 10.1515/1934-2659.1645 | 
Cover
| Abstract | This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for developing artificial neural network (ANN) models. This method is a modified version of the Kennard-Stone (KS) algorithm. With this method, better data splitting, in terms of data representation and enhanced performance of developed ANN models, can be achieved. Compared with standard KS algorithm and another improved KS algorithm (data division based on joint x - y distances (SPXY) method), the proposed method has also shown a better performance. Therefore, the proposed technique can be used as an advantageous alternative to other existing methods of data splitting for developing ANN models. Care should be taken when dealing with large amount of dataset since they may increase the computational load for MDKS due to its variance-covariance matrix calculations. | 
    
|---|---|
| AbstractList | This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for developing artificial neural network (ANN) models. This method is a modified version of the Kennard-Stone (KS) algorithm. With this method, better data splitting, in terms of data representation and enhanced performance of developed ANN models, can be achieved. Compared with standard KS algorithm and another improved KS algorithm (data division based on joint x - y distances (SPXY) method), the proposed method has also shown a better performance. Therefore, the proposed technique can be used as an advantageous alternative to other existing methods of data splitting for developing ANN models. Care should be taken when dealing with large amount of dataset since they may increase the computational load for MDKS due to its variance-covariance matrix calculations. | 
    
| Author | Tadé, Moses O. Vuthaluru, Hari Saptoro, Agus  | 
    
| Author_xml | – sequence: 1 givenname: Agus surname: Saptoro fullname: Saptoro, Agus organization: Curtin University, Australia – sequence: 2 givenname: Moses O. surname: Tadé fullname: Tadé, Moses O. organization: Curtin University, Australia – sequence: 3 givenname: Hari surname: Vuthaluru fullname: Vuthaluru, Hari organization: Curtin University, Australia  | 
    
| BookMark | eNqFkMtOwzAQRS1UJCiwZe0fSBvXsZMsIwoU8SiPIpaWk4yL2zSuHAfo3-O0CCEkxGpG4zn3em4f9WpTA0KnJBwQRtiQpDQKRpylA8IjtocOvwe9H_0B6jfNIgzZiEfpITIZvjWlVhpKfA11LW0ZPDkvjLNqbqx2ryusjMXTtdMrWeGxftONNjU2Co-lk9vHMbxBZda6nuPMOi9WaL96B63dFvdu7LKzgao5RvtKVg2cfNUj9HxxPjubBDfTy6uz7CYoIjpyQVTmlLGc53GcguSkUEBjoFwCJHGZJjwBBbKMgPEkpyEUJCcyjVLgKlfAJD1Cw51uW6_l5l1WlVhbf4HdCBKKLi_RRSK6SESXlyeiHVFY0zQWlCi0k87f6qzU1d_Y4Bf2r0-yA_ynHNgS5rbd-EYsTGtrn8kfYEw8GuxQ3Tj4-DaSdil4TGMmHmYeeCGT0eRxJu7pJ6t_occ | 
    
| CitedBy_id | crossref_primary_10_3390_rs14195054 crossref_primary_10_5424_sjar_2018162_11805 crossref_primary_10_1038_s41598_025_91235_1 crossref_primary_10_1007_s11042_020_10384_9 crossref_primary_10_1016_j_saa_2018_07_067 crossref_primary_10_32628_CSEIT2139028 crossref_primary_10_3390_app10228226 crossref_primary_10_3390_molecules24142559 crossref_primary_10_1016_j_sciaf_2022_e01291 crossref_primary_10_1080_10942912_2018_1453838 crossref_primary_10_1364_AO_455024 crossref_primary_10_1364_AO_430980 crossref_primary_10_1080_00032719_2020_1719126 crossref_primary_10_1016_j_proche_2014_05_027 crossref_primary_10_1080_23312009_2018_1432520 crossref_primary_10_1007_s11030_016_9684_9 crossref_primary_10_1021_acs_jcim_3c01338 crossref_primary_10_1080_00032719_2017_1416622 crossref_primary_10_1007_s42977_023_00188_x crossref_primary_10_1080_10298436_2022_2095385 crossref_primary_10_1080_10942912_2019_1588299 crossref_primary_10_1007_s10845_013_0734_1 crossref_primary_10_3389_fpls_2022_927832 crossref_primary_10_1016_j_foodchem_2014_07_008 crossref_primary_10_3390_s25041264 crossref_primary_10_3390_foods12142756 crossref_primary_10_1021_acs_jctc_2c00915 crossref_primary_10_1007_s00170_014_6679_5 crossref_primary_10_1002_cem_3376 crossref_primary_10_23736_S2724_542X_20_02669_5 crossref_primary_10_1038_s41598_024_59734_9 crossref_primary_10_3390_app10175754 crossref_primary_10_1038_s41598_017_16254_z crossref_primary_10_1080_00032719_2019_1692857 crossref_primary_10_3389_fonc_2021_790894 crossref_primary_10_1038_srep32368 crossref_primary_10_1108_EC_03_2014_0047 crossref_primary_10_1080_00032719_2017_1385618 crossref_primary_10_1109_ACCESS_2020_3007862 crossref_primary_10_3390_s18030742 crossref_primary_10_1080_10942912_2020_1716793 crossref_primary_10_1590_0103_8478cr20201072 crossref_primary_10_3136_fstr_22_267 crossref_primary_10_1515_psr_2019_0137 crossref_primary_10_1016_j_foodchem_2021_129717 crossref_primary_10_1080_17538947_2023_2192005 crossref_primary_10_3390_catal10040361 crossref_primary_10_3390_s20113074 crossref_primary_10_1007_s12145_023_01013_8 crossref_primary_10_1111_2041_210X_13143  | 
    
| ContentType | Journal Article | 
    
| DBID | BSCLL AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1515/1934-2659.1645 | 
    
| DatabaseName | Istex CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1934-2659 | 
    
| ExternalDocumentID | oai:espace.curtin.edu.au:20.500.11937/45101 10_1515_1934_2659_1645 10_1515_1934_2659_164571 ark_67375_QT4_2W1H2HRT_P  | 
    
| GroupedDBID | -~S 0R~ 1WD 29B 4.4 5GY 6J9 9-L AAAEU AAAVF AACIX AAFPC AAGVJ AAILP AAKRG AALGR AAONY AAPJK AAQCX AASQH AASQN AAWFC AAXCG AAXMT ABABW ABAOT ABAQN ABFKT ABIQR ABJNI ABLVI ABPLS ABRQL ABUVI ABVMU ABWLS ABXMZ ACEFL ACGFO ACGFS ACHNZ ACMKP ACONX ACPMA ACXLN ACZBO ADALX ADEQT ADGQD ADGYE ADOZN ADUQZ AEDGQ AEGVQ AEICA AEJQW AEKEB AEMOE AEQDQ AEQLX AERZL AEXIE AFAUI AFBAA AFBQV AFCXV AFGNR AFQUK AFYRI AGBEV AGGNV AGWTP AHCWZ AHVWV AHXUK AIERV AIKXB AJATJ AJPIC AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF ALWYM AMAVY ASPBG ASYPN AVWKF AZFZN AZMOX BAKPI BBCWN BBDJO BCIFA BDLBQ BSCLL CS3 DASCH DBYYV EBS EJD FEDTE FSTRU HH5 HVGLF HZ~ IY9 K.~ KDIRW LG7 MV1 NQBSW O9- P2P QD8 SA. T2Y UK5 WTRAM ~Z8 ACDEB ACRPL ACUND ADNMO ADNPR AECWL AFBDD AFSHE AGQPQ AGQYU AIWOI CKPZI DSRVY LVMAB AAYXX CITATION 8AO ADTOC H13 ROL RYL SLJYH UNPAY  | 
    
| ID | FETCH-LOGICAL-c432t-4db355b6b779ea61cfe37e36aee87d9868efead4e568b30ec1b1a949e6fbfe5a3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1934-2659 2194-6159  | 
    
| IngestDate | Sun Oct 26 04:07:44 EDT 2025 Wed Oct 01 04:34:32 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Sat Sep 06 17:03:56 EDT 2025 Wed Oct 30 09:30:01 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c432t-4db355b6b779ea61cfe37e36aee87d9868efead4e568b30ec1b1a949e6fbfe5a3 | 
    
| Notes | istex:64514D6F5B7BD8FCCFCA46108456A6AC997C547E ark:/67375/QT4-2W1H2HRT-P ArticleID:1934-2659.1645 1934-2659.1645.pdf  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://espace.curtin.edu.au/bitstream/20.500.11937/45101/2/217844_70585_PUB-SE-DCE-FM-71008.pdf | 
    
| PageCount | 16 | 
    
| ParticipantIDs | unpaywall_primary_10_1515_1934_2659_1645 crossref_citationtrail_10_1515_1934_2659_1645 crossref_primary_10_1515_1934_2659_1645 walterdegruyter_journals_10_1515_1934_2659_164571 istex_primary_ark_67375_QT4_2W1H2HRT_P  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-7-31 | 
    
| PublicationDateYYYYMMDD | 2012-07-31 | 
    
| PublicationDate_xml | – month: 07 year: 2012 text: 2012-7-31 day: 31  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Chemical product and process modeling | 
    
| PublicationYear | 2012 | 
    
| Publisher | De Gruyter | 
    
| Publisher_xml | – name: De Gruyter | 
    
| SSID | ssj0052649 | 
    
| Score | 2.2896407 | 
    
| Snippet | This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for... | 
    
| SourceID | unpaywall crossref walterdegruyter istex  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | ANN models data division kennard-stone algorithm MDKS  | 
    
| Title | A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models | 
    
| URI | https://api.istex.fr/ark:/67375/QT4-2W1H2HRT-P/fulltext.pdf https://www.degruyter.com/doi/10.1515/1934-2659.1645 https://espace.curtin.edu.au/bitstream/20.500.11937/45101/2/217844_70585_PUB-SE-DCE-FM-71008.pdf  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAZK databaseName: De Gruyter Journals (UEF Package) customDbUrl: eissn: 1934-2659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0052649 issn: 1934-2659 databaseCode: AGBEV dateStart: 20060501 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a7QF6GN-iDKYcEHBx2iSOnRyztaVC6iiohXHy7MQZ1fqlLtEYN_5znvMlmDTBhVMU2bGT-Pf8fv54PwO8CmgcpizQBL01J0YRnOA9IzSWSoYBk8w38c6TEzae0_en_ukenNWxMBrtyJyskZsY-nq-Qi0yEzkhVzhUt_2-sXP0qj1q8NRze8iqA0oF7yP1FdP5EfZEZHA8JKMJKbRr7G2S3oE285Gtt6A9P5lGX8vFZkpcVpynhnZLcRTlh5WuI3r5XpNu45DC_8NvtU0TfO_A3Xy9lddXcrnswP5Vsb6d6PNdfp3V66mFmxrdh5_1B5a7Uy7sPFN2_OOG9uP__AMPYL_iuFZUgvIh7On1I-j8pnz4GDaRNdkkixQJsGX6erN1t9AFt6Ll-Wa3yL6tLKTT1gfs0VZY1mBRBsFbm9QayEwWiYMm4Kuoq9TCsIzcSHEp9rebatD9P4H5aDg7HpPq7AcSU8_NCE0UMiHFFOehlsyJU-1x7TGpdcATBFGgUzQCqn0WKK-vY0c5MqShZqlKtS-9p9Ba41s_AytUoRPwmMWeR00APTJ0GUiWIjfW3HF4F0jdsiKuhNHN-RxLYQZIiARhkCAMEoRBQhfeNPm3pSTIrTlfF0BpssndhdlIx33xcYb5vjhjd_xpJqZdeNsg6a9lOjeAJqpe5_KWJ7jz_N-LP4B7SAndcvb6BbSyXa5fIu3K1CG0o3dHw8-HlQX9As9SH7Q | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_B-jD6ML5FGR9-QMBLWtI4dvxY6EaAdXyoY3uzbMfZqqXN1CUa46_nnKRRGZqQ4CmKcnac89n3s3P3M8CLiBqRssh66K255xjBPbxnHjVKKxExxUKX7zzZZ_EB_XgUHq3lwriwysQeL8vLomZIHSS5Kd1GWcs1gB54gLCDekMWij7C_XBwUsyzm9DBxQrFwdkZvX-78301H4fo8kVD1_hn0d_cUcdp9kcXNsvFmbq8UFnWha2L6rd126Y177N7G8yq3XXQyWm_LHTf_LxC6fh_H3YHthpwSka1Nd2FG3ZxD7prlIX3IR-RSZ7MUkSuxE3SLua2IvQmo-w4X86KkzlBHEw-41Q0x7rGszp7neQpGatCVQ_HbaZW9a6axII4npDqUgWmu9eg334AB7s703ex1xza4BkaDAuPJhohjGaac2EV801qA24DpqyNeIK9H9kUrZfakEU6eGONr30lqLAs1akNVfAQNhbY6kdAhBZ-xA0zQUBd5jtCaxUpliKotdz3eQ-8Vd9J0zCau4M1MulWNqhN6bQpnTal02YPXrXyZzWXx7WSLytTaMXU8tRFwPFQfp2i3KEfD-NvU_mlB69bW_lrnf4VU5LNdHF-TQnuP_6HMs9hM55O9uTeh_1P23ALAd6w3ot-AhvFsrRPEUQV-lkzSn4BhlIVwA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BKwF9GF9DlE8_IOAlLW4cO3ksdKV8bAzUwd4s27FHta6pukRj--t3TtJoDE1I8BRFOTvO-XL3i3P3M8CLmJnE8dgGGK1F4BnBAzznATNKqyTmike-3nl7h0_22Mf9aJ1NeFynVab2YFWc5hVDaj_NTOEXyhquAYzAfYQdLBjwKOkh3I_6y9RdhzbGes5a0B6-f7v1fe2OI4z4Sc3W-GfL36JR2yv2VwduFoulOj1R83kHNk7Kv9bNkC4En_Ft0OthVzknh70i1z1zdonR8b-e6w5s1NCUDCtbugvX7OIedC4QFt6HbEi2s3TmELcS76J9xm1J502G84NsNct_HhFEweQLOqIj7Gs0q2rXSebISOWqvDhq6rTKe1UUFsSzhJSHMi3d3waj9ibsjbem7yZBvWVDYFg4yAOWagQwmmshEqs4Nc6GwoZcWRuLFOc-tg5tl9mIxzp8Yw3VVCUssdxpZyMVPoDWAkf9EEiiExoLw00YMl_3jsBaxYo7hLRWUCq6EKynTpqaz9xvqzGX_rsGlSm9MqVXpvTK7MKrRn5ZMXlcKfmytIRGTK0Off6biOTXKcr9oJPB5NtU7nbhdWMqf-2TXrIkWTuL4ytaCProH9o8hxu7o7H8_GHn02O4hehuUC1EP4FWvirsU0RQuX5WvyPnYhUUeQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFH4a2gP0MKwjyiYfEHBx2ySOnRzLdKoKqUNBrRhOxk6coZpuKomG4cY_59lZBCON4MIpiuzYSfw9v8_L-wzwMmJJnPHIUPTWglpFcIr3nLJEaRVHXPHQxjtPT_lkwd6dhWcH8KWOhTFoR_ZkjcLG0NfzFXqZ28gJtcahei8cWDtHr9pnFk99v4-sOmJMigFSXzlbvMWeiI6OT-h4Sp12TW-XZregzUNk6y1oL05nw8_lYjOjPnfnqaHdMhxFhXGl64hevt-k93BIEf7ht9q2Cb534Hax2amrS7VadeDw0q1vp-Z8X1zl9Xqqc1Pju_Cz_sByd8pFr8h1L_lxTfvxf_6Be3BYcVwyLEF5Hw7M5gF0flM-fAjbIZlu02WGBJjYvt5u3XW64GS4Ot_ul_nXNUE6Td5jj7bGskbLMgiebDMyUrlyiaMm4MvVVWphECs34i5uf7utBt3_I1iMT-bHE1qd_UATFvg5ZalGJqS5FiI2intJZgJhAq6MiUSKIIpMhkbATMgjHQxM4mlPxSw2PNOZCVVwBK0NvvVjILGOvUgkPAkCZgPokaGrSPEMubERnie6QOuWlUkljG7P51hJO0BCJEiLBGmRIC0SuvC6yb8rJUFuzPnKAaXJpvYXdiOdCOWHOeb75E38yce5nHXhTYOkv5bpXQOarHqdbzc8Ibwn_178U7iDlNAvZ6-fQSvfF-Y50q5cv6gs5xfaDh4s | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Modified+Kennard-Stone+Algorithm+for+Optimal+Division+of+Data+for+Developing+Artificial+Neural+Network+Models&rft.jtitle=Chemical+product+and+process+modeling&rft.au=Saptoro%2C+Agus&rft.au=Tad%C3%A9%2C+Moses+O.&rft.au=Vuthaluru%2C+Hari&rft.date=2012-07-31&rft.issn=1934-2659&rft.eissn=1934-2659&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1515%2F1934-2659.1645&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_1934_2659_1645 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-2659&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-2659&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-2659&client=summon |