A Semi-Automated RGB-Based Method for Wildlife Crop Damage Detection Using QGIS-Integrated UAV Workflow
Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned a...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 15; p. 4734 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
31.07.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25154734 |
Cover
| Abstract | Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices—Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)—based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts—DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the “moderate” and “low” vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management. |
|---|---|
| AbstractList | Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices—Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)—based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts—DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the “moderate” and “low” vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management. What are the main findings? A semi-automated method was developed for detecting maize crop damage using UAV-acquired RGB imagery, fully integrated within the QGIS environment. The method uses vegetation indices (ExG, GLI, MGRVI) and unsupervised k-means clustering, with interactive result tuning via a dedicated QGIS plugin. What is the implication of the main finding? The proposed approach enables fast, repeatable, and low-cost wildlife damage assessments without the need for multispectral sensors or artificial intelligence. The method can be operationally used by non-specialists without GIS or coding skills, making it ideal for farmers, field technicians, and local environmental managers. Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices—Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)—based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts—DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the “moderate” and “low” vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management. Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices-Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)-based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts-DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the "moderate" and "low" vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management.Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices-Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)-based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts-DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the "moderate" and "low" vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management. |
| Author | Szota, Michał Banaszek, Sebastian |
| AuthorAffiliation | 1 Institute of Geodesy and Cartography, 27 Modzelewski Street, 02-679 Warsaw, Poland 2 Fire Academy, 52/54 Slowackiego Street, 01-629 Warsaw, Poland; mszota@apoz.edu.pl |
| AuthorAffiliation_xml | – name: 2 Fire Academy, 52/54 Slowackiego Street, 01-629 Warsaw, Poland; mszota@apoz.edu.pl – name: 1 Institute of Geodesy and Cartography, 27 Modzelewski Street, 02-679 Warsaw, Poland |
| Author_xml | – sequence: 1 givenname: Sebastian orcidid: 0000-0001-6470-6270 surname: Banaszek fullname: Banaszek, Sebastian – sequence: 2 givenname: Michał surname: Szota fullname: Szota, Michał |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40807897$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV1v0zAUhi00xD7ggj-AInEDSAHbx2mSq6nroFQaQjDKLi3XPslSHLvYCdP-PaYd1cYFkiWfYz96dPz6mBw475CQ54y-Bajpu8gLVogSxCNyxAQXecU5PbhXH5LjGNeUcgConpBDQStaVnV5RNppdol9l0_HwfdqQJN9nZ_lZyqm6hMO195kjQ_ZVWeN7RrMZsFvsnPVqxazcxxQD5132TJ2rs2-zBeX-cIN2IataTn9nl358KOx_uYpedwoG_HZ3X5Clh_ef5t9zC8-zxez6UWuBfAhB-RqVVPBuBKC4QrYShvAhhmONVcaGqqaVABSwzSvQGlep85URV2UBcIJWey8xqu13ISuV-FWetXJ7YEPrVRh6LRFOQE10SgKgxMQrKlWgKIsKWVMYw2VTq43O9foNur2Rlm7FzIq_yQv98kn-HQHb8ZVj0ajG4KyDyZ4eOO6a9n6X5JxEDUwlgyv7gzB_xwxDrLvokZrlUM_RgkcakF5UUNCX_6Drv0YXAp2S9GqTCtRL-6PtJ_l7-8n4PUO0MHHGLD5z_t-A1SSvG0 |
| Cites_doi | 10.3390/s24248172 10.1016/j.cropro.2025.107233 10.3390/rs11131548 10.3390/rs16071254 10.1016/j.landusepol.2025.107552 10.20944/preprints202311.0934.v1 10.3390/agronomy15010238 10.1007/s13593-011-0057-6 10.3389/fsufs.2025.1551460 10.3390/rs17050904 10.1016/j.isprsjprs.2024.05.021 10.5194/isprs-archives-XLVIII-G-2025-739-2025 10.1016/j.rse.2023.113665 10.1007/s11119-024-10180-7 10.1088/1748-9326/ad8c69 10.13031/2013.27838 10.1109/ICCRE57112.2023.10155582 10.1145/3703323.3703327 10.3390/ani15111587 10.3390/rs16234371 10.3390/rs10040563 10.3390/rs16234564 10.1038/s41598-025-00232-x 10.1007/s10530-022-02872-w |
| ContentType | Journal Article |
| Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s25154734 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_63a6ce45de6341f8b3e4770011ce938c 10.3390/s25154734 PMC12349311 40807897 10_3390_s25154734 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PUEGO 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c432t-3e2ab90412a441eb31bcd3ef1d2e92ac3f0af92a3e0d1c283ac29a3ed859575e3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:44:32 EDT 2025 Sun Oct 26 04:15:26 EDT 2025 Tue Sep 30 17:02:53 EDT 2025 Thu Oct 02 21:51:46 EDT 2025 Tue Oct 07 07:32:05 EDT 2025 Thu Sep 04 05:03:06 EDT 2025 Thu Oct 16 04:42:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | UAV crop damage RGB QGIS vegetation indices |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c432t-3e2ab90412a441eb31bcd3ef1d2e92ac3f0af92a3e0d1c283ac29a3ed859575e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6470-6270 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25154734 |
| PMID | 40807897 |
| PQID | 3239087087 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_63a6ce45de6341f8b3e4770011ce938c unpaywall_primary_10_3390_s25154734 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12349311 proquest_miscellaneous_3239402593 proquest_journals_3239087087 pubmed_primary_40807897 crossref_primary_10_3390_s25154734 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-31 |
| PublicationDateYYYYMMDD | 2025-07-31 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Hegel (ref_3) 2022; 24 Gao (ref_15) 2023; 289 Woebbecke (ref_9) 1995; 38 ref_14 ref_13 Waters (ref_18) 2024; 16 ref_11 ref_10 Amici (ref_2) 2012; 32 ref_17 ref_16 Yin (ref_19) 2025; 17 Duan (ref_12) 2024; 213 ref_25 ref_24 ref_23 ref_22 Aszkowski (ref_7) 2024; 25 ref_21 ref_20 ref_1 ref_26 ref_8 Zhang (ref_27) 2024; 19 Song (ref_28) 2025; 153 ref_5 Smith (ref_4) 2025; 175 ref_6 |
| References_xml | – ident: ref_17 doi: 10.3390/s24248172 – volume: 175 start-page: 107233 year: 2025 ident: ref_4 article-title: Quantifying Wild Pig (Sus scrofa) Damage to Corn, Cotton, and Peanut Fields Using Unmanned Aerial Systems in Southwestern Georgia, USA publication-title: Crop Prot. doi: 10.1016/j.cropro.2025.107233 – ident: ref_11 doi: 10.3390/rs11131548 – ident: ref_8 doi: 10.3390/rs16071254 – volume: 153 start-page: 107552 year: 2025 ident: ref_28 article-title: Conflicts between ecological and agricultural production functions: The impact of the Grain for Green Program and wildlife damage on cropland abandonment in China’s mountainous areas publication-title: Land Use Policy doi: 10.1016/j.landusepol.2025.107552 – ident: ref_26 doi: 10.20944/preprints202311.0934.v1 – ident: ref_6 doi: 10.3390/agronomy15010238 – volume: 32 start-page: 683 year: 2012 ident: ref_2 article-title: Increase in Crop Damage Caused by Wild Boar (Sus scrofa L.): The “Refuge Effect” publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-011-0057-6 – ident: ref_22 doi: 10.3389/fsufs.2025.1551460 – ident: ref_24 doi: 10.3390/rs17050904 – volume: 213 start-page: 33 year: 2024 ident: ref_12 article-title: Detection and attribution of cereal yield losses using Sentinel-2 and weather data: A case study in South Australia publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2024.05.021 – ident: ref_13 doi: 10.5194/isprs-archives-XLVIII-G-2025-739-2025 – ident: ref_23 – volume: 289 start-page: 113665 year: 2023 ident: ref_15 article-title: Evaluating the Saturation Effect of Vegetation Indices in Forests Using 3D Radiative Transfer Simulations and Satellite Observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113665 – volume: 25 start-page: 2505 year: 2024 ident: ref_7 article-title: Estimation of Corn Crop Damage Caused by Wildlife in UAV Images publication-title: Precis. Agric. doi: 10.1007/s11119-024-10180-7 – volume: 19 start-page: 124029 year: 2024 ident: ref_27 article-title: Crop-raiding by wildlife and cropland abandonment as feedback from nature-based solutions: Lessons from case studies in China and Nepal publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ad8c69 – volume: 38 start-page: 259 year: 1995 ident: ref_9 article-title: Color indices for weed identification under various soil, residue, and lighting conditions publication-title: Trans. ASAE doi: 10.13031/2013.27838 – ident: ref_25 – ident: ref_16 doi: 10.1109/ICCRE57112.2023.10155582 – volume: 17 start-page: 100199 year: 2025 ident: ref_19 article-title: Evaluating War-Induced Damage to Agricultural Land in the Gaza Strip since October 2023 Using PlanetScope and SkySat Imagery publication-title: Remote Sens. – ident: ref_14 doi: 10.1145/3703323.3703327 – ident: ref_1 doi: 10.3390/ani15111587 – ident: ref_21 doi: 10.3390/rs16234371 – ident: ref_10 doi: 10.3390/rs10040563 – ident: ref_20 doi: 10.3390/rs16234564 – ident: ref_5 doi: 10.1038/s41598-025-00232-x – volume: 16 start-page: 109686 year: 2024 ident: ref_18 article-title: Sugarcane Health Monitoring with Satellite Spectroscopy and Machine Learning: A Review publication-title: Remote Sens. – volume: 24 start-page: 3681 year: 2022 ident: ref_3 article-title: Invasion and spatial distribution of wild pigs (Sus scrofa L.) in Brazil publication-title: Biol. Invasions doi: 10.1007/s10530-022-02872-w |
| SSID | ssj0023338 |
| Score | 2.457316 |
| Snippet | Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such... What are the main findings? A semi-automated method was developed for detecting maize crop damage using UAV-acquired RGB imagery, fully integrated within the... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 4734 |
| SubjectTerms | Adaptation Agricultural production Agriculture - methods Algorithms Animals Animals, Wild Automation Calibration Classification Corn Crop damage Crops, Agricultural Data processing Design Heuristic Image Processing, Computer-Assisted - methods Methods Performance evaluation Python QGIS Remote Sensing Technology - methods RGB Sensors UAV Unmanned Aerial Devices Unmanned aerial vehicles Usability Vegetation vegetation indices Workflow Zea mays |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KLm0Ppe-6TYr6uJqsJT-k427ehRTadEtuRpZG6cLGXhIvIf8-I9lrdklKL73ZlmSLGWv0fZL4BuCrlJV1NkvjXAVRbWvjShNr1VlVZFzJSoQ8ZKff8-Np-u08O19L9eXPhHXywJ3hdnOhc4P0Eswp4DpqjGnhN0sTg0pI46PvSKoVmeqpliDm1ekICSL1u9c0i_sku-nG7BNE-h9ClvcPSD5e1gt9e6Pn87XZ5_A5POthIxt33X0Bj7B-CU_XxARfwcWYneHlLB4v24ZgKFr282gST2iWsuw05IlmBFAZhQE7nzlke1fNgu3rSwoobB_bcCSrZuEIAftxdHIWn6yUJCybjn8zv6zu5s3Na5geHvzaO477NAqxSQVvY4FcV8rramnCPkSek8pYgS6xHBXXRriRdnQhcGQTQ3BDG67oznrpsyJD8Qa26qbGd8AKYieOC81zp-l9RqYEoKqce9F7iZmJ4PPKvOWiU8soiWV4H5SDDyKYeMMPFbzAdXhAbi97t5f_cnsE2yu3lf2ouy4Fpw9RAJJFBJ-GYhovfhNE19gsuzrEmTMlInjbeXnoSToK6vvUWm74f6OrmyX17E_Q5CYAkCqRJBF8GX6Vv5vg_f8wwQd4wn0y4rDQvA1b7dUSdwghtdXHMBjuAI9HDOQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwEB6V7QPwUHGWlILM8Rp1Y-d8QGi3N1JX0LKob5Fjj8tK22TZZlXx7xk7B11xvCWx41iesecbe_INwPs0LbTRUejHmSPV1tovJHmtMiqSiGdpIVwesrNJfDINP11Glxsw6f6FsWGV3ZroFmpdKbtHvic4eeekXGnycfHDt1mj7Olql0JDtqkV9AdHMXYPNrllxhrA5vhw8vm8d8EEeWQNv5Cg5vZuyLrb5LvhmlVy5P1_Q5x_Bk7eX5UL-fNWzud3rNLRI9hq4SQbNfJ_DBtYPoGHd0gGn8LViF3g9cwfreqK4Clqdn489sdkvTQ7c_mjGQFXRsuDns8Msv1ltWAH8poWGnaAtQvVKpkLLWBfjk8v_NOOYUKz6egbs9vtZl7dPoPp0eHX_RO_Ta_gq1Dw2hfIZZFZvi1JmIic6qBQWqAJNMeMSyXMUBq6EDjUgSIYIhXP6E5bSrQkQvEcBmVV4gtgCXkthgvJYyOpPZWGBKyKmFsy_BQj5cHbbnjzRcOikZP3YWWQ9zLwYGwHvq9gia_dg2p5lbfzKI-FjBWSTmFM9teQLmGY2LPzQGEmUvrSbie2vJ2NN_lv3fHgTV9M88gejsgSq1VTh3zpKBMebDdS7nsSDh0rP72drsl_ravrJeXsu-PqJmAQZiIIPHjXq8q_h2Dn_71_CQ-4TT_stpZ3YVAvV_iKMFFdvG4V_ReEzQs1 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELbQ9gF4oOUqKS0yx2uajY8cTyjb0gOpFVAWlafI8VFWbJPVNqGiv75jJxvtckhIvOVw4jgz9nxjj79B6E2SFMoozvwodaTaSvmFAK9V8CLmJE0K6vKQnZxGR2P2_pyfL-3it2GV4IpP3CBtd2H5YMGGAeFByAMWUxbMlHn7o5tLAttn_Z_QZrJeizig8QFaG59-yL66TUXd0y2hEAXvPrgCc26z7bIVM-TY-v8EMX-PlLzblDPx81pMp0tm6GAdiUUD2uiT77tNXezKm1-4Hf-nhRvoQYdRcdYq1UN0R5eP0P0l5sLH6CLDZ_py4mdNXQHm1Qp_Ohz5IzCJCp-4pNQY0DCGMUdNJ0bjvXk1w_viEkYvvK9rF_9VYhevgD8eHp_5xwvaCoXH2Rds5_DNtLp-gsYH7z7vHfldzgZfMkpqn2oiitSSeAkAWuCph4VUVJtQEZ0SIakZCgMHVA9VKAHbCElSOFOWZy3mmj5Fg7Iq9TOEY3CFDKGCREbA-2TCAK0VEbEM-4nm0kOvFiLMZy01Rw4ujZVz3svZQyMr3L6AZdN2F6r5Rd51zjyiIpIaFFVHYNQNKKhmsV2QD6VOaQI1bS9UI--6-FVOCVQEo10Se-hlfxs6p11xEaWumrYMiI-n1EObrSb1X8KGjuofnk5WdGzlU1fvlJNvjgAc0AZLaRh66HWvjn__BVv_VOo5ukdsamM3bb2NBvW80TuAt-riRdelbgGLXSKm priority: 102 providerName: Unpaywall |
| Title | A Semi-Automated RGB-Based Method for Wildlife Crop Damage Detection Using QGIS-Integrated UAV Workflow |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40807897 https://www.proquest.com/docview/3239087087 https://www.proquest.com/docview/3239402593 https://pubmed.ncbi.nlm.nih.gov/PMC12349311 https://www.mdpi.com/1424-8220/25/15/4734/pdf?version=1754020114 https://doaj.org/article/63a6ce45de6341f8b3e4770011ce938c |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cQAOiDeBsjKPa2Bj53lAKNt2t0XaVWkJ2p4ix3bKSmmybLMq_feMnU3UiHLjEiWO89CM7fk-2_oG4EMYZjKXnmv7kRHVltLOOLJW7mWBR6MwYyYP2XTmHyXu17k334I2x-bGgFd3UjudTypZFR9__7r5gh3-s2acSNk_XWGM1il03W3YxQAV6QwOU7dbTKAMaVgjKtSv3gtFRrH_Lpj5927Je-tyyW-ueVHcCkXjR_BwgyFJ3Dj9MWyp8gk8uKUs-BQuYnKmLhd2vK4rxKRKktPJyB5hyJJkapJGE0SrBMcEWSxyRfZX1ZIc8EscXciBqs3-rJKY_QTk2-T4zD5uZSUkSeIfRM-x50V1_QyS8eH3_SN7k1PBFi6jtc0U5VmkRbY4AiFk0k4mJFO5I6mKKBcsH_IcT5gaSkcg9uCCRngltQ5a4Cn2HHbKqlQvgQRIVXLKOPVzju8ToYtoKvOpVsAPlScseNeaN1020hkpUg7tg7TzgQUjbfiugla7NgXV6iLddJ7UZ9wXChuS8jHo5tiAlBvoBXNHqIiF-KW91m1p24JSRvFDOBqFgQVvu9vYefSKCC9VtW7qIIH2ImbBi8bL3Z-4QyPFj0-HPf_3frV_p1z8NALdiAbciDmOBe-7pvJvE7z6HyZ4DfepzkxsZp33YKderdUbhEt1NoDtYB7gMRxPBrA7OpydnA7M1MPAdBMsS2Yn8fkfoQ8Y-Q |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9pAFH5K00PaQ9W9TtN2uh2t4Bmvh6qC0ASaEKlNiLi541kSJGJTMEL5U_2NfTPGTlCXW26AjRnN275vZvgewIc4zqSWge-GiRXVltLNOLJWHmRRQJM4Y7YP2eA47A39r6NgtAG_6v_CmGOVdU60iVoWwqyR7zKK7BydK44-T3-6pmuU2V2tW2hUbnGorpZI2eaf-l2070dK97-c7vXcVVcBV_iMli5TlGeJkZniCAWQS3qZkExpT1KVUC6YbnGNL5hqSU9g9eWCJvhOGiWwKFAMn3sH7voMcwnGTzS6JngM-V6lXsRwsLtzxA6mta-_VvNsa4C_4dk_j2VuLfIpv1ryyeRGzdt_CA9WYJW0K-96BBsqfwz3b0gYPoHzNjlRl2O3vSgLBL9Kku8HHbeDtVGSge1OTRAWE0w-cjLWiuzNiinp8ktMY6SrSnsQLCf24AL5dtA_cfu1foUkw_YZMYv5elIsn8LwVqb5GWzmRa5eAImQE2nKOA01x-eJ2EfYloXUSO3HKhAOvKunN51WGh0pchtjg7SxgQMdM_HNDUZW235QzM7TVZSmIeOhUOixKsTqrtFTlR-ZnXlPqITF-Es7tdnSVazP02vPdOBtcxmj1Gy98FwVi-oeZOpBwhx4Xlm5GYnfspr_-O14zf5rQ12_ko8vrBI4wg4_YZ7nwPvGVf49Bdv_H_0b2OqdDo7So_7x4Uu4R02jY7uIvQOb5WyhXiH6KrPX1uUJ_LjtGPsN_GJChA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IG4MBZbr0Uq86_MBoaQhbSitgBKUN7Peo0RK7ZA4ivrX-HXMro824njrm-31sdqZ2Zlvd_wNwOs4zqSWge-GiSXVltLNOKJWHmRRQJM4Y7YO2eFRuD_2P0yCyRb8av6FMWmVzZxoJ2pZCLNG3mEU0TkqVxx1dJ0W8WkwfDf_6ZoKUmantSmnUanIgTpbI3xbvh0NUNZvKB2-_7q779YVBlzhM1q6TFGeJYZyimNYgLjSy4RkSnuSqoRywXSXazxgqis9gZ6YC5rgmTSsYFGgGL73ClyNGEtMOmE0OQd7DLFfxWSEjd3OEuMIU-bX3_B_tkzA32LbP1M0r6_yOT9b89nsgv8b3oZbdeBKepWm3YEtld-FmxfoDO_BSY8cq9Op21uVBQbCSpIve323j35SkkNbqZpgiExwIpKzqVZkd1HMyYCf4pRGBqq0SWE5sUkM5PPe6NgdNVwWkox734hZ2NezYn0fxpcyzA9gOy9y9QhIhPhIU8ZpqDm-T8Q-hnBZSA3tfqwC4cDLZnjTecXXkSLOMTJIWxk40DcD395gKLbthWJxktYWm4aMh0Kh9qoQPb1GrVV-ZHbpPaESFuOXdhqxpbXdL9NzLXXgRduMFmu2YXiuilV1D6L2IGEOPKyk3PbE71r-f3w63pD_Rlc3W_LpD8sKjiGInzDPc-BVqyr_HoLH_-_9c7iG1pV-HB0dPIEb1NQ8tuvZO7BdLlbqKQZiZfbMajyB75dtYr8BE0ZGxw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELbQ9gF4oOUqKS0yx2uajY8cTyjb0gOpFVAWlafI8VFWbJPVNqGiv75jJxvtckhIvOVw4jgz9nxjj79B6E2SFMoozvwodaTaSvmFAK9V8CLmJE0K6vKQnZxGR2P2_pyfL-3it2GV4IpP3CBtd2H5YMGGAeFByAMWUxbMlHn7o5tLAttn_Z_QZrJeizig8QFaG59-yL66TUXd0y2hEAXvPrgCc26z7bIVM-TY-v8EMX-PlLzblDPx81pMp0tm6GAdiUUD2uiT77tNXezKm1-4Hf-nhRvoQYdRcdYq1UN0R5eP0P0l5sLH6CLDZ_py4mdNXQHm1Qp_Ohz5IzCJCp-4pNQY0DCGMUdNJ0bjvXk1w_viEkYvvK9rF_9VYhevgD8eHp_5xwvaCoXH2Rds5_DNtLp-gsYH7z7vHfldzgZfMkpqn2oiitSSeAkAWuCph4VUVJtQEZ0SIakZCgMHVA9VKAHbCElSOFOWZy3mmj5Fg7Iq9TOEY3CFDKGCREbA-2TCAK0VEbEM-4nm0kOvFiLMZy01Rw4ujZVz3svZQyMr3L6AZdN2F6r5Rd51zjyiIpIaFFVHYNQNKKhmsV2QD6VOaQI1bS9UI--6-FVOCVQEo10Se-hlfxs6p11xEaWumrYMiI-n1EObrSb1X8KGjuofnk5WdGzlU1fvlJNvjgAc0AZLaRh66HWvjn__BVv_VOo5ukdsamM3bb2NBvW80TuAt-riRdelbgGLXSKm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Semi-Automated+RGB-Based+Method+for+Wildlife+Crop+Damage+Detection+Using+QGIS-Integrated+UAV+Workflow&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sebastian+Banaszek&rft.au=Micha%C5%82+Szota&rft.date=2025-07-31&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=15&rft.spage=4734&rft_id=info:doi/10.3390%2Fs25154734&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_63a6ce45de6341f8b3e4770011ce938c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |