A Semi-Automated RGB-Based Method for Wildlife Crop Damage Detection Using QGIS-Integrated UAV Workflow

Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned a...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 15; p. 4734
Main Authors Banaszek, Sebastian, Szota, Michał
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.07.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25154734

Cover

Abstract Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices—Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)—based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts—DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the “moderate” and “low” vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management.
AbstractList Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices—Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)—based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts—DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the “moderate” and “low” vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management.
What are the main findings? A semi-automated method was developed for detecting maize crop damage using UAV-acquired RGB imagery, fully integrated within the QGIS environment. The method uses vegetation indices (ExG, GLI, MGRVI) and unsupervised k-means clustering, with interactive result tuning via a dedicated QGIS plugin. What is the implication of the main finding? The proposed approach enables fast, repeatable, and low-cost wildlife damage assessments without the need for multispectral sensors or artificial intelligence. The method can be operationally used by non-specialists without GIS or coding skills, making it ideal for farmers, field technicians, and local environmental managers. Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices—Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)—based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts—DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the “moderate” and “low” vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management.
Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices-Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)-based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts-DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the "moderate" and "low" vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management.Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices-Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)-based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts-DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the "moderate" and "low" vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management.
Author Szota, Michał
Banaszek, Sebastian
AuthorAffiliation 1 Institute of Geodesy and Cartography, 27 Modzelewski Street, 02-679 Warsaw, Poland
2 Fire Academy, 52/54 Slowackiego Street, 01-629 Warsaw, Poland; mszota@apoz.edu.pl
AuthorAffiliation_xml – name: 2 Fire Academy, 52/54 Slowackiego Street, 01-629 Warsaw, Poland; mszota@apoz.edu.pl
– name: 1 Institute of Geodesy and Cartography, 27 Modzelewski Street, 02-679 Warsaw, Poland
Author_xml – sequence: 1
  givenname: Sebastian
  orcidid: 0000-0001-6470-6270
  surname: Banaszek
  fullname: Banaszek, Sebastian
– sequence: 2
  givenname: Michał
  surname: Szota
  fullname: Szota, Michał
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40807897$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1v0zAUhi00xD7ggj-AInEDSAHbx2mSq6nroFQaQjDKLi3XPslSHLvYCdP-PaYd1cYFkiWfYz96dPz6mBw475CQ54y-Bajpu8gLVogSxCNyxAQXecU5PbhXH5LjGNeUcgConpBDQStaVnV5RNppdol9l0_HwfdqQJN9nZ_lZyqm6hMO195kjQ_ZVWeN7RrMZsFvsnPVqxazcxxQD5132TJ2rs2-zBeX-cIN2IataTn9nl358KOx_uYpedwoG_HZ3X5Clh_ef5t9zC8-zxez6UWuBfAhB-RqVVPBuBKC4QrYShvAhhmONVcaGqqaVABSwzSvQGlep85URV2UBcIJWey8xqu13ISuV-FWetXJ7YEPrVRh6LRFOQE10SgKgxMQrKlWgKIsKWVMYw2VTq43O9foNur2Rlm7FzIq_yQv98kn-HQHb8ZVj0ajG4KyDyZ4eOO6a9n6X5JxEDUwlgyv7gzB_xwxDrLvokZrlUM_RgkcakF5UUNCX_6Drv0YXAp2S9GqTCtRL-6PtJ_l7-8n4PUO0MHHGLD5z_t-A1SSvG0
Cites_doi 10.3390/s24248172
10.1016/j.cropro.2025.107233
10.3390/rs11131548
10.3390/rs16071254
10.1016/j.landusepol.2025.107552
10.20944/preprints202311.0934.v1
10.3390/agronomy15010238
10.1007/s13593-011-0057-6
10.3389/fsufs.2025.1551460
10.3390/rs17050904
10.1016/j.isprsjprs.2024.05.021
10.5194/isprs-archives-XLVIII-G-2025-739-2025
10.1016/j.rse.2023.113665
10.1007/s11119-024-10180-7
10.1088/1748-9326/ad8c69
10.13031/2013.27838
10.1109/ICCRE57112.2023.10155582
10.1145/3703323.3703327
10.3390/ani15111587
10.3390/rs16234371
10.3390/rs10040563
10.3390/rs16234564
10.1038/s41598-025-00232-x
10.1007/s10530-022-02872-w
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s25154734
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_63a6ce45de6341f8b3e4770011ce938c
10.3390/s25154734
PMC12349311
40807897
10_3390_s25154734
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c432t-3e2ab90412a441eb31bcd3ef1d2e92ac3f0af92a3e0d1c283ac29a3ed859575e3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:44:32 EDT 2025
Sun Oct 26 04:15:26 EDT 2025
Tue Sep 30 17:02:53 EDT 2025
Thu Oct 02 21:51:46 EDT 2025
Tue Oct 07 07:32:05 EDT 2025
Thu Sep 04 05:03:06 EDT 2025
Thu Oct 16 04:42:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords UAV
crop damage
RGB
QGIS
vegetation indices
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c432t-3e2ab90412a441eb31bcd3ef1d2e92ac3f0af92a3e0d1c283ac29a3ed859575e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6470-6270
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25154734
PMID 40807897
PQID 3239087087
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_63a6ce45de6341f8b3e4770011ce938c
unpaywall_primary_10_3390_s25154734
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12349311
proquest_miscellaneous_3239402593
proquest_journals_3239087087
pubmed_primary_40807897
crossref_primary_10_3390_s25154734
PublicationCentury 2000
PublicationDate 2025-07-31
PublicationDateYYYYMMDD 2025-07-31
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-31
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hegel (ref_3) 2022; 24
Gao (ref_15) 2023; 289
Woebbecke (ref_9) 1995; 38
ref_14
ref_13
Waters (ref_18) 2024; 16
ref_11
ref_10
Amici (ref_2) 2012; 32
ref_17
ref_16
Yin (ref_19) 2025; 17
Duan (ref_12) 2024; 213
ref_25
ref_24
ref_23
ref_22
Aszkowski (ref_7) 2024; 25
ref_21
ref_20
ref_1
ref_26
ref_8
Zhang (ref_27) 2024; 19
Song (ref_28) 2025; 153
ref_5
Smith (ref_4) 2025; 175
ref_6
References_xml – ident: ref_17
  doi: 10.3390/s24248172
– volume: 175
  start-page: 107233
  year: 2025
  ident: ref_4
  article-title: Quantifying Wild Pig (Sus scrofa) Damage to Corn, Cotton, and Peanut Fields Using Unmanned Aerial Systems in Southwestern Georgia, USA
  publication-title: Crop Prot.
  doi: 10.1016/j.cropro.2025.107233
– ident: ref_11
  doi: 10.3390/rs11131548
– ident: ref_8
  doi: 10.3390/rs16071254
– volume: 153
  start-page: 107552
  year: 2025
  ident: ref_28
  article-title: Conflicts between ecological and agricultural production functions: The impact of the Grain for Green Program and wildlife damage on cropland abandonment in China’s mountainous areas
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2025.107552
– ident: ref_26
  doi: 10.20944/preprints202311.0934.v1
– ident: ref_6
  doi: 10.3390/agronomy15010238
– volume: 32
  start-page: 683
  year: 2012
  ident: ref_2
  article-title: Increase in Crop Damage Caused by Wild Boar (Sus scrofa L.): The “Refuge Effect”
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-011-0057-6
– ident: ref_22
  doi: 10.3389/fsufs.2025.1551460
– ident: ref_24
  doi: 10.3390/rs17050904
– volume: 213
  start-page: 33
  year: 2024
  ident: ref_12
  article-title: Detection and attribution of cereal yield losses using Sentinel-2 and weather data: A case study in South Australia
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2024.05.021
– ident: ref_13
  doi: 10.5194/isprs-archives-XLVIII-G-2025-739-2025
– ident: ref_23
– volume: 289
  start-page: 113665
  year: 2023
  ident: ref_15
  article-title: Evaluating the Saturation Effect of Vegetation Indices in Forests Using 3D Radiative Transfer Simulations and Satellite Observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113665
– volume: 25
  start-page: 2505
  year: 2024
  ident: ref_7
  article-title: Estimation of Corn Crop Damage Caused by Wildlife in UAV Images
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-024-10180-7
– volume: 19
  start-page: 124029
  year: 2024
  ident: ref_27
  article-title: Crop-raiding by wildlife and cropland abandonment as feedback from nature-based solutions: Lessons from case studies in China and Nepal
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ad8c69
– volume: 38
  start-page: 259
  year: 1995
  ident: ref_9
  article-title: Color indices for weed identification under various soil, residue, and lighting conditions
  publication-title: Trans. ASAE
  doi: 10.13031/2013.27838
– ident: ref_25
– ident: ref_16
  doi: 10.1109/ICCRE57112.2023.10155582
– volume: 17
  start-page: 100199
  year: 2025
  ident: ref_19
  article-title: Evaluating War-Induced Damage to Agricultural Land in the Gaza Strip since October 2023 Using PlanetScope and SkySat Imagery
  publication-title: Remote Sens.
– ident: ref_14
  doi: 10.1145/3703323.3703327
– ident: ref_1
  doi: 10.3390/ani15111587
– ident: ref_21
  doi: 10.3390/rs16234371
– ident: ref_10
  doi: 10.3390/rs10040563
– ident: ref_20
  doi: 10.3390/rs16234564
– ident: ref_5
  doi: 10.1038/s41598-025-00232-x
– volume: 16
  start-page: 109686
  year: 2024
  ident: ref_18
  article-title: Sugarcane Health Monitoring with Satellite Spectroscopy and Machine Learning: A Review
  publication-title: Remote Sens.
– volume: 24
  start-page: 3681
  year: 2022
  ident: ref_3
  article-title: Invasion and spatial distribution of wild pigs (Sus scrofa L.) in Brazil
  publication-title: Biol. Invasions
  doi: 10.1007/s10530-022-02872-w
SSID ssj0023338
Score 2.457316
Snippet Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such...
What are the main findings? A semi-automated method was developed for detecting maize crop damage using UAV-acquired RGB imagery, fully integrated within the...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4734
SubjectTerms Adaptation
Agricultural production
Agriculture - methods
Algorithms
Animals
Animals, Wild
Automation
Calibration
Classification
Corn
Crop damage
Crops, Agricultural
Data processing
Design
Heuristic
Image Processing, Computer-Assisted - methods
Methods
Performance evaluation
Python
QGIS
Remote Sensing Technology - methods
RGB
Sensors
UAV
Unmanned Aerial Devices
Unmanned aerial vehicles
Usability
Vegetation
vegetation indices
Workflow
Zea mays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KLm0Ppe-6TYr6uJqsJT-k427ehRTadEtuRpZG6cLGXhIvIf8-I9lrdklKL73ZlmSLGWv0fZL4BuCrlJV1NkvjXAVRbWvjShNr1VlVZFzJSoQ8ZKff8-Np-u08O19L9eXPhHXywJ3hdnOhc4P0Eswp4DpqjGnhN0sTg0pI46PvSKoVmeqpliDm1ekICSL1u9c0i_sku-nG7BNE-h9ClvcPSD5e1gt9e6Pn87XZ5_A5POthIxt33X0Bj7B-CU_XxARfwcWYneHlLB4v24ZgKFr282gST2iWsuw05IlmBFAZhQE7nzlke1fNgu3rSwoobB_bcCSrZuEIAftxdHIWn6yUJCybjn8zv6zu5s3Na5geHvzaO477NAqxSQVvY4FcV8rramnCPkSek8pYgS6xHBXXRriRdnQhcGQTQ3BDG67oznrpsyJD8Qa26qbGd8AKYieOC81zp-l9RqYEoKqce9F7iZmJ4PPKvOWiU8soiWV4H5SDDyKYeMMPFbzAdXhAbi97t5f_cnsE2yu3lf2ouy4Fpw9RAJJFBJ-GYhovfhNE19gsuzrEmTMlInjbeXnoSToK6vvUWm74f6OrmyX17E_Q5CYAkCqRJBF8GX6Vv5vg_f8wwQd4wn0y4rDQvA1b7dUSdwghtdXHMBjuAI9HDOQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwEB6V7QPwUHGWlILM8Rp1Y-d8QGi3N1JX0LKob5Fjj8tK22TZZlXx7xk7B11xvCWx41iesecbe_INwPs0LbTRUejHmSPV1tovJHmtMiqSiGdpIVwesrNJfDINP11Glxsw6f6FsWGV3ZroFmpdKbtHvic4eeekXGnycfHDt1mj7Olql0JDtqkV9AdHMXYPNrllxhrA5vhw8vm8d8EEeWQNv5Cg5vZuyLrb5LvhmlVy5P1_Q5x_Bk7eX5UL-fNWzud3rNLRI9hq4SQbNfJ_DBtYPoGHd0gGn8LViF3g9cwfreqK4Clqdn489sdkvTQ7c_mjGQFXRsuDns8Msv1ltWAH8poWGnaAtQvVKpkLLWBfjk8v_NOOYUKz6egbs9vtZl7dPoPp0eHX_RO_Ta_gq1Dw2hfIZZFZvi1JmIic6qBQWqAJNMeMSyXMUBq6EDjUgSIYIhXP6E5bSrQkQvEcBmVV4gtgCXkthgvJYyOpPZWGBKyKmFsy_BQj5cHbbnjzRcOikZP3YWWQ9zLwYGwHvq9gia_dg2p5lbfzKI-FjBWSTmFM9teQLmGY2LPzQGEmUvrSbie2vJ2NN_lv3fHgTV9M88gejsgSq1VTh3zpKBMebDdS7nsSDh0rP72drsl_ravrJeXsu-PqJmAQZiIIPHjXq8q_h2Dn_71_CQ-4TT_stpZ3YVAvV_iKMFFdvG4V_ReEzQs1
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELbQ9gF4oOUqKS0yx2uajY8cTyjb0gOpFVAWlafI8VFWbJPVNqGiv75jJxvtckhIvOVw4jgz9nxjj79B6E2SFMoozvwodaTaSvmFAK9V8CLmJE0K6vKQnZxGR2P2_pyfL-3it2GV4IpP3CBtd2H5YMGGAeFByAMWUxbMlHn7o5tLAttn_Z_QZrJeizig8QFaG59-yL66TUXd0y2hEAXvPrgCc26z7bIVM-TY-v8EMX-PlLzblDPx81pMp0tm6GAdiUUD2uiT77tNXezKm1-4Hf-nhRvoQYdRcdYq1UN0R5eP0P0l5sLH6CLDZ_py4mdNXQHm1Qp_Ohz5IzCJCp-4pNQY0DCGMUdNJ0bjvXk1w_viEkYvvK9rF_9VYhevgD8eHp_5xwvaCoXH2Rds5_DNtLp-gsYH7z7vHfldzgZfMkpqn2oiitSSeAkAWuCph4VUVJtQEZ0SIakZCgMHVA9VKAHbCElSOFOWZy3mmj5Fg7Iq9TOEY3CFDKGCREbA-2TCAK0VEbEM-4nm0kOvFiLMZy01Rw4ujZVz3svZQyMr3L6AZdN2F6r5Rd51zjyiIpIaFFVHYNQNKKhmsV2QD6VOaQI1bS9UI--6-FVOCVQEo10Se-hlfxs6p11xEaWumrYMiI-n1EObrSb1X8KGjuofnk5WdGzlU1fvlJNvjgAc0AZLaRh66HWvjn__BVv_VOo5ukdsamM3bb2NBvW80TuAt-riRdelbgGLXSKm
  priority: 102
  providerName: Unpaywall
Title A Semi-Automated RGB-Based Method for Wildlife Crop Damage Detection Using QGIS-Integrated UAV Workflow
URI https://www.ncbi.nlm.nih.gov/pubmed/40807897
https://www.proquest.com/docview/3239087087
https://www.proquest.com/docview/3239402593
https://pubmed.ncbi.nlm.nih.gov/PMC12349311
https://www.mdpi.com/1424-8220/25/15/4734/pdf?version=1754020114
https://doaj.org/article/63a6ce45de6341f8b3e4770011ce938c
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cQAOiDeBsjKPa2Bj53lAKNt2t0XaVWkJ2p4ix3bKSmmybLMq_feMnU3UiHLjEiWO89CM7fk-2_oG4EMYZjKXnmv7kRHVltLOOLJW7mWBR6MwYyYP2XTmHyXu17k334I2x-bGgFd3UjudTypZFR9__7r5gh3-s2acSNk_XWGM1il03W3YxQAV6QwOU7dbTKAMaVgjKtSv3gtFRrH_Lpj5927Je-tyyW-ueVHcCkXjR_BwgyFJ3Dj9MWyp8gk8uKUs-BQuYnKmLhd2vK4rxKRKktPJyB5hyJJkapJGE0SrBMcEWSxyRfZX1ZIc8EscXciBqs3-rJKY_QTk2-T4zD5uZSUkSeIfRM-x50V1_QyS8eH3_SN7k1PBFi6jtc0U5VmkRbY4AiFk0k4mJFO5I6mKKBcsH_IcT5gaSkcg9uCCRngltQ5a4Cn2HHbKqlQvgQRIVXLKOPVzju8ToYtoKvOpVsAPlScseNeaN1020hkpUg7tg7TzgQUjbfiugla7NgXV6iLddJ7UZ9wXChuS8jHo5tiAlBvoBXNHqIiF-KW91m1p24JSRvFDOBqFgQVvu9vYefSKCC9VtW7qIIH2ImbBi8bL3Z-4QyPFj0-HPf_3frV_p1z8NALdiAbciDmOBe-7pvJvE7z6HyZ4DfepzkxsZp33YKderdUbhEt1NoDtYB7gMRxPBrA7OpydnA7M1MPAdBMsS2Yn8fkfoQ8Y-Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9pAFH5K00PaQ9W9TtN2uh2t4Bmvh6qC0ASaEKlNiLi541kSJGJTMEL5U_2NfTPGTlCXW26AjRnN275vZvgewIc4zqSWge-GiRXVltLNOLJWHmRRQJM4Y7YP2eA47A39r6NgtAG_6v_CmGOVdU60iVoWwqyR7zKK7BydK44-T3-6pmuU2V2tW2hUbnGorpZI2eaf-l2070dK97-c7vXcVVcBV_iMli5TlGeJkZniCAWQS3qZkExpT1KVUC6YbnGNL5hqSU9g9eWCJvhOGiWwKFAMn3sH7voMcwnGTzS6JngM-V6lXsRwsLtzxA6mta-_VvNsa4C_4dk_j2VuLfIpv1ryyeRGzdt_CA9WYJW0K-96BBsqfwz3b0gYPoHzNjlRl2O3vSgLBL9Kku8HHbeDtVGSge1OTRAWE0w-cjLWiuzNiinp8ktMY6SrSnsQLCf24AL5dtA_cfu1foUkw_YZMYv5elIsn8LwVqb5GWzmRa5eAImQE2nKOA01x-eJ2EfYloXUSO3HKhAOvKunN51WGh0pchtjg7SxgQMdM_HNDUZW235QzM7TVZSmIeOhUOixKsTqrtFTlR-ZnXlPqITF-Es7tdnSVazP02vPdOBtcxmj1Gy98FwVi-oeZOpBwhx4Xlm5GYnfspr_-O14zf5rQ12_ko8vrBI4wg4_YZ7nwPvGVf49Bdv_H_0b2OqdDo7So_7x4Uu4R02jY7uIvQOb5WyhXiH6KrPX1uUJ_LjtGPsN_GJChA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IG4MBZbr0Uq86_MBoaQhbSitgBKUN7Peo0RK7ZA4ivrX-HXMro824njrm-31sdqZ2Zlvd_wNwOs4zqSWge-GiSXVltLNOKJWHmRRQJM4Y7YO2eFRuD_2P0yCyRb8av6FMWmVzZxoJ2pZCLNG3mEU0TkqVxx1dJ0W8WkwfDf_6ZoKUmantSmnUanIgTpbI3xbvh0NUNZvKB2-_7q779YVBlzhM1q6TFGeJYZyimNYgLjSy4RkSnuSqoRywXSXazxgqis9gZ6YC5rgmTSsYFGgGL73ClyNGEtMOmE0OQd7DLFfxWSEjd3OEuMIU-bX3_B_tkzA32LbP1M0r6_yOT9b89nsgv8b3oZbdeBKepWm3YEtld-FmxfoDO_BSY8cq9Op21uVBQbCSpIve323j35SkkNbqZpgiExwIpKzqVZkd1HMyYCf4pRGBqq0SWE5sUkM5PPe6NgdNVwWkox734hZ2NezYn0fxpcyzA9gOy9y9QhIhPhIU8ZpqDm-T8Q-hnBZSA3tfqwC4cDLZnjTecXXkSLOMTJIWxk40DcD395gKLbthWJxktYWm4aMh0Kh9qoQPb1GrVV-ZHbpPaESFuOXdhqxpbXdL9NzLXXgRduMFmu2YXiuilV1D6L2IGEOPKyk3PbE71r-f3w63pD_Rlc3W_LpD8sKjiGInzDPc-BVqyr_HoLH_-_9c7iG1pV-HB0dPIEb1NQ8tuvZO7BdLlbqKQZiZfbMajyB75dtYr8BE0ZGxw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELbQ9gF4oOUqKS0yx2uajY8cTyjb0gOpFVAWlafI8VFWbJPVNqGiv75jJxvtckhIvOVw4jgz9nxjj79B6E2SFMoozvwodaTaSvmFAK9V8CLmJE0K6vKQnZxGR2P2_pyfL-3it2GV4IpP3CBtd2H5YMGGAeFByAMWUxbMlHn7o5tLAttn_Z_QZrJeizig8QFaG59-yL66TUXd0y2hEAXvPrgCc26z7bIVM-TY-v8EMX-PlLzblDPx81pMp0tm6GAdiUUD2uiT77tNXezKm1-4Hf-nhRvoQYdRcdYq1UN0R5eP0P0l5sLH6CLDZ_py4mdNXQHm1Qp_Ohz5IzCJCp-4pNQY0DCGMUdNJ0bjvXk1w_viEkYvvK9rF_9VYhevgD8eHp_5xwvaCoXH2Rds5_DNtLp-gsYH7z7vHfldzgZfMkpqn2oiitSSeAkAWuCph4VUVJtQEZ0SIakZCgMHVA9VKAHbCElSOFOWZy3mmj5Fg7Iq9TOEY3CFDKGCREbA-2TCAK0VEbEM-4nm0kOvFiLMZy01Rw4ujZVz3svZQyMr3L6AZdN2F6r5Rd51zjyiIpIaFFVHYNQNKKhmsV2QD6VOaQI1bS9UI--6-FVOCVQEo10Se-hlfxs6p11xEaWumrYMiI-n1EObrSb1X8KGjuofnk5WdGzlU1fvlJNvjgAc0AZLaRh66HWvjn__BVv_VOo5ukdsamM3bb2NBvW80TuAt-riRdelbgGLXSKm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Semi-Automated+RGB-Based+Method+for+Wildlife+Crop+Damage+Detection+Using+QGIS-Integrated+UAV+Workflow&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sebastian+Banaszek&rft.au=Micha%C5%82+Szota&rft.date=2025-07-31&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=15&rft.spage=4734&rft_id=info:doi/10.3390%2Fs25154734&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_63a6ce45de6341f8b3e4770011ce938c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon