Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45
Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system...
Saved in:
Published in | Proteins, structure, function, and bioinformatics Vol. 78; no. 6; pp. 1491 - 1502 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0887-3585 1097-0134 1097-0134 |
DOI | 10.1002/prot.22667 |
Cover
Abstract | Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system by the action of SUMO‐targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly‐SUMO chain through their SUMO‐interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO‐like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a β‐grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO‐binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly‐SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9‐mediated poly‐SUMO formation. Proteins 2010. © 2009 Wiley‐Liss, Inc. |
---|---|
AbstractList | Post-translational modification by small ubiquitin-like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin-proteasome degradation system by the action of SUMO-targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly-SUMO chain through their SUMO-interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO-like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a beta-grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO-binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly-SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9-mediated poly-SUMO formation. Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system by the action of SUMO‐targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly‐SUMO chain through their SUMO‐interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO‐like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a β‐grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO‐binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly‐SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9‐mediated poly‐SUMO formation. Proteins 2010. © 2009 Wiley‐Liss, Inc. Post-translational modification by small ubiquitin-like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin-proteasome degradation system by the action of SUMO-targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly-SUMO chain through their SUMO-interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO-like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a beta-grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO-binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly-SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9-mediated poly-SUMO formation.Post-translational modification by small ubiquitin-like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin-proteasome degradation system by the action of SUMO-targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly-SUMO chain through their SUMO-interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO-like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a beta-grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO-binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly-SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9-mediated poly-SUMO formation. |
Author | Arita, Kyohei Ariyoshi, Mariko Tochio, Hidehito Shirakawa, Masahiro Saitoh, Hisato Sekiyama, Naotaka Ikeda, Yoshihiro Hashiguchi, Kohtaro |
Author_xml | – sequence: 1 givenname: Naotaka surname: Sekiyama fullname: Sekiyama, Naotaka organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan – sequence: 2 givenname: Kyohei surname: Arita fullname: Arita, Kyohei organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan – sequence: 3 givenname: Yoshihiro surname: Ikeda fullname: Ikeda, Yoshihiro organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan – sequence: 4 givenname: Kohtaro surname: Hashiguchi fullname: Hashiguchi, Kohtaro organization: Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan – sequence: 5 givenname: Mariko surname: Ariyoshi fullname: Ariyoshi, Mariko email: ariyoshi@moleng.kyoto-u.ac.jp organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan – sequence: 6 givenname: Hidehito surname: Tochio fullname: Tochio, Hidehito organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan – sequence: 7 givenname: Hisato surname: Saitoh fullname: Saitoh, Hisato organization: Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan – sequence: 8 givenname: Masahiro surname: Shirakawa fullname: Shirakawa, Masahiro email: shirakawa@moleng.kyoto-u.ac.jp organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20077568$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1P3DAQhq2Kqiy0l_6AyjckpNDxOImTI0LlQ1C2W0AcLdtxisEbb-1EsP-eLMv2gFBP1nieZzTz7pCtLnSWkK8MDhgAfl_E0B8glqX4QCYMapEB4_kWmUBViYwXVbFNdlK6B4Cy5uUnso0AQhRlNSGzqz4Oph-i8lSr5BJtQ6TR_hm86l3oaGjpIvhldnXzc0rNnXId1Uuq6KrOvHuwtAnz1e8IXrpFXnwmH1vlk_3y-u6Sm-Mf10en2cX05Ozo8CIzOUeR1Sj4uIxRyEHUdas5h0rrHGsDbcMRGDa1bQtlUZfKcN1UWgAKYSxgbmq-S_bWc8fz_w429XLukrHeq86GIUnBOUNkWI7kt1dy0HPbyEV0cxWXcpPCCMAaMDGkFG0rjetfzu-jcl4ykKug5Spo-RL0qOy_UTZT34XZGn503i7_Q8pfv6fXGydbOy719umfo-KDHLuikLeXJ_IWqhnOEOU5fwYMyptb |
CitedBy_id | crossref_primary_10_1016_j_bbrc_2012_11_020 crossref_primary_10_1038_emboj_2010_320 crossref_primary_10_1038_onc_2010_226 crossref_primary_10_1091_mbc_e10_06_0504 crossref_primary_10_1080_19491034_2016_1239683 crossref_primary_10_3390_biom6010014 crossref_primary_10_1101_gad_350914_123 crossref_primary_10_1515_bmc_2016_0030 crossref_primary_10_4161_cc_9_16_12619 crossref_primary_10_1016_j_molcel_2013_04_004 crossref_primary_10_1038_ncb3258 crossref_primary_10_1080_19336950_2018_1491244 crossref_primary_10_1038_s41594_023_01045_0 crossref_primary_10_1101_gad_17593511 crossref_primary_10_1101_gad_344739_120 crossref_primary_10_1016_j_tig_2016_12_004 crossref_primary_10_1074_jbc_M115_685867 crossref_primary_10_1128_MCB_05188_11 crossref_primary_10_1038_nrm3011 crossref_primary_10_1039_C8CP03888K crossref_primary_10_1016_j_tibs_2011_09_002 crossref_primary_10_1042_BJ20100985 crossref_primary_10_1007_s12017_013_8258_6 crossref_primary_10_1098_rstb_2016_0281 crossref_primary_10_1016_j_bbamcr_2013_05_026 |
Cites_doi | 10.1074/jbc.M100006200 10.1101/gad.944801 10.1074/jbc.M601943200 10.1016/S0378-1119(01)00662-X 10.1146/annurev.biochem.70.1.503 10.1128/MCB.22.14.5222-5234.2002 10.1038/sj.emboj.7601711 10.1074/jbc.M109295200 10.1186/1471-2105-6-22 10.1074/jbc.M512757200 10.1074/jbc.M104214200 10.1038/sj.emboj.7600394 10.1038/sj.emboj.7601839 10.1074/jbc.M507059200 10.1107/S0907444998003254 10.1074/jbc.M802528200 10.1107/S0907444902016657 10.1016/S0014-5793(04)00321-7 10.1021/bi0345283 10.1038/sj.onc.1208714 10.1126/science.274.5294.1903 10.1038/nsmb903 10.1016/j.molcel.2004.06.042 10.1101/gad.1214604 10.1038/sj.emboj.7601838 10.1107/S0907444904019158 10.1107/S090744499801405X 10.1016/S0076-6879(97)76066-X 10.1016/j.jmb.2006.03.036 10.1107/S0907444999000839 10.1007/BF00197809 10.1038/nature03634 10.1016/S0092-8674(01)00491-3 10.1038/ncb1716 10.1107/S0021889807021206 10.1038/nrm1200 10.1074/jbc.M806392200 10.1074/jbc.275.9.6252 10.1038/emboj.2008.162 10.1074/mcp.M700173-MCP200 10.1038/nrm1908 10.1016/j.jmb.2007.04.006 10.1016/S0962-8924(03)00171-5 10.1038/nsmb.1582 10.1107/S0021889892009944 10.1128/MCB.23.16.5939-5946.2003 10.1091/mbc.E08-08-0875 10.1038/8263 10.1038/nature03588 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Wiley‐Liss, Inc. 2009 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. – notice: 2009 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/prot.22667 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1097-0134 |
EndPage | 1502 |
ExternalDocumentID | 20077568 10_1002_prot_22667 PROT22667 ark_67375_WNG_W08Q2Q22_K |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) – fundername: Japan Society for the Promotion of Science – fundername: Japan Science and Technology Agency – fundername: Global COE Program from MEXT [International Center for Integrated Research and Advanced Education in Materials Science] |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABLJU ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RBB RWI WRC .GJ 53G 6TJ AAYXX ABEML ACSCC AGHNM CITATION EBD EMOBN FA8 LH6 NDZJH PALCI RIWAO RJQFR SAMSI SV3 ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4327-9273936ca230799fb3308bb429c0fd32012d9ef5ae2b6ac3bd8b70277ce024c93 |
IEDL.DBID | DR2 |
ISSN | 0887-3585 1097-0134 |
IngestDate | Fri Jul 11 09:10:48 EDT 2025 Mon Jul 21 05:58:09 EDT 2025 Tue Jul 01 00:44:58 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Wed Jan 22 16:16:54 EST 2025 Sun Sep 21 06:18:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2009 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4327-9273936ca230799fb3308bb429c0fd32012d9ef5ae2b6ac3bd8b70277ce024c93 |
Notes | ark:/67375/WNG-W08Q2Q22-K istex:5BF614040BAB7B66DCB0BDA7D7E528DD8CC86824 ArticleID:PROT22667 Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan Science and Technology Agency Global COE Program from MEXT [International Center for Integrated Research and Advanced Education in Materials Science] Japan Society for the Promotion of Science ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20077568 |
PQID | 733122126 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_733122126 pubmed_primary_20077568 crossref_citationtrail_10_1002_prot_22667 crossref_primary_10_1002_prot_22667 wiley_primary_10_1002_prot_22667_PROT22667 istex_primary_ark_67375_WNG_W08Q2Q22_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 May 2010 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 1 May 2010 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Proteins, structure, function, and bioinformatics |
PublicationTitleAlternate | Proteins |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Sachdev S,Bruhn L,Sieber H,Pichler A,Melchior F,Grosschedl R. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 2001; 15: 3088-3103. Brünger A,Adams P,Clore G,Delano W,Gros P,Grosse-Kunstleve R,Jiang J,Kuszewski J,Nilges M,Pannu N,Read R,Rice L,Simonson T,Warren G. Crystallography NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998; 54: 905-921. Adams P,Grosse-Kunstleve R,Hung L,Ioerger T,Mccoy A,Moriarty N,Read R,Sacchettini J,Sauter N,Terwilliger T. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 2002; 58: 1948-1954. Huang T,D'andrea A. Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 2006; 7: 323-334. Terwilliger T,Berendzen J. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 1999; 55: 849-861. Raffa G,Wohlschlegel J,Yates M,Jr. SUMO-binding motifs mediate the Rad60-dependent response to replicative stress and self-association. J Biol Chem 2006; 281: 27973-27981. Pickart C. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70: 503-533. Tatham M,Jaffray E,Vaughan O,Desterro J,Botting C,Naismith J,Hay R. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 2001; 276: 35368-35374. Perrakis A,Morris R,Lamzin V. Automated protein model building combined with iterative structure refinement. Nat Struct Biol 1999; 6: 458-463. Knipscheer P,Van Dijk W,Olsen J,Mann M,Sixma T. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J 2007; 26: 2797-2807. Mowen K,Schurter B,Fathman J,David M,Glimcher L. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Mol Cell 2004; 15: 559-571. Reverter D,Lima C. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 2005; 435: 687-692. Otwinowski Z,Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr 1997; 276: 307-326. Baba D,Maita N,Jee J,Uchimura Y,Saitoh H,Sugasawa K,Hanaoka F,Tochio H,Hiroaki H,Shirakawa M. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 2005; 435: 979-982. Matic I,Van Hagen M,Schimmel J,Macek B,Ogg S,Tatham M,Hay R,Lamond A,Mann M,Vertegaal A. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 2008; 7: 132-144. Novatchkova M,Bachmair A,Eisenhaber B,Eisenhaber F. Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2-NIP45) family. BMC Bioinformatics 2005; 6: 22. Hodge M,Chun H,Rengarajan J,Alt A,Lieberson R,Glimcher L. NF-AT-Driven interleukin-4 transcription potentiated by NIP45. Science 1996; 274: 1903-1905. Fu C,Ahmed K,Ding H,Ding X,Lan J,Yang Z,Miao Y,Zhu Y,Shi Y,Zhu J,Huang H,Yao X. Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 2005; 24: 5401-5413. Pichler A,Knipscheer P,Oberhofer E,Van Dijk W,Körner R,Olsen J,Jentsch S,Melchior F,Sixma T. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol 2005; 12: 264-269. Seeler J,Dejean A. Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 2003; 4: 690-699. Uchimura Y,Nakao M,Saitoh H. Generation of SUMO-1 modified proteins in E. coli: towards understanding the biochemistry/structural biology of the SUMO-1 pathway. FEBS Lett 2004; 564: 85-90. Murshudov G,Vagin A,Lebedev A,Wilson K,Dodson E. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D Biol Crystallogr 1999; 55: 247-255. Goddard TD,Kneller DG. Sparky 3, SF: University of California; 2002. Sampson D,Wang M,Matunis M. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 2001; 276: 21664-21669. Takahashi Y,Toh-E A,Kikuchi Y. A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 2001; 275: 223-231. Tateishi Y,Ariyoshi M,Igarashi R,Hara H,Mizuguchi K,Seto A,Nakai A,Kokubo T,Tochio H,Shirakawa M. Molecular basis for SUMOylation-dependent regulation of DNA binding activity of heat shock factor 2. J Biol Chem 2009; 284: 2435-2447. Prudden J,Pebernard S,Raffa G,Slavin D,Perry J,Tainer J,Mcgowan C,Boddy M. SUMO-targeted ubiquitin ligases in genome stability. EMBO J 2007; 26: 4089-4101. Boddy M,Shanahan P,Mcdonald W,Lopez-Girona A,Noguchi E,Yates J,III,Russell P. Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol Cell Biol 2003; 23: 5939-5946. Prudden J,Perry J,Arvai A,Tainer J,Boddy M. Molecular mimicry of SUMO promotes DNA repair. Nat Struct Mol Biol 2009; 16: 509-516. Laskowski R,Macarthur M,Moss D,Thornton J. PROCHECK-a program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26: 283-291. Kotaja N,Karvonen U,Jänne O,Palvimo J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 2002; 22: 5222-5234. Baba D,Maita N,Jee J,Uchimura Y,Saitoh H,Sugasawa K,Hanaoka F,Tochio H,Hiroaki H,Shirakawa M. Crystal structure of SUMO-3-modified thymine-DNA glycosylase. J Mol Biol 2006; 359: 137-147. Tatham M,Kim S,Yu B,Jaffray E,Song J,Zheng J,Rodriguez M,Hay R,Chen Y. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and −3 binding and conjugation. Biochemistry 2003; 42: 9959-9969. Delaglio F,Grzesiek S,Vuister G,Zhu G,Pfeifer J,Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995; 6: 277-293. Takahashi Y,Kahyo T,Toh-E A,Yasuda H,Kikuchi Y. Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J Biol Chem 2001; 276: 48973-48977. Capili A,Lima C. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J Mol Biol 2007; 369: 608-618. Sollier J,Driscoll R,Castellucci F,Foiani M,Jackson S,Branzei D. The S. cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction mediated intra-S repair. Mol Biol Cell 2009; 20: 1671-1682. Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 2004; 18: 2046-2059. Tatham M,Geoffroy M,Shen L,Plechanovova A,Hattersley N,Jaffray E,Palvimo J,Hay R. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 2008; 10: 538-546. Song J,Zhang Z,Hu W,Chen Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 2005; 280: 40122-40129. Xhemalce B,Seeler J,Thon G,Dejean A,Arcangioli B. Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 2004; 23: 3844-3853. Saitoh H,Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 2000; 275: 6252-6258. Johnson E,Gupta A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 2001; 106: 735-744. Khakhar R,Cobb J,Bjergbaek L,Hickson I,Gasser S. RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol 2003; 13: 493-501. Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60: 2126-2132. Hecker C,Rabiller M,Haglund K,Bayer P,Dikic I. Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 2006; 281: 16117-16127. Parker J,Bucceri A,Davies A,Heidrich K,Windecker H,Ulrich H. SUMO modification of PCNA is controlled by DNA. EMBO J 2008; 27: 2422-2431. Sekiyama N,Ikegami T,Yamane T,Ikeguchi M,Uchimura Y,Baba D,Ariyoshi M,Tochio H,Saitoh H,Shirakawa M. Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J Biol Chem 2008; 283: 35966-35975. Mccoy A,Grosse-Kunstleve R,Adams P,Winn M,Storoni L,Read R. Phaser crystallographic software. J Appl Crystallogr 2007; 40: 658-674. Sun H,Leverson J,Hunter T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 2007; 26: 4102-4112. 1993; 26 2001; 70 2002; 58 2007; 369 2004; 564 2009; 20 2004; 60 2005; 435 1997; 276 2004; 23 2006; 7 2003; 13 2008; 7 2008; 10 2000; 275 2002 1999; 6 2006; 359 1995; 6 2008; 283 2001; 106 2005; 24 2001; 276 2001; 275 2005; 280 2004; 18 2004; 15 2008; 27 2002; 22 2003; 4 1999; 55 2005; 6 2001; 15 2009; 284 1996; 274 2007; 40 2006; 281 1998; 54 2009; 16 2003; 42 2005; 12 2007; 26 2003; 23 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 Goddard TD (e_1_2_7_35_2) 2002 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_2 e_1_2_7_38_2 |
References_xml | – reference: Boddy M,Shanahan P,Mcdonald W,Lopez-Girona A,Noguchi E,Yates J,III,Russell P. Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol Cell Biol 2003; 23: 5939-5946. – reference: Takahashi Y,Kahyo T,Toh-E A,Yasuda H,Kikuchi Y. Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J Biol Chem 2001; 276: 48973-48977. – reference: Takahashi Y,Toh-E A,Kikuchi Y. A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 2001; 275: 223-231. – reference: Saitoh H,Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 2000; 275: 6252-6258. – reference: Sollier J,Driscoll R,Castellucci F,Foiani M,Jackson S,Branzei D. The S. cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction mediated intra-S repair. Mol Biol Cell 2009; 20: 1671-1682. – reference: Capili A,Lima C. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J Mol Biol 2007; 369: 608-618. – reference: Knipscheer P,Van Dijk W,Olsen J,Mann M,Sixma T. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J 2007; 26: 2797-2807. – reference: Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60: 2126-2132. – reference: Huang T,D'andrea A. Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 2006; 7: 323-334. – reference: Prudden J,Pebernard S,Raffa G,Slavin D,Perry J,Tainer J,Mcgowan C,Boddy M. SUMO-targeted ubiquitin ligases in genome stability. EMBO J 2007; 26: 4089-4101. – reference: Goddard TD,Kneller DG. Sparky 3, SF: University of California; 2002. – reference: Brünger A,Adams P,Clore G,Delano W,Gros P,Grosse-Kunstleve R,Jiang J,Kuszewski J,Nilges M,Pannu N,Read R,Rice L,Simonson T,Warren G. Crystallography NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998; 54: 905-921. – reference: Matic I,Van Hagen M,Schimmel J,Macek B,Ogg S,Tatham M,Hay R,Lamond A,Mann M,Vertegaal A. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 2008; 7: 132-144. – reference: Hodge M,Chun H,Rengarajan J,Alt A,Lieberson R,Glimcher L. NF-AT-Driven interleukin-4 transcription potentiated by NIP45. Science 1996; 274: 1903-1905. – reference: Delaglio F,Grzesiek S,Vuister G,Zhu G,Pfeifer J,Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995; 6: 277-293. – reference: Baba D,Maita N,Jee J,Uchimura Y,Saitoh H,Sugasawa K,Hanaoka F,Tochio H,Hiroaki H,Shirakawa M. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 2005; 435: 979-982. – reference: Tatham M,Kim S,Yu B,Jaffray E,Song J,Zheng J,Rodriguez M,Hay R,Chen Y. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and −3 binding and conjugation. Biochemistry 2003; 42: 9959-9969. – reference: Laskowski R,Macarthur M,Moss D,Thornton J. PROCHECK-a program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26: 283-291. – reference: Tatham M,Jaffray E,Vaughan O,Desterro J,Botting C,Naismith J,Hay R. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 2001; 276: 35368-35374. – reference: Novatchkova M,Bachmair A,Eisenhaber B,Eisenhaber F. Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2-NIP45) family. BMC Bioinformatics 2005; 6: 22. – reference: Pichler A,Knipscheer P,Oberhofer E,Van Dijk W,Körner R,Olsen J,Jentsch S,Melchior F,Sixma T. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol 2005; 12: 264-269. – reference: Sun H,Leverson J,Hunter T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 2007; 26: 4102-4112. – reference: Perrakis A,Morris R,Lamzin V. Automated protein model building combined with iterative structure refinement. Nat Struct Biol 1999; 6: 458-463. – reference: Otwinowski Z,Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr 1997; 276: 307-326. – reference: Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 2004; 18: 2046-2059. – reference: Khakhar R,Cobb J,Bjergbaek L,Hickson I,Gasser S. RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol 2003; 13: 493-501. – reference: Kotaja N,Karvonen U,Jänne O,Palvimo J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 2002; 22: 5222-5234. – reference: Tatham M,Geoffroy M,Shen L,Plechanovova A,Hattersley N,Jaffray E,Palvimo J,Hay R. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 2008; 10: 538-546. – reference: Parker J,Bucceri A,Davies A,Heidrich K,Windecker H,Ulrich H. SUMO modification of PCNA is controlled by DNA. EMBO J 2008; 27: 2422-2431. – reference: Xhemalce B,Seeler J,Thon G,Dejean A,Arcangioli B. Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 2004; 23: 3844-3853. – reference: Sachdev S,Bruhn L,Sieber H,Pichler A,Melchior F,Grosschedl R. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 2001; 15: 3088-3103. – reference: Pickart C. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70: 503-533. – reference: Hecker C,Rabiller M,Haglund K,Bayer P,Dikic I. Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 2006; 281: 16117-16127. – reference: Reverter D,Lima C. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 2005; 435: 687-692. – reference: Raffa G,Wohlschlegel J,Yates M,Jr. SUMO-binding motifs mediate the Rad60-dependent response to replicative stress and self-association. J Biol Chem 2006; 281: 27973-27981. – reference: Sekiyama N,Ikegami T,Yamane T,Ikeguchi M,Uchimura Y,Baba D,Ariyoshi M,Tochio H,Saitoh H,Shirakawa M. Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J Biol Chem 2008; 283: 35966-35975. – reference: Sampson D,Wang M,Matunis M. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 2001; 276: 21664-21669. – reference: Adams P,Grosse-Kunstleve R,Hung L,Ioerger T,Mccoy A,Moriarty N,Read R,Sacchettini J,Sauter N,Terwilliger T. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 2002; 58: 1948-1954. – reference: Terwilliger T,Berendzen J. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 1999; 55: 849-861. – reference: Song J,Zhang Z,Hu W,Chen Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 2005; 280: 40122-40129. – reference: Prudden J,Perry J,Arvai A,Tainer J,Boddy M. Molecular mimicry of SUMO promotes DNA repair. Nat Struct Mol Biol 2009; 16: 509-516. – reference: Johnson E,Gupta A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 2001; 106: 735-744. – reference: Uchimura Y,Nakao M,Saitoh H. Generation of SUMO-1 modified proteins in E. coli: towards understanding the biochemistry/structural biology of the SUMO-1 pathway. FEBS Lett 2004; 564: 85-90. – reference: Murshudov G,Vagin A,Lebedev A,Wilson K,Dodson E. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D Biol Crystallogr 1999; 55: 247-255. – reference: Baba D,Maita N,Jee J,Uchimura Y,Saitoh H,Sugasawa K,Hanaoka F,Tochio H,Hiroaki H,Shirakawa M. Crystal structure of SUMO-3-modified thymine-DNA glycosylase. J Mol Biol 2006; 359: 137-147. – reference: Fu C,Ahmed K,Ding H,Ding X,Lan J,Yang Z,Miao Y,Zhu Y,Shi Y,Zhu J,Huang H,Yao X. Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 2005; 24: 5401-5413. – reference: Mccoy A,Grosse-Kunstleve R,Adams P,Winn M,Storoni L,Read R. Phaser crystallographic software. J Appl Crystallogr 2007; 40: 658-674. – reference: Tateishi Y,Ariyoshi M,Igarashi R,Hara H,Mizuguchi K,Seto A,Nakai A,Kokubo T,Tochio H,Shirakawa M. Molecular basis for SUMOylation-dependent regulation of DNA binding activity of heat shock factor 2. J Biol Chem 2009; 284: 2435-2447. – reference: Mowen K,Schurter B,Fathman J,David M,Glimcher L. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Mol Cell 2004; 15: 559-571. – reference: Seeler J,Dejean A. Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 2003; 4: 690-699. – volume: 284 start-page: 2435 year: 2009 end-page: 2447 article-title: Molecular basis for SUMOylation‐dependent regulation of DNA binding activity of heat shock factor 2 publication-title: J Biol Chem – volume: 435 start-page: 687 year: 2005 end-page: 692 article-title: Insights into E3 ligase activity revealed by a SUMO‐RanGAP1‐Ubc9‐Nup358 complex publication-title: Nature – volume: 27 start-page: 2422 year: 2008 end-page: 2431 article-title: SUMO modification of PCNA is controlled by DNA publication-title: EMBO J – volume: 276 start-page: 307 year: 1997 end-page: 326 article-title: Processing of X‐ray diffraction data collected in oscillation mode publication-title: Macromol Crystallogr – volume: 22 start-page: 5222 year: 2002 end-page: 5234 article-title: PIAS proteins modulate transcription factors by functioning as SUMO‐1 ligases publication-title: Mol Cell Biol – volume: 26 start-page: 4089 year: 2007 end-page: 4101 article-title: SUMO‐targeted ubiquitin ligases in genome stability publication-title: EMBO J – volume: 26 start-page: 283 year: 1993 end-page: 291 article-title: PROCHECK—a program to check the stereochemical quality of protein structures publication-title: J Appl Cryst – volume: 106 start-page: 735 year: 2001 end-page: 744 article-title: An E3‐like factor that promotes SUMO conjugation to the yeast septins publication-title: Cell – volume: 276 start-page: 35368 year: 2001 end-page: 35374 article-title: Polymeric chains of SUMO‐2 and SUMO‐3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9 publication-title: J Biol Chem – volume: 13 start-page: 493 year: 2003 end-page: 501 article-title: RecQ helicases: multiple roles in genome maintenance publication-title: Trends Cell Biol – volume: 280 start-page: 40122 year: 2005 end-page: 40129 article-title: Small ubiquitin‐like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation publication-title: J Biol Chem – volume: 435 start-page: 979 year: 2005 end-page: 982 article-title: Crystal structure of thymine DNA glycosylase conjugated to SUMO‐1 publication-title: Nature – volume: 7 start-page: 132 year: 2008 end-page: 144 article-title: In vivo identification of human small ubiquitin‐like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy publication-title: Mol Cell Proteomics – volume: 274 start-page: 1903 year: 1996 end-page: 1905 article-title: NF‐AT‐Driven interleukin‐4 transcription potentiated by NIP45 publication-title: Science – volume: 275 start-page: 223 year: 2001 end-page: 231 article-title: A novel factor required for the SUMO1/Smt3 conjugation of yeast septins publication-title: Gene – volume: 12 start-page: 264 year: 2005 end-page: 269 article-title: SUMO modification of the ubiquitin‐conjugating enzyme E2‐25K publication-title: Nat Struct Mol Biol – volume: 15 start-page: 3088 year: 2001 end-page: 3103 article-title: PIASy, a nuclear matrix‐associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies publication-title: Genes Dev – volume: 18 start-page: 2046 year: 2004 end-page: 2059 article-title: SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? publication-title: Genes Dev – volume: 6 start-page: 277 year: 1995 end-page: 293 article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes publication-title: J Biomol NMR – volume: 7 start-page: 323 year: 2006 end-page: 334 article-title: Regulation of DNA repair by ubiquitylation publication-title: Nat Rev Mol Cell Biol – volume: 54 start-page: 905 year: 1998 end-page: 921 article-title: Crystallography NMR system: a new software suite for macromolecular structure determination publication-title: Acta Crystallogr D Biol Crystallogr – volume: 26 start-page: 2797 year: 2007 end-page: 2807 article-title: Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation publication-title: EMBO J – volume: 23 start-page: 5939 year: 2003 end-page: 5946 article-title: Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60 publication-title: Mol Cell Biol – volume: 283 start-page: 35966 year: 2008 end-page: 35975 article-title: Structure of the small ubiquitin‐like modifier (SUMO)‐interacting motif of MBD1‐containing chromatin‐associated factor 1 bound to SUMO‐3 publication-title: J Biol Chem – volume: 20 start-page: 1671 year: 2009 end-page: 1682 article-title: The Esc2 and Smc5–6 proteins promote sister chromatid junction mediated intra‐S repair publication-title: Mol Biol Cell – volume: 6 start-page: 458 year: 1999 end-page: 463 article-title: Automated protein model building combined with iterative structure refinement publication-title: Nat Struct Biol – volume: 4 start-page: 690 year: 2003 end-page: 699 article-title: Nuclear and unclear functions of SUMO publication-title: Nat Rev Mol Cell Biol – volume: 276 start-page: 48973 year: 2001 end-page: 48977 article-title: Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates publication-title: J Biol Chem – volume: 16 start-page: 509 year: 2009 end-page: 516 article-title: Molecular mimicry of SUMO promotes DNA repair publication-title: Nat Struct Mol Biol – volume: 26 start-page: 4102 year: 2007 end-page: 4112 article-title: Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins publication-title: EMBO J – volume: 6 start-page: 22 year: 2005 article-title: Proteins with two SUMO‐like domains in chromatin‐associated complexes: the RENi (Rad60‐Esc2‐NIP45) family publication-title: BMC Bioinformatics – volume: 359 start-page: 137 year: 2006 end-page: 147 article-title: Crystal structure of SUMO‐3‐modified thymine‐DNA glycosylase publication-title: J Mol Biol – volume: 10 start-page: 538 year: 2008 end-page: 546 article-title: RNF4 is a poly‐SUMO‐specific E3 ubiquitin ligase required for arsenic‐induced PML degradation publication-title: Nat Cell Biol – volume: 281 start-page: 27973 year: 2006 end-page: 27981 article-title: SUMO‐binding motifs mediate the Rad60‐dependent response to replicative stress and self‐association publication-title: J Biol Chem – volume: 55 start-page: 247 year: 1999 end-page: 255 article-title: Efficient anisotropic refinement of macromolecular structures using FFT publication-title: Acta Crystallogr D Biol Crystallogr – volume: 42 start-page: 9959 year: 2003 end-page: 9969 article-title: Role of an N‐terminal site of Ubc9 in SUMO‐1, ‐2, and −3 binding and conjugation publication-title: Biochemistry – volume: 55 start-page: 849 year: 1999 end-page: 861 article-title: Automated MAD and MIR structure solution publication-title: Acta Crystallogr D Biol Crystallogr – volume: 58 start-page: 1948 year: 2002 end-page: 1954 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta Crystallogr D Biol Crystallogr – volume: 23 start-page: 3844 year: 2004 end-page: 3853 article-title: Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance publication-title: EMBO J – volume: 70 start-page: 503 year: 2001 end-page: 533 article-title: Mechanisms underlying ubiquitination publication-title: Annu Rev Biochem – year: 2002 – volume: 24 start-page: 5401 year: 2005 end-page: 5413 article-title: Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO‐3 publication-title: Oncogene – volume: 275 start-page: 6252 year: 2000 end-page: 6258 article-title: Functional heterogeneity of small ubiquitin‐related protein modifiers SUMO‐1 versus SUMO‐2/3 publication-title: J Biol Chem – volume: 281 start-page: 16117 year: 2006 end-page: 16127 article-title: Specification of SUMO1‐ and SUMO2‐interacting motifs publication-title: J Biol Chem – volume: 40 start-page: 658 year: 2007 end-page: 674 article-title: Phaser crystallographic software publication-title: J Appl Crystallogr – volume: 276 start-page: 21664 year: 2001 end-page: 21669 article-title: The small ubiquitin‐like modifier‐1 (SUMO‐1) consensus sequence mediates Ubc9 binding and is essential for SUMO‐1 modification publication-title: J Biol Chem – volume: 15 start-page: 559 year: 2004 end-page: 571 article-title: Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes publication-title: Mol Cell – volume: 369 start-page: 608 year: 2007 end-page: 618 article-title: Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2‐Ubl interaction publication-title: J Mol Biol – volume: 564 start-page: 85 year: 2004 end-page: 90 article-title: Generation of SUMO‐1 modified proteins in : towards understanding the biochemistry/structural biology of the SUMO‐1 pathway publication-title: FEBS Lett – volume: 60 start-page: 2126 year: 2004 end-page: 2132 article-title: Coot: model‐building tools for molecular graphics publication-title: Acta Crystallogr D Biol Crystallogr – ident: e_1_2_7_13_2 doi: 10.1074/jbc.M100006200 – ident: e_1_2_7_6_2 doi: 10.1101/gad.944801 – ident: e_1_2_7_27_2 doi: 10.1074/jbc.M601943200 – ident: e_1_2_7_8_2 doi: 10.1016/S0378-1119(01)00662-X – ident: e_1_2_7_4_2 doi: 10.1146/annurev.biochem.70.1.503 – ident: e_1_2_7_9_2 doi: 10.1128/MCB.22.14.5222-5234.2002 – ident: e_1_2_7_16_2 doi: 10.1038/sj.emboj.7601711 – ident: e_1_2_7_7_2 doi: 10.1074/jbc.M109295200 – ident: e_1_2_7_28_2 doi: 10.1186/1471-2105-6-22 – ident: e_1_2_7_48_2 doi: 10.1074/jbc.M512757200 – ident: e_1_2_7_18_2 doi: 10.1074/jbc.M104214200 – ident: e_1_2_7_51_2 doi: 10.1038/sj.emboj.7600394 – ident: e_1_2_7_22_2 doi: 10.1038/sj.emboj.7601839 – ident: e_1_2_7_46_2 doi: 10.1074/jbc.M507059200 – ident: e_1_2_7_39_2 doi: 10.1107/S0907444998003254 – ident: e_1_2_7_32_2 doi: 10.1074/jbc.M802528200 – ident: e_1_2_7_42_2 doi: 10.1107/S0907444902016657 – ident: e_1_2_7_12_2 doi: 10.1016/S0014-5793(04)00321-7 – ident: e_1_2_7_49_2 doi: 10.1021/bi0345283 – ident: e_1_2_7_19_2 doi: 10.1038/sj.onc.1208714 – ident: e_1_2_7_29_2 doi: 10.1126/science.274.5294.1903 – ident: e_1_2_7_14_2 doi: 10.1038/nsmb903 – ident: e_1_2_7_30_2 doi: 10.1016/j.molcel.2004.06.042 – ident: e_1_2_7_24_2 doi: 10.1101/gad.1214604 – ident: e_1_2_7_21_2 doi: 10.1038/sj.emboj.7601838 – ident: e_1_2_7_40_2 doi: 10.1107/S0907444904019158 – ident: e_1_2_7_41_2 doi: 10.1107/S090744499801405X – ident: e_1_2_7_36_2 doi: 10.1016/S0076-6879(97)76066-X – ident: e_1_2_7_33_2 doi: 10.1016/j.jmb.2006.03.036 – ident: e_1_2_7_37_2 doi: 10.1107/S0907444999000839 – ident: e_1_2_7_34_2 doi: 10.1007/BF00197809 – ident: e_1_2_7_10_2 doi: 10.1038/nature03634 – ident: e_1_2_7_5_2 doi: 10.1016/S0092-8674(01)00491-3 – ident: e_1_2_7_50_2 doi: 10.1038/ncb1716 – ident: e_1_2_7_44_2 doi: 10.1107/S0021889807021206 – ident: e_1_2_7_2_2 doi: 10.1038/nrm1200 – ident: e_1_2_7_11_2 doi: 10.1074/jbc.M806392200 – ident: e_1_2_7_3_2 doi: 10.1074/jbc.275.9.6252 – ident: e_1_2_7_20_2 doi: 10.1038/emboj.2008.162 – ident: e_1_2_7_17_2 doi: 10.1074/mcp.M700173-MCP200 – ident: e_1_2_7_23_2 doi: 10.1038/nrm1908 – ident: e_1_2_7_15_2 doi: 10.1016/j.jmb.2007.04.006 – ident: e_1_2_7_25_2 doi: 10.1016/S0962-8924(03)00171-5 – ident: e_1_2_7_45_2 doi: 10.1038/nsmb.1582 – ident: e_1_2_7_43_2 doi: 10.1107/S0021889892009944 – ident: e_1_2_7_26_2 doi: 10.1128/MCB.23.16.5939-5946.2003 – volume-title: Sparky 3 year: 2002 ident: e_1_2_7_35_2 – ident: e_1_2_7_31_2 doi: 10.1091/mbc.E08-08-0875 – ident: e_1_2_7_38_2 doi: 10.1038/8263 – ident: e_1_2_7_47_2 doi: 10.1038/nature03588 |
SSID | ssj0006936 |
Score | 2.1109083 |
Snippet | Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification... Post-translational modification by small ubiquitin-like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1491 |
SubjectTerms | Amino Acid Motifs Amino Acid Sequence Animals crystal structure Crystallography, X-Ray Intracellular Signaling Peptides and Proteins - chemistry Intracellular Signaling Peptides and Proteins - metabolism Mice Models, Molecular Molecular Sequence Data Nuclear Proteins - chemistry Nuclear Proteins - metabolism Protein Binding Protein Structure, Secondary Protein Structure, Tertiary Sequence Alignment Small Ubiquitin-Related Modifier Proteins - chemistry Small Ubiquitin-Related Modifier Proteins - metabolism Structure-Activity Relationship SUMO SUMO-like domain SUMO-targeted ubiquitin ligases Surface Properties Ubc9 Ubiquitin-Conjugating Enzymes - chemistry Ubiquitin-Conjugating Enzymes - metabolism |
Title | Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45 |
URI | https://api.istex.fr/ark:/67375/WNG-W08Q2Q22-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.22667 https://www.ncbi.nlm.nih.gov/pubmed/20077568 https://www.proquest.com/docview/733122126 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0887-3585 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006936 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UiuiLl9bL1AsBpaAw29lkJjMBX2qxFsWtrV3aFwnJJKHLbmeWbguuT_4Ef6O_xJPMziyVIuhbJpwZMjk5OV-Sk-8AvDTKWJFlLKbG4ALFcRoLk5g4dwnLbZ4alfoLzp8GfG-YfjjJTlbgTXsXpuGH6DbcvGWE-dobuNKzrSVpqOcx6CF44P4qeZ9l4Yz2cMkdxUXID9hYEYLijpuUbi1fveKNbviO_XYd1LyKXIPr2b0LX9tGNxEn497lhe6V3__gc_zfv7oHdxaYlGw3g-g-rNhqDda3K1yPn83JJglRomH7fQ1uvm1Lt3baXHHrMPwSaGg9hQdBvziaEcTC5LzJc4-aJ7Uj03oy__XjJ07j-6Q8VaOK6DlRxD9j9WQ0tsTUZ74ehQejaZo9gOHuu6OdvXiRsCEuU0bzWFDPr8dL5aPLhXCasaTQGl1emTjDEGtQI6zLlKWaq5JpU-jcHyKXFqFCKdhDWK3qyj4Gwgpnchw6uP4rUmH6ygnHODOo56wQnEbwqlWcLBds5j6pxkQ2PMxU-p6UoScjeNHJThsOj2ulNoP-OxF1PvZRb3kmjwfv5XFSHNADSuXHCEg7QCR2sz9gUZWtL2fS57-kiAV4BI-agdN9jAauQV5E8Dqo_y8NkZ8P949CaeNfhJ_A7TayIek_hVXUu32GgOlCPw-G8RsONhCq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgExov_NkYhL-WQJNASpfZiRM_jsEobOvYaLW9WXbsiKpdUq2bRHniI_AZ-STcOU2qoQkJ3pzoEiXnO9_P9vl3hLyy2jqZJDxk1sIEpRAslDayYVpEPHVpbHWMB5wPeqI7iD-dJqfz3Bw8C1PzQ7QLbugZfrxGB8cF6c0FaygSGXQAPYj0JlnGDTr0y3fHC_YoIX2FwNqPABa37KRsc_HslXi0jKr9dh3YvIpdffDZvVtXWJ16zkLMORl1Li9MJ__-B6Pjf__XPXJnDkvpdm1H98kNV66Ste0SpuRnM7pBfaKoX4FfJbfeNq2VnaZc3BoZfPFMtMjiQSE0DqcU4DA9r0vdQ-fTqqCTajz79eMnjOSHNP-qhyU1M6opXsPt8XDkqK3O8D4I94aTOHlABrvv-zvdcF6zIcxjztJQMqTYE7nGBHMpC8N5lBkDUS-PCssBbjArXZFox4zQOTc2MynuI-cO0EIu-TpZKqvSPSKUZ4VNwXpgCpjF0m7pQhZccMsBg2ZSsIC8bnpO5XNCc6yrMVY1FTNTqEnlNRmQl63spKbxuFZqwxtAK6LPR5j4libqpPdBnUTZETtiTO0FhDYWokDNuMeiS1ddThWWwGQAB0RAHtaW076MebpBkQXkje__v3yI-nx82Petx_8i_IKsdPsH-2r_Y2_vCbndJDpEW0_JEtiAewb46cI8917yGwu3FMY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVlBeuLRQwtUSqBJI2aZ24sQSL6WwFArb66p9QZYT22K122TVi8TyxCfwjXwJY2eTVVGFBG-ONYkcz4x9bI_PALzQShuRJCykWuMCxXIaCh3pMLURS00aaxW7C86fe3yrH388To7n4HVzF6bmh2g33Jxn-PHaOfhY27UZaajjMeggeODpNViIOS6vHCTan5FHceETBNZuhKi4JSela7N3L01HC65nv12FNS9DVz_3dG_Dl6bVdcjJsHNxnneK738QOv7vb92BW1NQSjZqK7oLc6ZcguWNEhfkJxOySnyYqN9_X4Lrb5rS4maTLG4Z-geeh9ZxeBCcGAdnBMEwOa0T3aPqSWXJuBpNfv34ieP4Dim-qkFJ8glRxD1j9WgwNERXJ64ehXuDcZzcg3733eHmVjjN2BAWMaNpKKgj2OOFcuHlQticsSjLc5zzishqhmCDamFsogzNuSpYrrM8dafIhUGsUAh2H-bLqjQPgLDM6hRtBxeAWSz0urLCMs40QwSaCU4DeNkoThZTOnOXVWMkayJmKl1PSt-TATxvZcc1iceVUqte_62IOh26sLc0kUe99_IoyvboHqVyOwDSGIjEbnYnLKo01cWZdAkwKYIBHsBKbTjtx6gnG-RZAK-8-v_SELm7v3PoSw__RfgZ3Nh925WfPvS2H8HNJsohWn8M82gC5gmCp_P8qfeR38AjE3U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+regulation+of+poly-SUMO+chain+by+a+SUMO-like+domain+of+Nip45&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Sekiyama%2C+Naotaka&rft.au=Arita%2C+Kyohei&rft.au=Ikeda%2C+Yoshihiro&rft.au=Hashiguchi%2C+Kohtaro&rft.date=2010-05-01&rft.issn=1097-0134&rft.eissn=1097-0134&rft.volume=78&rft.issue=6&rft.spage=1491&rft_id=info:doi/10.1002%2Fprot.22667&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |