Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45

Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 78; no. 6; pp. 1491 - 1502
Main Authors Sekiyama, Naotaka, Arita, Kyohei, Ikeda, Yoshihiro, Hashiguchi, Kohtaro, Ariyoshi, Mariko, Tochio, Hidehito, Saitoh, Hisato, Shirakawa, Masahiro
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2010
Subjects
Online AccessGet full text
ISSN0887-3585
1097-0134
1097-0134
DOI10.1002/prot.22667

Cover

Abstract Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system by the action of SUMO‐targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly‐SUMO chain through their SUMO‐interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO‐like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a β‐grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO‐binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly‐SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9‐mediated poly‐SUMO formation. Proteins 2010. © 2009 Wiley‐Liss, Inc.
AbstractList Post-translational modification by small ubiquitin-like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin-proteasome degradation system by the action of SUMO-targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly-SUMO chain through their SUMO-interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO-like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a beta-grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO-binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly-SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9-mediated poly-SUMO formation.
Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system by the action of SUMO‐targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly‐SUMO chain through their SUMO‐interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO‐like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a β‐grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO‐binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly‐SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9‐mediated poly‐SUMO formation. Proteins 2010. © 2009 Wiley‐Liss, Inc.
Post-translational modification by small ubiquitin-like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin-proteasome degradation system by the action of SUMO-targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly-SUMO chain through their SUMO-interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO-like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a beta-grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO-binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly-SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9-mediated poly-SUMO formation.Post-translational modification by small ubiquitin-like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin-proteasome degradation system by the action of SUMO-targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly-SUMO chain through their SUMO-interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO-like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a beta-grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO-binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly-SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9-mediated poly-SUMO formation.
Author Arita, Kyohei
Ariyoshi, Mariko
Tochio, Hidehito
Shirakawa, Masahiro
Saitoh, Hisato
Sekiyama, Naotaka
Ikeda, Yoshihiro
Hashiguchi, Kohtaro
Author_xml – sequence: 1
  givenname: Naotaka
  surname: Sekiyama
  fullname: Sekiyama, Naotaka
  organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan
– sequence: 2
  givenname: Kyohei
  surname: Arita
  fullname: Arita, Kyohei
  organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan
– sequence: 3
  givenname: Yoshihiro
  surname: Ikeda
  fullname: Ikeda, Yoshihiro
  organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan
– sequence: 4
  givenname: Kohtaro
  surname: Hashiguchi
  fullname: Hashiguchi, Kohtaro
  organization: Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
– sequence: 5
  givenname: Mariko
  surname: Ariyoshi
  fullname: Ariyoshi, Mariko
  email: ariyoshi@moleng.kyoto-u.ac.jp
  organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan
– sequence: 6
  givenname: Hidehito
  surname: Tochio
  fullname: Tochio, Hidehito
  organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan
– sequence: 7
  givenname: Hisato
  surname: Saitoh
  fullname: Saitoh, Hisato
  organization: Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
– sequence: 8
  givenname: Masahiro
  surname: Shirakawa
  fullname: Shirakawa, Masahiro
  email: shirakawa@moleng.kyoto-u.ac.jp
  organization: Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku 615-8510, Kyoto, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20077568$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1P3DAQhq2Kqiy0l_6AyjckpNDxOImTI0LlQ1C2W0AcLdtxisEbb-1EsP-eLMv2gFBP1nieZzTz7pCtLnSWkK8MDhgAfl_E0B8glqX4QCYMapEB4_kWmUBViYwXVbFNdlK6B4Cy5uUnso0AQhRlNSGzqz4Oph-i8lSr5BJtQ6TR_hm86l3oaGjpIvhldnXzc0rNnXId1Uuq6KrOvHuwtAnz1e8IXrpFXnwmH1vlk_3y-u6Sm-Mf10en2cX05Ozo8CIzOUeR1Sj4uIxRyEHUdas5h0rrHGsDbcMRGDa1bQtlUZfKcN1UWgAKYSxgbmq-S_bWc8fz_w429XLukrHeq86GIUnBOUNkWI7kt1dy0HPbyEV0cxWXcpPCCMAaMDGkFG0rjetfzu-jcl4ykKug5Spo-RL0qOy_UTZT34XZGn503i7_Q8pfv6fXGydbOy719umfo-KDHLuikLeXJ_IWqhnOEOU5fwYMyptb
CitedBy_id crossref_primary_10_1016_j_bbrc_2012_11_020
crossref_primary_10_1038_emboj_2010_320
crossref_primary_10_1038_onc_2010_226
crossref_primary_10_1091_mbc_e10_06_0504
crossref_primary_10_1080_19491034_2016_1239683
crossref_primary_10_3390_biom6010014
crossref_primary_10_1101_gad_350914_123
crossref_primary_10_1515_bmc_2016_0030
crossref_primary_10_4161_cc_9_16_12619
crossref_primary_10_1016_j_molcel_2013_04_004
crossref_primary_10_1038_ncb3258
crossref_primary_10_1080_19336950_2018_1491244
crossref_primary_10_1038_s41594_023_01045_0
crossref_primary_10_1101_gad_17593511
crossref_primary_10_1101_gad_344739_120
crossref_primary_10_1016_j_tig_2016_12_004
crossref_primary_10_1074_jbc_M115_685867
crossref_primary_10_1128_MCB_05188_11
crossref_primary_10_1038_nrm3011
crossref_primary_10_1039_C8CP03888K
crossref_primary_10_1016_j_tibs_2011_09_002
crossref_primary_10_1042_BJ20100985
crossref_primary_10_1007_s12017_013_8258_6
crossref_primary_10_1098_rstb_2016_0281
crossref_primary_10_1016_j_bbamcr_2013_05_026
Cites_doi 10.1074/jbc.M100006200
10.1101/gad.944801
10.1074/jbc.M601943200
10.1016/S0378-1119(01)00662-X
10.1146/annurev.biochem.70.1.503
10.1128/MCB.22.14.5222-5234.2002
10.1038/sj.emboj.7601711
10.1074/jbc.M109295200
10.1186/1471-2105-6-22
10.1074/jbc.M512757200
10.1074/jbc.M104214200
10.1038/sj.emboj.7600394
10.1038/sj.emboj.7601839
10.1074/jbc.M507059200
10.1107/S0907444998003254
10.1074/jbc.M802528200
10.1107/S0907444902016657
10.1016/S0014-5793(04)00321-7
10.1021/bi0345283
10.1038/sj.onc.1208714
10.1126/science.274.5294.1903
10.1038/nsmb903
10.1016/j.molcel.2004.06.042
10.1101/gad.1214604
10.1038/sj.emboj.7601838
10.1107/S0907444904019158
10.1107/S090744499801405X
10.1016/S0076-6879(97)76066-X
10.1016/j.jmb.2006.03.036
10.1107/S0907444999000839
10.1007/BF00197809
10.1038/nature03634
10.1016/S0092-8674(01)00491-3
10.1038/ncb1716
10.1107/S0021889807021206
10.1038/nrm1200
10.1074/jbc.M806392200
10.1074/jbc.275.9.6252
10.1038/emboj.2008.162
10.1074/mcp.M700173-MCP200
10.1038/nrm1908
10.1016/j.jmb.2007.04.006
10.1016/S0962-8924(03)00171-5
10.1038/nsmb.1582
10.1107/S0021889892009944
10.1128/MCB.23.16.5939-5946.2003
10.1091/mbc.E08-08-0875
10.1038/8263
10.1038/nature03588
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
2009 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
– notice: 2009 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/prot.22667
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 1502
ExternalDocumentID 20077568
10_1002_prot_22667
PROT22667
ark_67375_WNG_W08Q2Q22_K
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT)
– fundername: Japan Society for the Promotion of Science
– fundername: Japan Science and Technology Agency
– fundername: Global COE Program from MEXT [International Center for Integrated Research and Advanced Education in Materials Science]
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RBB
RWI
WRC
.GJ
53G
6TJ
AAYXX
ABEML
ACSCC
AGHNM
CITATION
EBD
EMOBN
FA8
LH6
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
SV3
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4327-9273936ca230799fb3308bb429c0fd32012d9ef5ae2b6ac3bd8b70277ce024c93
IEDL.DBID DR2
ISSN 0887-3585
1097-0134
IngestDate Fri Jul 11 09:10:48 EDT 2025
Mon Jul 21 05:58:09 EDT 2025
Tue Jul 01 00:44:58 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Wed Jan 22 16:16:54 EST 2025
Sun Sep 21 06:18:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2009 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4327-9273936ca230799fb3308bb429c0fd32012d9ef5ae2b6ac3bd8b70277ce024c93
Notes ark:/67375/WNG-W08Q2Q22-K
istex:5BF614040BAB7B66DCB0BDA7D7E528DD8CC86824
ArticleID:PROT22667
Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Japan Science and Technology Agency
Global COE Program from MEXT [International Center for Integrated Research and Advanced Education in Materials Science]
Japan Society for the Promotion of Science
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20077568
PQID 733122126
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_733122126
pubmed_primary_20077568
crossref_citationtrail_10_1002_prot_22667
crossref_primary_10_1002_prot_22667
wiley_primary_10_1002_prot_22667_PROT22667
istex_primary_ark_67375_WNG_W08Q2Q22_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 May 2010
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 1 May 2010
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Sachdev S,Bruhn L,Sieber H,Pichler A,Melchior F,Grosschedl R. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 2001; 15: 3088-3103.
Brünger A,Adams P,Clore G,Delano W,Gros P,Grosse-Kunstleve R,Jiang J,Kuszewski J,Nilges M,Pannu N,Read R,Rice L,Simonson T,Warren G. Crystallography NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998; 54: 905-921.
Adams P,Grosse-Kunstleve R,Hung L,Ioerger T,Mccoy A,Moriarty N,Read R,Sacchettini J,Sauter N,Terwilliger T. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 2002; 58: 1948-1954.
Huang T,D'andrea A. Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 2006; 7: 323-334.
Terwilliger T,Berendzen J. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 1999; 55: 849-861.
Raffa G,Wohlschlegel J,Yates M,Jr. SUMO-binding motifs mediate the Rad60-dependent response to replicative stress and self-association. J Biol Chem 2006; 281: 27973-27981.
Pickart C. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70: 503-533.
Tatham M,Jaffray E,Vaughan O,Desterro J,Botting C,Naismith J,Hay R. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 2001; 276: 35368-35374.
Perrakis A,Morris R,Lamzin V. Automated protein model building combined with iterative structure refinement. Nat Struct Biol 1999; 6: 458-463.
Knipscheer P,Van Dijk W,Olsen J,Mann M,Sixma T. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J 2007; 26: 2797-2807.
Mowen K,Schurter B,Fathman J,David M,Glimcher L. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Mol Cell 2004; 15: 559-571.
Reverter D,Lima C. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 2005; 435: 687-692.
Otwinowski Z,Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr 1997; 276: 307-326.
Baba D,Maita N,Jee J,Uchimura Y,Saitoh H,Sugasawa K,Hanaoka F,Tochio H,Hiroaki H,Shirakawa M. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 2005; 435: 979-982.
Matic I,Van Hagen M,Schimmel J,Macek B,Ogg S,Tatham M,Hay R,Lamond A,Mann M,Vertegaal A. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 2008; 7: 132-144.
Novatchkova M,Bachmair A,Eisenhaber B,Eisenhaber F. Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2-NIP45) family. BMC Bioinformatics 2005; 6: 22.
Hodge M,Chun H,Rengarajan J,Alt A,Lieberson R,Glimcher L. NF-AT-Driven interleukin-4 transcription potentiated by NIP45. Science 1996; 274: 1903-1905.
Fu C,Ahmed K,Ding H,Ding X,Lan J,Yang Z,Miao Y,Zhu Y,Shi Y,Zhu J,Huang H,Yao X. Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 2005; 24: 5401-5413.
Pichler A,Knipscheer P,Oberhofer E,Van Dijk W,Körner R,Olsen J,Jentsch S,Melchior F,Sixma T. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol 2005; 12: 264-269.
Seeler J,Dejean A. Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 2003; 4: 690-699.
Uchimura Y,Nakao M,Saitoh H. Generation of SUMO-1 modified proteins in E. coli: towards understanding the biochemistry/structural biology of the SUMO-1 pathway. FEBS Lett 2004; 564: 85-90.
Murshudov G,Vagin A,Lebedev A,Wilson K,Dodson E. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D Biol Crystallogr 1999; 55: 247-255.
Goddard TD,Kneller DG. Sparky 3, SF: University of California; 2002.
Sampson D,Wang M,Matunis M. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 2001; 276: 21664-21669.
Takahashi Y,Toh-E A,Kikuchi Y. A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 2001; 275: 223-231.
Tateishi Y,Ariyoshi M,Igarashi R,Hara H,Mizuguchi K,Seto A,Nakai A,Kokubo T,Tochio H,Shirakawa M. Molecular basis for SUMOylation-dependent regulation of DNA binding activity of heat shock factor 2. J Biol Chem 2009; 284: 2435-2447.
Prudden J,Pebernard S,Raffa G,Slavin D,Perry J,Tainer J,Mcgowan C,Boddy M. SUMO-targeted ubiquitin ligases in genome stability. EMBO J 2007; 26: 4089-4101.
Boddy M,Shanahan P,Mcdonald W,Lopez-Girona A,Noguchi E,Yates J,III,Russell P. Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol Cell Biol 2003; 23: 5939-5946.
Prudden J,Perry J,Arvai A,Tainer J,Boddy M. Molecular mimicry of SUMO promotes DNA repair. Nat Struct Mol Biol 2009; 16: 509-516.
Laskowski R,Macarthur M,Moss D,Thornton J. PROCHECK-a program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26: 283-291.
Kotaja N,Karvonen U,Jänne O,Palvimo J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 2002; 22: 5222-5234.
Baba D,Maita N,Jee J,Uchimura Y,Saitoh H,Sugasawa K,Hanaoka F,Tochio H,Hiroaki H,Shirakawa M. Crystal structure of SUMO-3-modified thymine-DNA glycosylase. J Mol Biol 2006; 359: 137-147.
Tatham M,Kim S,Yu B,Jaffray E,Song J,Zheng J,Rodriguez M,Hay R,Chen Y. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and −3 binding and conjugation. Biochemistry 2003; 42: 9959-9969.
Delaglio F,Grzesiek S,Vuister G,Zhu G,Pfeifer J,Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995; 6: 277-293.
Takahashi Y,Kahyo T,Toh-E A,Yasuda H,Kikuchi Y. Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J Biol Chem 2001; 276: 48973-48977.
Capili A,Lima C. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J Mol Biol 2007; 369: 608-618.
Sollier J,Driscoll R,Castellucci F,Foiani M,Jackson S,Branzei D. The S. cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction mediated intra-S repair. Mol Biol Cell 2009; 20: 1671-1682.
Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 2004; 18: 2046-2059.
Tatham M,Geoffroy M,Shen L,Plechanovova A,Hattersley N,Jaffray E,Palvimo J,Hay R. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 2008; 10: 538-546.
Song J,Zhang Z,Hu W,Chen Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 2005; 280: 40122-40129.
Xhemalce B,Seeler J,Thon G,Dejean A,Arcangioli B. Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 2004; 23: 3844-3853.
Saitoh H,Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 2000; 275: 6252-6258.
Johnson E,Gupta A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 2001; 106: 735-744.
Khakhar R,Cobb J,Bjergbaek L,Hickson I,Gasser S. RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol 2003; 13: 493-501.
Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60: 2126-2132.
Hecker C,Rabiller M,Haglund K,Bayer P,Dikic I. Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 2006; 281: 16117-16127.
Parker J,Bucceri A,Davies A,Heidrich K,Windecker H,Ulrich H. SUMO modification of PCNA is controlled by DNA. EMBO J 2008; 27: 2422-2431.
Sekiyama N,Ikegami T,Yamane T,Ikeguchi M,Uchimura Y,Baba D,Ariyoshi M,Tochio H,Saitoh H,Shirakawa M. Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J Biol Chem 2008; 283: 35966-35975.
Mccoy A,Grosse-Kunstleve R,Adams P,Winn M,Storoni L,Read R. Phaser crystallographic software. J Appl Crystallogr 2007; 40: 658-674.
Sun H,Leverson J,Hunter T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 2007; 26: 4102-4112.
1993; 26
2001; 70
2002; 58
2007; 369
2004; 564
2009; 20
2004; 60
2005; 435
1997; 276
2004; 23
2006; 7
2003; 13
2008; 7
2008; 10
2000; 275
2002
1999; 6
2006; 359
1995; 6
2008; 283
2001; 106
2005; 24
2001; 276
2001; 275
2005; 280
2004; 18
2004; 15
2008; 27
2002; 22
2003; 4
1999; 55
2005; 6
2001; 15
2009; 284
1996; 274
2007; 40
2006; 281
1998; 54
2009; 16
2003; 42
2005; 12
2007; 26
2003; 23
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
Goddard TD (e_1_2_7_35_2) 2002
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_2
e_1_2_7_38_2
References_xml – reference: Boddy M,Shanahan P,Mcdonald W,Lopez-Girona A,Noguchi E,Yates J,III,Russell P. Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol Cell Biol 2003; 23: 5939-5946.
– reference: Takahashi Y,Kahyo T,Toh-E A,Yasuda H,Kikuchi Y. Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J Biol Chem 2001; 276: 48973-48977.
– reference: Takahashi Y,Toh-E A,Kikuchi Y. A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 2001; 275: 223-231.
– reference: Saitoh H,Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 2000; 275: 6252-6258.
– reference: Sollier J,Driscoll R,Castellucci F,Foiani M,Jackson S,Branzei D. The S. cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction mediated intra-S repair. Mol Biol Cell 2009; 20: 1671-1682.
– reference: Capili A,Lima C. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J Mol Biol 2007; 369: 608-618.
– reference: Knipscheer P,Van Dijk W,Olsen J,Mann M,Sixma T. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J 2007; 26: 2797-2807.
– reference: Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60: 2126-2132.
– reference: Huang T,D'andrea A. Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 2006; 7: 323-334.
– reference: Prudden J,Pebernard S,Raffa G,Slavin D,Perry J,Tainer J,Mcgowan C,Boddy M. SUMO-targeted ubiquitin ligases in genome stability. EMBO J 2007; 26: 4089-4101.
– reference: Goddard TD,Kneller DG. Sparky 3, SF: University of California; 2002.
– reference: Brünger A,Adams P,Clore G,Delano W,Gros P,Grosse-Kunstleve R,Jiang J,Kuszewski J,Nilges M,Pannu N,Read R,Rice L,Simonson T,Warren G. Crystallography NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998; 54: 905-921.
– reference: Matic I,Van Hagen M,Schimmel J,Macek B,Ogg S,Tatham M,Hay R,Lamond A,Mann M,Vertegaal A. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 2008; 7: 132-144.
– reference: Hodge M,Chun H,Rengarajan J,Alt A,Lieberson R,Glimcher L. NF-AT-Driven interleukin-4 transcription potentiated by NIP45. Science 1996; 274: 1903-1905.
– reference: Delaglio F,Grzesiek S,Vuister G,Zhu G,Pfeifer J,Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995; 6: 277-293.
– reference: Baba D,Maita N,Jee J,Uchimura Y,Saitoh H,Sugasawa K,Hanaoka F,Tochio H,Hiroaki H,Shirakawa M. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 2005; 435: 979-982.
– reference: Tatham M,Kim S,Yu B,Jaffray E,Song J,Zheng J,Rodriguez M,Hay R,Chen Y. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and −3 binding and conjugation. Biochemistry 2003; 42: 9959-9969.
– reference: Laskowski R,Macarthur M,Moss D,Thornton J. PROCHECK-a program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26: 283-291.
– reference: Tatham M,Jaffray E,Vaughan O,Desterro J,Botting C,Naismith J,Hay R. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 2001; 276: 35368-35374.
– reference: Novatchkova M,Bachmair A,Eisenhaber B,Eisenhaber F. Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2-NIP45) family. BMC Bioinformatics 2005; 6: 22.
– reference: Pichler A,Knipscheer P,Oberhofer E,Van Dijk W,Körner R,Olsen J,Jentsch S,Melchior F,Sixma T. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat Struct Mol Biol 2005; 12: 264-269.
– reference: Sun H,Leverson J,Hunter T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 2007; 26: 4102-4112.
– reference: Perrakis A,Morris R,Lamzin V. Automated protein model building combined with iterative structure refinement. Nat Struct Biol 1999; 6: 458-463.
– reference: Otwinowski Z,Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr 1997; 276: 307-326.
– reference: Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 2004; 18: 2046-2059.
– reference: Khakhar R,Cobb J,Bjergbaek L,Hickson I,Gasser S. RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol 2003; 13: 493-501.
– reference: Kotaja N,Karvonen U,Jänne O,Palvimo J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 2002; 22: 5222-5234.
– reference: Tatham M,Geoffroy M,Shen L,Plechanovova A,Hattersley N,Jaffray E,Palvimo J,Hay R. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 2008; 10: 538-546.
– reference: Parker J,Bucceri A,Davies A,Heidrich K,Windecker H,Ulrich H. SUMO modification of PCNA is controlled by DNA. EMBO J 2008; 27: 2422-2431.
– reference: Xhemalce B,Seeler J,Thon G,Dejean A,Arcangioli B. Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 2004; 23: 3844-3853.
– reference: Sachdev S,Bruhn L,Sieber H,Pichler A,Melchior F,Grosschedl R. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 2001; 15: 3088-3103.
– reference: Pickart C. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70: 503-533.
– reference: Hecker C,Rabiller M,Haglund K,Bayer P,Dikic I. Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 2006; 281: 16117-16127.
– reference: Reverter D,Lima C. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 2005; 435: 687-692.
– reference: Raffa G,Wohlschlegel J,Yates M,Jr. SUMO-binding motifs mediate the Rad60-dependent response to replicative stress and self-association. J Biol Chem 2006; 281: 27973-27981.
– reference: Sekiyama N,Ikegami T,Yamane T,Ikeguchi M,Uchimura Y,Baba D,Ariyoshi M,Tochio H,Saitoh H,Shirakawa M. Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J Biol Chem 2008; 283: 35966-35975.
– reference: Sampson D,Wang M,Matunis M. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 2001; 276: 21664-21669.
– reference: Adams P,Grosse-Kunstleve R,Hung L,Ioerger T,Mccoy A,Moriarty N,Read R,Sacchettini J,Sauter N,Terwilliger T. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 2002; 58: 1948-1954.
– reference: Terwilliger T,Berendzen J. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 1999; 55: 849-861.
– reference: Song J,Zhang Z,Hu W,Chen Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 2005; 280: 40122-40129.
– reference: Prudden J,Perry J,Arvai A,Tainer J,Boddy M. Molecular mimicry of SUMO promotes DNA repair. Nat Struct Mol Biol 2009; 16: 509-516.
– reference: Johnson E,Gupta A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 2001; 106: 735-744.
– reference: Uchimura Y,Nakao M,Saitoh H. Generation of SUMO-1 modified proteins in E. coli: towards understanding the biochemistry/structural biology of the SUMO-1 pathway. FEBS Lett 2004; 564: 85-90.
– reference: Murshudov G,Vagin A,Lebedev A,Wilson K,Dodson E. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D Biol Crystallogr 1999; 55: 247-255.
– reference: Baba D,Maita N,Jee J,Uchimura Y,Saitoh H,Sugasawa K,Hanaoka F,Tochio H,Hiroaki H,Shirakawa M. Crystal structure of SUMO-3-modified thymine-DNA glycosylase. J Mol Biol 2006; 359: 137-147.
– reference: Fu C,Ahmed K,Ding H,Ding X,Lan J,Yang Z,Miao Y,Zhu Y,Shi Y,Zhu J,Huang H,Yao X. Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 2005; 24: 5401-5413.
– reference: Mccoy A,Grosse-Kunstleve R,Adams P,Winn M,Storoni L,Read R. Phaser crystallographic software. J Appl Crystallogr 2007; 40: 658-674.
– reference: Tateishi Y,Ariyoshi M,Igarashi R,Hara H,Mizuguchi K,Seto A,Nakai A,Kokubo T,Tochio H,Shirakawa M. Molecular basis for SUMOylation-dependent regulation of DNA binding activity of heat shock factor 2. J Biol Chem 2009; 284: 2435-2447.
– reference: Mowen K,Schurter B,Fathman J,David M,Glimcher L. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Mol Cell 2004; 15: 559-571.
– reference: Seeler J,Dejean A. Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 2003; 4: 690-699.
– volume: 284
  start-page: 2435
  year: 2009
  end-page: 2447
  article-title: Molecular basis for SUMOylation‐dependent regulation of DNA binding activity of heat shock factor 2
  publication-title: J Biol Chem
– volume: 435
  start-page: 687
  year: 2005
  end-page: 692
  article-title: Insights into E3 ligase activity revealed by a SUMO‐RanGAP1‐Ubc9‐Nup358 complex
  publication-title: Nature
– volume: 27
  start-page: 2422
  year: 2008
  end-page: 2431
  article-title: SUMO modification of PCNA is controlled by DNA
  publication-title: EMBO J
– volume: 276
  start-page: 307
  year: 1997
  end-page: 326
  article-title: Processing of X‐ray diffraction data collected in oscillation mode
  publication-title: Macromol Crystallogr
– volume: 22
  start-page: 5222
  year: 2002
  end-page: 5234
  article-title: PIAS proteins modulate transcription factors by functioning as SUMO‐1 ligases
  publication-title: Mol Cell Biol
– volume: 26
  start-page: 4089
  year: 2007
  end-page: 4101
  article-title: SUMO‐targeted ubiquitin ligases in genome stability
  publication-title: EMBO J
– volume: 26
  start-page: 283
  year: 1993
  end-page: 291
  article-title: PROCHECK—a program to check the stereochemical quality of protein structures
  publication-title: J Appl Cryst
– volume: 106
  start-page: 735
  year: 2001
  end-page: 744
  article-title: An E3‐like factor that promotes SUMO conjugation to the yeast septins
  publication-title: Cell
– volume: 276
  start-page: 35368
  year: 2001
  end-page: 35374
  article-title: Polymeric chains of SUMO‐2 and SUMO‐3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9
  publication-title: J Biol Chem
– volume: 13
  start-page: 493
  year: 2003
  end-page: 501
  article-title: RecQ helicases: multiple roles in genome maintenance
  publication-title: Trends Cell Biol
– volume: 280
  start-page: 40122
  year: 2005
  end-page: 40129
  article-title: Small ubiquitin‐like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation
  publication-title: J Biol Chem
– volume: 435
  start-page: 979
  year: 2005
  end-page: 982
  article-title: Crystal structure of thymine DNA glycosylase conjugated to SUMO‐1
  publication-title: Nature
– volume: 7
  start-page: 132
  year: 2008
  end-page: 144
  article-title: In vivo identification of human small ubiquitin‐like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy
  publication-title: Mol Cell Proteomics
– volume: 274
  start-page: 1903
  year: 1996
  end-page: 1905
  article-title: NF‐AT‐Driven interleukin‐4 transcription potentiated by NIP45
  publication-title: Science
– volume: 275
  start-page: 223
  year: 2001
  end-page: 231
  article-title: A novel factor required for the SUMO1/Smt3 conjugation of yeast septins
  publication-title: Gene
– volume: 12
  start-page: 264
  year: 2005
  end-page: 269
  article-title: SUMO modification of the ubiquitin‐conjugating enzyme E2‐25K
  publication-title: Nat Struct Mol Biol
– volume: 15
  start-page: 3088
  year: 2001
  end-page: 3103
  article-title: PIASy, a nuclear matrix‐associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies
  publication-title: Genes Dev
– volume: 18
  start-page: 2046
  year: 2004
  end-page: 2059
  article-title: SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?
  publication-title: Genes Dev
– volume: 6
  start-page: 277
  year: 1995
  end-page: 293
  article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes
  publication-title: J Biomol NMR
– volume: 7
  start-page: 323
  year: 2006
  end-page: 334
  article-title: Regulation of DNA repair by ubiquitylation
  publication-title: Nat Rev Mol Cell Biol
– volume: 54
  start-page: 905
  year: 1998
  end-page: 921
  article-title: Crystallography NMR system: a new software suite for macromolecular structure determination
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 26
  start-page: 2797
  year: 2007
  end-page: 2807
  article-title: Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation
  publication-title: EMBO J
– volume: 23
  start-page: 5939
  year: 2003
  end-page: 5946
  article-title: Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60
  publication-title: Mol Cell Biol
– volume: 283
  start-page: 35966
  year: 2008
  end-page: 35975
  article-title: Structure of the small ubiquitin‐like modifier (SUMO)‐interacting motif of MBD1‐containing chromatin‐associated factor 1 bound to SUMO‐3
  publication-title: J Biol Chem
– volume: 20
  start-page: 1671
  year: 2009
  end-page: 1682
  article-title: The Esc2 and Smc5–6 proteins promote sister chromatid junction mediated intra‐S repair
  publication-title: Mol Biol Cell
– volume: 6
  start-page: 458
  year: 1999
  end-page: 463
  article-title: Automated protein model building combined with iterative structure refinement
  publication-title: Nat Struct Biol
– volume: 4
  start-page: 690
  year: 2003
  end-page: 699
  article-title: Nuclear and unclear functions of SUMO
  publication-title: Nat Rev Mol Cell Biol
– volume: 276
  start-page: 48973
  year: 2001
  end-page: 48977
  article-title: Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates
  publication-title: J Biol Chem
– volume: 16
  start-page: 509
  year: 2009
  end-page: 516
  article-title: Molecular mimicry of SUMO promotes DNA repair
  publication-title: Nat Struct Mol Biol
– volume: 26
  start-page: 4102
  year: 2007
  end-page: 4112
  article-title: Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins
  publication-title: EMBO J
– volume: 6
  start-page: 22
  year: 2005
  article-title: Proteins with two SUMO‐like domains in chromatin‐associated complexes: the RENi (Rad60‐Esc2‐NIP45) family
  publication-title: BMC Bioinformatics
– volume: 359
  start-page: 137
  year: 2006
  end-page: 147
  article-title: Crystal structure of SUMO‐3‐modified thymine‐DNA glycosylase
  publication-title: J Mol Biol
– volume: 10
  start-page: 538
  year: 2008
  end-page: 546
  article-title: RNF4 is a poly‐SUMO‐specific E3 ubiquitin ligase required for arsenic‐induced PML degradation
  publication-title: Nat Cell Biol
– volume: 281
  start-page: 27973
  year: 2006
  end-page: 27981
  article-title: SUMO‐binding motifs mediate the Rad60‐dependent response to replicative stress and self‐association
  publication-title: J Biol Chem
– volume: 55
  start-page: 247
  year: 1999
  end-page: 255
  article-title: Efficient anisotropic refinement of macromolecular structures using FFT
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 42
  start-page: 9959
  year: 2003
  end-page: 9969
  article-title: Role of an N‐terminal site of Ubc9 in SUMO‐1, ‐2, and −3 binding and conjugation
  publication-title: Biochemistry
– volume: 55
  start-page: 849
  year: 1999
  end-page: 861
  article-title: Automated MAD and MIR structure solution
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 58
  start-page: 1948
  year: 2002
  end-page: 1954
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 23
  start-page: 3844
  year: 2004
  end-page: 3853
  article-title: Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance
  publication-title: EMBO J
– volume: 70
  start-page: 503
  year: 2001
  end-page: 533
  article-title: Mechanisms underlying ubiquitination
  publication-title: Annu Rev Biochem
– year: 2002
– volume: 24
  start-page: 5401
  year: 2005
  end-page: 5413
  article-title: Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO‐3
  publication-title: Oncogene
– volume: 275
  start-page: 6252
  year: 2000
  end-page: 6258
  article-title: Functional heterogeneity of small ubiquitin‐related protein modifiers SUMO‐1 versus SUMO‐2/3
  publication-title: J Biol Chem
– volume: 281
  start-page: 16117
  year: 2006
  end-page: 16127
  article-title: Specification of SUMO1‐ and SUMO2‐interacting motifs
  publication-title: J Biol Chem
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  article-title: Phaser crystallographic software
  publication-title: J Appl Crystallogr
– volume: 276
  start-page: 21664
  year: 2001
  end-page: 21669
  article-title: The small ubiquitin‐like modifier‐1 (SUMO‐1) consensus sequence mediates Ubc9 binding and is essential for SUMO‐1 modification
  publication-title: J Biol Chem
– volume: 15
  start-page: 559
  year: 2004
  end-page: 571
  article-title: Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes
  publication-title: Mol Cell
– volume: 369
  start-page: 608
  year: 2007
  end-page: 618
  article-title: Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2‐Ubl interaction
  publication-title: J Mol Biol
– volume: 564
  start-page: 85
  year: 2004
  end-page: 90
  article-title: Generation of SUMO‐1 modified proteins in : towards understanding the biochemistry/structural biology of the SUMO‐1 pathway
  publication-title: FEBS Lett
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  article-title: Coot: model‐building tools for molecular graphics
  publication-title: Acta Crystallogr D Biol Crystallogr
– ident: e_1_2_7_13_2
  doi: 10.1074/jbc.M100006200
– ident: e_1_2_7_6_2
  doi: 10.1101/gad.944801
– ident: e_1_2_7_27_2
  doi: 10.1074/jbc.M601943200
– ident: e_1_2_7_8_2
  doi: 10.1016/S0378-1119(01)00662-X
– ident: e_1_2_7_4_2
  doi: 10.1146/annurev.biochem.70.1.503
– ident: e_1_2_7_9_2
  doi: 10.1128/MCB.22.14.5222-5234.2002
– ident: e_1_2_7_16_2
  doi: 10.1038/sj.emboj.7601711
– ident: e_1_2_7_7_2
  doi: 10.1074/jbc.M109295200
– ident: e_1_2_7_28_2
  doi: 10.1186/1471-2105-6-22
– ident: e_1_2_7_48_2
  doi: 10.1074/jbc.M512757200
– ident: e_1_2_7_18_2
  doi: 10.1074/jbc.M104214200
– ident: e_1_2_7_51_2
  doi: 10.1038/sj.emboj.7600394
– ident: e_1_2_7_22_2
  doi: 10.1038/sj.emboj.7601839
– ident: e_1_2_7_46_2
  doi: 10.1074/jbc.M507059200
– ident: e_1_2_7_39_2
  doi: 10.1107/S0907444998003254
– ident: e_1_2_7_32_2
  doi: 10.1074/jbc.M802528200
– ident: e_1_2_7_42_2
  doi: 10.1107/S0907444902016657
– ident: e_1_2_7_12_2
  doi: 10.1016/S0014-5793(04)00321-7
– ident: e_1_2_7_49_2
  doi: 10.1021/bi0345283
– ident: e_1_2_7_19_2
  doi: 10.1038/sj.onc.1208714
– ident: e_1_2_7_29_2
  doi: 10.1126/science.274.5294.1903
– ident: e_1_2_7_14_2
  doi: 10.1038/nsmb903
– ident: e_1_2_7_30_2
  doi: 10.1016/j.molcel.2004.06.042
– ident: e_1_2_7_24_2
  doi: 10.1101/gad.1214604
– ident: e_1_2_7_21_2
  doi: 10.1038/sj.emboj.7601838
– ident: e_1_2_7_40_2
  doi: 10.1107/S0907444904019158
– ident: e_1_2_7_41_2
  doi: 10.1107/S090744499801405X
– ident: e_1_2_7_36_2
  doi: 10.1016/S0076-6879(97)76066-X
– ident: e_1_2_7_33_2
  doi: 10.1016/j.jmb.2006.03.036
– ident: e_1_2_7_37_2
  doi: 10.1107/S0907444999000839
– ident: e_1_2_7_34_2
  doi: 10.1007/BF00197809
– ident: e_1_2_7_10_2
  doi: 10.1038/nature03634
– ident: e_1_2_7_5_2
  doi: 10.1016/S0092-8674(01)00491-3
– ident: e_1_2_7_50_2
  doi: 10.1038/ncb1716
– ident: e_1_2_7_44_2
  doi: 10.1107/S0021889807021206
– ident: e_1_2_7_2_2
  doi: 10.1038/nrm1200
– ident: e_1_2_7_11_2
  doi: 10.1074/jbc.M806392200
– ident: e_1_2_7_3_2
  doi: 10.1074/jbc.275.9.6252
– ident: e_1_2_7_20_2
  doi: 10.1038/emboj.2008.162
– ident: e_1_2_7_17_2
  doi: 10.1074/mcp.M700173-MCP200
– ident: e_1_2_7_23_2
  doi: 10.1038/nrm1908
– ident: e_1_2_7_15_2
  doi: 10.1016/j.jmb.2007.04.006
– ident: e_1_2_7_25_2
  doi: 10.1016/S0962-8924(03)00171-5
– ident: e_1_2_7_45_2
  doi: 10.1038/nsmb.1582
– ident: e_1_2_7_43_2
  doi: 10.1107/S0021889892009944
– ident: e_1_2_7_26_2
  doi: 10.1128/MCB.23.16.5939-5946.2003
– volume-title: Sparky 3
  year: 2002
  ident: e_1_2_7_35_2
– ident: e_1_2_7_31_2
  doi: 10.1091/mbc.E08-08-0875
– ident: e_1_2_7_38_2
  doi: 10.1038/8263
– ident: e_1_2_7_47_2
  doi: 10.1038/nature03588
SSID ssj0006936
Score 2.1109083
Snippet Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification...
Post-translational modification by small ubiquitin-like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1491
SubjectTerms Amino Acid Motifs
Amino Acid Sequence
Animals
crystal structure
Crystallography, X-Ray
Intracellular Signaling Peptides and Proteins - chemistry
Intracellular Signaling Peptides and Proteins - metabolism
Mice
Models, Molecular
Molecular Sequence Data
Nuclear Proteins - chemistry
Nuclear Proteins - metabolism
Protein Binding
Protein Structure, Secondary
Protein Structure, Tertiary
Sequence Alignment
Small Ubiquitin-Related Modifier Proteins - chemistry
Small Ubiquitin-Related Modifier Proteins - metabolism
Structure-Activity Relationship
SUMO
SUMO-like domain
SUMO-targeted ubiquitin ligases
Surface Properties
Ubc9
Ubiquitin-Conjugating Enzymes - chemistry
Ubiquitin-Conjugating Enzymes - metabolism
Title Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45
URI https://api.istex.fr/ark:/67375/WNG-W08Q2Q22-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.22667
https://www.ncbi.nlm.nih.gov/pubmed/20077568
https://www.proquest.com/docview/733122126
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0887-3585
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UiuiLl9bL1AsBpaAw29lkJjMBX2qxFsWtrV3aFwnJJKHLbmeWbguuT_4Ef6O_xJPMziyVIuhbJpwZMjk5OV-Sk-8AvDTKWJFlLKbG4ALFcRoLk5g4dwnLbZ4alfoLzp8GfG-YfjjJTlbgTXsXpuGH6DbcvGWE-dobuNKzrSVpqOcx6CF44P4qeZ9l4Yz2cMkdxUXID9hYEYLijpuUbi1fveKNbviO_XYd1LyKXIPr2b0LX9tGNxEn497lhe6V3__gc_zfv7oHdxaYlGw3g-g-rNhqDda3K1yPn83JJglRomH7fQ1uvm1Lt3baXHHrMPwSaGg9hQdBvziaEcTC5LzJc4-aJ7Uj03oy__XjJ07j-6Q8VaOK6DlRxD9j9WQ0tsTUZ74ehQejaZo9gOHuu6OdvXiRsCEuU0bzWFDPr8dL5aPLhXCasaTQGl1emTjDEGtQI6zLlKWaq5JpU-jcHyKXFqFCKdhDWK3qyj4Gwgpnchw6uP4rUmH6ygnHODOo56wQnEbwqlWcLBds5j6pxkQ2PMxU-p6UoScjeNHJThsOj2ulNoP-OxF1PvZRb3kmjwfv5XFSHNADSuXHCEg7QCR2sz9gUZWtL2fS57-kiAV4BI-agdN9jAauQV5E8Dqo_y8NkZ8P949CaeNfhJ_A7TayIek_hVXUu32GgOlCPw-G8RsONhCq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgExov_NkYhL-WQJNASpfZiRM_jsEobOvYaLW9WXbsiKpdUq2bRHniI_AZ-STcOU2qoQkJ3pzoEiXnO9_P9vl3hLyy2jqZJDxk1sIEpRAslDayYVpEPHVpbHWMB5wPeqI7iD-dJqfz3Bw8C1PzQ7QLbugZfrxGB8cF6c0FaygSGXQAPYj0JlnGDTr0y3fHC_YoIX2FwNqPABa37KRsc_HslXi0jKr9dh3YvIpdffDZvVtXWJ16zkLMORl1Li9MJ__-B6Pjf__XPXJnDkvpdm1H98kNV66Ste0SpuRnM7pBfaKoX4FfJbfeNq2VnaZc3BoZfPFMtMjiQSE0DqcU4DA9r0vdQ-fTqqCTajz79eMnjOSHNP-qhyU1M6opXsPt8XDkqK3O8D4I94aTOHlABrvv-zvdcF6zIcxjztJQMqTYE7nGBHMpC8N5lBkDUS-PCssBbjArXZFox4zQOTc2MynuI-cO0EIu-TpZKqvSPSKUZ4VNwXpgCpjF0m7pQhZccMsBg2ZSsIC8bnpO5XNCc6yrMVY1FTNTqEnlNRmQl63spKbxuFZqwxtAK6LPR5j4libqpPdBnUTZETtiTO0FhDYWokDNuMeiS1ddThWWwGQAB0RAHtaW076MebpBkQXkje__v3yI-nx82Petx_8i_IKsdPsH-2r_Y2_vCbndJDpEW0_JEtiAewb46cI8917yGwu3FMY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVlBeuLRQwtUSqBJI2aZ24sQSL6WwFArb66p9QZYT22K122TVi8TyxCfwjXwJY2eTVVGFBG-ONYkcz4x9bI_PALzQShuRJCykWuMCxXIaCh3pMLURS00aaxW7C86fe3yrH388To7n4HVzF6bmh2g33Jxn-PHaOfhY27UZaajjMeggeODpNViIOS6vHCTan5FHceETBNZuhKi4JSela7N3L01HC65nv12FNS9DVz_3dG_Dl6bVdcjJsHNxnneK738QOv7vb92BW1NQSjZqK7oLc6ZcguWNEhfkJxOySnyYqN9_X4Lrb5rS4maTLG4Z-geeh9ZxeBCcGAdnBMEwOa0T3aPqSWXJuBpNfv34ieP4Dim-qkFJ8glRxD1j9WgwNERXJ64ehXuDcZzcg3733eHmVjjN2BAWMaNpKKgj2OOFcuHlQticsSjLc5zzishqhmCDamFsogzNuSpYrrM8dafIhUGsUAh2H-bLqjQPgLDM6hRtBxeAWSz0urLCMs40QwSaCU4DeNkoThZTOnOXVWMkayJmKl1PSt-TATxvZcc1iceVUqte_62IOh26sLc0kUe99_IoyvboHqVyOwDSGIjEbnYnLKo01cWZdAkwKYIBHsBKbTjtx6gnG-RZAK-8-v_SELm7v3PoSw__RfgZ3Nh925WfPvS2H8HNJsohWn8M82gC5gmCp_P8qfeR38AjE3U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+regulation+of+poly-SUMO+chain+by+a+SUMO-like+domain+of+Nip45&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Sekiyama%2C+Naotaka&rft.au=Arita%2C+Kyohei&rft.au=Ikeda%2C+Yoshihiro&rft.au=Hashiguchi%2C+Kohtaro&rft.date=2010-05-01&rft.issn=1097-0134&rft.eissn=1097-0134&rft.volume=78&rft.issue=6&rft.spage=1491&rft_id=info:doi/10.1002%2Fprot.22667&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon