Online solid phase extraction high-performance liquid chromatography – Isotope dilution – Tandem mass spectrometry quantification of organophosphate pesticides, synthetic pyrethroids, and selected herbicide metabolites in human urine
Analytical methods to quantify pesticide biomarkers in human population studies are critical for exposure assessment given the widespread use of pesticides for pest and weed control and their potential for affecting human health. We developed a method to quantify, in 0.2 mL of urine, concentrations...
Saved in:
Published in | Chemosphere (Oxford) Vol. 340; p. 139863 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0045-6535 1879-1298 1879-1298 |
DOI | 10.1016/j.chemosphere.2023.139863 |
Cover
Abstract | Analytical methods to quantify pesticide biomarkers in human population studies are critical for exposure assessment given the widespread use of pesticides for pest and weed control and their potential for affecting human health. We developed a method to quantify, in 0.2 mL of urine, concentrations of 10 pesticide biomarkers: four organophosphate insecticide metabolites (3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol, para-nitrophenol, malathion dicarboxylic acid); five synthetic pyrethroid insecticide metabolites (4-fluoro-3-phenoxybenzoic acid, 3-phenoxybenzoic acid, cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid); and the herbicide 2,4-dichlorophenoxyacetic acid.
he method is based on enzymatic hydrolysis of conjugated urinary metabolites, extraction and pre-concentration of the deconjugated metabolites using automated online solid-phase extraction, and separation and quantification using liquid chromatography-isotope dilution tandem mass spectrometry.
Depending on the analyte, method detection limits were 0.1–0.6 ng/mL; mean accuracy, calculated as spike recoveries, was 91–102%, and total precision, given as percent variation coefficient, was 5.9–11.5%. Percent differences associated with three freeze-thaw cycles, 24-h benchtop storage, and short-term processed sample stability were <14%.
Method suitability was assessed by recurring successful participation in external quality assessment schemes and by analyzing samples from subjects with suspected exposure to pesticides (n = 40) or who self-reported consuming an organic diet (n = 50). Interquartile ranges were considerably lower for people consuming an organic diet than for those potentially exposed for cis-DCCA (0.37 ng/mL vs 0.75 ng/mL), trans-DCCA (0.88 ng/mL vs 1.78 ng/mL) and TCPy (1.81 ng/mL vs 2.48 ng/mL). This method requires one-fifth of the sample used in our previous method and is suitable for assessing background exposures to select pesticides in large human populations and for studies with limited sample volumes.
[Display omitted]
•Novel LC-MS/MS method for quantifying pesticide biomarkers in urine•Online sample cleanup and isotope dilution LC-MS/MS pesticide exposure method•Method uses 0.2 mL urine and is sensitive, reproducible, and accurate•Suitable to assess background exposures in large-scale population studies |
---|---|
AbstractList | Analytical methods to quantify pesticide biomarkers in human population studies are critical for exposure assessment given the widespread use of pesticides for pest and weed control and their potential for affecting human health. We developed a method to quantify, in 0.2 mL of urine, concentrations of 10 pesticide biomarkers: four organophosphate insecticide metabolites (3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol, para-nitrophenol, malathion dicarboxylic acid); five synthetic pyrethroid insecticide metabolites (4-fluoro-3-phenoxybenzoic acid, 3-phenoxybenzoic acid, cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid); and the herbicide 2,4-dichlorophenoxyacetic acid. he method is based on enzymatic hydrolysis of conjugated urinary metabolites, extraction and pre-concentration of the deconjugated metabolites using automated online solid-phase extraction, and separation and quantification using liquid chromatography-isotope dilution tandem mass spectrometry. Depending on the analyte, method detection limits were 0.1–0.6 ng/mL; mean accuracy, calculated as spike recoveries, was 91–102%, and total precision, given as percent variation coefficient, was 5.9–11.5%. Percent differences associated with three freeze-thaw cycles, 24-h benchtop storage, and short-term processed sample stability were <14%. Method suitability was assessed by recurring successful participation in external quality assessment schemes and by analyzing samples from subjects with suspected exposure to pesticides (n = 40) or who self-reported consuming an organic diet (n = 50). Interquartile ranges were considerably lower for people consuming an organic diet than for those potentially exposed for cis-DCCA (0.37 ng/mL vs 0.75 ng/mL), trans-DCCA (0.88 ng/mL vs 1.78 ng/mL) and TCPy (1.81 ng/mL vs 2.48 ng/mL). This method requires one-fifth of the sample used in our previous method and is suitable for assessing background exposures to select pesticides in large human populations and for studies with limited sample volumes. Analytical methods to quantify pesticide biomarkers in human population studies are critical for exposure assessment given the widespread use of pesticides for pest and weed control and their potential for affecting human health. We developed a method to quantify, in 0.2 mL of urine, concentrations of 10 pesticide biomarkers: four organophosphate insecticide metabolites (3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol, para-nitrophenol, malathion dicarboxylic acid); five synthetic pyrethroid insecticide metabolites (4-fluoro-3-phenoxybenzoic acid, 3-phenoxybenzoic acid, cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid); and the herbicide 2,4-dichlorophenoxyacetic acid. The method is based on enzymatic hydrolysis of conjugated urinary metabolites, extraction and pre-concentration of the deconjugated metabolites using automated online solid-phase extraction, and separation and quantification using liquid chromatography-isotope dilution tandem mass spectrometry. Depending on the analyte, method detection limits were 0.1-0.6 ng/mL; mean accuracy, calculated as spike recoveries, was 91-102%, and total precision, given as percent variation coefficient, was 5.9-11.5%. Percent differences associated with three freeze-thaw cycles, 24-hour benchtop storage, and short-term processed sample stability were < 14%. Method suitability was assessed by recurring successful participation in external quality assessment schemes and by analyzing samples from subjects with suspected exposure to pesticides (n=40) or who self-reported consuming an organic diet (n=50). Interquartile ranges were considerably lower for people consuming an organic diet than for those potentially exposed for cis-DCCA (0.37 ng/mL vs 0.75 ng/mL), trans-DCCA (0.88 ng/mL vs 1.78 ng/mL) and TCPy (1.81 ng/mL vs 2.48 ng/mL). This method requires one-fifth of the sample used in our previous method and is suitable for assessing background exposures to select pesticides in large human populations and for studies with limited sample volumes. Analytical methods to quantify pesticide biomarkers in human population studies are critical for exposure assessment given the widespread use of pesticides for pest and weed control and their potential for affecting human health. We developed a method to quantify, in 0.2 mL of urine, concentrations of 10 pesticide biomarkers: four organophosphate insecticide metabolites (3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol, para-nitrophenol, malathion dicarboxylic acid); five synthetic pyrethroid insecticide metabolites (4-fluoro-3-phenoxybenzoic acid, 3-phenoxybenzoic acid, cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid); and the herbicide 2,4-dichlorophenoxyacetic acid. he method is based on enzymatic hydrolysis of conjugated urinary metabolites, extraction and pre-concentration of the deconjugated metabolites using automated online solid-phase extraction, and separation and quantification using liquid chromatography-isotope dilution tandem mass spectrometry. Depending on the analyte, method detection limits were 0.1-0.6 ng/mL; mean accuracy, calculated as spike recoveries, was 91-102%, and total precision, given as percent variation coefficient, was 5.9-11.5%. Percent differences associated with three freeze-thaw cycles, 24-h benchtop storage, and short-term processed sample stability were <14%. Method suitability was assessed by recurring successful participation in external quality assessment schemes and by analyzing samples from subjects with suspected exposure to pesticides (n = 40) or who self-reported consuming an organic diet (n = 50). Interquartile ranges were considerably lower for people consuming an organic diet than for those potentially exposed for cis-DCCA (0.37 ng/mL vs 0.75 ng/mL), trans-DCCA (0.88 ng/mL vs 1.78 ng/mL) and TCPy (1.81 ng/mL vs 2.48 ng/mL). This method requires one-fifth of the sample used in our previous method and is suitable for assessing background exposures to select pesticides in large human populations and for studies with limited sample volumes.Analytical methods to quantify pesticide biomarkers in human population studies are critical for exposure assessment given the widespread use of pesticides for pest and weed control and their potential for affecting human health. We developed a method to quantify, in 0.2 mL of urine, concentrations of 10 pesticide biomarkers: four organophosphate insecticide metabolites (3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol, para-nitrophenol, malathion dicarboxylic acid); five synthetic pyrethroid insecticide metabolites (4-fluoro-3-phenoxybenzoic acid, 3-phenoxybenzoic acid, cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid); and the herbicide 2,4-dichlorophenoxyacetic acid. he method is based on enzymatic hydrolysis of conjugated urinary metabolites, extraction and pre-concentration of the deconjugated metabolites using automated online solid-phase extraction, and separation and quantification using liquid chromatography-isotope dilution tandem mass spectrometry. Depending on the analyte, method detection limits were 0.1-0.6 ng/mL; mean accuracy, calculated as spike recoveries, was 91-102%, and total precision, given as percent variation coefficient, was 5.9-11.5%. Percent differences associated with three freeze-thaw cycles, 24-h benchtop storage, and short-term processed sample stability were <14%. Method suitability was assessed by recurring successful participation in external quality assessment schemes and by analyzing samples from subjects with suspected exposure to pesticides (n = 40) or who self-reported consuming an organic diet (n = 50). Interquartile ranges were considerably lower for people consuming an organic diet than for those potentially exposed for cis-DCCA (0.37 ng/mL vs 0.75 ng/mL), trans-DCCA (0.88 ng/mL vs 1.78 ng/mL) and TCPy (1.81 ng/mL vs 2.48 ng/mL). This method requires one-fifth of the sample used in our previous method and is suitable for assessing background exposures to select pesticides in large human populations and for studies with limited sample volumes. Analytical methods to quantify pesticide biomarkers in human population studies are critical for exposure assessment given the widespread use of pesticides for pest and weed control and their potential for affecting human health. We developed a method to quantify, in 0.2 mL of urine, concentrations of 10 pesticide biomarkers: four organophosphate insecticide metabolites (3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol, para-nitrophenol, malathion dicarboxylic acid); five synthetic pyrethroid insecticide metabolites (4-fluoro-3-phenoxybenzoic acid, 3-phenoxybenzoic acid, cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid); and the herbicide 2,4-dichlorophenoxyacetic acid. he method is based on enzymatic hydrolysis of conjugated urinary metabolites, extraction and pre-concentration of the deconjugated metabolites using automated online solid-phase extraction, and separation and quantification using liquid chromatography-isotope dilution tandem mass spectrometry. Depending on the analyte, method detection limits were 0.1–0.6 ng/mL; mean accuracy, calculated as spike recoveries, was 91–102%, and total precision, given as percent variation coefficient, was 5.9–11.5%. Percent differences associated with three freeze-thaw cycles, 24-h benchtop storage, and short-term processed sample stability were <14%. Method suitability was assessed by recurring successful participation in external quality assessment schemes and by analyzing samples from subjects with suspected exposure to pesticides (n = 40) or who self-reported consuming an organic diet (n = 50). Interquartile ranges were considerably lower for people consuming an organic diet than for those potentially exposed for cis-DCCA (0.37 ng/mL vs 0.75 ng/mL), trans-DCCA (0.88 ng/mL vs 1.78 ng/mL) and TCPy (1.81 ng/mL vs 2.48 ng/mL). This method requires one-fifth of the sample used in our previous method and is suitable for assessing background exposures to select pesticides in large human populations and for studies with limited sample volumes. [Display omitted] •Novel LC-MS/MS method for quantifying pesticide biomarkers in urine•Online sample cleanup and isotope dilution LC-MS/MS pesticide exposure method•Method uses 0.2 mL urine and is sensitive, reproducible, and accurate•Suitable to assess background exposures in large-scale population studies Analytical methods to quantify pesticide biomarkers in human population studies are critical for exposure assessment given the widespread use of pesticides for pest and weed control and their potential for affecting human health. We developed a method to quantify, in 0.2 mL of urine, concentrations of 10 pesticide biomarkers: four organophosphate insecticide metabolites (3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol, para-nitrophenol, malathion dicarboxylic acid); five synthetic pyrethroid insecticide metabolites (4-fluoro-3-phenoxybenzoic acid, 3-phenoxybenzoic acid, cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid); and the herbicide 2,4-dichlorophenoxyacetic acid. he method is based on enzymatic hydrolysis of conjugated urinary metabolites, extraction and pre-concentration of the deconjugated metabolites using automated online solid-phase extraction, and separation and quantification using liquid chromatography-isotope dilution tandem mass spectrometry. Depending on the analyte, method detection limits were 0.1-0.6 ng/mL; mean accuracy, calculated as spike recoveries, was 91-102%, and total precision, given as percent variation coefficient, was 5.9-11.5%. Percent differences associated with three freeze-thaw cycles, 24-h benchtop storage, and short-term processed sample stability were <14%. Method suitability was assessed by recurring successful participation in external quality assessment schemes and by analyzing samples from subjects with suspected exposure to pesticides (n = 40) or who self-reported consuming an organic diet (n = 50). Interquartile ranges were considerably lower for people consuming an organic diet than for those potentially exposed for cis-DCCA (0.37 ng/mL vs 0.75 ng/mL), trans-DCCA (0.88 ng/mL vs 1.78 ng/mL) and TCPy (1.81 ng/mL vs 2.48 ng/mL). This method requires one-fifth of the sample used in our previous method and is suitable for assessing background exposures to select pesticides in large human populations and for studies with limited sample volumes. |
ArticleNumber | 139863 |
Author | Ospina, Maria Vidanage, Isuru Roman, William Calafat, Antonia M. Wambua, Dickson Vidal, Meghan |
Author_xml | – sequence: 1 givenname: Dickson orcidid: 0009-0009-5956-8729 surname: Wambua fullname: Wambua, Dickson email: ley9@cdc.gov – sequence: 2 givenname: William surname: Roman fullname: Roman, William – sequence: 3 givenname: Isuru surname: Vidanage fullname: Vidanage, Isuru – sequence: 4 givenname: Meghan orcidid: 0000-0002-3830-1007 surname: Vidal fullname: Vidal, Meghan – sequence: 5 givenname: Antonia M. surname: Calafat fullname: Calafat, Antonia M. – sequence: 6 givenname: Maria orcidid: 0000-0003-2682-4510 surname: Ospina fullname: Ospina, Maria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37598954$$D View this record in MEDLINE/PubMed |
BookMark | eNqdUstu1DAUjVARnRZ-AZkdCzLYeYcNQiMelSp1U9aWx76ZeJTYHtspZMc_8Ifs-QfuzJRSVlSsotjnHJ9zzz1LTow1kCQvGF0yyqrX26XsYbTB9eBhmdEsX7K8bar8UbJgTd2mLGubk2RBaVGmVZmXp8lZCFtKkVy2T5LTvC7bpi2LRfLzygzaAAl20Iq4XgQg8DV6IaO2hvR606cOfGf9KIwEMujdhEDZezuKaDdeuH4mP759JxfBRuuAKD1MB-7-8FoYBSMZRQgkOJARaRD9THaTMFF3WooD1nbE-o0w1vX7WCICcRCillpBeEXCbGIP-Evc7CHi41rhMYqTAAPKgiI4i_UBT_AFscY8EQLRmGFC62TyGPNp8rgTQ4Bnt9_z5POH99erT-nl1ceL1bvLVBZ5lqdNSUVZ11kNBUDGgLKubToBVcVaRQuounULIKqmETjQnNI8Y7XKOgWsraii-Xny5qg7GSfmL2IYuPN6FH7mjPJ9h3zL73XI9x3yY4dIfnsku2k9gpJgsI4_AlZo_veN0T3f2BvURS9lU6LCy1sFb3cTzpGPOkgYBmHAToHnrCxYhTbaf0KzpizyombVHvr8vq87Q7-XCQHtESC9DcFD9z-h77hSx8NuYEQ9PEhhdVQALPZGg-dBasCdVdrjhnBl9QNUfgGmTRww |
CitedBy_id | crossref_primary_10_1016_j_envint_2025_109292 crossref_primary_10_1016_j_chroma_2024_465054 crossref_primary_10_1016_j_scitotenv_2024_170880 crossref_primary_10_3390_w16243712 |
Cites_doi | 10.1021/ac0355404 10.1002/sim.3222 10.1002/jssc.201800804 10.1016/j.jes.2021.03.029 10.1016/j.ntt.2021.106983 10.1007/s00216-003-1978-y 10.1016/j.envpol.2021.116920 10.1016/j.chemosphere.2022.134778 10.1038/jes.2015.8 10.1016/j.scitotenv.2017.11.355 10.1016/j.envres.2012.05.005 10.3390/medicina54040061 10.1016/j.jchromb.2021.122542 10.1016/j.jpba.2019.05.018 10.1007/s00449-019-02254-y 10.1016/j.scitotenv.2020.141382 10.1038/sj.jea.7500123 10.1016/j.envint.2018.10.033 10.1016/j.chroma.2014.11.010 10.1039/b800861b 10.1007/s42452-019-1485-1 10.1001/jamainternmed.2019.6019 10.1016/j.envres.2008.07.022 10.1007/s00216-022-04159-4 10.1016/j.jchromb.2013.04.005 10.1007/s00244-003-3044-3 10.1007/s40572-017-0122-7 10.3109/00498259209049904 10.1016/j.envres.2014.09.009 10.1016/0041-008X(84)90046-2 10.1289/ehp.7337 10.1016/j.jhazmat.2020.125026 10.3390/ijerph17010034 10.1614/WT-D-12-00081.1 10.1016/j.ecoenv.2020.111483 |
ContentType | Journal Article |
Copyright | 2023 Published by Elsevier Ltd. |
Copyright_xml | – notice: 2023 – notice: Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM ADTOC UNPAY |
DOI | 10.1016/j.chemosphere.2023.139863 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 139863 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:10530585 PMC10530585 37598954 10_1016_j_chemosphere_2023_139863 S004565352302132X |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural CDC HHS grantid: CC999999 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c4323-850a57727e4ee21e01f98fae6619d04e6fb9eea688a1653003217d2fde1960d03 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Wed Aug 20 00:19:38 EDT 2025 Tue Sep 30 17:07:24 EDT 2025 Sat Sep 27 23:11:37 EDT 2025 Wed Oct 01 14:46:53 EDT 2025 Mon Jul 21 06:07:14 EDT 2025 Wed Oct 01 05:12:59 EDT 2025 Thu Apr 24 23:10:19 EDT 2025 Fri Feb 23 02:34:46 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pyrethroids LC-MS/MS Online SPE Biomonitoring Metabolites Organophosphate |
Language | English |
License | Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4323-850a57727e4ee21e01f98fae6619d04e6fb9eea688a1653003217d2fde1960d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0009-5956-8729 0000-0003-2682-4510 0000-0002-3830-1007 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/10530585 |
PMID | 37598954 |
PQID | 2854347169 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | unpaywall_primary_10_1016_j_chemosphere_2023_139863 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10530585 proquest_miscellaneous_3154161019 proquest_miscellaneous_2854347169 pubmed_primary_37598954 crossref_primary_10_1016_j_chemosphere_2023_139863 crossref_citationtrail_10_1016_j_chemosphere_2023_139863 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2023_139863 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Baker, Barr, Driskell, Beeson, Needham (bib2) 2000; 10 Yeh, Lin, Kuo, Weidemann, Weaver, Fadrowski, Navas-Acien (bib43) 2015; 136 Atwood, Paisley-Jones (bib1) 2017 Wang, Liu, Chou, Lin, Pan, Chen, Hsu (bib40) 2022; 301 Davis, Wade, Restrepo, Roman-Esteva, Bravo, Kuklenyik, Calafat (bib11) 2013; 929 Liu, Campana, Wang, Kannan, Liu, Zhu, Ghassabian (bib20) 2021; 283 Huen, Bradman, Harley, Yousefi, Boyd Barr, Eskenazi, Holland (bib15) 2012; 117 Liang, Liu, Raza, Bai, Liu (bib19) 2019; 42 Olsson, Nguyen, Sadowski, Barr (bib25) 2003; 376 (bib37) 2021 O'Brien, Upson, Buckley (bib23) 2017; 4 Kaushal, Khatri, Arya (bib17) 2021; 207 López-García, Romero-González, Garrido Frenich (bib21) 2019; 173 Pitzer, Williams, Vorhees (bib26) 2021; 87 Robinson, Simpson, Johnson (bib27) 2012; 26 Fišerová, Kohoutek, Degrendele, Dalvie, Klánová (bib12) 2021; 1166 Jagani, Pulivarthi, Patel, Wright, Wright, Arora, Andra (bib16) 2022; 414 Barr, Wilder, Caudill, Gonzalez, Needham, Pirkle (bib5) 2005; 113 Silva Pinto, Marques Soares, Azevedo Linhares, Castilhos Ghisi (bib30) 2020; 748 Bhatt, Zhou, Huang, Zhang, Chen (bib6) 2021; 411 Chrustek, Hołyńska-Iwan, Dziembowska, Bogusiewicz, Wróblewski, Cwynar, Olszewska-Słonina (bib10) 2018; 54 Gao, Poma, Malarvannan, Dumitrascu, Bastiaensen, Wang, Covaci (bib13) 2022; 111 Taylor (bib33) 1987 Viglino, Aboulfadl, Mahvelat, Prévost, Sauvé (bib39) 2008; 10 Baker, Olsson, Barr (bib3) 2004; 46 Li, Kannan (bib18) 2018; 121 Simaremare, Hung, Hsieh, Yiin (bib31) 2019; 17 Sharma, Kumar, Shahzad, Tanveer, Sidhu, Handa, Thukral (bib29) 2019; 1 Nolan, Rick, Freshour, Saunders (bib22) 1984; 73 Roca, Leon, Pastor, Yusà (bib28) 2014; 1374 Caudill, Schleicher, Pirkle (bib7) 2008; 27 Chen, Cashman (bib8) 2013 Olsson, Baker, Nguyen, Romanoff, Udunka, Walker, Barr (bib24) 2004; 76 (bib38) 2023 Starr, Graham, Stout, Andrews, Nishioka (bib32) 2008; 108 (bib36) 2018 Bao, Liu, Simonsen, Lehmler (bib4) 2020; 180 Weaver, Kotchmar, Fadrowski, Silbergeld (bib41) 2016; 26 Christler, Felföldi, Mosor, Sauer, Walch, Dürauer, Jungbauer (bib9) 2020; 43 Garí, González-Quinteiro, Bravo, Grimalt (bib14) 2018; 622–623 (bib35) 2023 Woollen, Marsh, Laird, Lesser (bib42) 1992; 22 Viglino (10.1016/j.chemosphere.2023.139863_bib39) 2008; 10 Robinson (10.1016/j.chemosphere.2023.139863_bib27) 2012; 26 Bhatt (10.1016/j.chemosphere.2023.139863_bib6) 2021; 411 Garí (10.1016/j.chemosphere.2023.139863_bib14) 2018; 622–623 Li (10.1016/j.chemosphere.2023.139863_bib18) 2018; 121 Starr (10.1016/j.chemosphere.2023.139863_bib32) 2008; 108 Atwood (10.1016/j.chemosphere.2023.139863_bib1) 2017 Silva Pinto (10.1016/j.chemosphere.2023.139863_bib30) 2020; 748 Liang (10.1016/j.chemosphere.2023.139863_bib19) 2019; 42 Pitzer (10.1016/j.chemosphere.2023.139863_bib26) 2021; 87 Christler (10.1016/j.chemosphere.2023.139863_bib9) 2020; 43 (10.1016/j.chemosphere.2023.139863_bib37) 2021 Gao (10.1016/j.chemosphere.2023.139863_bib13) 2022; 111 Kaushal (10.1016/j.chemosphere.2023.139863_bib17) 2021; 207 O'Brien (10.1016/j.chemosphere.2023.139863_bib23) 2017; 4 Huen (10.1016/j.chemosphere.2023.139863_bib15) 2012; 117 Simaremare (10.1016/j.chemosphere.2023.139863_bib31) 2019; 17 Olsson (10.1016/j.chemosphere.2023.139863_bib25) 2003; 376 Wang (10.1016/j.chemosphere.2023.139863_bib40) 2022; 301 Liu (10.1016/j.chemosphere.2023.139863_bib20) 2021; 283 López-García (10.1016/j.chemosphere.2023.139863_bib21) 2019; 173 Woollen (10.1016/j.chemosphere.2023.139863_bib42) 1992; 22 Chen (10.1016/j.chemosphere.2023.139863_bib8) 2013 Caudill (10.1016/j.chemosphere.2023.139863_bib7) 2008; 27 Roca (10.1016/j.chemosphere.2023.139863_bib28) 2014; 1374 Jagani (10.1016/j.chemosphere.2023.139863_bib16) 2022; 414 Fišerová (10.1016/j.chemosphere.2023.139863_bib12) 2021; 1166 (10.1016/j.chemosphere.2023.139863_bib36) 2018 Bao (10.1016/j.chemosphere.2023.139863_bib4) 2020; 180 Chrustek (10.1016/j.chemosphere.2023.139863_bib10) 2018; 54 (10.1016/j.chemosphere.2023.139863_bib35) 2023 Yeh (10.1016/j.chemosphere.2023.139863_bib43) 2015; 136 (10.1016/j.chemosphere.2023.139863_bib38) 2023 Weaver (10.1016/j.chemosphere.2023.139863_bib41) 2016; 26 Baker (10.1016/j.chemosphere.2023.139863_bib2) 2000; 10 Barr (10.1016/j.chemosphere.2023.139863_bib5) 2005; 113 Davis (10.1016/j.chemosphere.2023.139863_bib11) 2013; 929 Olsson (10.1016/j.chemosphere.2023.139863_bib24) 2004; 76 Baker (10.1016/j.chemosphere.2023.139863_bib3) 2004; 46 Taylor (10.1016/j.chemosphere.2023.139863_bib33) 1987 Nolan (10.1016/j.chemosphere.2023.139863_bib22) 1984; 73 Sharma (10.1016/j.chemosphere.2023.139863_bib29) 2019; 1 |
References_xml | – volume: 108 start-page: 271 year: 2008 end-page: 279 ident: bib32 article-title: Pyrethroid pesticides and their metabolites in vacuum cleaner dust collected from homes and day-care centers publication-title: Environ. Res. – year: 2018 ident: bib36 article-title: Bioanalytical Method Validation Guidance for Industry. Center for Drug Evaluation and Research (CDER) – volume: 17 year: 2019 ident: bib31 article-title: Relationship between organophosphate and pyrethroid insecticides in blood and their metabolites in urine: a pilot study publication-title: Int. J. Environ. Res. Publ. Health – volume: 117 start-page: 8 year: 2012 end-page: 16 ident: bib15 article-title: Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community publication-title: Environ. Res. – volume: 929 start-page: 18 year: 2013 end-page: 26 ident: bib11 article-title: Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine publication-title: J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. – volume: 54 year: 2018 ident: bib10 article-title: Current research on the safety of pyrethroids used as insecticides publication-title: Medicina – volume: 46 start-page: 281 year: 2004 end-page: 288 ident: bib3 article-title: Isotope dilution high-performance liquid chromatography-tandem mass spectrometry method for quantifying urinary metabolites of synthetic pyrethroid insecticides publication-title: Arch. Environ. Contam. Toxicol. – year: 1987 ident: bib33 article-title: Quality Assurance of Chemical Measurements – volume: 10 start-page: 482 year: 2008 end-page: 489 ident: bib39 article-title: On-line solid phase extraction and liquid chromatography/tandem mass spectrometry to quantify pharmaceuticals, pesticides and some metabolites in wastewaters, drinking, and surface waters publication-title: J. Environ. Monit. – volume: 411 year: 2021 ident: bib6 article-title: Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides publication-title: J. Hazard Mater. – volume: 76 start-page: 2453 year: 2004 end-page: 2461 ident: bib24 article-title: A liquid chromatography--tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides, synthetic pyrethroids, selected herbicides, and deet in human urine publication-title: Anal. Chem. – volume: 26 start-page: 1 year: 2016 end-page: 8 ident: bib41 article-title: Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment? publication-title: J. Expo. Sci. Environ. Epidemiol. – volume: 111 start-page: 153 year: 2022 end-page: 163 ident: bib13 article-title: Development of an analytical method based on solid-phase extraction and LC-MS/MS for the monitoring of current-use pesticides and their metabolites in human urine publication-title: J. Environ. Sci. (China) – volume: 121 start-page: 1148 year: 2018 end-page: 1154 ident: bib18 article-title: Urinary concentrations and profiles of organophosphate and pyrethroid pesticide metabolites and phenoxyacid herbicides in populations in eight countries publication-title: Environ. Int. – volume: 87 year: 2021 ident: bib26 article-title: Effects of pyrethroids on brain development and behavior: deltamethrin publication-title: Neurotoxicol. Teratol. – volume: 73 start-page: 8 year: 1984 end-page: 15 ident: bib22 article-title: Chlorpyrifos: pharmacokinetics in human volunteers publication-title: Toxicol. Appl. Pharmacol. – volume: 26 start-page: 657 year: 2012 end-page: 660 ident: bib27 article-title: Summer annual weed control with 2,4-D and glyphosate publication-title: Weed Technol. – year: 2023 ident: bib38 article-title: Estimated annual agricultural pesticide use – volume: 414 start-page: 5943 year: 2022 end-page: 5966 ident: bib16 article-title: Validated single urinary assay designed for exposomic multi-class biomarkers of common environmental exposures publication-title: Anal. Bioanal. Chem. – volume: 207 year: 2021 ident: bib17 article-title: A treatise on Organophosphate pesticide pollution: current strategies and advancements in their environmental degradation and elimination publication-title: Ecotoxicol. Environ. Saf. – volume: 22 start-page: 983 year: 1992 end-page: 991 ident: bib42 article-title: The metabolism of cypermethrin in man: differences in urinary metabolite profiles following oral and dermal administration publication-title: Xenobiotica – volume: 180 start-page: 367 year: 2020 end-page: 374 ident: bib4 article-title: Association between exposure to pyrethroid insecticides and risk of all-cause and cause-specific mortality in the general US adult population publication-title: JAMA Intern. Med. – start-page: 207 year: 2013 end-page: 233 ident: bib8 article-title: Chapter six - organophosphate exposure: detection and remediation publication-title: Advances in Molecular Toxicology – year: 2023 ident: bib35 article-title: Centers for Disease Control and Prevention – year: 2021 ident: bib37 article-title: Environmental and Health Impacts of Pesticides and Fertilizers and Ways of Minimizing Them – volume: 1374 start-page: 66 year: 2014 end-page: 76 ident: bib28 article-title: Comprehensive analytical strategy for biomonitoring of pesticides in urine by liquid chromatography–orbitrap high resolution masss pectrometry publication-title: J. Chromatogr. A – year: 2017 ident: bib1 article-title: Pesticides Industry Sales and Usage, 2008 – 2012 Market Estimates – volume: 4 start-page: 44 year: 2017 end-page: 50 ident: bib23 article-title: Lipid and creatinine adjustment to evaluate health effects of environmental exposures publication-title: Curr Environ Health Rep – volume: 10 start-page: 789 year: 2000 end-page: 798 ident: bib2 article-title: Quantification of selected pesticide metabolites in human urine using isotope dilution high-performance liquid chromatography/tandem mass spectrometry publication-title: J. Expo. Anal. Environ. Epidemiol. – volume: 748 year: 2020 ident: bib30 article-title: Occupational exposure to pesticides: genetic danger to farmworkers and manufacturing workers - a meta-analytical review publication-title: Sci. Total Environ. – volume: 173 start-page: 31 year: 2019 end-page: 39 ident: bib21 article-title: Monitoring of organophosphate and pyrethroid metabolites in human urine samples by an automated method (TurboFlow™) coupled to ultra-high performance liquid chromatography-Orbitrap mass spectrometry publication-title: J. Pharm. Biomed. Anal. – volume: 301 year: 2022 ident: bib40 article-title: Simultaneous determination of eight β-adrenergic agonists in human urine by an isotope dilution-online clean-up system coupled with liquid chromatography-tandem mass spectrometry publication-title: Chemosphere – volume: 113 start-page: 192 year: 2005 end-page: 200 ident: bib5 article-title: Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements publication-title: Environ. Health Perspect. – volume: 283 year: 2021 ident: bib20 article-title: Organophosphate pesticide exposure: demographic and dietary predictors in an urban pregnancy cohort publication-title: Environ. Pollut. – volume: 136 start-page: 482 year: 2015 end-page: 490 ident: bib43 article-title: Urine osmolality in the US population: implications for environmental biomonitoring publication-title: Environ. Res. – volume: 376 start-page: 808 year: 2003 end-page: 815 ident: bib25 article-title: A liquid chromatography/electrospray ionization-tandem mass spectrometry method for quantification of specific organophosphorus pesticide biomarkers in human urine publication-title: Anal. Bioanal. Chem. – volume: 1166 year: 2021 ident: bib12 article-title: New sample preparation method to analyse 15 specific and non-specific pesticide metabolites in human urine using LC-MS/MS publication-title: J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. – volume: 42 start-page: 330 year: 2019 end-page: 341 ident: bib19 article-title: Applications of solid-phase micro-extraction with mass spectrometry in pesticide analysis publication-title: J. Separ. Sci. – volume: 1 start-page: 1446 year: 2019 ident: bib29 article-title: Worldwide pesticide usage and its impacts on ecosystem publication-title: SN Appl. Sci. – volume: 27 start-page: 4094 year: 2008 end-page: 4106 ident: bib7 article-title: Multi-rule quality control for the age-related eye disease study publication-title: Stat. Med. – volume: 622–623 start-page: 526 year: 2018 end-page: 533 ident: bib14 article-title: Analysis of metabolites of organophosphate and pyrethroid pesticides in human urine from urban and agricultural populations (Catalonia and Galicia) publication-title: Sci. Total Environ. – volume: 43 start-page: 753 year: 2020 end-page: 764 ident: bib9 article-title: Semi-automation of process analytics reduces operator effect publication-title: Bioproc. Biosyst. Eng. – volume: 76 start-page: 2453 issue: 9 year: 2004 ident: 10.1016/j.chemosphere.2023.139863_bib24 article-title: A liquid chromatography--tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides, synthetic pyrethroids, selected herbicides, and deet in human urine publication-title: Anal. Chem. doi: 10.1021/ac0355404 – volume: 27 start-page: 4094 issue: 20 year: 2008 ident: 10.1016/j.chemosphere.2023.139863_bib7 article-title: Multi-rule quality control for the age-related eye disease study publication-title: Stat. Med. doi: 10.1002/sim.3222 – volume: 42 start-page: 330 issue: 1 year: 2019 ident: 10.1016/j.chemosphere.2023.139863_bib19 article-title: Applications of solid-phase micro-extraction with mass spectrometry in pesticide analysis publication-title: J. Separ. Sci. doi: 10.1002/jssc.201800804 – volume: 111 start-page: 153 year: 2022 ident: 10.1016/j.chemosphere.2023.139863_bib13 article-title: Development of an analytical method based on solid-phase extraction and LC-MS/MS for the monitoring of current-use pesticides and their metabolites in human urine publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2021.03.029 – volume: 87 year: 2021 ident: 10.1016/j.chemosphere.2023.139863_bib26 article-title: Effects of pyrethroids on brain development and behavior: deltamethrin publication-title: Neurotoxicol. Teratol. doi: 10.1016/j.ntt.2021.106983 – volume: 376 start-page: 808 issue: 6 year: 2003 ident: 10.1016/j.chemosphere.2023.139863_bib25 article-title: A liquid chromatography/electrospray ionization-tandem mass spectrometry method for quantification of specific organophosphorus pesticide biomarkers in human urine publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-003-1978-y – volume: 283 year: 2021 ident: 10.1016/j.chemosphere.2023.139863_bib20 article-title: Organophosphate pesticide exposure: demographic and dietary predictors in an urban pregnancy cohort publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.116920 – volume: 301 year: 2022 ident: 10.1016/j.chemosphere.2023.139863_bib40 article-title: Simultaneous determination of eight β-adrenergic agonists in human urine by an isotope dilution-online clean-up system coupled with liquid chromatography-tandem mass spectrometry publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134778 – year: 2023 ident: 10.1016/j.chemosphere.2023.139863_bib35 – year: 2018 ident: 10.1016/j.chemosphere.2023.139863_bib36 – start-page: 207 year: 2013 ident: 10.1016/j.chemosphere.2023.139863_bib8 article-title: Chapter six - organophosphate exposure: detection and remediation – volume: 26 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.chemosphere.2023.139863_bib41 article-title: Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment? publication-title: J. Expo. Sci. Environ. Epidemiol. doi: 10.1038/jes.2015.8 – volume: 622–623 start-page: 526 year: 2018 ident: 10.1016/j.chemosphere.2023.139863_bib14 article-title: Analysis of metabolites of organophosphate and pyrethroid pesticides in human urine from urban and agricultural populations (Catalonia and Galicia) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.355 – volume: 117 start-page: 8 year: 2012 ident: 10.1016/j.chemosphere.2023.139863_bib15 article-title: Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community publication-title: Environ. Res. doi: 10.1016/j.envres.2012.05.005 – volume: 54 issue: 4 year: 2018 ident: 10.1016/j.chemosphere.2023.139863_bib10 article-title: Current research on the safety of pyrethroids used as insecticides publication-title: Medicina doi: 10.3390/medicina54040061 – year: 2023 ident: 10.1016/j.chemosphere.2023.139863_bib38 – volume: 1166 year: 2021 ident: 10.1016/j.chemosphere.2023.139863_bib12 article-title: New sample preparation method to analyse 15 specific and non-specific pesticide metabolites in human urine using LC-MS/MS publication-title: J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2021.122542 – volume: 173 start-page: 31 year: 2019 ident: 10.1016/j.chemosphere.2023.139863_bib21 article-title: Monitoring of organophosphate and pyrethroid metabolites in human urine samples by an automated method (TurboFlow™) coupled to ultra-high performance liquid chromatography-Orbitrap mass spectrometry publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2019.05.018 – year: 2017 ident: 10.1016/j.chemosphere.2023.139863_bib1 – year: 2021 ident: 10.1016/j.chemosphere.2023.139863_bib37 – volume: 43 start-page: 753 issue: 5 year: 2020 ident: 10.1016/j.chemosphere.2023.139863_bib9 article-title: Semi-automation of process analytics reduces operator effect publication-title: Bioproc. Biosyst. Eng. doi: 10.1007/s00449-019-02254-y – volume: 748 year: 2020 ident: 10.1016/j.chemosphere.2023.139863_bib30 article-title: Occupational exposure to pesticides: genetic danger to farmworkers and manufacturing workers - a meta-analytical review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141382 – volume: 10 start-page: 789 issue: 6 Pt 2 year: 2000 ident: 10.1016/j.chemosphere.2023.139863_bib2 article-title: Quantification of selected pesticide metabolites in human urine using isotope dilution high-performance liquid chromatography/tandem mass spectrometry publication-title: J. Expo. Anal. Environ. Epidemiol. doi: 10.1038/sj.jea.7500123 – volume: 121 start-page: 1148 issue: Pt 2 year: 2018 ident: 10.1016/j.chemosphere.2023.139863_bib18 article-title: Urinary concentrations and profiles of organophosphate and pyrethroid pesticide metabolites and phenoxyacid herbicides in populations in eight countries publication-title: Environ. Int. doi: 10.1016/j.envint.2018.10.033 – volume: 1374 start-page: 66 year: 2014 ident: 10.1016/j.chemosphere.2023.139863_bib28 article-title: Comprehensive analytical strategy for biomonitoring of pesticides in urine by liquid chromatography–orbitrap high resolution masss pectrometry publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2014.11.010 – volume: 10 start-page: 482 issue: 4 year: 2008 ident: 10.1016/j.chemosphere.2023.139863_bib39 article-title: On-line solid phase extraction and liquid chromatography/tandem mass spectrometry to quantify pharmaceuticals, pesticides and some metabolites in wastewaters, drinking, and surface waters publication-title: J. Environ. Monit. doi: 10.1039/b800861b – volume: 1 start-page: 1446 issue: 11 year: 2019 ident: 10.1016/j.chemosphere.2023.139863_bib29 article-title: Worldwide pesticide usage and its impacts on ecosystem publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1485-1 – volume: 180 start-page: 367 issue: 3 year: 2020 ident: 10.1016/j.chemosphere.2023.139863_bib4 article-title: Association between exposure to pyrethroid insecticides and risk of all-cause and cause-specific mortality in the general US adult population publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2019.6019 – volume: 108 start-page: 271 issue: 3 year: 2008 ident: 10.1016/j.chemosphere.2023.139863_bib32 article-title: Pyrethroid pesticides and their metabolites in vacuum cleaner dust collected from homes and day-care centers publication-title: Environ. Res. doi: 10.1016/j.envres.2008.07.022 – volume: 414 start-page: 5943 issue: 19 year: 2022 ident: 10.1016/j.chemosphere.2023.139863_bib16 article-title: Validated single urinary assay designed for exposomic multi-class biomarkers of common environmental exposures publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-022-04159-4 – volume: 929 start-page: 18 year: 2013 ident: 10.1016/j.chemosphere.2023.139863_bib11 article-title: Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine publication-title: J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2013.04.005 – volume: 46 start-page: 281 issue: 3 year: 2004 ident: 10.1016/j.chemosphere.2023.139863_bib3 article-title: Isotope dilution high-performance liquid chromatography-tandem mass spectrometry method for quantifying urinary metabolites of synthetic pyrethroid insecticides publication-title: Arch. Environ. Contam. Toxicol. doi: 10.1007/s00244-003-3044-3 – volume: 4 start-page: 44 issue: 1 year: 2017 ident: 10.1016/j.chemosphere.2023.139863_bib23 article-title: Lipid and creatinine adjustment to evaluate health effects of environmental exposures publication-title: Curr Environ Health Rep doi: 10.1007/s40572-017-0122-7 – volume: 22 start-page: 983 issue: 8 year: 1992 ident: 10.1016/j.chemosphere.2023.139863_bib42 article-title: The metabolism of cypermethrin in man: differences in urinary metabolite profiles following oral and dermal administration publication-title: Xenobiotica doi: 10.3109/00498259209049904 – volume: 136 start-page: 482 year: 2015 ident: 10.1016/j.chemosphere.2023.139863_bib43 article-title: Urine osmolality in the US population: implications for environmental biomonitoring publication-title: Environ. Res. doi: 10.1016/j.envres.2014.09.009 – volume: 73 start-page: 8 issue: 1 year: 1984 ident: 10.1016/j.chemosphere.2023.139863_bib22 article-title: Chlorpyrifos: pharmacokinetics in human volunteers publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/0041-008X(84)90046-2 – volume: 113 start-page: 192 issue: 2 year: 2005 ident: 10.1016/j.chemosphere.2023.139863_bib5 article-title: Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements publication-title: Environ. Health Perspect. doi: 10.1289/ehp.7337 – year: 1987 ident: 10.1016/j.chemosphere.2023.139863_bib33 – volume: 411 year: 2021 ident: 10.1016/j.chemosphere.2023.139863_bib6 article-title: Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.125026 – volume: 17 issue: 1 year: 2019 ident: 10.1016/j.chemosphere.2023.139863_bib31 article-title: Relationship between organophosphate and pyrethroid insecticides in blood and their metabolites in urine: a pilot study publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph17010034 – volume: 26 start-page: 657 issue: 4 year: 2012 ident: 10.1016/j.chemosphere.2023.139863_bib27 article-title: Summer annual weed control with 2,4-D and glyphosate publication-title: Weed Technol. doi: 10.1614/WT-D-12-00081.1 – volume: 207 year: 2021 ident: 10.1016/j.chemosphere.2023.139863_bib17 article-title: A treatise on Organophosphate pesticide pollution: current strategies and advancements in their environmental degradation and elimination publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111483 |
SSID | ssj0001659 |
Score | 2.4661472 |
Snippet | Analytical methods to quantify pesticide biomarkers in human population studies are critical for exposure assessment given the widespread use of pesticides for... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 139863 |
SubjectTerms | 2,4-D biomarkers Biomonitoring Chromatography, High Pressure Liquid Dicarboxylic Acids diet enzymatic hydrolysis exposure assessment freeze-thaw cycles herbicide metabolites Herbicides high performance liquid chromatography human health human population Humans Insecticides isotope dilution technique LC-MS/MS Malathion Male Metabolites Online SPE Organophosphate Organophosphorus Compounds people Pesticides pests Pyrethrins Pyrethroids solid phase extraction Tandem Mass Spectrometry urine weed control |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVlAuPMprecmVOJIlieOsI3GpqlaFQ8WhK5VT5NiONrCbpJuN0HLiP_APufMfmLGTbUtVaeGYxM7D-439zXrmG0LexJxLNtbcUyYEByUfB1jmRXsyj8MwD1C90kZbnMTHk-jjGT_bImGfC2OD9lVWjMrZfFQWUxtbWc_Vuz5ODMycA0YFv0W2Y9xUGpDtycmn_c9uK5l7MbdVNbGKtgeLmbhD9i6CumAg5lWDCfsokRmyERAgEbObFqXrpPN67OROW9Zy9U3OZpcWpqP7LlmwsXqGGI_yddQus5H6_pfa47998wNyr-OpdN9de0i2TLlLdg768nC75Pah1btePSK_nVwpBRQXmtZTWBcpTPkLlzJBURDZqy_yE-isOG-hoZouKqDLnWQ2_fXjJ_3QVMuqNlQXzh7syVP8m3tO58Dyqc0LRYEFeAV63koX6WTBRauc2hJVVT3FsQcOTWuUEFGFNs1b2qxK4LpwSOvVwmB1iELDabg5bWwtIKMp_GCZbU_hCWAdmJ_d0AK-Abc6KG5MmMdkcnR4enDsdVUkPBWxkHmC-5KDDzE2kQE8Gj_IE5FLA8Qk0X5k4jxLjJGxEDIA7MAsB16aDnNtYHLytc-ekEFZleYZoXmgfKUi8GBlHjEhEpWNZZwAGBIRJjoYEtHDKFWdxDpW-pilfSzdl_QSAlNEYOoQOCThumvtdEY26fS-x2raESZHhFJYDzfpvtfjOwXw4E6RLE3VNimm1bIIhZRubsOAfIO7AC7CkDx1NrF-czbmiUh4BANyxVrWDVDU_OoVwL0VN--hPiRsbVibj8jz_-r1gtzFI5di-pIMlovWvAKuucxed5PLH6vyii0 priority: 102 providerName: Unpaywall |
Title | Online solid phase extraction high-performance liquid chromatography – Isotope dilution – Tandem mass spectrometry quantification of organophosphate pesticides, synthetic pyrethroids, and selected herbicide metabolites in human urine |
URI | https://dx.doi.org/10.1016/j.chemosphere.2023.139863 https://www.ncbi.nlm.nih.gov/pubmed/37598954 https://www.proquest.com/docview/2854347169 https://www.proquest.com/docview/3154161019 https://pubmed.ncbi.nlm.nih.gov/PMC10530585 https://www.ncbi.nlm.nih.gov/pmc/articles/10530585 |
UnpaywallVersion | submittedVersion |
Volume | 340 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1298 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001659 issn: 1879-1298 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1298 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001659 issn: 1879-1298 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1298 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001659 issn: 1879-1298 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1298 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001659 issn: 1879-1298 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1298 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001659 issn: 1879-1298 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEF1CSpteSpt-uR9hAj1WiaTVyivoxZgEpwXTQwzuSay1K6xiS4plU3wp_Q_9h733P3RmJdkxIWDoyUjetaTZ59m32pk3jH0IhVC8q4WTGB8XKGnXozIv2lFp6PupR-qVNtpiGA5GweexGB-wfpsLQ2GVje-vfbr11s2Z88aa52WWUY4vsRFOrzV9XFONKYM9CCms7-znNszDC0VNgQPhUOtH7HQb44V2mRcV5e-TYqbPz5APyZDfN0fd5aB3QymPVnmp1j_UbHZrnrp8yp40BBN69TM8YwcmP2ZH_bau2zF7eGGFqtfP2d9aZxQQfpmGcooTGqCvXtS5DkBKxk65TSyAWXazwobJdFEgz220ruHPr99wVRXLojSgsxrI9uQ1vZ-ewxzpOdiETlJGwFuAm5WqQ5QsKqBIwdaWKsopWQnJL5Sk_ZFk2lQfoVrnSFLxEMr1wlBZh0zjafxxqGwRH6MBTTux7QGvgLCmxOoKMnwG2qMA2lEwL9jo8uK6P3Ca8g9OEnCfO1K4SiD575rAIJCM66WRTJVBRhFpNzBhOomMUaGUCgeZo3vC5ZX2U23Qq7ja5S_ZYV7k5jWD1EvcJAlw6anSgEsZJZOuCiMctkj6kfY6TLYDHieNNjqV6JjFbRDc9_gWVmLCSlxjpcP8TdeyFgjZp9OnFlXxDtpjnMj26X7aIjFG8NAWj8pNsapiyoflASkg3d-GI2tGno_cvsNe1ejd3DnvikhGIkCD7OB604DUyHe_ybOpVSVHoo5zhxQdxjd_gf0t8ub_LPKWPaajOkn0HTtcLlbmPbLF5eTEuoMT9qB39WUwxM_R8Gvv2z-UWnfw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9pAEF6lRC29VG36os-J1GPd2F6vWUu9RCgRNCknInGzFu9auALbwaCKW_9D_2Hv_Q-d8StBUSSkHlnvgj37Mfutd-Ybxj75Qije18KKjIsblLjvUJkXbanYd93YIfXKMtpi7A-vvG9TMT1ggyYXhsIqa99f-fTSW9ctJ7U1T_IkoRxfYiOcXmu6uKeaPmCHnkCf3GGHp6OL4bh1yI4vKhbsCYsGPGLHN2FeaJplVlAKP4lmuvwLUiLp8_uWqbs09G40ZXeT5mr7Uy0Wt5aq86fsSc0x4bR6jGfswKRHrDtoSrsdsYdnpVb19jn7W0mNAiIw0ZDPcU0DdNerKt0BSMzYym9yC2CRXG-wYzRfZUh1a7lr-PPrN4yKbJ3lBnRSYblsnNAr6iUskaFDmdNJ4gh4C3C9UVWUUgkMyGIoy0tl-ZyshPwXcpL_iBJtis9QbFPkqfgR8u3KUGWHRGMzfjkUZR0fowFNOyv7A_4CIptyqwtI8BnomALoUMG8YFfnZ5PB0KorQFiRx11uSWErgfy_bzyDWDK2EwcyVgZJRaBtz_jxLDBG-VIqnGSOHgp3WNqNtUHHYmubv2SdNEvNawaxE9lR5OHuU8UelzKIZn3lBzhtgXQD7fSYbCY8jGp5dKrSsQibOLgf4S2shISVsMJKj7nt0LzSCNln0NcGVeEO4ENcy_YZftwgMUTw0CmPSk22KUJKieUeiSDd34cjcUaqj_S-x15V6G3vnPdFIAPhoUF2cN12IEHy3StpMi-FyZGr4_IhRY_x9i-wv0Xe_J9FPrLucPL9MrwcjS_essd0pcoZfcc669XGvEfyuJ59qJ3DPzw7eOs |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVlAuPMprecmVOJIlieOsI3GpqlaFQ8WhK5VT5NiONrCbpJuN0HLiP_APufMfmLGTbUtVaeGYxM7D-439zXrmG0LexJxLNtbcUyYEByUfB1jmRXsyj8MwD1C90kZbnMTHk-jjGT_bImGfC2OD9lVWjMrZfFQWUxtbWc_Vuz5ODMycA0YFv0W2Y9xUGpDtycmn_c9uK5l7MbdVNbGKtgeLmbhD9i6CumAg5lWDCfsokRmyERAgEbObFqXrpPN67OROW9Zy9U3OZpcWpqP7LlmwsXqGGI_yddQus5H6_pfa47998wNyr-OpdN9de0i2TLlLdg768nC75Pah1btePSK_nVwpBRQXmtZTWBcpTPkLlzJBURDZqy_yE-isOG-hoZouKqDLnWQ2_fXjJ_3QVMuqNlQXzh7syVP8m3tO58Dyqc0LRYEFeAV63koX6WTBRauc2hJVVT3FsQcOTWuUEFGFNs1b2qxK4LpwSOvVwmB1iELDabg5bWwtIKMp_GCZbU_hCWAdmJ_d0AK-Abc6KG5MmMdkcnR4enDsdVUkPBWxkHmC-5KDDzE2kQE8Gj_IE5FLA8Qk0X5k4jxLjJGxEDIA7MAsB16aDnNtYHLytc-ekEFZleYZoXmgfKUi8GBlHjEhEpWNZZwAGBIRJjoYEtHDKFWdxDpW-pilfSzdl_QSAlNEYOoQOCThumvtdEY26fS-x2raESZHhFJYDzfpvtfjOwXw4E6RLE3VNimm1bIIhZRubsOAfIO7AC7CkDx1NrF-czbmiUh4BANyxVrWDVDU_OoVwL0VN--hPiRsbVibj8jz_-r1gtzFI5di-pIMlovWvAKuucxed5PLH6vyii0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+solid+phase+extraction+high-performance+liquid+chromatography+%E2%80%93+Isotope+dilution+%E2%80%93+Tandem+mass+spectrometry+quantification+of+organophosphate+pesticides%2C+synthetic+pyrethroids%2C+and+selected+herbicide+metabolites+in+human+urine&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Wambua%2C+Dickson&rft.au=Roman%2C+William&rft.au=Vidanage%2C+Isuru&rft.au=Vidal%2C+Meghan&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0045-6535&rft.eissn=1879-1298&rft.volume=340&rft_id=info:doi/10.1016%2Fj.chemosphere.2023.139863&rft.externalDocID=S004565352302132X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |