Influence of chronic hypoxemia on peripheral muscle function and oxidative stress in humans

Summary Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de‐conditioning. The subjects performed maximal voluntary contractions (...

Full description

Saved in:
Bibliographic Details
Published inClinical physiology and functional imaging Vol. 24; no. 2; pp. 75 - 84
Main Authors Faucher, Marion, Steinberg, Jean Guillaume, Barbier, Dominique, Hug, François, Jammes, Yves
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.03.2004
Blackwell Science
Subjects
Online AccessGet full text
ISSN1475-0961
1475-097X
DOI10.1111/j.1475-097X.2004.00533.x

Cover

Abstract Summary Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de‐conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra‐maximal contractions. COPD patients repeated the whole challenge during a 50‐min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M‐wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K+), erythrocyte‐reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated ‘muscle wisdom’, and the suppression of the exercise oxidative stress.
AbstractList Summary Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de‐conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra‐maximal contractions. COPD patients repeated the whole challenge during a 50‐min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M‐wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K+), erythrocyte‐reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated ‘muscle wisdom’, and the suppression of the exercise oxidative stress.
Transient re-oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de-conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra-maximal contractions. COPD patients repeated the whole challenge during a 50-min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M-wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K+), erythrocyte-reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated 'muscle wisdom', and the suppression of the exercise oxidative stress.
Transient re-oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de-conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra-maximal contractions. COPD patients repeated the whole challenge during a 50-min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M-wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K+), erythrocyte-reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated 'muscle wisdom', and the suppression of the exercise oxidative stress.Transient re-oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de-conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra-maximal contractions. COPD patients repeated the whole challenge during a 50-min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M-wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K+), erythrocyte-reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated 'muscle wisdom', and the suppression of the exercise oxidative stress.
Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de‐conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra‐maximal contractions. COPD patients repeated the whole challenge during a 50‐min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M‐wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K + ), erythrocyte‐reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated ‘muscle wisdom’, and the suppression of the exercise oxidative stress.
Author Hug, François
Jammes, Yves
Barbier, Dominique
Faucher, Marion
Steinberg, Jean Guillaume
Author_xml – sequence: 1
  givenname: Marion
  surname: Faucher
  fullname: Faucher, Marion
  organization: Laboratoire de Physiopathologie Respiratoire (EA 2201), Faculté de Mèdecine, Institut Jean Roche, Université de la Méditerranée, and Service des Explorations Fonctionnelles Respiratoires, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
– sequence: 2
  givenname: Jean Guillaume
  surname: Steinberg
  fullname: Steinberg, Jean Guillaume
  organization: Laboratoire de Physiopathologie Respiratoire (EA 2201), Faculté de Mèdecine, Institut Jean Roche, Université de la Méditerranée, and Service des Explorations Fonctionnelles Respiratoires, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
– sequence: 3
  givenname: Dominique
  surname: Barbier
  fullname: Barbier, Dominique
  organization: Laboratoire de Physiopathologie Respiratoire (EA 2201), Faculté de Mèdecine, Institut Jean Roche, Université de la Méditerranée, and Service des Explorations Fonctionnelles Respiratoires, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
– sequence: 4
  givenname: François
  surname: Hug
  fullname: Hug, François
  organization: Laboratoire de Physiopathologie Respiratoire (EA 2201), Faculté de Mèdecine, Institut Jean Roche, Université de la Méditerranée, and Service des Explorations Fonctionnelles Respiratoires, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
– sequence: 5
  givenname: Yves
  surname: Jammes
  fullname: Jammes, Yves
  organization: Laboratoire de Physiopathologie Respiratoire (EA 2201), Faculté de Mèdecine, Institut Jean Roche, Université de la Méditerranée, and Service des Explorations Fonctionnelles Respiratoires, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15619217$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15056179$$D View this record in MEDLINE/PubMed
BookMark eNqNkd2L1DAUxYOsuB_6L0he9K01adqmBRFkcD9gWBVWdsGHkElvmIxpWpN2t_Pfb-rMjuLT5iUX7u-cC-ecoiPXOUAIU5LS-D5sUprzIiE1v0szQvKUkIKxdHqBTg6Lo8Nc0mN0GsKGEMpZzl-hY1qQoqS8PkE_r5y2IzgFuNNYrX3njMLrbd9N0BqJO4d78KZfg5cWt2NQFrAenRpMXEnX4G4yjRzMPeAweAgBG4fXYytdeI1eamkDvNn_Z-jH-ZebxWWy_Hpxtfi8TFTOMpaUSind8GxVyZKzqtQZ5Q0UdaZXq6JmsuaqULWCJjI0p5nUvM5opalkite8ZGfo_c63993vEcIgWhMUWCsddGMQnPKqqAmN4Ns9OK5aaETvTSv9VjzFEYF3e0AGJa320ikT_uFKGk_zyFU7TvkuBA_6L0LE3JDYiDl8MRch5obEn4bEFKWf_pMqM8g5zcFLY59j8HFn8GAsbJ99WCy-ncchypOd3IQBpoNc-l8iph-Vt9cX4i5f3n6_iZYL9gjJPLn5
CitedBy_id crossref_primary_10_1007_s00424_005_0013_x
crossref_primary_10_1183_09059180_00009904
crossref_primary_10_1016_S2173_5115_09_70085_5
crossref_primary_10_1097_HCR_0b013e3181ebf302
crossref_primary_10_3390_antiox9111146
crossref_primary_10_1002_mus_20867
crossref_primary_10_1631_jzus_B2300680
crossref_primary_10_1038_s41598_024_73704_1
crossref_primary_10_1016_S0873_2159_15_30106_9
crossref_primary_10_1590_S1806_37132009001100011
crossref_primary_10_1002_mus_20541
crossref_primary_10_1590_S0100_879X2009000400005
crossref_primary_10_1002_mus_20633
crossref_primary_10_1590_S1807_59322011000100022
crossref_primary_10_23736_S1973_9087_20_06317_0
crossref_primary_10_1016_j_metabol_2009_10_006
Cites_doi 10.1183/09031936.93.05020157
10.1152/jappl.1996.81.5.2199
10.1152/jappl.1992.73.3.894
10.1002/nbm.1940040108
10.1002/1097-4598(200008)23:8<1187::AID-MUS5>3.0.CO;2-9
10.1152/jappl.2001.90.2.724
10.1113/jphysiol.1991.sp018524
10.1002/1097-4598(200103)24:3<364::AID-MUS1007>3.0.CO;2-B
10.1164/ajrccm.151.2.7842194
10.1164/ajrccm/147.3.592
10.1164/ajrccm/146.4.1019
10.1183/09031936.02.00014302
10.1152/jappl.1995.78.6.2218
10.1016/0003-2697(78)90342-1
10.1136/thorax.55.10.848
10.2165/00007256-199010040-00003
10.1016/S0304-3940(98)00816-7
10.1113/jphysiol.1986.sp016263
10.1164/ajrccm.164.8.2010135
10.1164/ajrccm.152.2.7633721
10.1164/ajrccm.158.2.9711023
10.1042/CS19990263
10.1016/S0304-3940(01)01732-3
10.1164/ajrccm.164.7.2103065
10.1016/0954-6111(95)90122-1
10.1016/S0891-5849(96)00350-4
10.1002/mus.880180504
10.1080/10715760290029146
10.1042/cs0940279
10.1136/thx.48.5.486
10.1002/mus.880170506
10.1007/s004210170010
10.1152/jappl.1992.72.5.1631
10.1164/ajrccm.153.3.8630582
10.1164/ajrccm.154.4.8887607
10.1152/jappl.1995.79.3.675
10.1016/S1569-9048(02)00133-7
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright_xml – notice: 2004 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1475-097X.2004.00533.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1475-097X
EndPage 84
ExternalDocumentID 15056179
15619217
10_1111_j_1475_097X_2004_00533_x
CPF533
ark_67375_WNG_X4LWQT10_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29B
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
IQODW
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
ESX
NPM
WRC
7X8
ID FETCH-LOGICAL-c4323-6cccfd72b8a67386f217de592fbb593a97c5c9cedd721412af79218f1a3c79763
IEDL.DBID DR2
ISSN 1475-0961
IngestDate Fri Sep 05 10:51:01 EDT 2025
Wed Feb 19 01:37:15 EST 2025
Mon Jul 21 09:11:50 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Tue Jul 01 01:42:42 EDT 2025
Thu Sep 25 07:36:23 EDT 2025
Sun Sep 21 06:21:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Human
Vastus lateralis muscle
Oxidative stress
anoxemia
Electrophysiology
Flexor digitorum muscle
Striated muscle
Muscle contraction
Chronic
Hypoxemia
muscle
reactive oxygen species
Electromyography
Obstructive pulmonary disease
chronic obstructive pulmonary disease
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4323-6cccfd72b8a67386f217de592fbb593a97c5c9cedd721412af79218f1a3c79763
Notes ArticleID:CPF533
ark:/67375/WNG-X4LWQT10-C
istex:3B4742C535C3F37AD3A31B36DED24DE4EDB9AD21
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15056179
PQID 71785901
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_71785901
pubmed_primary_15056179
pascalfrancis_primary_15619217
crossref_primary_10_1111_j_1475_097X_2004_00533_x
crossref_citationtrail_10_1111_j_1475_097X_2004_00533_x
wiley_primary_10_1111_j_1475_097X_2004_00533_x_CPF533
istex_primary_ark_67375_WNG_X4LWQT10_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2004
PublicationDateYYYYMMDD 2004-03-01
PublicationDate_xml – month: 03
  year: 2004
  text: March 2004
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Clinical physiology and functional imaging
PublicationTitleAlternate Clin Physiol Funct Imaging
PublicationYear 2004
Publisher Blackwell Science Ltd
Blackwell Science
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell Science
References Wuyam B, Payen JF, Levy P et al. Metabolism and aerobic capacity of skeletal muscle in chronic respiratory failure related to chronic obstructive pulmonary disease. Eur Respir J (1992); 5: 157-162.
ATS/ERS Statement. Skeletal muscle dysfunction in obstructive pulmonary disease. Am J Respir Crit Care Med (1999); 159: S1-S40.
Maltais F, LeBlanc P, Whittom F et al. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax (2000); 55: 848-853.
Payen JF, Wuyam B, Levy P et al. Muscular metabolism during oxygen supplementation in patients with chronic hypoxemia. Am Rev Respir Dis (1993); 147: 592-598.
Kutsuzawa T, Shioya S, Kurita D, Haida M, Ohta Y, Yamabayashi H. Muscle energy metabolism and nutritional status in patients with chronic obstructive pulmonary disease. A 31P magnetic resonance study. Am J Respir Crit Care Med (1995); 152: 647-652.
Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol (1995); 79: 675-686.
Kutsuzawa T, Shioya S, Kurita D, Haida M, Ohta Y, Yamabayashi H. 31P-NMR study of skeletal muscle metabolism in patients with chronic respiratory impairment. Am Rev Respir Dis (1992); 146: 1019-1024.
Bendahan D, Badier M, Jammes Y et al. Metabolic and myoelectrical effects of acute hypoxaemia during isometric contraction of forearm muscles in humans: a combined 31P-magnetic resonance spectroscopy-surface electromyogram (MRS-EMG) study. Clin Sci (1998); 94: 279-286.
Bernard S, Leblanc P, Whittom F et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med (1998); 158: 629-634.
Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med (1996); 153: 976-980.
Jakobsson P, Jorfeldt L. Long-term oxygen therapy may improve skeletal muscle metabolism in advanced chronic obstructive pulmonary disease patients with chronic hypoxemia. Respir Med (1995); 89: 471-476.
Jann S, Gatti A, Crespi S, Rolo J, Beretta S. Peripheral neuropathy in chronic respiratory insufficiency. J Peripheral Nerv Syst (1998); 3: 69-74.
Gertz I, Hedenstierna G, Hellers G, Wahren J. Muscle metabolism in patients with chronic obstructive lung disease and acute respiratory failure. Clin Sci Mol Med (1977); 52: 395-403.
Arbogast S, Vassilakopoulos T, Darques JL, Duvauchelle JB, Jammes Y. Influence of oxygen supply on activation of group IV muscle afferents after low-frequency muscle stimulation. Muscle Nerve (2000); 23: 1187-1193.
Couillard A, Koechlin C, Cristol JP, Varray A, Préfaut C. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients. Eur Respir J (2002); 20: 1123-1129.
Darques JL, Decherchi P, Jammes Y. Mechanisms of fatigue-induced activation of group IV muscle afferents: the roles played by lactate and inflammatory mediators. Neurosci Lett (1998); 257: 109-112.
Mannix ET, Boska MD, Galassett P, Burton G, Manfredi F, Farber M. Modulation of ATP production by oxygen in obstructive lung disease as assessed by 31P-MRS. J Appl Physiol (1995); 78: 2218-2227.
Reid B. Redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol (2001); 90: 724-731.
Sjödin B, Westing YN, Apple F. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med (1990); 10: 236-254.
Dousset E, Steinberg JG, Faucher M, Jammes Y. Acute hypoxemia does not increase the oxidative stress in resting and contracting muscle in humans. Free Radical Res (2002); 36: 701-704.
Garland SJ. Role of small diameter afferents in reflex inhibition during human muscle fatigue. J Physiol (1991); 435: 547-558.
Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem (1978); 86: 271-278.
Payen JF, Wuyam B, Reutenauer H et al. Impairment of muscular metabolism in chronic respiratory failure. A human 31P MRS study. NMR Biomed (1991); 4: 41-45.
Zattara-Hartmann MC, Badier M, Guillot C, Tomei C, Jammes Y. Maximal force and endurance to fatigue of respiratory and skeletal muscles in chronic hypoxemic patients: the effects of oxygen breathing. Muscle Nerve (1995); 18: 495-502.
Quanjer PH. Standardization of lung function testing. Bull Eur Physiopathol Resp (1983); 19: 45-51.
Vina J, Servera E, Asensi M et al. Exercise causes blood glutathione oxidation in chronic obstructive pulmonary disease: prevention by O2 therapy. J Appl Physiol (1996); 81: 2199-2202.
Dhaliwal H, Kirshenbaum LA, Randhawa AK, Singal PK. Correlation between antioxidant changes during hypoxia and recovery on reoxygenation. Am J Physiol (1991); 261: H632-H638.
Singh SN, Vats P, Kumria MML et al. Effect of high altitude (7,620 m) exposure on glutathione and related metabolism in rats. Eur J Appl Physiol (2001); 84: 233-237.
Caquelard F, Burnet H, Tagliarini F, Cauchy E, Richalet JP, Jammes Y. Effects of prolonged hypobaric hypoxia on human skeletal muscle function and electromyographic events. Clin Sci (2000); 98: 329-337.
Jammes Y, Balzamo E. Changes in afferent and efferent phrenic activities with electrically induced diaphragmatic fatigue. J Appl Physiol (1992); 73: 894-902.
Dousset E, Decherchi P, Grelot L, Jammes Y. Effects of chronic hypoxemia on the afferent nerve activities from skeletal muscle. Am J Respir Crit Care Med (2001a ); 164: 1476-1480.
Thompson CH, Davies RJ, Kemp GJ, Taylor DJ, Radda GK, Rajagopalan B. Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure. Thorax (1993); 48: 486-490.
Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol (1992); 72: 1631-1648.
Bigland-Ritchie B, Dawson NJ, Johansson RS, Lippold OCJ. Reflex origin for the slowing of motoneurone firing rates in the fatigue of human voluntary contractions. J Physiol (1986); 379: 451-459.
Gainnier M, Michel F, Fontanari P, Delpierre S, Jammes Y. Exercise-induced inflammatory reaction affects electromyographic changes in skeletal muscle during dynamic contractions in humans. Neurosci Lett (2001); 304: 45-48.
Rabinovich RA, Ardite E, Troosters T et al. Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med (2001); 164: 1114-1118.
Jakobsson P, Jorfeldt L, Henriksson J. Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med (1995); 151: 374-377.
Dousset E, Steinberg JG, Balon N, Jammes Y. Effects of acute hypoxemia on force and surface EMG during sustained handgrip. Muscle Nerve (2001b ); 24: 364-371.
Radak Z, Asano K, Lee K et al. High altitude training increases reactive carbonyl derivates but not lipid peroxidation in skeletal muscle of rats. Free Rad Biol Med (1997); 22: 1109-1114.
Badier M, Guillot C, Lagier-Tessonier F, Jammes Y. EMG changes in respiratory and skeletal muscles during isometric contraction under normoxic, hypoxemic, or ischemic conditions. Muscle Nerve (1994); 17: 500-508.
Rahman I, Morrison D, Donaldson K, MacNee W. Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med (1996); 154: 1055-1060.
Joulia F, Steinberg JG, Wolff F, Gavarry O, Jammes Y. Reduced oxidative stress and blood lactateosis in trained breath-hold human divers. Respir Physiol Neurobiol (2002); 133: 121-130.
1991; 4
1993; 48
2002; 36
2001a; 164
1990; 10
1983; 19
2001; 164
1986; 379
2001; 90
1997; 22
2000; 23
1995; 79
1992; 146
1995; 78
2002; 133
2001b; 24
1998; 158
1998; 257
1995; 18
1993; 147
1991; 435
1995; 151
1995; 152
2001; 84
1992; 72
2001; 304
1992; 73
1991; 261
2002; 20
1978; 86
2000; 98
1995; 89
2000; 55
1977; 52
1998; 3
1996; 154
1998; 94
1996; 153
1996; 81
1994; 17
1999; 159
1992; 5
e_1_2_16_26_1
e_1_2_16_25_1
e_1_2_16_24_1
Dhaliwal H (e_1_2_16_11_1) 1991; 261
Gertz I (e_1_2_16_18_1) 1977; 52
e_1_2_16_29_1
e_1_2_16_27_1
e_1_2_16_41_1
e_1_2_16_42_1
e_1_2_16_2_1
e_1_2_16_43_1
e_1_2_16_22_1
e_1_2_16_21_1
e_1_2_16_20_1
Quanjer PH. (e_1_2_16_31_1) 1983; 19
e_1_2_16_40_1
Jann S (e_1_2_16_23_1) 1998; 3
e_1_2_16_15_1
e_1_2_16_38_1
e_1_2_16_14_1
e_1_2_16_39_1
e_1_2_16_13_1
e_1_2_16_12_1
e_1_2_16_19_1
e_1_2_16_34_1
e_1_2_16_35_1
e_1_2_16_17_1
e_1_2_16_36_1
e_1_2_16_16_1
e_1_2_16_37_1
e_1_2_16_30_1
e_1_2_16_32_1
e_1_2_16_33_1
e_1_2_16_10_1
e_1_2_16_8_1
e_1_2_16_7_1
e_1_2_16_9_1
e_1_2_16_4_1
e_1_2_16_6_1
e_1_2_16_5_1
ATS/ERS Statement (e_1_2_16_3_1) 1999; 159
Mannix ET (e_1_2_16_28_1) 1995; 78
References_xml – reference: Bendahan D, Badier M, Jammes Y et al. Metabolic and myoelectrical effects of acute hypoxaemia during isometric contraction of forearm muscles in humans: a combined 31P-magnetic resonance spectroscopy-surface electromyogram (MRS-EMG) study. Clin Sci (1998); 94: 279-286.
– reference: Kutsuzawa T, Shioya S, Kurita D, Haida M, Ohta Y, Yamabayashi H. 31P-NMR study of skeletal muscle metabolism in patients with chronic respiratory impairment. Am Rev Respir Dis (1992); 146: 1019-1024.
– reference: Gertz I, Hedenstierna G, Hellers G, Wahren J. Muscle metabolism in patients with chronic obstructive lung disease and acute respiratory failure. Clin Sci Mol Med (1977); 52: 395-403.
– reference: Wuyam B, Payen JF, Levy P et al. Metabolism and aerobic capacity of skeletal muscle in chronic respiratory failure related to chronic obstructive pulmonary disease. Eur Respir J (1992); 5: 157-162.
– reference: Couillard A, Koechlin C, Cristol JP, Varray A, Préfaut C. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients. Eur Respir J (2002); 20: 1123-1129.
– reference: Maltais F, LeBlanc P, Whittom F et al. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax (2000); 55: 848-853.
– reference: Singh SN, Vats P, Kumria MML et al. Effect of high altitude (7,620 m) exposure on glutathione and related metabolism in rats. Eur J Appl Physiol (2001); 84: 233-237.
– reference: Dousset E, Steinberg JG, Faucher M, Jammes Y. Acute hypoxemia does not increase the oxidative stress in resting and contracting muscle in humans. Free Radical Res (2002); 36: 701-704.
– reference: Rahman I, Morrison D, Donaldson K, MacNee W. Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med (1996); 154: 1055-1060.
– reference: ATS/ERS Statement. Skeletal muscle dysfunction in obstructive pulmonary disease. Am J Respir Crit Care Med (1999); 159: S1-S40.
– reference: Badier M, Guillot C, Lagier-Tessonier F, Jammes Y. EMG changes in respiratory and skeletal muscles during isometric contraction under normoxic, hypoxemic, or ischemic conditions. Muscle Nerve (1994); 17: 500-508.
– reference: Rabinovich RA, Ardite E, Troosters T et al. Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med (2001); 164: 1114-1118.
– reference: Darques JL, Decherchi P, Jammes Y. Mechanisms of fatigue-induced activation of group IV muscle afferents: the roles played by lactate and inflammatory mediators. Neurosci Lett (1998); 257: 109-112.
– reference: Jakobsson P, Jorfeldt L. Long-term oxygen therapy may improve skeletal muscle metabolism in advanced chronic obstructive pulmonary disease patients with chronic hypoxemia. Respir Med (1995); 89: 471-476.
– reference: Jammes Y, Balzamo E. Changes in afferent and efferent phrenic activities with electrically induced diaphragmatic fatigue. J Appl Physiol (1992); 73: 894-902.
– reference: Payen JF, Wuyam B, Reutenauer H et al. Impairment of muscular metabolism in chronic respiratory failure. A human 31P MRS study. NMR Biomed (1991); 4: 41-45.
– reference: Zattara-Hartmann MC, Badier M, Guillot C, Tomei C, Jammes Y. Maximal force and endurance to fatigue of respiratory and skeletal muscles in chronic hypoxemic patients: the effects of oxygen breathing. Muscle Nerve (1995); 18: 495-502.
– reference: Jann S, Gatti A, Crespi S, Rolo J, Beretta S. Peripheral neuropathy in chronic respiratory insufficiency. J Peripheral Nerv Syst (1998); 3: 69-74.
– reference: Payen JF, Wuyam B, Levy P et al. Muscular metabolism during oxygen supplementation in patients with chronic hypoxemia. Am Rev Respir Dis (1993); 147: 592-598.
– reference: Dhaliwal H, Kirshenbaum LA, Randhawa AK, Singal PK. Correlation between antioxidant changes during hypoxia and recovery on reoxygenation. Am J Physiol (1991); 261: H632-H638.
– reference: Joulia F, Steinberg JG, Wolff F, Gavarry O, Jammes Y. Reduced oxidative stress and blood lactateosis in trained breath-hold human divers. Respir Physiol Neurobiol (2002); 133: 121-130.
– reference: Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med (1996); 153: 976-980.
– reference: Arbogast S, Vassilakopoulos T, Darques JL, Duvauchelle JB, Jammes Y. Influence of oxygen supply on activation of group IV muscle afferents after low-frequency muscle stimulation. Muscle Nerve (2000); 23: 1187-1193.
– reference: Vina J, Servera E, Asensi M et al. Exercise causes blood glutathione oxidation in chronic obstructive pulmonary disease: prevention by O2 therapy. J Appl Physiol (1996); 81: 2199-2202.
– reference: Bigland-Ritchie B, Dawson NJ, Johansson RS, Lippold OCJ. Reflex origin for the slowing of motoneurone firing rates in the fatigue of human voluntary contractions. J Physiol (1986); 379: 451-459.
– reference: Radak Z, Asano K, Lee K et al. High altitude training increases reactive carbonyl derivates but not lipid peroxidation in skeletal muscle of rats. Free Rad Biol Med (1997); 22: 1109-1114.
– reference: Thompson CH, Davies RJ, Kemp GJ, Taylor DJ, Radda GK, Rajagopalan B. Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure. Thorax (1993); 48: 486-490.
– reference: Kutsuzawa T, Shioya S, Kurita D, Haida M, Ohta Y, Yamabayashi H. Muscle energy metabolism and nutritional status in patients with chronic obstructive pulmonary disease. A 31P magnetic resonance study. Am J Respir Crit Care Med (1995); 152: 647-652.
– reference: Dousset E, Decherchi P, Grelot L, Jammes Y. Effects of chronic hypoxemia on the afferent nerve activities from skeletal muscle. Am J Respir Crit Care Med (2001a ); 164: 1476-1480.
– reference: Jakobsson P, Jorfeldt L, Henriksson J. Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med (1995); 151: 374-377.
– reference: Mannix ET, Boska MD, Galassett P, Burton G, Manfredi F, Farber M. Modulation of ATP production by oxygen in obstructive lung disease as assessed by 31P-MRS. J Appl Physiol (1995); 78: 2218-2227.
– reference: Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol (1995); 79: 675-686.
– reference: Dousset E, Steinberg JG, Balon N, Jammes Y. Effects of acute hypoxemia on force and surface EMG during sustained handgrip. Muscle Nerve (2001b ); 24: 364-371.
– reference: Caquelard F, Burnet H, Tagliarini F, Cauchy E, Richalet JP, Jammes Y. Effects of prolonged hypobaric hypoxia on human skeletal muscle function and electromyographic events. Clin Sci (2000); 98: 329-337.
– reference: Sjödin B, Westing YN, Apple F. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med (1990); 10: 236-254.
– reference: Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol (1992); 72: 1631-1648.
– reference: Reid B. Redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol (2001); 90: 724-731.
– reference: Gainnier M, Michel F, Fontanari P, Delpierre S, Jammes Y. Exercise-induced inflammatory reaction affects electromyographic changes in skeletal muscle during dynamic contractions in humans. Neurosci Lett (2001); 304: 45-48.
– reference: Garland SJ. Role of small diameter afferents in reflex inhibition during human muscle fatigue. J Physiol (1991); 435: 547-558.
– reference: Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem (1978); 86: 271-278.
– reference: Quanjer PH. Standardization of lung function testing. Bull Eur Physiopathol Resp (1983); 19: 45-51.
– reference: Bernard S, Leblanc P, Whittom F et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med (1998); 158: 629-634.
– volume: 55
  start-page: 848
  year: 2000
  end-page: 853
  article-title: Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD
  publication-title: Thorax
– volume: 5
  start-page: 157
  year: 1992
  end-page: 162
  article-title: Metabolism and aerobic capacity of skeletal muscle in chronic respiratory failure related to chronic obstructive pulmonary disease
  publication-title: Eur Respir J
– volume: 154
  start-page: 1055
  year: 1996
  end-page: 1060
  article-title: Systemic oxidative stress in asthma, COPD, and smokers
  publication-title: Am J Respir Crit Care Med
– volume: 48
  start-page: 486
  year: 1993
  end-page: 490
  article-title: Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure
  publication-title: Thorax
– volume: 261
  start-page: H632
  year: 1991
  end-page: H638
  article-title: Correlation between antioxidant changes during hypoxia and recovery on reoxygenation
  publication-title: Am J Physiol
– volume: 164
  start-page: 1114
  year: 2001
  end-page: 1118
  article-title: Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease
  publication-title: Am J Respir Crit Care Med
– volume: 86
  start-page: 271
  year: 1978
  end-page: 278
  article-title: Determination of malonaldehyde precursor in tissues by thiobarbituric acid test
  publication-title: Anal Biochem
– volume: 89
  start-page: 471
  year: 1995
  end-page: 476
  article-title: Long‐term oxygen therapy may improve skeletal muscle metabolism in advanced chronic obstructive pulmonary disease patients with chronic hypoxemia
  publication-title: Respir Med
– volume: 52
  start-page: 395
  year: 1977
  end-page: 403
  article-title: Muscle metabolism in patients with chronic obstructive lung disease and acute respiratory failure
  publication-title: Clin Sci Mol Med
– volume: 257
  start-page: 109
  year: 1998
  end-page: 112
  article-title: Mechanisms of fatigue‐induced activation of group IV muscle afferents: the roles played by lactate and inflammatory mediators
  publication-title: Neurosci Lett
– volume: 146
  start-page: 1019
  year: 1992
  end-page: 1024
  article-title: 31P‐NMR study of skeletal muscle metabolism in patients with chronic respiratory impairment
  publication-title: Am Rev Respir Dis
– volume: 36
  start-page: 701
  year: 2002
  end-page: 704
  article-title: Acute hypoxemia does not increase the oxidative stress in resting and contracting muscle in humans
  publication-title: Free Radical Res
– volume: 158
  start-page: 629
  year: 1998
  end-page: 634
  article-title: Peripheral muscle weakness in patients with chronic obstructive pulmonary disease
  publication-title: Am J Respir Crit Care Med
– volume: 98
  start-page: 329
  year: 2000
  end-page: 337
  article-title: Effects of prolonged hypobaric hypoxia on human skeletal muscle function and electromyographic events
  publication-title: Clin Sci
– volume: 73
  start-page: 894
  year: 1992
  end-page: 902
  article-title: Changes in afferent and efferent phrenic activities with electrically induced diaphragmatic fatigue
  publication-title: J Appl Physiol
– volume: 78
  start-page: 2218
  year: 1995
  end-page: 2227
  article-title: Modulation of ATP production by oxygen in obstructive lung disease as assessed by 31P‐MRS
  publication-title: J Appl Physiol
– volume: 20
  start-page: 1123
  year: 2002
  end-page: 1129
  article-title: Evidence of local exercise‐induced systemic oxidative stress in chronic obstructive pulmonary disease patients
  publication-title: Eur Respir J
– volume: 147
  start-page: 592
  year: 1993
  end-page: 598
  article-title: Muscular metabolism during oxygen supplementation in patients with chronic hypoxemia
  publication-title: Am Rev Respir Dis
– volume: 79
  start-page: 675
  year: 1995
  end-page: 686
  article-title: Oxidants and antioxidants in exercise
  publication-title: J Appl Physiol
– volume: 17
  start-page: 500
  year: 1994
  end-page: 508
  article-title: EMG changes in respiratory and skeletal muscles during isometric contraction under normoxic, hypoxemic, or ischemic conditions
  publication-title: Muscle Nerve
– volume: 18
  start-page: 495
  year: 1995
  end-page: 502
  article-title: Maximal force and endurance to fatigue of respiratory and skeletal muscles in chronic hypoxemic patients: the effects of oxygen breathing
  publication-title: Muscle Nerve
– volume: 151
  start-page: 374
  year: 1995
  end-page: 377
  article-title: Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease
  publication-title: Am J Respir Crit Care Med
– volume: 72
  start-page: 1631
  year: 1992
  end-page: 1648
  article-title: Neurobiology of muscle fatigue
  publication-title: J Appl Physiol
– volume: 22
  start-page: 1109
  year: 1997
  end-page: 1114
  article-title: High altitude training increases reactive carbonyl derivates but not lipid peroxidation in skeletal muscle of rats
  publication-title: Free Rad Biol Med
– volume: 94
  start-page: 279
  year: 1998
  end-page: 286
  article-title: Metabolic and myoelectrical effects of acute hypoxaemia during isometric contraction of forearm muscles in humans: a combined P‐magnetic resonance spectroscopy‐surface electromyogram (MRS‐EMG) study
  publication-title: Clin Sci
– volume: 164
  start-page: 1476
  year: 2001a
  end-page: 1480
  article-title: Effects of chronic hypoxemia on the afferent nerve activities from skeletal muscle
  publication-title: Am J Respir Crit Care Med
– volume: 133
  start-page: 121
  year: 2002
  end-page: 130
  article-title: Reduced oxidative stress and blood lactateosis in trained breath‐hold human divers
  publication-title: Respir Physiol Neurobiol
– volume: 3
  start-page: 69
  year: 1998
  end-page: 74
  article-title: Peripheral neuropathy in chronic respiratory insufficiency
  publication-title: J Peripheral Nerv Syst
– volume: 81
  start-page: 2199
  year: 1996
  end-page: 2202
  article-title: Exercise causes blood glutathione oxidation in chronic obstructive pulmonary disease: prevention by O therapy
  publication-title: J Appl Physiol
– volume: 90
  start-page: 724
  year: 2001
  end-page: 731
  article-title: Redox modulation of skeletal muscle contraction: what we know and what we don't
  publication-title: J Appl Physiol
– volume: 4
  start-page: 41
  year: 1991
  end-page: 45
  article-title: Impairment of muscular metabolism in chronic respiratory failure. A human 31P MRS study
  publication-title: NMR Biomed
– volume: 23
  start-page: 1187
  year: 2000
  end-page: 1193
  article-title: Influence of oxygen supply on activation of group IV muscle afferents after low‐frequency muscle stimulation
  publication-title: Muscle Nerve
– volume: 159
  start-page: S1
  year: 1999
  end-page: S40
  article-title: Skeletal muscle dysfunction in obstructive pulmonary disease
  publication-title: Am J Respir Crit Care Med
– volume: 379
  start-page: 451
  year: 1986
  end-page: 459
  article-title: Reflex origin for the slowing of motoneurone firing rates in the fatigue of human voluntary contractions
  publication-title: J Physiol
– volume: 84
  start-page: 233
  year: 2001
  end-page: 237
  article-title: Effect of high altitude (7,620 m) exposure on glutathione and related metabolism in rats
  publication-title: Eur J Appl Physiol
– volume: 10
  start-page: 236
  year: 1990
  end-page: 254
  article-title: Biochemical mechanisms for oxygen free radical formation during exercise
  publication-title: Sports Med
– volume: 24
  start-page: 364
  year: 2001b
  end-page: 371
  article-title: Effects of acute hypoxemia on force and surface EMG during sustained handgrip
  publication-title: Muscle Nerve
– volume: 435
  start-page: 547
  year: 1991
  end-page: 558
  article-title: Role of small diameter afferents in reflex inhibition during human muscle fatigue
  publication-title: J Physiol
– volume: 19
  start-page: 45
  year: 1983
  end-page: 51
  article-title: Standardization of lung function testing
  publication-title: Bull Eur Physiopathol Resp
– volume: 153
  start-page: 976
  year: 1996
  end-page: 980
  article-title: Peripheral muscle weakness contributes to exercise limitation in COPD
  publication-title: Am J Respir Crit Care Med
– volume: 304
  start-page: 45
  year: 2001
  end-page: 48
  article-title: Exercise‐induced inflammatory reaction affects electromyographic changes in skeletal muscle during dynamic contractions in humans
  publication-title: Neurosci Lett
– volume: 152
  start-page: 647
  year: 1995
  end-page: 652
  article-title: Muscle energy metabolism and nutritional status in patients with chronic obstructive pulmonary disease. A 31P magnetic resonance study
  publication-title: Am J Respir Crit Care Med
– volume: 261
  start-page: H632
  year: 1991
  ident: e_1_2_16_11_1
  article-title: Correlation between antioxidant changes during hypoxia and recovery on reoxygenation
  publication-title: Am J Physiol
– ident: e_1_2_16_42_1
  doi: 10.1183/09031936.93.05020157
– ident: e_1_2_16_41_1
  doi: 10.1152/jappl.1996.81.5.2199
– volume: 52
  start-page: 395
  year: 1977
  ident: e_1_2_16_18_1
  article-title: Muscle metabolism in patients with chronic obstructive lung disease and acute respiratory failure
  publication-title: Clin Sci Mol Med
– ident: e_1_2_16_22_1
  doi: 10.1152/jappl.1992.73.3.894
– ident: e_1_2_16_29_1
  doi: 10.1002/nbm.1940040108
– ident: e_1_2_16_2_1
  doi: 10.1002/1097-4598(200008)23:8<1187::AID-MUS5>3.0.CO;2-9
– ident: e_1_2_16_35_1
  doi: 10.1152/jappl.2001.90.2.724
– ident: e_1_2_16_17_1
  doi: 10.1113/jphysiol.1991.sp018524
– ident: e_1_2_16_13_1
  doi: 10.1002/1097-4598(200103)24:3<364::AID-MUS1007>3.0.CO;2-B
– ident: e_1_2_16_21_1
  doi: 10.1164/ajrccm.151.2.7842194
– ident: e_1_2_16_30_1
  doi: 10.1164/ajrccm/147.3.592
– ident: e_1_2_16_25_1
  doi: 10.1164/ajrccm/146.4.1019
– ident: e_1_2_16_9_1
  doi: 10.1183/09031936.02.00014302
– volume: 3
  start-page: 69
  year: 1998
  ident: e_1_2_16_23_1
  article-title: Peripheral neuropathy in chronic respiratory insufficiency
  publication-title: J Peripheral Nerv Syst
– volume: 78
  start-page: 2218
  year: 1995
  ident: e_1_2_16_28_1
  article-title: Modulation of ATP production by oxygen in obstructive lung disease as assessed by 31P‐MRS
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1995.78.6.2218
– ident: e_1_2_16_40_1
  doi: 10.1016/0003-2697(78)90342-1
– ident: e_1_2_16_27_1
  doi: 10.1136/thorax.55.10.848
– ident: e_1_2_16_38_1
  doi: 10.2165/00007256-199010040-00003
– ident: e_1_2_16_10_1
  doi: 10.1016/S0304-3940(98)00816-7
– ident: e_1_2_16_7_1
  doi: 10.1113/jphysiol.1986.sp016263
– ident: e_1_2_16_12_1
  doi: 10.1164/ajrccm.164.8.2010135
– volume: 19
  start-page: 45
  year: 1983
  ident: e_1_2_16_31_1
  article-title: Standardization of lung function testing
  publication-title: Bull Eur Physiopathol Resp
– ident: e_1_2_16_26_1
  doi: 10.1164/ajrccm.152.2.7633721
– ident: e_1_2_16_6_1
  doi: 10.1164/ajrccm.158.2.9711023
– ident: e_1_2_16_8_1
  doi: 10.1042/CS19990263
– ident: e_1_2_16_16_1
  doi: 10.1016/S0304-3940(01)01732-3
– ident: e_1_2_16_32_1
  doi: 10.1164/ajrccm.164.7.2103065
– ident: e_1_2_16_20_1
  doi: 10.1016/0954-6111(95)90122-1
– ident: e_1_2_16_33_1
  doi: 10.1016/S0891-5849(96)00350-4
– ident: e_1_2_16_43_1
  doi: 10.1002/mus.880180504
– volume: 159
  start-page: S1
  year: 1999
  ident: e_1_2_16_3_1
  article-title: Skeletal muscle dysfunction in obstructive pulmonary disease
  publication-title: Am J Respir Crit Care Med
– ident: e_1_2_16_14_1
  doi: 10.1080/10715760290029146
– ident: e_1_2_16_5_1
  doi: 10.1042/cs0940279
– ident: e_1_2_16_39_1
  doi: 10.1136/thx.48.5.486
– ident: e_1_2_16_4_1
  doi: 10.1002/mus.880170506
– ident: e_1_2_16_37_1
  doi: 10.1007/s004210170010
– ident: e_1_2_16_15_1
  doi: 10.1152/jappl.1992.72.5.1631
– ident: e_1_2_16_19_1
  doi: 10.1164/ajrccm.153.3.8630582
– ident: e_1_2_16_34_1
  doi: 10.1164/ajrccm.154.4.8887607
– ident: e_1_2_16_36_1
  doi: 10.1152/jappl.1995.79.3.675
– ident: e_1_2_16_24_1
  doi: 10.1016/S1569-9048(02)00133-7
SSID ssj0017347
Score 1.744524
Snippet Summary Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic...
Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia...
Transient re-oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 75
SubjectTerms Aged
anoxemia
Biological and medical sciences
Chronic Disease
chronic obstructive pulmonary disease
Chronic obstructive pulmonary disease, asthma
Electromyography
Evoked Potentials
Female
Glutathione - blood
Humans
Hypoxia - blood
Hypoxia - physiopathology
Lactic Acid - blood
Male
Medical sciences
muscle
Muscle Contraction
Muscle, Skeletal - physiopathology
Osmolar Concentration
Oxidative Stress
Oxygen
Physical Endurance
Pneumology
Potassium - blood
Pulmonary Disease, Chronic Obstructive - blood
Pulmonary Disease, Chronic Obstructive - physiopathology
reactive oxygen species
Respiration
Respiratory Function Tests
Thiobarbituric Acid Reactive Substances - analysis
Work of Breathing
Title Influence of chronic hypoxemia on peripheral muscle function and oxidative stress in humans
URI https://api.istex.fr/ark:/67375/WNG-X4LWQT10-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1475-097X.2004.00533.x
https://www.ncbi.nlm.nih.gov/pubmed/15056179
https://www.proquest.com/docview/71785901
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1475-0961
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1475-097X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017347
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hIiEuvB_hUXxA3LJqEjuOj2jFUhCtALXqShwsP8Vq26RqdqWFX4_Hzi7dqocKccvB4ySTmfgbe-YbgLe03hOq1kVec21yGhBprhthcyZwN9l56yNJ0sFhvX9MP0_ZdMh_wlqYxA-x2XBDz4j_a3RwpfsrTs5Zvif4NIZ5o1hWOkI8WVQsnth-3zBJFbyKvcYGkbrYTuq5dqKtleo2Kn2FmZOqD8rzqevFdbB0G-XGZWpyH-brF0zZKfPRcqFH5vcV7sf_o4EHcG9As-R9Mr-HcMu1j-DOwXBe_xh-fFr3QCGdJyYR8ZKfv867lTubKdK1BJmWI7XBKTlb9mEWgkstmgtRrSXdamYjNzlJVS1k1pLYV7B_AseTD0fj_Xxo55AbWpVVXhtjvOWlblRsNepDNGQdE6XXOpiGEtwwI4yzYUxBi1J5LgIA8YWqDA-oqXoKO23XuudArFZaN5wLTRtqjW-CkGa6rEtnVAC0GfD1p5Nm4DrHlhun8nLMw5lE3WEnTiqj7uQqg2IjeZ74Pm4g8y5ax0ZAXcwxXy6MPTn8KKf0y8m3ozDJOIPdLfP5eweGcWzBM3izticZ3BzPblTrumUvQ9TdYJlwBs-SmV2SxSCQiwxYNJYbP7Ycf52Eixf_KPcS7qYsJszHewU7i4ulex0A2kLvRtf7A_4CLBo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hVgIulGcxj3YPiJuj2l57vUcUCCkkEaBUjcRhtU8RNbWrJpFSfj07ayc0VQ8V4ubDziaezGS_2Z39PoB3tDjislBJXDClY-oRaaxKbuKc426ydcYFkqThqOif0C-TfNLKAeFdmIYfYrPhhpkR_q8xwXFD-kaWszw-4mwS6rxOuFfa8YByF4_rMEs__thwSSUsC2pjrU2RbLf13DrT1lq1i25fYe-knHv3uUb34jZguo1zw0LV24PZ-hWb_pSzznKhOvr3DfbH_-SDx_CoBbTkQxOBT-CerZ7C_WF7ZP8Mfh6vZVBI7YhuuHjJr6uLemXPp5LUFUGy5cBuMCPny7mfheBqixFDZGVIvZqaQE9OmostZFqRIC04fw4nvU_jbj9uFR1iTbM0iwuttTMsVaUMaqPOF0TG5jx1SvnokJzpXHNtjR-T0CSVjnGPQVwiM808cMpewE5VV_YlEKOkUiVjXNGSGu1Kb6RylRap1dJj2gjY-rcTuqU7R9WNmbhe9rBcoO9QjJOK4DuxiiDZWF40lB93sHkfwmNjIC_PsGXOjz0dfRYTOjj9PvaTdCM42Iqfv5-QYymbsAgO1wElfKbj8Y2sbL2cC194l3hTOIL9Js6u2WIdyHgEeYiWO39t0f3W8w-v_tHuEB70x8OBGByPvr6Gh01TE7bnvYGdxeXSvvV4baEOQh7-AbytMDY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VIKFeWujTpcAeqt4cYXvt9R6rQIAWIlqBiNTDap8iCtgRSaS0v747aycliAOqevNhZ22PZ7zf7M58A_CJFvtcFiqJC6Z0TD0ijVXJTZxz3E22zrhAknTWL44v6ddBPmjzn7AWpuGHWG64oWeE_zU6-Ni4B07O8nifs0EI8zqhrLTj8eS6f4AUA7GDH0sqqYRlodlYK1Mkq1k9j860slSto9bnmDopJ157rml78RguXYW5YZ3qvYTR4g2b9JRRZzZVHf37Afnj_1HBJrxo4Sz50tjfFjyz1SvYOGsP7F_Dz5NFExRSO6IbJl5y_Wtcz-3tUJK6Iki1HLgNbsjtbOJnIbjWor0QWRlSz4cmkJOTpqyFDCsSGgtO3sBl7_Ciexy3_RxiTbM0iwuttTMsVaUMvUadD4eMzXnqlPK2ITnTuebaGj8moUkqHeMegbhEZpp52JS9hbWqrux7IEZJpUrGuKIlNdqVXkjlKi1Sq6VHtBGwxacTuiU7x54bN-J-0MNygbrDVpxUBN2JeQTJUnLcEH48QeZzsI6lgLwbYcKcH3vVPxIDenr1_cJP0o1gd8V8_t4hx0A2YRHsLexJeD_HwxtZ2Xo2ET7sLrFOOIJ3jZndk8UokPEI8mAsT35s0T3v-YsP_yi3BxvnBz1xetL_tg3Pm4wmzM37CGvTu5nd8WBtqnaDF_4B9p0u5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+chronic+hypoxemia+on+peripheral+muscle+function+and+oxidative+stress+in+humans&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=Faucher%2C+Marion&rft.au=Steinberg%2C+Jean+Guillaume&rft.au=Barbier%2C+Dominique&rft.au=Hug%2C+Fran%C3%A7ois&rft.date=2004-03-01&rft.pub=Blackwell+Science+Ltd&rft.issn=1475-0961&rft.eissn=1475-097X&rft.volume=24&rft.issue=2&rft.spage=75&rft.epage=84&rft_id=info:doi/10.1111%2Fj.1475-097X.2004.00533.x&rft.externalDBID=10.1111%252Fj.1475-097X.2004.00533.x&rft.externalDocID=CPF533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon