Influence of chronic hypoxemia on peripheral muscle function and oxidative stress in humans
Summary Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de‐conditioning. The subjects performed maximal voluntary contractions (...
Saved in:
Published in | Clinical physiology and functional imaging Vol. 24; no. 2; pp. 75 - 84 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.03.2004
Blackwell Science |
Subjects | |
Online Access | Get full text |
ISSN | 1475-0961 1475-097X |
DOI | 10.1111/j.1475-097X.2004.00533.x |
Cover
Abstract | Summary
Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de‐conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra‐maximal contractions. COPD patients repeated the whole challenge during a 50‐min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M‐wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K+), erythrocyte‐reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated ‘muscle wisdom’, and the suppression of the exercise oxidative stress. |
---|---|
AbstractList | Summary
Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de‐conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra‐maximal contractions. COPD patients repeated the whole challenge during a 50‐min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M‐wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K+), erythrocyte‐reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated ‘muscle wisdom’, and the suppression of the exercise oxidative stress. Transient re-oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de-conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra-maximal contractions. COPD patients repeated the whole challenge during a 50-min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M-wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K+), erythrocyte-reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated 'muscle wisdom', and the suppression of the exercise oxidative stress. Transient re-oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de-conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra-maximal contractions. COPD patients repeated the whole challenge during a 50-min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M-wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K+), erythrocyte-reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated 'muscle wisdom', and the suppression of the exercise oxidative stress.Transient re-oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de-conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra-maximal contractions. COPD patients repeated the whole challenge during a 50-min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M-wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K+), erythrocyte-reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated 'muscle wisdom', and the suppression of the exercise oxidative stress. Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia on peripheral muscle and metabolism apart from the effects of de‐conditioning. The subjects performed maximal voluntary contractions (MVC) of flexor digitorum and vastus lateralis muscles and sustained infra‐maximal contractions. COPD patients repeated the whole challenge during a 50‐min oxygen breathing period and after recovery to baseline hypoxemia. We measured the compound evoked muscle mass action potential (M‐wave) and the medium frequency (MF) of surface electromyography (EMG) power spectrum. Blood lactate (LA) and potassium (K + ), erythrocyte‐reduced glutathione (GSH), and plasma thiobarbituric acid reactive substances (TBARS) were also measured. Compared with a control group, COPD patients had lower MVCs, an attenuated decrease in MF during exercise, lower resting level of GSH, no posthandgrip TBARS increase and no GSH consumption. Reoxygenation (1) increased MVCs, (2) accentuated the MF decline and (3) elicited a posthandgrip TBARS increase and GSH consumption. Thus, we conclude that chronic hypoxemia exerts specific muscular effects: a reduced force production, an attenuated ‘muscle wisdom’, and the suppression of the exercise oxidative stress. |
Author | Hug, François Jammes, Yves Barbier, Dominique Faucher, Marion Steinberg, Jean Guillaume |
Author_xml | – sequence: 1 givenname: Marion surname: Faucher fullname: Faucher, Marion organization: Laboratoire de Physiopathologie Respiratoire (EA 2201), Faculté de Mèdecine, Institut Jean Roche, Université de la Méditerranée, and Service des Explorations Fonctionnelles Respiratoires, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France – sequence: 2 givenname: Jean Guillaume surname: Steinberg fullname: Steinberg, Jean Guillaume organization: Laboratoire de Physiopathologie Respiratoire (EA 2201), Faculté de Mèdecine, Institut Jean Roche, Université de la Méditerranée, and Service des Explorations Fonctionnelles Respiratoires, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France – sequence: 3 givenname: Dominique surname: Barbier fullname: Barbier, Dominique organization: Laboratoire de Physiopathologie Respiratoire (EA 2201), Faculté de Mèdecine, Institut Jean Roche, Université de la Méditerranée, and Service des Explorations Fonctionnelles Respiratoires, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France – sequence: 4 givenname: François surname: Hug fullname: Hug, François organization: Laboratoire de Physiopathologie Respiratoire (EA 2201), Faculté de Mèdecine, Institut Jean Roche, Université de la Méditerranée, and Service des Explorations Fonctionnelles Respiratoires, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France – sequence: 5 givenname: Yves surname: Jammes fullname: Jammes, Yves organization: Laboratoire de Physiopathologie Respiratoire (EA 2201), Faculté de Mèdecine, Institut Jean Roche, Université de la Méditerranée, and Service des Explorations Fonctionnelles Respiratoires, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Marseille, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15619217$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15056179$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd2L1DAUxYOsuB_6L0he9K01adqmBRFkcD9gWBVWdsGHkElvmIxpWpN2t_Pfb-rMjuLT5iUX7u-cC-ecoiPXOUAIU5LS-D5sUprzIiE1v0szQvKUkIKxdHqBTg6Lo8Nc0mN0GsKGEMpZzl-hY1qQoqS8PkE_r5y2IzgFuNNYrX3njMLrbd9N0BqJO4d78KZfg5cWt2NQFrAenRpMXEnX4G4yjRzMPeAweAgBG4fXYytdeI1eamkDvNn_Z-jH-ZebxWWy_Hpxtfi8TFTOMpaUSind8GxVyZKzqtQZ5Q0UdaZXq6JmsuaqULWCJjI0p5nUvM5opalkite8ZGfo_c63993vEcIgWhMUWCsddGMQnPKqqAmN4Ns9OK5aaETvTSv9VjzFEYF3e0AGJa320ikT_uFKGk_zyFU7TvkuBA_6L0LE3JDYiDl8MRch5obEn4bEFKWf_pMqM8g5zcFLY59j8HFn8GAsbJ99WCy-ncchypOd3IQBpoNc-l8iph-Vt9cX4i5f3n6_iZYL9gjJPLn5 |
CitedBy_id | crossref_primary_10_1007_s00424_005_0013_x crossref_primary_10_1183_09059180_00009904 crossref_primary_10_1016_S2173_5115_09_70085_5 crossref_primary_10_1097_HCR_0b013e3181ebf302 crossref_primary_10_3390_antiox9111146 crossref_primary_10_1002_mus_20867 crossref_primary_10_1631_jzus_B2300680 crossref_primary_10_1038_s41598_024_73704_1 crossref_primary_10_1016_S0873_2159_15_30106_9 crossref_primary_10_1590_S1806_37132009001100011 crossref_primary_10_1002_mus_20541 crossref_primary_10_1590_S0100_879X2009000400005 crossref_primary_10_1002_mus_20633 crossref_primary_10_1590_S1807_59322011000100022 crossref_primary_10_23736_S1973_9087_20_06317_0 crossref_primary_10_1016_j_metabol_2009_10_006 |
Cites_doi | 10.1183/09031936.93.05020157 10.1152/jappl.1996.81.5.2199 10.1152/jappl.1992.73.3.894 10.1002/nbm.1940040108 10.1002/1097-4598(200008)23:8<1187::AID-MUS5>3.0.CO;2-9 10.1152/jappl.2001.90.2.724 10.1113/jphysiol.1991.sp018524 10.1002/1097-4598(200103)24:3<364::AID-MUS1007>3.0.CO;2-B 10.1164/ajrccm.151.2.7842194 10.1164/ajrccm/147.3.592 10.1164/ajrccm/146.4.1019 10.1183/09031936.02.00014302 10.1152/jappl.1995.78.6.2218 10.1016/0003-2697(78)90342-1 10.1136/thorax.55.10.848 10.2165/00007256-199010040-00003 10.1016/S0304-3940(98)00816-7 10.1113/jphysiol.1986.sp016263 10.1164/ajrccm.164.8.2010135 10.1164/ajrccm.152.2.7633721 10.1164/ajrccm.158.2.9711023 10.1042/CS19990263 10.1016/S0304-3940(01)01732-3 10.1164/ajrccm.164.7.2103065 10.1016/0954-6111(95)90122-1 10.1016/S0891-5849(96)00350-4 10.1002/mus.880180504 10.1080/10715760290029146 10.1042/cs0940279 10.1136/thx.48.5.486 10.1002/mus.880170506 10.1007/s004210170010 10.1152/jappl.1992.72.5.1631 10.1164/ajrccm.153.3.8630582 10.1164/ajrccm.154.4.8887607 10.1152/jappl.1995.79.3.675 10.1016/S1569-9048(02)00133-7 |
ContentType | Journal Article |
Copyright | 2004 INIST-CNRS |
Copyright_xml | – notice: 2004 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/j.1475-097X.2004.00533.x |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1475-097X |
EndPage | 84 |
ExternalDocumentID | 15056179 15619217 10_1111_j_1475_097X_2004_00533_x CPF533 ark_67375_WNG_X4LWQT10_C |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29B 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAKAS AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RJQFR ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION IQODW AEUQT AFPWT CGR CUY CVF ECM EIF ESX NPM WRC 7X8 |
ID | FETCH-LOGICAL-c4323-6cccfd72b8a67386f217de592fbb593a97c5c9cedd721412af79218f1a3c79763 |
IEDL.DBID | DR2 |
ISSN | 1475-0961 |
IngestDate | Fri Sep 05 10:51:01 EDT 2025 Wed Feb 19 01:37:15 EST 2025 Mon Jul 21 09:11:50 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Tue Jul 01 01:42:42 EDT 2025 Thu Sep 25 07:36:23 EDT 2025 Sun Sep 21 06:21:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Human Vastus lateralis muscle Oxidative stress anoxemia Electrophysiology Flexor digitorum muscle Striated muscle Muscle contraction Chronic Hypoxemia muscle reactive oxygen species Electromyography Obstructive pulmonary disease chronic obstructive pulmonary disease |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4323-6cccfd72b8a67386f217de592fbb593a97c5c9cedd721412af79218f1a3c79763 |
Notes | ArticleID:CPF533 ark:/67375/WNG-X4LWQT10-C istex:3B4742C535C3F37AD3A31B36DED24DE4EDB9AD21 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15056179 |
PQID | 71785901 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_71785901 pubmed_primary_15056179 pascalfrancis_primary_15619217 crossref_primary_10_1111_j_1475_097X_2004_00533_x crossref_citationtrail_10_1111_j_1475_097X_2004_00533_x wiley_primary_10_1111_j_1475_097X_2004_00533_x_CPF533 istex_primary_ark_67375_WNG_X4LWQT10_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2004 |
PublicationDateYYYYMMDD | 2004-03-01 |
PublicationDate_xml | – month: 03 year: 2004 text: March 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Clinical physiology and functional imaging |
PublicationTitleAlternate | Clin Physiol Funct Imaging |
PublicationYear | 2004 |
Publisher | Blackwell Science Ltd Blackwell Science |
Publisher_xml | – name: Blackwell Science Ltd – name: Blackwell Science |
References | Wuyam B, Payen JF, Levy P et al. Metabolism and aerobic capacity of skeletal muscle in chronic respiratory failure related to chronic obstructive pulmonary disease. Eur Respir J (1992); 5: 157-162. ATS/ERS Statement. Skeletal muscle dysfunction in obstructive pulmonary disease. Am J Respir Crit Care Med (1999); 159: S1-S40. Maltais F, LeBlanc P, Whittom F et al. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax (2000); 55: 848-853. Payen JF, Wuyam B, Levy P et al. Muscular metabolism during oxygen supplementation in patients with chronic hypoxemia. Am Rev Respir Dis (1993); 147: 592-598. Kutsuzawa T, Shioya S, Kurita D, Haida M, Ohta Y, Yamabayashi H. Muscle energy metabolism and nutritional status in patients with chronic obstructive pulmonary disease. A 31P magnetic resonance study. Am J Respir Crit Care Med (1995); 152: 647-652. Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol (1995); 79: 675-686. Kutsuzawa T, Shioya S, Kurita D, Haida M, Ohta Y, Yamabayashi H. 31P-NMR study of skeletal muscle metabolism in patients with chronic respiratory impairment. Am Rev Respir Dis (1992); 146: 1019-1024. Bendahan D, Badier M, Jammes Y et al. Metabolic and myoelectrical effects of acute hypoxaemia during isometric contraction of forearm muscles in humans: a combined 31P-magnetic resonance spectroscopy-surface electromyogram (MRS-EMG) study. Clin Sci (1998); 94: 279-286. Bernard S, Leblanc P, Whittom F et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med (1998); 158: 629-634. Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med (1996); 153: 976-980. Jakobsson P, Jorfeldt L. Long-term oxygen therapy may improve skeletal muscle metabolism in advanced chronic obstructive pulmonary disease patients with chronic hypoxemia. Respir Med (1995); 89: 471-476. Jann S, Gatti A, Crespi S, Rolo J, Beretta S. Peripheral neuropathy in chronic respiratory insufficiency. J Peripheral Nerv Syst (1998); 3: 69-74. Gertz I, Hedenstierna G, Hellers G, Wahren J. Muscle metabolism in patients with chronic obstructive lung disease and acute respiratory failure. Clin Sci Mol Med (1977); 52: 395-403. Arbogast S, Vassilakopoulos T, Darques JL, Duvauchelle JB, Jammes Y. Influence of oxygen supply on activation of group IV muscle afferents after low-frequency muscle stimulation. Muscle Nerve (2000); 23: 1187-1193. Couillard A, Koechlin C, Cristol JP, Varray A, Préfaut C. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients. Eur Respir J (2002); 20: 1123-1129. Darques JL, Decherchi P, Jammes Y. Mechanisms of fatigue-induced activation of group IV muscle afferents: the roles played by lactate and inflammatory mediators. Neurosci Lett (1998); 257: 109-112. Mannix ET, Boska MD, Galassett P, Burton G, Manfredi F, Farber M. Modulation of ATP production by oxygen in obstructive lung disease as assessed by 31P-MRS. J Appl Physiol (1995); 78: 2218-2227. Reid B. Redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol (2001); 90: 724-731. Sjödin B, Westing YN, Apple F. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med (1990); 10: 236-254. Dousset E, Steinberg JG, Faucher M, Jammes Y. Acute hypoxemia does not increase the oxidative stress in resting and contracting muscle in humans. Free Radical Res (2002); 36: 701-704. Garland SJ. Role of small diameter afferents in reflex inhibition during human muscle fatigue. J Physiol (1991); 435: 547-558. Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem (1978); 86: 271-278. Payen JF, Wuyam B, Reutenauer H et al. Impairment of muscular metabolism in chronic respiratory failure. A human 31P MRS study. NMR Biomed (1991); 4: 41-45. Zattara-Hartmann MC, Badier M, Guillot C, Tomei C, Jammes Y. Maximal force and endurance to fatigue of respiratory and skeletal muscles in chronic hypoxemic patients: the effects of oxygen breathing. Muscle Nerve (1995); 18: 495-502. Quanjer PH. Standardization of lung function testing. Bull Eur Physiopathol Resp (1983); 19: 45-51. Vina J, Servera E, Asensi M et al. Exercise causes blood glutathione oxidation in chronic obstructive pulmonary disease: prevention by O2 therapy. J Appl Physiol (1996); 81: 2199-2202. Dhaliwal H, Kirshenbaum LA, Randhawa AK, Singal PK. Correlation between antioxidant changes during hypoxia and recovery on reoxygenation. Am J Physiol (1991); 261: H632-H638. Singh SN, Vats P, Kumria MML et al. Effect of high altitude (7,620 m) exposure on glutathione and related metabolism in rats. Eur J Appl Physiol (2001); 84: 233-237. Caquelard F, Burnet H, Tagliarini F, Cauchy E, Richalet JP, Jammes Y. Effects of prolonged hypobaric hypoxia on human skeletal muscle function and electromyographic events. Clin Sci (2000); 98: 329-337. Jammes Y, Balzamo E. Changes in afferent and efferent phrenic activities with electrically induced diaphragmatic fatigue. J Appl Physiol (1992); 73: 894-902. Dousset E, Decherchi P, Grelot L, Jammes Y. Effects of chronic hypoxemia on the afferent nerve activities from skeletal muscle. Am J Respir Crit Care Med (2001a ); 164: 1476-1480. Thompson CH, Davies RJ, Kemp GJ, Taylor DJ, Radda GK, Rajagopalan B. Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure. Thorax (1993); 48: 486-490. Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol (1992); 72: 1631-1648. Bigland-Ritchie B, Dawson NJ, Johansson RS, Lippold OCJ. Reflex origin for the slowing of motoneurone firing rates in the fatigue of human voluntary contractions. J Physiol (1986); 379: 451-459. Gainnier M, Michel F, Fontanari P, Delpierre S, Jammes Y. Exercise-induced inflammatory reaction affects electromyographic changes in skeletal muscle during dynamic contractions in humans. Neurosci Lett (2001); 304: 45-48. Rabinovich RA, Ardite E, Troosters T et al. Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med (2001); 164: 1114-1118. Jakobsson P, Jorfeldt L, Henriksson J. Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med (1995); 151: 374-377. Dousset E, Steinberg JG, Balon N, Jammes Y. Effects of acute hypoxemia on force and surface EMG during sustained handgrip. Muscle Nerve (2001b ); 24: 364-371. Radak Z, Asano K, Lee K et al. High altitude training increases reactive carbonyl derivates but not lipid peroxidation in skeletal muscle of rats. Free Rad Biol Med (1997); 22: 1109-1114. Badier M, Guillot C, Lagier-Tessonier F, Jammes Y. EMG changes in respiratory and skeletal muscles during isometric contraction under normoxic, hypoxemic, or ischemic conditions. Muscle Nerve (1994); 17: 500-508. Rahman I, Morrison D, Donaldson K, MacNee W. Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med (1996); 154: 1055-1060. Joulia F, Steinberg JG, Wolff F, Gavarry O, Jammes Y. Reduced oxidative stress and blood lactateosis in trained breath-hold human divers. Respir Physiol Neurobiol (2002); 133: 121-130. 1991; 4 1993; 48 2002; 36 2001a; 164 1990; 10 1983; 19 2001; 164 1986; 379 2001; 90 1997; 22 2000; 23 1995; 79 1992; 146 1995; 78 2002; 133 2001b; 24 1998; 158 1998; 257 1995; 18 1993; 147 1991; 435 1995; 151 1995; 152 2001; 84 1992; 72 2001; 304 1992; 73 1991; 261 2002; 20 1978; 86 2000; 98 1995; 89 2000; 55 1977; 52 1998; 3 1996; 154 1998; 94 1996; 153 1996; 81 1994; 17 1999; 159 1992; 5 e_1_2_16_26_1 e_1_2_16_25_1 e_1_2_16_24_1 Dhaliwal H (e_1_2_16_11_1) 1991; 261 Gertz I (e_1_2_16_18_1) 1977; 52 e_1_2_16_29_1 e_1_2_16_27_1 e_1_2_16_41_1 e_1_2_16_42_1 e_1_2_16_2_1 e_1_2_16_43_1 e_1_2_16_22_1 e_1_2_16_21_1 e_1_2_16_20_1 Quanjer PH. (e_1_2_16_31_1) 1983; 19 e_1_2_16_40_1 Jann S (e_1_2_16_23_1) 1998; 3 e_1_2_16_15_1 e_1_2_16_38_1 e_1_2_16_14_1 e_1_2_16_39_1 e_1_2_16_13_1 e_1_2_16_12_1 e_1_2_16_19_1 e_1_2_16_34_1 e_1_2_16_35_1 e_1_2_16_17_1 e_1_2_16_36_1 e_1_2_16_16_1 e_1_2_16_37_1 e_1_2_16_30_1 e_1_2_16_32_1 e_1_2_16_33_1 e_1_2_16_10_1 e_1_2_16_8_1 e_1_2_16_7_1 e_1_2_16_9_1 e_1_2_16_4_1 e_1_2_16_6_1 e_1_2_16_5_1 ATS/ERS Statement (e_1_2_16_3_1) 1999; 159 Mannix ET (e_1_2_16_28_1) 1995; 78 |
References_xml | – reference: Bendahan D, Badier M, Jammes Y et al. Metabolic and myoelectrical effects of acute hypoxaemia during isometric contraction of forearm muscles in humans: a combined 31P-magnetic resonance spectroscopy-surface electromyogram (MRS-EMG) study. Clin Sci (1998); 94: 279-286. – reference: Kutsuzawa T, Shioya S, Kurita D, Haida M, Ohta Y, Yamabayashi H. 31P-NMR study of skeletal muscle metabolism in patients with chronic respiratory impairment. Am Rev Respir Dis (1992); 146: 1019-1024. – reference: Gertz I, Hedenstierna G, Hellers G, Wahren J. Muscle metabolism in patients with chronic obstructive lung disease and acute respiratory failure. Clin Sci Mol Med (1977); 52: 395-403. – reference: Wuyam B, Payen JF, Levy P et al. Metabolism and aerobic capacity of skeletal muscle in chronic respiratory failure related to chronic obstructive pulmonary disease. Eur Respir J (1992); 5: 157-162. – reference: Couillard A, Koechlin C, Cristol JP, Varray A, Préfaut C. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients. Eur Respir J (2002); 20: 1123-1129. – reference: Maltais F, LeBlanc P, Whittom F et al. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax (2000); 55: 848-853. – reference: Singh SN, Vats P, Kumria MML et al. Effect of high altitude (7,620 m) exposure on glutathione and related metabolism in rats. Eur J Appl Physiol (2001); 84: 233-237. – reference: Dousset E, Steinberg JG, Faucher M, Jammes Y. Acute hypoxemia does not increase the oxidative stress in resting and contracting muscle in humans. Free Radical Res (2002); 36: 701-704. – reference: Rahman I, Morrison D, Donaldson K, MacNee W. Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med (1996); 154: 1055-1060. – reference: ATS/ERS Statement. Skeletal muscle dysfunction in obstructive pulmonary disease. Am J Respir Crit Care Med (1999); 159: S1-S40. – reference: Badier M, Guillot C, Lagier-Tessonier F, Jammes Y. EMG changes in respiratory and skeletal muscles during isometric contraction under normoxic, hypoxemic, or ischemic conditions. Muscle Nerve (1994); 17: 500-508. – reference: Rabinovich RA, Ardite E, Troosters T et al. Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med (2001); 164: 1114-1118. – reference: Darques JL, Decherchi P, Jammes Y. Mechanisms of fatigue-induced activation of group IV muscle afferents: the roles played by lactate and inflammatory mediators. Neurosci Lett (1998); 257: 109-112. – reference: Jakobsson P, Jorfeldt L. Long-term oxygen therapy may improve skeletal muscle metabolism in advanced chronic obstructive pulmonary disease patients with chronic hypoxemia. Respir Med (1995); 89: 471-476. – reference: Jammes Y, Balzamo E. Changes in afferent and efferent phrenic activities with electrically induced diaphragmatic fatigue. J Appl Physiol (1992); 73: 894-902. – reference: Payen JF, Wuyam B, Reutenauer H et al. Impairment of muscular metabolism in chronic respiratory failure. A human 31P MRS study. NMR Biomed (1991); 4: 41-45. – reference: Zattara-Hartmann MC, Badier M, Guillot C, Tomei C, Jammes Y. Maximal force and endurance to fatigue of respiratory and skeletal muscles in chronic hypoxemic patients: the effects of oxygen breathing. Muscle Nerve (1995); 18: 495-502. – reference: Jann S, Gatti A, Crespi S, Rolo J, Beretta S. Peripheral neuropathy in chronic respiratory insufficiency. J Peripheral Nerv Syst (1998); 3: 69-74. – reference: Payen JF, Wuyam B, Levy P et al. Muscular metabolism during oxygen supplementation in patients with chronic hypoxemia. Am Rev Respir Dis (1993); 147: 592-598. – reference: Dhaliwal H, Kirshenbaum LA, Randhawa AK, Singal PK. Correlation between antioxidant changes during hypoxia and recovery on reoxygenation. Am J Physiol (1991); 261: H632-H638. – reference: Joulia F, Steinberg JG, Wolff F, Gavarry O, Jammes Y. Reduced oxidative stress and blood lactateosis in trained breath-hold human divers. Respir Physiol Neurobiol (2002); 133: 121-130. – reference: Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med (1996); 153: 976-980. – reference: Arbogast S, Vassilakopoulos T, Darques JL, Duvauchelle JB, Jammes Y. Influence of oxygen supply on activation of group IV muscle afferents after low-frequency muscle stimulation. Muscle Nerve (2000); 23: 1187-1193. – reference: Vina J, Servera E, Asensi M et al. Exercise causes blood glutathione oxidation in chronic obstructive pulmonary disease: prevention by O2 therapy. J Appl Physiol (1996); 81: 2199-2202. – reference: Bigland-Ritchie B, Dawson NJ, Johansson RS, Lippold OCJ. Reflex origin for the slowing of motoneurone firing rates in the fatigue of human voluntary contractions. J Physiol (1986); 379: 451-459. – reference: Radak Z, Asano K, Lee K et al. High altitude training increases reactive carbonyl derivates but not lipid peroxidation in skeletal muscle of rats. Free Rad Biol Med (1997); 22: 1109-1114. – reference: Thompson CH, Davies RJ, Kemp GJ, Taylor DJ, Radda GK, Rajagopalan B. Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure. Thorax (1993); 48: 486-490. – reference: Kutsuzawa T, Shioya S, Kurita D, Haida M, Ohta Y, Yamabayashi H. Muscle energy metabolism and nutritional status in patients with chronic obstructive pulmonary disease. A 31P magnetic resonance study. Am J Respir Crit Care Med (1995); 152: 647-652. – reference: Dousset E, Decherchi P, Grelot L, Jammes Y. Effects of chronic hypoxemia on the afferent nerve activities from skeletal muscle. Am J Respir Crit Care Med (2001a ); 164: 1476-1480. – reference: Jakobsson P, Jorfeldt L, Henriksson J. Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med (1995); 151: 374-377. – reference: Mannix ET, Boska MD, Galassett P, Burton G, Manfredi F, Farber M. Modulation of ATP production by oxygen in obstructive lung disease as assessed by 31P-MRS. J Appl Physiol (1995); 78: 2218-2227. – reference: Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol (1995); 79: 675-686. – reference: Dousset E, Steinberg JG, Balon N, Jammes Y. Effects of acute hypoxemia on force and surface EMG during sustained handgrip. Muscle Nerve (2001b ); 24: 364-371. – reference: Caquelard F, Burnet H, Tagliarini F, Cauchy E, Richalet JP, Jammes Y. Effects of prolonged hypobaric hypoxia on human skeletal muscle function and electromyographic events. Clin Sci (2000); 98: 329-337. – reference: Sjödin B, Westing YN, Apple F. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med (1990); 10: 236-254. – reference: Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol (1992); 72: 1631-1648. – reference: Reid B. Redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol (2001); 90: 724-731. – reference: Gainnier M, Michel F, Fontanari P, Delpierre S, Jammes Y. Exercise-induced inflammatory reaction affects electromyographic changes in skeletal muscle during dynamic contractions in humans. Neurosci Lett (2001); 304: 45-48. – reference: Garland SJ. Role of small diameter afferents in reflex inhibition during human muscle fatigue. J Physiol (1991); 435: 547-558. – reference: Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem (1978); 86: 271-278. – reference: Quanjer PH. Standardization of lung function testing. Bull Eur Physiopathol Resp (1983); 19: 45-51. – reference: Bernard S, Leblanc P, Whittom F et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med (1998); 158: 629-634. – volume: 55 start-page: 848 year: 2000 end-page: 853 article-title: Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD publication-title: Thorax – volume: 5 start-page: 157 year: 1992 end-page: 162 article-title: Metabolism and aerobic capacity of skeletal muscle in chronic respiratory failure related to chronic obstructive pulmonary disease publication-title: Eur Respir J – volume: 154 start-page: 1055 year: 1996 end-page: 1060 article-title: Systemic oxidative stress in asthma, COPD, and smokers publication-title: Am J Respir Crit Care Med – volume: 48 start-page: 486 year: 1993 end-page: 490 article-title: Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure publication-title: Thorax – volume: 261 start-page: H632 year: 1991 end-page: H638 article-title: Correlation between antioxidant changes during hypoxia and recovery on reoxygenation publication-title: Am J Physiol – volume: 164 start-page: 1114 year: 2001 end-page: 1118 article-title: Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease publication-title: Am J Respir Crit Care Med – volume: 86 start-page: 271 year: 1978 end-page: 278 article-title: Determination of malonaldehyde precursor in tissues by thiobarbituric acid test publication-title: Anal Biochem – volume: 89 start-page: 471 year: 1995 end-page: 476 article-title: Long‐term oxygen therapy may improve skeletal muscle metabolism in advanced chronic obstructive pulmonary disease patients with chronic hypoxemia publication-title: Respir Med – volume: 52 start-page: 395 year: 1977 end-page: 403 article-title: Muscle metabolism in patients with chronic obstructive lung disease and acute respiratory failure publication-title: Clin Sci Mol Med – volume: 257 start-page: 109 year: 1998 end-page: 112 article-title: Mechanisms of fatigue‐induced activation of group IV muscle afferents: the roles played by lactate and inflammatory mediators publication-title: Neurosci Lett – volume: 146 start-page: 1019 year: 1992 end-page: 1024 article-title: 31P‐NMR study of skeletal muscle metabolism in patients with chronic respiratory impairment publication-title: Am Rev Respir Dis – volume: 36 start-page: 701 year: 2002 end-page: 704 article-title: Acute hypoxemia does not increase the oxidative stress in resting and contracting muscle in humans publication-title: Free Radical Res – volume: 158 start-page: 629 year: 1998 end-page: 634 article-title: Peripheral muscle weakness in patients with chronic obstructive pulmonary disease publication-title: Am J Respir Crit Care Med – volume: 98 start-page: 329 year: 2000 end-page: 337 article-title: Effects of prolonged hypobaric hypoxia on human skeletal muscle function and electromyographic events publication-title: Clin Sci – volume: 73 start-page: 894 year: 1992 end-page: 902 article-title: Changes in afferent and efferent phrenic activities with electrically induced diaphragmatic fatigue publication-title: J Appl Physiol – volume: 78 start-page: 2218 year: 1995 end-page: 2227 article-title: Modulation of ATP production by oxygen in obstructive lung disease as assessed by 31P‐MRS publication-title: J Appl Physiol – volume: 20 start-page: 1123 year: 2002 end-page: 1129 article-title: Evidence of local exercise‐induced systemic oxidative stress in chronic obstructive pulmonary disease patients publication-title: Eur Respir J – volume: 147 start-page: 592 year: 1993 end-page: 598 article-title: Muscular metabolism during oxygen supplementation in patients with chronic hypoxemia publication-title: Am Rev Respir Dis – volume: 79 start-page: 675 year: 1995 end-page: 686 article-title: Oxidants and antioxidants in exercise publication-title: J Appl Physiol – volume: 17 start-page: 500 year: 1994 end-page: 508 article-title: EMG changes in respiratory and skeletal muscles during isometric contraction under normoxic, hypoxemic, or ischemic conditions publication-title: Muscle Nerve – volume: 18 start-page: 495 year: 1995 end-page: 502 article-title: Maximal force and endurance to fatigue of respiratory and skeletal muscles in chronic hypoxemic patients: the effects of oxygen breathing publication-title: Muscle Nerve – volume: 151 start-page: 374 year: 1995 end-page: 377 article-title: Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease publication-title: Am J Respir Crit Care Med – volume: 72 start-page: 1631 year: 1992 end-page: 1648 article-title: Neurobiology of muscle fatigue publication-title: J Appl Physiol – volume: 22 start-page: 1109 year: 1997 end-page: 1114 article-title: High altitude training increases reactive carbonyl derivates but not lipid peroxidation in skeletal muscle of rats publication-title: Free Rad Biol Med – volume: 94 start-page: 279 year: 1998 end-page: 286 article-title: Metabolic and myoelectrical effects of acute hypoxaemia during isometric contraction of forearm muscles in humans: a combined P‐magnetic resonance spectroscopy‐surface electromyogram (MRS‐EMG) study publication-title: Clin Sci – volume: 164 start-page: 1476 year: 2001a end-page: 1480 article-title: Effects of chronic hypoxemia on the afferent nerve activities from skeletal muscle publication-title: Am J Respir Crit Care Med – volume: 133 start-page: 121 year: 2002 end-page: 130 article-title: Reduced oxidative stress and blood lactateosis in trained breath‐hold human divers publication-title: Respir Physiol Neurobiol – volume: 3 start-page: 69 year: 1998 end-page: 74 article-title: Peripheral neuropathy in chronic respiratory insufficiency publication-title: J Peripheral Nerv Syst – volume: 81 start-page: 2199 year: 1996 end-page: 2202 article-title: Exercise causes blood glutathione oxidation in chronic obstructive pulmonary disease: prevention by O therapy publication-title: J Appl Physiol – volume: 90 start-page: 724 year: 2001 end-page: 731 article-title: Redox modulation of skeletal muscle contraction: what we know and what we don't publication-title: J Appl Physiol – volume: 4 start-page: 41 year: 1991 end-page: 45 article-title: Impairment of muscular metabolism in chronic respiratory failure. A human 31P MRS study publication-title: NMR Biomed – volume: 23 start-page: 1187 year: 2000 end-page: 1193 article-title: Influence of oxygen supply on activation of group IV muscle afferents after low‐frequency muscle stimulation publication-title: Muscle Nerve – volume: 159 start-page: S1 year: 1999 end-page: S40 article-title: Skeletal muscle dysfunction in obstructive pulmonary disease publication-title: Am J Respir Crit Care Med – volume: 379 start-page: 451 year: 1986 end-page: 459 article-title: Reflex origin for the slowing of motoneurone firing rates in the fatigue of human voluntary contractions publication-title: J Physiol – volume: 84 start-page: 233 year: 2001 end-page: 237 article-title: Effect of high altitude (7,620 m) exposure on glutathione and related metabolism in rats publication-title: Eur J Appl Physiol – volume: 10 start-page: 236 year: 1990 end-page: 254 article-title: Biochemical mechanisms for oxygen free radical formation during exercise publication-title: Sports Med – volume: 24 start-page: 364 year: 2001b end-page: 371 article-title: Effects of acute hypoxemia on force and surface EMG during sustained handgrip publication-title: Muscle Nerve – volume: 435 start-page: 547 year: 1991 end-page: 558 article-title: Role of small diameter afferents in reflex inhibition during human muscle fatigue publication-title: J Physiol – volume: 19 start-page: 45 year: 1983 end-page: 51 article-title: Standardization of lung function testing publication-title: Bull Eur Physiopathol Resp – volume: 153 start-page: 976 year: 1996 end-page: 980 article-title: Peripheral muscle weakness contributes to exercise limitation in COPD publication-title: Am J Respir Crit Care Med – volume: 304 start-page: 45 year: 2001 end-page: 48 article-title: Exercise‐induced inflammatory reaction affects electromyographic changes in skeletal muscle during dynamic contractions in humans publication-title: Neurosci Lett – volume: 152 start-page: 647 year: 1995 end-page: 652 article-title: Muscle energy metabolism and nutritional status in patients with chronic obstructive pulmonary disease. A 31P magnetic resonance study publication-title: Am J Respir Crit Care Med – volume: 261 start-page: H632 year: 1991 ident: e_1_2_16_11_1 article-title: Correlation between antioxidant changes during hypoxia and recovery on reoxygenation publication-title: Am J Physiol – ident: e_1_2_16_42_1 doi: 10.1183/09031936.93.05020157 – ident: e_1_2_16_41_1 doi: 10.1152/jappl.1996.81.5.2199 – volume: 52 start-page: 395 year: 1977 ident: e_1_2_16_18_1 article-title: Muscle metabolism in patients with chronic obstructive lung disease and acute respiratory failure publication-title: Clin Sci Mol Med – ident: e_1_2_16_22_1 doi: 10.1152/jappl.1992.73.3.894 – ident: e_1_2_16_29_1 doi: 10.1002/nbm.1940040108 – ident: e_1_2_16_2_1 doi: 10.1002/1097-4598(200008)23:8<1187::AID-MUS5>3.0.CO;2-9 – ident: e_1_2_16_35_1 doi: 10.1152/jappl.2001.90.2.724 – ident: e_1_2_16_17_1 doi: 10.1113/jphysiol.1991.sp018524 – ident: e_1_2_16_13_1 doi: 10.1002/1097-4598(200103)24:3<364::AID-MUS1007>3.0.CO;2-B – ident: e_1_2_16_21_1 doi: 10.1164/ajrccm.151.2.7842194 – ident: e_1_2_16_30_1 doi: 10.1164/ajrccm/147.3.592 – ident: e_1_2_16_25_1 doi: 10.1164/ajrccm/146.4.1019 – ident: e_1_2_16_9_1 doi: 10.1183/09031936.02.00014302 – volume: 3 start-page: 69 year: 1998 ident: e_1_2_16_23_1 article-title: Peripheral neuropathy in chronic respiratory insufficiency publication-title: J Peripheral Nerv Syst – volume: 78 start-page: 2218 year: 1995 ident: e_1_2_16_28_1 article-title: Modulation of ATP production by oxygen in obstructive lung disease as assessed by 31P‐MRS publication-title: J Appl Physiol doi: 10.1152/jappl.1995.78.6.2218 – ident: e_1_2_16_40_1 doi: 10.1016/0003-2697(78)90342-1 – ident: e_1_2_16_27_1 doi: 10.1136/thorax.55.10.848 – ident: e_1_2_16_38_1 doi: 10.2165/00007256-199010040-00003 – ident: e_1_2_16_10_1 doi: 10.1016/S0304-3940(98)00816-7 – ident: e_1_2_16_7_1 doi: 10.1113/jphysiol.1986.sp016263 – ident: e_1_2_16_12_1 doi: 10.1164/ajrccm.164.8.2010135 – volume: 19 start-page: 45 year: 1983 ident: e_1_2_16_31_1 article-title: Standardization of lung function testing publication-title: Bull Eur Physiopathol Resp – ident: e_1_2_16_26_1 doi: 10.1164/ajrccm.152.2.7633721 – ident: e_1_2_16_6_1 doi: 10.1164/ajrccm.158.2.9711023 – ident: e_1_2_16_8_1 doi: 10.1042/CS19990263 – ident: e_1_2_16_16_1 doi: 10.1016/S0304-3940(01)01732-3 – ident: e_1_2_16_32_1 doi: 10.1164/ajrccm.164.7.2103065 – ident: e_1_2_16_20_1 doi: 10.1016/0954-6111(95)90122-1 – ident: e_1_2_16_33_1 doi: 10.1016/S0891-5849(96)00350-4 – ident: e_1_2_16_43_1 doi: 10.1002/mus.880180504 – volume: 159 start-page: S1 year: 1999 ident: e_1_2_16_3_1 article-title: Skeletal muscle dysfunction in obstructive pulmonary disease publication-title: Am J Respir Crit Care Med – ident: e_1_2_16_14_1 doi: 10.1080/10715760290029146 – ident: e_1_2_16_5_1 doi: 10.1042/cs0940279 – ident: e_1_2_16_39_1 doi: 10.1136/thx.48.5.486 – ident: e_1_2_16_4_1 doi: 10.1002/mus.880170506 – ident: e_1_2_16_37_1 doi: 10.1007/s004210170010 – ident: e_1_2_16_15_1 doi: 10.1152/jappl.1992.72.5.1631 – ident: e_1_2_16_19_1 doi: 10.1164/ajrccm.153.3.8630582 – ident: e_1_2_16_34_1 doi: 10.1164/ajrccm.154.4.8887607 – ident: e_1_2_16_36_1 doi: 10.1152/jappl.1995.79.3.675 – ident: e_1_2_16_24_1 doi: 10.1016/S1569-9048(02)00133-7 |
SSID | ssj0017347 |
Score | 1.744524 |
Snippet | Summary
Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic... Transient re‐oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia... Transient re-oxygenation of humans suffering from chronic obstructive pulmonary disease (COPD) allows the assessment of the consequences of chronic hypoxemia... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 75 |
SubjectTerms | Aged anoxemia Biological and medical sciences Chronic Disease chronic obstructive pulmonary disease Chronic obstructive pulmonary disease, asthma Electromyography Evoked Potentials Female Glutathione - blood Humans Hypoxia - blood Hypoxia - physiopathology Lactic Acid - blood Male Medical sciences muscle Muscle Contraction Muscle, Skeletal - physiopathology Osmolar Concentration Oxidative Stress Oxygen Physical Endurance Pneumology Potassium - blood Pulmonary Disease, Chronic Obstructive - blood Pulmonary Disease, Chronic Obstructive - physiopathology reactive oxygen species Respiration Respiratory Function Tests Thiobarbituric Acid Reactive Substances - analysis Work of Breathing |
Title | Influence of chronic hypoxemia on peripheral muscle function and oxidative stress in humans |
URI | https://api.istex.fr/ark:/67375/WNG-X4LWQT10-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1475-097X.2004.00533.x https://www.ncbi.nlm.nih.gov/pubmed/15056179 https://www.proquest.com/docview/71785901 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1475-0961 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1475-097X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017347 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hIiEuvB_hUXxA3LJqEjuOj2jFUhCtALXqShwsP8Vq26RqdqWFX4_Hzi7dqocKccvB4ySTmfgbe-YbgLe03hOq1kVec21yGhBprhthcyZwN9l56yNJ0sFhvX9MP0_ZdMh_wlqYxA-x2XBDz4j_a3RwpfsrTs5Zvif4NIZ5o1hWOkI8WVQsnth-3zBJFbyKvcYGkbrYTuq5dqKtleo2Kn2FmZOqD8rzqevFdbB0G-XGZWpyH-brF0zZKfPRcqFH5vcV7sf_o4EHcG9As-R9Mr-HcMu1j-DOwXBe_xh-fFr3QCGdJyYR8ZKfv867lTubKdK1BJmWI7XBKTlb9mEWgkstmgtRrSXdamYjNzlJVS1k1pLYV7B_AseTD0fj_Xxo55AbWpVVXhtjvOWlblRsNepDNGQdE6XXOpiGEtwwI4yzYUxBi1J5LgIA8YWqDA-oqXoKO23XuudArFZaN5wLTRtqjW-CkGa6rEtnVAC0GfD1p5Nm4DrHlhun8nLMw5lE3WEnTiqj7uQqg2IjeZ74Pm4g8y5ax0ZAXcwxXy6MPTn8KKf0y8m3ozDJOIPdLfP5eweGcWzBM3izticZ3BzPblTrumUvQ9TdYJlwBs-SmV2SxSCQiwxYNJYbP7Ycf52Eixf_KPcS7qYsJszHewU7i4ulex0A2kLvRtf7A_4CLBo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hVgIulGcxj3YPiJuj2l57vUcUCCkkEaBUjcRhtU8RNbWrJpFSfj07ayc0VQ8V4ubDziaezGS_2Z39PoB3tDjislBJXDClY-oRaaxKbuKc426ydcYFkqThqOif0C-TfNLKAeFdmIYfYrPhhpkR_q8xwXFD-kaWszw-4mwS6rxOuFfa8YByF4_rMEs__thwSSUsC2pjrU2RbLf13DrT1lq1i25fYe-knHv3uUb34jZguo1zw0LV24PZ-hWb_pSzznKhOvr3DfbH_-SDx_CoBbTkQxOBT-CerZ7C_WF7ZP8Mfh6vZVBI7YhuuHjJr6uLemXPp5LUFUGy5cBuMCPny7mfheBqixFDZGVIvZqaQE9OmostZFqRIC04fw4nvU_jbj9uFR1iTbM0iwuttTMsVaUMaqPOF0TG5jx1SvnokJzpXHNtjR-T0CSVjnGPQVwiM808cMpewE5VV_YlEKOkUiVjXNGSGu1Kb6RylRap1dJj2gjY-rcTuqU7R9WNmbhe9rBcoO9QjJOK4DuxiiDZWF40lB93sHkfwmNjIC_PsGXOjz0dfRYTOjj9PvaTdCM42Iqfv5-QYymbsAgO1wElfKbj8Y2sbL2cC194l3hTOIL9Js6u2WIdyHgEeYiWO39t0f3W8w-v_tHuEB70x8OBGByPvr6Gh01TE7bnvYGdxeXSvvV4baEOQh7-AbytMDY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VIKFeWujTpcAeqt4cYXvt9R6rQIAWIlqBiNTDap8iCtgRSaS0v747aycliAOqevNhZ22PZ7zf7M58A_CJFvtcFiqJC6Z0TD0ijVXJTZxz3E22zrhAknTWL44v6ddBPmjzn7AWpuGHWG64oWeE_zU6-Ni4B07O8nifs0EI8zqhrLTj8eS6f4AUA7GDH0sqqYRlodlYK1Mkq1k9j860slSto9bnmDopJ157rml78RguXYW5YZ3qvYTR4g2b9JRRZzZVHf37Afnj_1HBJrxo4Sz50tjfFjyz1SvYOGsP7F_Dz5NFExRSO6IbJl5y_Wtcz-3tUJK6Iki1HLgNbsjtbOJnIbjWor0QWRlSz4cmkJOTpqyFDCsSGgtO3sBl7_Ciexy3_RxiTbM0iwuttTMsVaUMvUadD4eMzXnqlPK2ITnTuebaGj8moUkqHeMegbhEZpp52JS9hbWqrux7IEZJpUrGuKIlNdqVXkjlKi1Sq6VHtBGwxacTuiU7x54bN-J-0MNygbrDVpxUBN2JeQTJUnLcEH48QeZzsI6lgLwbYcKcH3vVPxIDenr1_cJP0o1gd8V8_t4hx0A2YRHsLexJeD_HwxtZ2Xo2ET7sLrFOOIJ3jZndk8UokPEI8mAsT35s0T3v-YsP_yi3BxvnBz1xetL_tg3Pm4wmzM37CGvTu5nd8WBtqnaDF_4B9p0u5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+chronic+hypoxemia+on+peripheral+muscle+function+and+oxidative+stress+in+humans&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=Faucher%2C+Marion&rft.au=Steinberg%2C+Jean+Guillaume&rft.au=Barbier%2C+Dominique&rft.au=Hug%2C+Fran%C3%A7ois&rft.date=2004-03-01&rft.pub=Blackwell+Science+Ltd&rft.issn=1475-0961&rft.eissn=1475-097X&rft.volume=24&rft.issue=2&rft.spage=75&rft.epage=84&rft_id=info:doi/10.1111%2Fj.1475-097X.2004.00533.x&rft.externalDBID=10.1111%252Fj.1475-097X.2004.00533.x&rft.externalDocID=CPF533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon |