Open-system dynamics of entanglement:a key issues review
One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against...
Saved in:
Published in | Reports on progress in physics Vol. 78; no. 4; pp. 42001 - 79 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0034-4885 1361-6633 1361-6633 |
DOI | 10.1088/0034-4885/78/4/042001 |
Cover
Abstract | One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations. In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors. In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information. |
---|---|
AbstractList | One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information. One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information. One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information.One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information. |
Author | Aolita, Leandro Davidovich, Luiz de Melo, Fernando |
Author_xml | – sequence: 1 givenname: Leandro surname: Aolita fullname: Aolita, Leandro organization: Freie Universität Berlin Dahlem Center for Complex Quantum Systems, 14195 Berlin, Germany – sequence: 2 givenname: Fernando surname: de Melo fullname: de Melo, Fernando organization: Centro Brasileiro de Pesquisas Físicas , Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ 22290-180, Brazil – sequence: 3 givenname: Luiz surname: Davidovich fullname: Davidovich, Luiz email: ldavid@if.ufrj.br organization: Instituto de Física, Universidade Federal do Rio de Janeiro , Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25811809$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1PwzAQhi1URD_gJ4AysoT6K44NE6r4kip1gdlykjNySZwQp6D-e1wVOrB0uhue5-703hSNfOsBoUuCbwiWco4x4ymXMpvncs7nmFOMyQmaECZIKgRjIzQ5MGM0DWEdASKpOkNjmsnYYjVBctWBT8M2DNAk1dabxpUhaW0CfjD-vYYmNrcm-YBt4kLYQEh6-HLwfY5OrakDXPzWGXp7fHhdPKfL1dPL4n6ZlpyRIbWFMPEaZTmlppBGKcwEFGA4JQKyQhRWyBxyZa0CTIsKc8UYZDavGMOcsRm63s_t-vYzrh9040IJdW08tJugSS4owSQT8jgqhJIsoyKL6NUvuikaqHTXu8b0W_0XTASyPVD2bQg92ANCsN49QO_C1btwdS411_sHRO_un1e6wQyu9UNvXH3UJnvbtZ1et5vex2iPOD-JMZdF |
CODEN | RPPHAG |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_6_013073 crossref_primary_10_1088_1361_6455_aaa65a crossref_primary_10_1103_PhysRevResearch_2_043042 crossref_primary_10_1007_s13538_015_0367_2 crossref_primary_10_1007_s11128_021_03263_1 crossref_primary_10_1103_PhysRevA_105_012407 crossref_primary_10_1038_s41598_023_30561_8 crossref_primary_10_1103_PhysRevA_107_052419 crossref_primary_10_1088_0031_8949_91_6_063013 crossref_primary_10_1103_PhysRevA_96_032111 crossref_primary_10_1103_PhysRevLett_129_203604 crossref_primary_10_1088_1742_6596_2243_1_012116 crossref_primary_10_1002_prop_202300212 crossref_primary_10_1088_1742_6596_2243_1_012115 crossref_primary_10_1103_PhysRevB_103_085137 crossref_primary_10_1364_JOSAB_449257 crossref_primary_10_1103_PhysRevA_92_022311 crossref_primary_10_1103_PhysRevA_107_012410 crossref_primary_10_1103_PhysRevA_94_022317 crossref_primary_10_1103_PhysRevA_109_012410 crossref_primary_10_1142_S1230161217400066 crossref_primary_10_1007_s11128_018_2168_3 crossref_primary_10_1088_2399_6528_aaa2f1 crossref_primary_10_1103_PhysRevA_111_032418 crossref_primary_10_3390_e26070564 crossref_primary_10_1088_1402_4896_ad5913 crossref_primary_10_1103_PhysRevA_95_052126 crossref_primary_10_1038_s41598_018_32661_2 crossref_primary_10_1038_srep13843 crossref_primary_10_1007_s10958_019_04418_3 crossref_primary_10_1103_PhysRevResearch_4_013178 crossref_primary_10_1088_1402_4896_ac607e crossref_primary_10_1140_epjd_e2015_60223_4 crossref_primary_10_1007_s11128_021_03287_7 crossref_primary_10_3390_app10207150 crossref_primary_10_1007_s11128_021_03309_4 crossref_primary_10_1134_S1063776120110011 crossref_primary_10_1103_PhysRevA_97_012322 crossref_primary_10_1364_OE_23_022330 crossref_primary_10_1038_s41534_020_00339_1 crossref_primary_10_1038_srep17520 crossref_primary_10_1038_srep39110 crossref_primary_10_7498_aps_71_20211881 crossref_primary_10_1007_s11128_016_1296_x crossref_primary_10_1088_1751_8113_48_46_465301 crossref_primary_10_3390_e25010029 crossref_primary_10_1103_PhysRevResearch_1_033174 crossref_primary_10_1088_1361_6455_aa8b40 crossref_primary_10_1142_S0129055X20600089 crossref_primary_10_1142_S021988781850038X crossref_primary_10_1088_1367_2630_17_8_081004 crossref_primary_10_1088_1674_1056_ab3e67 crossref_primary_10_1002_qute_202300146 crossref_primary_10_3390_math10030294 crossref_primary_10_1140_epjp_i2017_11364_5 crossref_primary_10_1088_1367_2630_aad8df crossref_primary_10_1103_PhysRevA_109_032228 crossref_primary_10_1038_s41534_020_0271_7 crossref_primary_10_1103_PhysRevA_107_052409 crossref_primary_10_1103_PhysRevA_110_012429 crossref_primary_10_1007_s11128_019_2487_z crossref_primary_10_1103_PhysRevB_98_155202 crossref_primary_10_4204_EPTCS_315_11 crossref_primary_10_1140_epjst_e2019_800042_9 crossref_primary_10_1007_s13538_016_0460_1 crossref_primary_10_1088_1367_2630_aacb9f crossref_primary_10_1142_S0219749922500265 crossref_primary_10_1002_andp_202100584 crossref_primary_10_1103_PhysRevA_96_062325 crossref_primary_10_1364_AOP_399081 crossref_primary_10_1007_s11128_018_1909_7 crossref_primary_10_1038_s41598_019_39140_2 crossref_primary_10_1103_PhysRevA_104_042411 crossref_primary_10_1080_09500340_2019_1614237 crossref_primary_10_1209_0295_5075_112_10002 crossref_primary_10_1103_PhysRevA_109_022414 crossref_primary_10_1088_1361_6455_aaa2cf crossref_primary_10_1103_PhysRevD_92_125026 crossref_primary_10_1002_qute_202300150 crossref_primary_10_1007_s11128_016_1290_3 crossref_primary_10_1103_PhysRevA_92_062114 crossref_primary_10_1103_PhysRevA_106_022417 crossref_primary_10_1103_PhysRevB_108_174310 crossref_primary_10_1007_s11128_015_1075_0 crossref_primary_10_3390_e24111532 crossref_primary_10_1103_PhysRevA_101_052107 crossref_primary_10_1103_PhysRevResearch_2_043232 crossref_primary_10_1103_PhysRevA_110_012456 crossref_primary_10_1140_epjd_e2019_90588_y crossref_primary_10_1016_j_aop_2020_168073 crossref_primary_10_1007_s10955_019_02289_1 crossref_primary_10_1142_S0217732323500566 crossref_primary_10_3390_e21100917 crossref_primary_10_1038_s41598_019_55548_2 crossref_primary_10_1007_s10946_014_9451_2 crossref_primary_10_1007_s11128_015_1169_8 crossref_primary_10_1016_j_physa_2022_127035 crossref_primary_10_1016_j_aej_2024_02_050 crossref_primary_10_1103_PhysRevA_102_012221 crossref_primary_10_3390_e22020191 crossref_primary_10_1142_S021974991750006X crossref_primary_10_1007_s10773_017_3526_0 crossref_primary_10_15407_mag16_03_228 crossref_primary_10_1103_PhysRevA_98_022329 crossref_primary_10_1007_s11128_019_2302_x crossref_primary_10_1103_PhysRevB_95_245433 crossref_primary_10_1088_1367_2630_ab54ac crossref_primary_10_1103_PhysRevLett_120_150402 crossref_primary_10_3390_e21010059 crossref_primary_10_1103_PhysRevLett_133_190403 crossref_primary_10_1364_OE_417294 crossref_primary_10_1103_PhysRevB_91_155310 crossref_primary_10_1134_S0030400X18050077 crossref_primary_10_1007_s11128_017_1704_x crossref_primary_10_1007_s13538_015_0350_y crossref_primary_10_1103_PhysRevA_100_022334 crossref_primary_10_3390_e23060708 crossref_primary_10_1103_PhysRevA_93_022313 crossref_primary_10_1088_1674_1056_24_12_120303 crossref_primary_10_1103_PhysRevA_95_012336 crossref_primary_10_1140_epjd_e2019_90586_1 crossref_primary_10_1016_j_physrep_2015_12_002 crossref_primary_10_1140_epjd_e2019_100251_0 crossref_primary_10_1088_1572_9494_ab6182 crossref_primary_10_1103_PhysRevA_111_012407 crossref_primary_10_1088_1402_4896_abfb63 crossref_primary_10_1016_j_physb_2017_02_011 crossref_primary_10_1364_JOSAB_36_001858 crossref_primary_10_1016_j_ijleo_2019_164088 crossref_primary_10_1088_1402_4896_ac8775 crossref_primary_10_1016_j_physrep_2016_06_008 crossref_primary_10_1103_PhysRevApplied_20_044014 crossref_primary_10_1007_s11128_016_1277_0 crossref_primary_10_1088_0256_307X_32_6_060302 crossref_primary_10_1007_s13538_021_00878_8 crossref_primary_10_1103_PhysRevA_94_012345 crossref_primary_10_1103_PhysRevE_91_062123 crossref_primary_10_1088_1361_6455_aa62ef crossref_primary_10_3390_e24121774 crossref_primary_10_1007_s11128_022_03563_0 crossref_primary_10_1103_PhysRevA_102_042602 crossref_primary_10_1140_epjp_s13360_021_01493_x crossref_primary_10_1088_1742_5468_ad5c5b crossref_primary_10_1016_j_rinp_2019_102614 crossref_primary_10_1103_PhysRevA_100_022318 crossref_primary_10_1103_PhysRevLett_122_140502 crossref_primary_10_1088_1361_648X_aa7648 crossref_primary_10_1088_1402_4896_ac74ef crossref_primary_10_1103_PhysRevResearch_5_043295 crossref_primary_10_1103_PhysRevA_104_052408 crossref_primary_10_1007_s11128_024_04407_9 crossref_primary_10_1016_j_physa_2021_126017 crossref_primary_10_1103_PhysRevA_96_033845 crossref_primary_10_1103_PhysRevA_97_022302 crossref_primary_10_1103_PhysRevX_10_031010 crossref_primary_10_1103_PhysRevB_102_184306 crossref_primary_10_1103_PhysRevB_98_014416 crossref_primary_10_1103_PhysRevResearch_3_043060 crossref_primary_10_1140_epjp_i2017_11439_3 crossref_primary_10_1103_PhysRevA_96_042338 crossref_primary_10_1103_PhysRevA_108_012620 crossref_primary_10_1103_PhysRevA_97_010301 crossref_primary_10_1103_PhysRevA_94_052335 crossref_primary_10_1088_1612_202X_abfa8c crossref_primary_10_1103_PhysRevA_109_052606 crossref_primary_10_1103_PhysRevA_98_052344 crossref_primary_10_1103_PhysRevA_104_052201 crossref_primary_10_1103_PhysRevLett_124_180503 crossref_primary_10_3390_e23111409 crossref_primary_10_1016_j_physa_2016_06_128 crossref_primary_10_1038_s41598_018_25781_2 crossref_primary_10_1007_s11128_020_02629_1 crossref_primary_10_22331_q_2020_10_22_347 crossref_primary_10_1088_1612_2011_13_12_125204 crossref_primary_10_1103_PhysRevA_92_042322 crossref_primary_10_1103_PhysRevA_106_062431 crossref_primary_10_1088_2058_9565_ad4c91 crossref_primary_10_1088_1751_8121_ad4caa crossref_primary_10_1140_epjp_s13360_022_02610_0 crossref_primary_10_1142_S0217979216501873 crossref_primary_10_1103_PhysRevA_102_062429 crossref_primary_10_1103_PhysRevA_94_012109 crossref_primary_10_1364_JOSAB_489223 crossref_primary_10_1007_s11128_022_03439_3 crossref_primary_10_1103_PhysRevA_106_022205 crossref_primary_10_1142_S0219749916500313 crossref_primary_10_1088_2058_9565_ad1693 crossref_primary_10_1103_PhysRevA_96_062124 crossref_primary_10_1007_s13538_019_00721_1 crossref_primary_10_1103_PhysRevD_107_016005 crossref_primary_10_1103_PhysRevA_97_012306 crossref_primary_10_1142_S1230161221500207 crossref_primary_10_1007_s10773_019_04235_z crossref_primary_10_1140_epjp_s13360_021_01117_4 crossref_primary_10_1007_s11128_017_1580_4 crossref_primary_10_1142_S1230161222500019 crossref_primary_10_1038_s41598_022_22732_w crossref_primary_10_1103_PhysRevA_92_032310 crossref_primary_10_1016_j_optcom_2020_126671 crossref_primary_10_1103_PhysRevB_109_L180408 crossref_primary_10_1140_epjp_i2016_16380_3 crossref_primary_10_1016_j_aop_2017_02_001 crossref_primary_10_1016_j_physa_2016_04_004 crossref_primary_10_1103_PhysRevResearch_4_043078 crossref_primary_10_1103_PhysRevA_92_032311 crossref_primary_10_1088_1367_2630_ad18ec crossref_primary_10_1140_epjc_s10052_023_11939_4 crossref_primary_10_1103_PhysRevA_92_032319 crossref_primary_10_1142_S0217984919502543 crossref_primary_10_1016_j_physleta_2019_03_022 crossref_primary_10_1016_j_aop_2017_07_012 crossref_primary_10_1088_1751_8121_acb29d crossref_primary_10_1103_PhysRevResearch_2_043062 crossref_primary_10_1142_S0219749917500472 crossref_primary_10_1140_epjd_e2016_60592_0 crossref_primary_10_1038_s41534_024_00883_0 crossref_primary_10_1007_s11128_015_1044_7 crossref_primary_10_1103_PhysRevA_97_022331 crossref_primary_10_1103_PhysRevLett_123_180503 crossref_primary_10_1209_0295_5075_127_20009 crossref_primary_10_1016_j_aop_2016_12_007 crossref_primary_10_1140_epjd_e2016_70680_8 crossref_primary_10_3390_e25010067 crossref_primary_10_1088_0256_307X_40_6_060302 crossref_primary_10_1088_1555_6611_aa6f6d crossref_primary_10_1103_PhysRevB_108_104310 crossref_primary_10_1103_PhysRevLett_115_200502 crossref_primary_10_1103_PhysRevB_108_094114 crossref_primary_10_1088_1367_2630_aa7e06 crossref_primary_10_1109_ACCESS_2023_3271628 crossref_primary_10_1103_PhysRevB_110_075432 crossref_primary_10_1103_PhysRevA_98_052134 crossref_primary_10_1088_1402_4896_abd0bc crossref_primary_10_1103_PhysRevA_103_052209 crossref_primary_10_1103_PhysRevA_98_052133 crossref_primary_10_1142_S0217732319501025 crossref_primary_10_1088_1367_2630_ac8f67 crossref_primary_10_1103_PhysRevA_105_032426 crossref_primary_10_1142_S0219749917500228 crossref_primary_10_1364_JOSAB_379261 crossref_primary_10_1103_PhysRevA_94_012309 crossref_primary_10_1007_s10773_020_04502_4 crossref_primary_10_1007_s11128_019_2443_y crossref_primary_10_1088_1361_648X_ac0bea crossref_primary_10_1142_S0219749921500234 crossref_primary_10_1007_s11128_020_02889_x crossref_primary_10_1103_PhysRevA_107_022427 crossref_primary_10_3390_e19070331 |
Cites_doi | 10.1103/PhysRevLett.91.070402 10.1038/nature12801 10.1103/PhysRevLett.98.140505 10.1103/PhysRevA.71.012318 10.1103/PhysRevA.78.042308 10.1103/PhysRevA.70.032326 10.1103/PhysRevA.79.022108 10.1103/PhysRevA.76.044101 10.1038/nature04251 10.1103/PhysRevA.88.062328 10.1103/PhysRevLett.95.210502 10.1016/S0375-9601(01)00142-6 10.1038/nphys2275 10.1103/PhysRevLett.99.180504 10.1103/PhysRevA.69.052105 10.1103/PhysRevA.59.4206 10.1103/PhysRevA.61.062313 10.1007/BF01449770 10.1103/PhysRevLett.106.130506 10.1088/1367-2630/10/9/095020 10.1103/PhysRevA.86.050302 10.1038/nphoton.2010.39 10.1103/PhysRevA.61.062312 10.1103/PhysRevA.73.062306 10.1103/PhysRevA.40.4277 10.1038/nature03347 10.1103/PhysRevA.60.2700 10.1103/PhysRevA.84.022324 10.1088/0034-4885/61/2/002 10.1063/1.1495917 10.1103/PhysRevA.78.060301 10.1103/PhysRevLett.112.150801 10.1007/BF01491891 10.1038/nphys1073 10.1103/RevModPhys.86.419 10.1103/PhysRevA.76.042127 10.1017/S0305004100013554 10.1088/1367-2630/9/7/237 10.1103/PhysRevLett.82.2417 10.1088/0305-4470/39/8/010 10.1103/PhysRevLett.24.549 10.1103/PhysRevLett.106.190502 10.1103/PhysRevLett.104.190401 10.1103/PhysRevLett.95.240407 10.1007/BF01645779 10.1103/PhysRevA.79.022303 10.1103/PhysRevLett.112.160501 10.1038/nature01974 10.1103/PhysRevA.85.012314 10.1103/PhysRevLett.94.060501 10.1103/PhysRevLett.103.240502 10.1103/PhysRevA.56.4452 10.1126/science.1139892 10.1103/PhysRevA.78.060302 10.1103/PhysRevLett.111.207202 10.1088/0305-4470/34/35/310 10.1007/s13538-011-0037-y 10.1088/1367-2630/9/7/230 10.1126/science.288.5467.824 10.1103/PhysRevLett.95.230502 10.1103/PhysRevA.77.012117 10.1103/PhysRevA.70.010301 10.1038/nphys1224 10.1038/nature02643 10.1007/s11128-009-0139-4 10.1103/PhysRevA.77.042305 10.1016/S0375-9601(00)00401-1 10.1103/PhysRevLett.86.2681 10.1103/PhysRevLett.85.2625 10.1103/PhysRevA.59.1829 10.1038/nature02377 10.1007/978-3-662-05328-7 10.26421/QIC3.6-5 10.1103/PhysRevLett.100.200407 10.1103/PhysRevLett.97.050401 10.1016/j.aop.2014.07.021 10.1103/PhysRevA.78.012335 10.1038/nature08363 10.1103/PhysRevLett.101.080503 10.1103/PhysRevA.47.R747 10.1103/PhysRevA.83.022311 10.26421/QIC6.2-3 10.1038/nature13403 10.1103/RevModPhys.81.865 10.1145/780543.780545 10.1103/PhysRevLett.104.123601 10.1103/PhysRevLett.80.1121 10.1126/science.1211914 10.1140/epjd/e2009-00224-4 10.1038/nphys2251 10.1038/nature07125 10.1103/PhysRevA.71.042336 10.1103/PhysRevLett.103.020503 10.1103/PhysRevLett.102.160501 10.1103/PhysRevA.64.042315 10.1103/PhysRevA.80.042327 10.1103/PhysRevA.57.822 10.1007/BF01507634 10.1103/PhysRevD.45.2843 10.1515/9781400854554 10.1103/PhysRev.130.2529 10.1103/PhysRevA.78.022322 10.1103/PhysRevLett.92.087902 10.1103/PhysRevLett.28.938 10.1038/nphys885 10.1126/science.273.5278.1073 10.1103/PhysRevA.62.022311 10.1103/PhysRevLett.92.180403 10.1103/PhysRevA.78.062321 10.1103/PhysRevLett.86.4988 10.1038/nature09008 10.1103/PhysRevLett.111.120401 10.1088/1367-2630/9/9/322 10.1103/PhysRevLett.106.110402 10.1109/PROC.1963.1664 10.1103/PhysRevLett.49.91 10.1103/PhysRevLett.99.120503 10.1103/RevModPhys.74.145 10.1103/PhysRevA.86.012108 10.1103/PhysRevLett.95.240406 10.1016/S0375-9601(99)00099-7 10.1103/PhysRevA.65.032314 10.1103/PhysRevA.77.054301 10.1103/PhysRevLett.108.100401 10.1038/nature04627 10.1103/PhysRevLett.69.2881 10.1103/PhysRevLett.93.230501 10.1103/PhysRevA.59.141 10.1103/PhysRevA.65.042302 10.1103/PhysRevLett.103.040404 10.1103/PhysRevA.78.020304 10.1016/j.physrep.2005.04.006 10.1103/PhysRevA.81.012105 10.1038/nature06184 10.1088/0953-8984/14/15/201 10.1103/PhysRevA.62.062314 10.26421/QIC7.5-6-3 10.1103/PhysRevA.64.022303 10.1103/PhysRevLett.80.2245 10.1103/PhysRevLett.90.167901 10.1007/s11128-005-5664-1 10.1103/PhysRevA.78.032112 10.1103/PhysRevA.72.042339 10.1002/prop.201200079 10.1103/PhysRevA.74.052105 10.1103/PhysRevA.71.060308 10.1103/PhysRevLett.109.190404 10.1088/1367-2630/7/1/229 10.1017/CBO9780511813993 10.1103/RevModPhys.75.715 10.1016/0375-9601(95)00214-N 10.1137/S0097539795293172 10.1016/0375-9601(91)90805-I 10.1103/PhysRevA.85.062327 10.1016/j.optcom.2006.01.061 10.1103/PhysRevA.68.042307 10.1103/PhysRevLett.100.080502 10.1038/nphoton.2008.130 10.1038/nphys507 10.1038/nature04279 10.1142/S0219749903000371 10.1103/PhysRevLett.91.130401 10.1038/ncomms3654 10.1088/1367-2630/12/5/053002 10.1103/PhysRevA.88.042305 10.1103/PhysRevA.85.052329 10.1103/PhysRevLett.65.1838 10.1126/science.1097522 10.1103/PhysRevLett.92.220402 10.1126/science.1057357 10.1080/09500340008244050 10.1126/science.1221856 10.1080/0950034021000011536 10.1103/PhysRevA.71.032349 10.1016/S0034-4877(07)00003-1 10.1038/nature05231 10.1103/PhysRevA.78.012334 10.1103/PhysRevA.74.052304 10.1038/nature12802 10.1103/PhysRevLett.95.010503 10.1103/physrevlett.112.155304 10.1088/0953-4075/39/15/S09 10.1103/PhysRevLett.93.140402 10.1103/PhysRevA.79.032322 10.1080/09500340008244048 10.1007/3-540-44874-8_8 10.1038/nphoton.2011.35 10.1038/ncomms1556 10.1103/PhysRevA.79.052304 10.1103/PhysRevA.50.R895 10.1103/PhysRevA.76.022312 10.1038/nphys1781 10.1080/09500349908231260 10.1103/PhysRevLett.97.050501 10.1103/PhysRevLett.107.210404 10.1103/PhysRevLett.105.130501 10.26421/QIC7.8-1 10.1016/j.physrep.2009.02.004 10.1103/PhysRevX.3.031015 10.1038/nature03064 10.1088/0305-4470/39/11/009 10.1007/BF02650179 10.1038/nature07121 10.1073/pnas.0908329106 10.1038/nature02961 10.1103/PhysRevLett.103.200503 10.1103/PhysRevLett.99.250405 10.1103/PhysRevA.78.042103 10.1016/j.aop.2013.03.003 10.1103/physrevlett.112.160401 10.1364/JOSAB.24.000275 10.1103/PhysRevLett.111.093603 10.1038/nature09568 10.1017/CBO9780511535048 10.1006/aphy.2001.6201 10.1103/PhysRevLett.84.2726 10.1063/1.1497700 10.1103/RevModPhys.76.1267 10.1103/PhysRevA.81.052330 10.1103/PhysRev.93.99 10.1103/PhysRevLett.105.190504 10.1007/s00220-003-0981-7 10.1103/PhysRevLett.100.220401 10.1063/1.881360 10.1038/nature07127 10.1103/PhysRevA.65.040101 10.1103/PhysRevA.62.052310 10.1103/PhysRevLett.79.3865 10.1103/PhysRevLett.113.040503 10.1103/PhysRevLett.95.260502 10.1103/PhysRevLett.70.1244 10.1038/nature05244 10.1103/PhysRevA.79.032102 10.1142/S0217979213450537 10.1103/PhysRevLett.87.040401 10.1103/PhysRevA.57.1619 10.1103/PhysRevB.77.205419 10.1103/PhysRevLett.111.130406 10.1103/PhysRevLett.93.140404 10.1103/PhysRevA.85.032318 10.1103/physreva.68.052101 10.1007/BF01336768 10.1103/RevModPhys.82.277 10.1103/PhysRevLett.105.193602 10.1103/PhysRevLett.77.1413 10.1126/science.1227193 10.1007/BF00669912 10.1103/PhysRevA.58.2733 10.1088/1367-2630/9/4/106 10.26421/QIC4.5-6 10.1126/science.1142654 10.1038/ncomms3432 10.1103/PhysRevLett.100.190403 10.1103/PhysRevLett.98.077602 10.1103/PhysRevA.66.062305 10.1103/PhysRevLett.106.230501 10.1038/nature13461 10.1103/PhysRevLett.110.130406 10.1038/nature06670 10.1103/PhysRevA.61.042314 10.1103/PhysRevA.68.062306 10.1103/PhysRevA.75.062336 10.1103/PhysRevA.75.062324 10.1088/1367-2630/8/8/147 10.1103/PhysRevA.58.883 10.1038/35057215 10.1088/0034-4885/70/8/R03 10.1126/science.1178683 10.1103/PhysRevLett.83.3562 10.1103/PhysRevA.71.012319 10.1103/PhysRevA.63.032306 10.1070/RM1998v053n06ABEH000091 10.1103/PhysRevLett.100.080501 10.1103/PhysRevLett.70.548 10.1103/PhysRevA.58.826 10.1103/PhysRevA.75.062307 10.1038/nphoton.2009.93 10.1103/PhysRevLett.73.1923 10.1103/PhysRevLett.82.5385 10.1038/nature05346 10.1103/PhysRevLett.103.030502 10.1103/PhysRevA.82.052308 10.1038/ncomms5502 10.1103/RevModPhys.80.517 10.1103/PhysRevA.87.012328 10.1103/PhysRevA.54.3824 10.1007/s00220-006-1535-6 10.1080/09500340308234554 10.1038/nature08171 10.1103/PhysRevLett.87.167904 10.1088/1464-4266/4/6/313 10.1103/PhysRevA.69.062311 10.1103/PhysRevLett.103.110502 10.1103/PhysRevLett.78.5022 10.1103/PhysRevE.77.011112 10.1103/PhysRevLett.105.150401 10.1038/ncomms1951 10.1007/3-540-33133-6_6 10.1038/nature02570 10.1103/PhysRevLett.86.3658 10.1142/S0129055X03001709 10.1103/PhysRevA.71.032350 10.1103/PhysRevA.77.032345 10.1038/nature07288 10.1103/physrevlett.113.060503 10.1103/PhysRevLett.106.090501 10.1016/j.physleta.2003.09.044 10.1103/PhysRevA.79.042302 10.1103/PhysRevLett.78.2275 10.1080/09500340110105975 10.1088/0305-4470/34/47/329 10.1103/PhysRevA.77.030301 10.1038/35106500 10.1049/iet-cta.2009.0508 10.1103/PhysRevA.81.032310 10.1103/PhysRevA.82.032327 10.1103/PhysRevLett.112.150802 10.1038/nphys1958 10.1016/S0375-9601(99)00609-X 10.1103/PhysRevLett.89.277901 10.1103/PhysRevLett.84.2722 10.1103/PhysRevLett.81.5039 10.1007/BF01608499 10.1103/PhysRevLett.91.227901 10.1103/PhysRevD.35.3066 10.1088/1751-8113/43/24/245303 10.1103/PhysRevA.47.5138 10.1038/ncomms3027 10.1016/0370-1573(82)90102-8 10.1103/PhysRevA.77.032342 10.1103/PhysRevLett.77.4887 10.1103/PhysRevA.65.052327 10.1119/1.16243 10.1088/1367-2630/10/5/053026 10.1103/PhysRev.47.777 10.1088/1367-2630/11/7/073051 10.1007/BF00417500 10.1103/PhysRevA.74.024304 10.1038/nphys2253 10.1126/science.1172260 10.1016/0375-9601(92)90949-M 10.1103/PhysRevLett.91.107903 10.1007/3-540-45338-5_8 10.1103/PhysicsPhysiqueFizika.1.195 10.1103/PhysRevA.82.052323 10.1103/PhysRevLett.67.661 10.1103/PhysRevLett.78.2547 10.1103/PhysRevA.75.062119 10.1038/nphys2252 10.1007/3-540-12732-1 10.1103/PhysRevLett.100.150404 10.1103/PhysRevA.54.R4649 10.1103/PhysRev.131.2766 10.1126/science.1167343 10.1126/science.1097576 10.1103/PhysRevA.82.032112 10.1103/PhysRevLett.104.210501 10.1103/PhysRevLett.105.210502 10.1103/PhysRevA.81.062318 10.1038/nature12012 10.1103/PhysRevLett.97.120405 10.1088/0305-4470/37/15/L04 10.1038/37539 10.1103/PhysRevLett.81.3108 10.1103/PhysRevLett.23.880 10.1103/PhysRevA.74.052316 10.1103/PhysRevLett.80.5239 10.1103/PhysRevLett.98.063604 10.1038/nphys1157 10.1038/nphys2259 10.1103/PhysRevLett.99.240405 10.1103/PhysRevLett.83.3103 10.1126/science.1171544 10.1038/35002001 10.1103/PhysRevA.75.052337 10.1088/1367-2630/11/10/103016 10.1103/PhysRevLett.105.250403 10.1103/PhysRevB.90.054304 10.1016/S0375-9601(96)00706-2 10.1126/science.290.5491.498 10.1103/PhysRevA.77.032302 10.1103/PhysRevA.74.032318 10.1103/PhysRevLett.90.107901 10.1103/PhysRevA.71.062313 10.1038/nphys2178 10.1038/nphys1603 10.1103/PhysRevA.69.022318 10.1016/0375-9601(92)90711-T 10.1088/0953-4075/41/23/235503 10.1103/PhysRevLett.98.240401 10.1103/PhysRevLett.106.180504 10.1103/RevModPhys.80.885 10.1103/PhysRevA.63.022116 10.1038/35005011 10.1103/PhysRevA.63.012307 10.1103/PhysRevLett.74.4101 10.1088/1751-8113/40/28/S01 10.1103/PhysRevLett.95.240405 10.1103/PhysRevLett.77.4281 10.1103/PhysRevA.76.010301 10.1103/PhysRevLett.71.2360 10.1126/science.1143835 10.1103/PhysRevLett.86.5188 10.1103/PhysRevA.78.012357 10.1103/PhysRevLett.98.230501 10.1103/PhysRevA.78.042307 10.1103/PhysRevLett.76.4656 10.1016/j.aop.2012.02.002 10.1006/aphy.1996.0040 10.1103/PhysRevA.86.020301 10.1103/PhysRevA.73.010304 10.1103/PhysRevLett.77.198 10.1038/nature10770 10.1038/35051038 10.1103/PhysRevLett.81.3563 10.1103/PhysRevLett.77.4728 10.1016/0034-4877(72)90011-0 10.1007/978-3-540-47620-7 10.1103/PhysRevLett.100.160502 10.1038/nphoton.2010.222 10.1038/35096524 10.1103/PhysRevA.65.012308 10.1103/PhysRevLett.103.020504 10.1088/2040-8978/13/6/064001 10.1038/nature09801 10.1038/nphoton.2011.354 10.1038/nature09662 10.1103/PhysRevA.53.1295 10.1038/nature05101 10.1088/0305-4470/34/35/314 10.1038/415039a 10.1103/PhysRevLett.49.1804 10.1088/1367-2630/14/10/105001 10.1038/35000514 10.1038/ncomms3851 10.1016/S0375-9601(00)00157-2 10.1103/PhysRevB.87.081305 10.1103/PhysRevLett.82.1345 10.1103/PhysRevA.67.012307 10.1007/s10955-006-9143-6 10.1038/nphys1372 10.1103/PhysRevA.72.022312 10.1103/PhysRevLett.98.100501 10.1007/978-3-662-04209-0 10.1103/PhysRevLett.99.160502 10.1103/PhysRevA.62.032307 10.1103/PhysRevLett.104.100502 10.1016/0034-4877(76)90038-0 10.1103/PhysRevA.31.1059 10.1103/PhysRevB.71.153105 10.1103/RevModPhys.84.621 10.1103/PhysRevA.72.042318 10.1063/1.1494474 10.1103/PhysRevLett.100.253601 10.1103/PhysRevLett.89.067901 10.1103/PhysRevA.65.042107 10.1103/PhysRevA.73.040305 10.1103/PhysRevA.84.052319 10.26421/QIC3.3-1 10.1017/S0305004100019137 10.1103/PhysRevLett.96.170502 10.1103/PhysRevA.78.022308 10.1038/nphys961 10.1103/PhysRev.140.A1051 10.1103/PhysRevA.62.022302 10.1103/PhysRevA.60.3496 10.1103/PhysRevA.76.052303 10.26421/QIC7.1-2-1 10.1088/1751-8113/43/27/275306 10.1103/PhysRevA.82.032317 10.1038/nature05273 10.1103/PhysRevLett.109.150403 10.1007/s00340-005-1917-z 10.26421/QIC7.4-5 10.1109/TIT.2013.2257936 10.1038/35005001 10.1103/PhysRevA.65.012101 10.1126/science.288.5473.2024 10.1088/0953-4075/40/9/S02 10.1126/science.1104149 10.1103/PhysRevA.77.062322 10.1103/PhysRevA.83.052104 10.1209/0295-5075/88/20011 10.1038/nphys2682 10.1103/PhysRevLett.112.080801 10.1088/1751-8113/46/8/085301 10.1038/nphys1342 10.1038/ncomms1193 10.1103/PhysRevLett.78.2031 10.1103/PhysRevLett.105.020501 10.1088/1367-2630/16/11/113028 10.1016/S0375-9601(97)00416-7 10.1103/PhysRevLett.103.160401 10.1103/PhysRevLett.101.170502 10.1088/1464-4266/6/3/015 10.1103/PhysRevA.75.012305 10.1038/35059017 10.1006/aphy.2002.6268 10.1103/PhysRevA.79.022112 10.1088/1367-2630/12/2/025011 10.1103/PhysRevLett.97.140403 10.1103/PhysRevLett.108.180502 10.1103/PhysRevLett.102.170503 10.1103/PhysRevA.73.062105 10.1103/PhysRevA.73.030303 10.1063/1.522979 10.1063/1.3637628 10.1038/nature01888 10.1103/PhysRevLett.70.1895 10.1038/nphys2681 10.1103/PhysRevA.70.012109 10.1103/PhysRevLett.97.170408 10.1038/nphys2300 10.1103/PhysRevA.81.043802 |
ContentType | Journal Article |
Copyright | 2015 IOP Publishing Ltd |
Copyright_xml | – notice: 2015 IOP Publishing Ltd |
DBID | AAYXX CITATION NPM 7X8 7U5 8FD H8D L7M |
DOI | 10.1088/0034-4885/78/4/042001 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Open-system dynamics of entanglement:a key issues review |
EISSN | 1361-6633 |
EndPage | 79 |
ExternalDocumentID | 25811809 10_1088_0034_4885_78_4_042001 rop260029 |
Genre | Journal Article |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ACAFW ACBEA ACGFO ACGFS ACHIP ACNCT ADIYS AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RKQ RNS RO9 ROL RPA SY9 TN5 UCJ W28 WH7 XPP ZMT ~02 AAYXX ADEQX CITATION 02O 1WK 29P 5ZI 9BW AAGCF ABEFU ABTAH ACARI ACKIV ACWPO AERVB AFFNX AHSEE ARNYC BBWZM FEDTE HVGLF JCGBZ MVM NPM OHT Q02 S3P T37 VO1 XOL ZCG ZY4 7X8 AEINN 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c431t-fb6a6639f422ab8a99036ebea4216e5b6bf687e79ff9e02bd04933e5f7d330433 |
IEDL.DBID | IOP |
ISSN | 0034-4885 1361-6633 |
IngestDate | Fri Sep 05 07:39:58 EDT 2025 Tue Aug 05 10:12:52 EDT 2025 Thu Apr 03 07:00:27 EDT 2025 Tue Jul 01 02:52:54 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Wed Aug 21 03:33:13 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-fb6a6639f422ab8a99036ebea4216e5b6bf687e79ff9e02bd04933e5f7d330433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/0034-4885/78/4/042001/pdf |
PMID | 25811809 |
PQID | 1669835265 |
PQPubID | 23479 |
PageCount | 79 |
ParticipantIDs | crossref_primary_10_1088_0034_4885_78_4_042001 proquest_miscellaneous_1669835265 pubmed_primary_25811809 proquest_miscellaneous_1762101568 iop_journals_10_1088_0034_4885_78_4_042001 crossref_citationtrail_10_1088_0034_4885_78_4_042001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Reports on progress in physics |
PublicationTitleAbbrev | RoPP |
PublicationTitleAlternate | Rep. Prog. Phys |
PublicationYear | 2015 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Pineda C (129) 2001; 9 Ali M (436) 2014; 47 Hartmann L (451) 2007; 9 Gühne O (225) 2005; 7 Born M (15) 2005 1 2 3 4 7 8 9 Flammia S T (375) 2014; 14 Das S (414) 2009; 42 Carvalho A R R (446) 2011; 13 Drumond R C (150) 2009; 42 Abdel-Aty M (144) 2008; 41 Benatti F (417) 2009; 88 Hayden P M (297) 2001; 34 Davies E B (403) 1976 Breuer H P (222) 2002 Cavalcanti D (157) 2010; 12 Aaronson S (44) 2011 Scully M O (244) 1997 Schlosshauer M A (84) 2007 Yu T (469) 500 501 502 504 505 506 507 508 509 Brennen G K (305) 2003; 3 Moravčiková L (158) 2010; 43 510 Farías O J (543) 2014 512 Prauzner-Bechcicki J S (424) 2004; 37 513 514 515 Adesso G (242) 2007; 40 518 519 520 400 521 401 522 523 524 525 526 406 527 407 528 408 409 D’Hondt E (476) 2006; 6 Bell J S (6) 2004 Yu T (124) 2007; 7 530 410 531 411 532 412 533 413 534 535 415 536 Wu L-A (162) 2013; 15 416 Chen K (485) 2007; 7 537 538 418 539 419 Yönaç M (125) 2007; 40 Kay A (284) 2006; 8 Carmichael H (405) 1993 420 541 300 421 301 422 302 544 303 545 304 546 426 547 306 427 548 428 308 309 Steane A M (11) 1998; 61 von Neumann J (78) 1932 Leggett A J (90) 2002; 14 Vedral V (317); 57 550 430 551 310 431 552 553 312 433 554 313 434 314 435 556 315 557 316 437 438 559 318 439 319 Marrucci L (540) 2011; 13 Li J (442) 2009; 11 440 320 441 200 321 322 443 202 323 444 203 324 445 204 325 205 326 447 206 327 448 207 328 449 208 329 209 Das S (154) 2009; 42 Patanè D (516) 2007; 9 Eisert J (549) 2010 Preskill J (398) 1998 Dür W (277) 2007; 70 Brandão F G S L (29) 2013 450 330 210 331 452 332 453 212 333 454 213 334 455 214 335 456 215 336 457 216 337 458 217 338 459 Clarisse L (274) 2006 339 219 460 340 461 220 341 462 100 221 342 463 101 343 464 102 223 344 465 103 224 345 466 104 467 105 347 468 227 348 Kaszlikowski D (517) 2008; 10 107 228 349 108 229 109 Choi M-D (236) 1982; 38 Plenio M B (218) 2007; 7 470 350 351 110 231 352 473 111 232 353 474 112 233 354 475 113 234 355 114 235 356 477 115 357 116 237 358 479 117 359 Schachenmayer J (558) 2013; 3 118 239 119 10 12 14 16 17 18 19 Tiersch M (138) 2013; 46 360 481 Greenberger D M (226) 240 482 362 483 363 484 122 243 364 123 365 Tiersch M (471) 2009 486 366 487 246 367 488 126 247 368 489 127 248 369 128 249 20 21 22 23 24 26 27 Benatti F (120) 2006; 39 28 490 370 491 250 371 492 130 251 372 493 131 252 373 494 253 374 495 133 254 496 134 255 376 497 135 256 Aolita L (381) 2014 498 136 257 378 499 137 258 379 259 139 30 Ban M (425) 2006; 39 31 32 33 34 35 36 37 38 39 380 260 140 382 141 262 383 142 263 384 143 264 265 386 145 266 387 146 267 388 147 268 389 148 269 149 40 41 42 43 45 46 47 Ferraro A (241) 2005 48 49 390 An J-H (429) 2009; 42 270 391 271 392 151 272 393 152 273 394 153 395 275 396 155 276 397 156 278 399 279 159 50 51 52 Ozeri R (211) 2013 53 54 55 56 57 58 59 280 160 281 161 Gühne O (261) 2010; 12 282 283 163 164 285 165 286 166 287 167 168 289 169 Ioannou L M (230) 2007; 7 60 61 62 63 64 65 Tana R (106) 2004; 6 66 67 68 69 Mintert F (432) 2010; 43 290 170 291 171 292 172 293 173 294 174 295 175 296 176 177 298 178 299 179 70 Gardiner C W (245) 1999 Colbeck R (25) 2007 71 72 73 74 75 76 Kleckner D (529) 2008; 10 77 79 180 181 182 Kay A (288) 2010; 43 183 Nielsen M A (503) 2000 184 185 186 187 188 189 80 81 82 83 Cirac J I (478) 2001; 34 85 86 87 88 89 190 191 192 193 194 195 196 Paris M G A (423) 2002; 4 197 198 199 91 92 93 94 95 96 97 98 99 Helstrom A S (201) 1976 Yöna M (121) 2006; 39 Chen K (238) 2003; 3 Ledoux M (472) 2001 Moroder T (377) 2012; 14 Bell J S (5) 1964; 1 Rådmark M (361) 2009; 11 Lavoie J (346) 2009; 11 Krenn M (542) 2014; 16 Terra Cunha M O (132) 2007; 9 Nielsen M A (13) 2000 Brun T A (385) 2004; 4 Eisert J (307) 2001 Holevo A S (402) 1999; 53 Verstraete F (311); 34 Cohen-Tannoudji C (404) 1992 Campbell S (511) 2009; 11 Hein M (480) 2006 Kliesch M (555) 2013 |
References_xml | – ident: 412 doi: 10.1103/PhysRevLett.91.070402 – ident: 200 doi: 10.1038/nature12801 – ident: 389 doi: 10.1103/PhysRevLett.98.140505 – ident: 462 doi: 10.1103/PhysRevA.71.012318 – ident: 393 doi: 10.1103/PhysRevA.78.042308 – ident: 313 doi: 10.1103/PhysRevA.70.032326 – ident: 287 doi: 10.1103/PhysRevA.79.022108 – ident: 422 doi: 10.1103/PhysRevA.76.044101 – ident: 55 doi: 10.1038/nature04251 – ident: 164 doi: 10.1103/PhysRevA.88.062328 – ident: 362 doi: 10.1103/PhysRevLett.95.210502 – ident: 254 doi: 10.1016/S0375-9601(01)00142-6 – ident: 39 doi: 10.1038/nphys2275 – ident: 166 doi: 10.1103/PhysRevLett.99.180504 – ident: 104 doi: 10.1103/PhysRevA.69.052105 – ident: 418 doi: 10.1103/PhysRevA.59.4206 – ident: 273 doi: 10.1103/PhysRevA.61.062313 – ident: 223 doi: 10.1007/BF01449770 – ident: 57 doi: 10.1103/PhysRevLett.106.130506 – volume: 10 issn: 1367-2630 year: 2008 ident: 529 publication-title: New J. Phys. doi: 10.1088/1367-2630/10/9/095020 – ident: 465 doi: 10.1103/PhysRevA.86.050302 – year: 2005 ident: 241 publication-title: Bibliopolis, Napoli – ident: 209 doi: 10.1038/nphoton.2010.39 – ident: 272 doi: 10.1103/PhysRevA.61.062312 – ident: 413 doi: 10.1103/PhysRevA.73.062306 – ident: 224 doi: 10.1103/PhysRevA.40.4277 – ident: 60 doi: 10.1038/nature03347 – ident: 438 doi: 10.1103/PhysRevA.60.2700 – ident: 507 doi: 10.1103/PhysRevA.84.022324 – volume: 61 start-page: 117 issn: 0034-4885 year: 1998 ident: 11 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/61/2/002 – ident: 266 doi: 10.1063/1.1495917 – ident: 499 doi: 10.1103/PhysRevA.78.060301 – ident: 215 doi: 10.1103/PhysRevLett.112.150801 – ident: 2 doi: 10.1007/BF01491891 – ident: 194 doi: 10.1038/nphys1073 – ident: 354 doi: 10.1103/RevModPhys.86.419 – ident: 426 doi: 10.1103/PhysRevA.76.042127 – ident: 3 doi: 10.1017/S0305004100013554 – volume: 9 start-page: 237 issn: 1367-2630 year: 2007 ident: 132 publication-title: New J. Phys. doi: 10.1088/1367-2630/9/7/237 – ident: 454 doi: 10.1103/PhysRevLett.82.2417 – volume: 39 start-page: 1927 issn: 0305-4470 year: 2006 ident: 425 publication-title: J. Phys. doi: 10.1088/0305-4470/39/8/010 – ident: 320 doi: 10.1103/PhysRevLett.24.549 – year: 1932 ident: 78 publication-title: Matematische Grundlagen der Quantenmechanic – ident: 264 doi: 10.1103/PhysRevLett.106.190502 – ident: 556 doi: 10.1103/PhysRevLett.104.190401 – ident: 363 doi: 10.1103/PhysRevLett.95.240407 – ident: 551 doi: 10.1007/BF01645779 – ident: 497 doi: 10.1103/PhysRevA.79.022303 – year: 2001 ident: 472 publication-title: The Concentration of Measure Phenomenon – ident: 524 doi: 10.1103/PhysRevLett.112.160501 – ident: 47 doi: 10.1038/nature01974 – ident: 171 doi: 10.1103/PhysRevA.85.012314 – ident: 357 doi: 10.1103/PhysRevLett.94.060501 – ident: 146 doi: 10.1103/PhysRevLett.103.240502 – ident: 291 doi: 10.1103/PhysRevA.56.4452 – ident: 165 doi: 10.1126/science.1139892 – ident: 181 doi: 10.1103/PhysRevA.78.060302 – ident: 557 doi: 10.1103/PhysRevLett.111.207202 – volume: 34 start-page: 6837 issn: 0305-4470 year: 2001 ident: 478 publication-title: J. Phys. doi: 10.1088/0305-4470/34/35/310 – ident: 203 doi: 10.1007/s13538-011-0037-y – volume: 9 start-page: 230 issn: 1367-2630 year: 2007 ident: 451 publication-title: New J. Phys. doi: 10.1088/1367-2630/9/7/230 – ident: 455 doi: 10.1126/science.288.5467.824 – ident: 249 doi: 10.1103/PhysRevLett.95.230502 – ident: 137 doi: 10.1103/PhysRevA.77.012117 – ident: 110 doi: 10.1103/PhysRevA.70.010301 – ident: 300 doi: 10.1038/nphys1224 – ident: 59 doi: 10.1038/nature02643 – ident: 427 doi: 10.1103/PhysRevA.76.042127 – ident: 460 doi: 10.1007/s11128-009-0139-4 – ident: 428 doi: 10.1103/PhysRevA.77.042305 – ident: 252 doi: 10.1016/S0375-9601(00)00401-1 – ident: 294 doi: 10.1103/PhysRevLett.86.2681 – ident: 419 doi: 10.1103/PhysRevLett.85.2625 – ident: 475 doi: 10.1103/PhysRevA.59.1829 – ident: 50 doi: 10.1038/nature02377 – ident: 81 doi: 10.1007/978-3-662-05328-7 – volume: 3 start-page: 619 issn: 1533-7146 year: 2003 ident: 305 publication-title: Quantum Inform. Comput. doi: 10.26421/QIC3.6-5 – ident: 512 doi: 10.1103/PhysRevLett.100.200407 – ident: 554 doi: 10.1103/PhysRevLett.97.050401 – ident: 186 doi: 10.1016/j.aop.2014.07.021 – ident: 285 doi: 10.1103/PhysRevA.78.012335 – ident: 349 doi: 10.1038/nature08363 – ident: 134 doi: 10.1103/PhysRevLett.101.080503 – ident: 351 doi: 10.1103/PhysRevA.47.R747 – volume: 15 issn: 1367-2630 year: 2013 ident: 162 publication-title: New J. Phys. – ident: 447 doi: 10.1103/PhysRevA.83.022311 – year: 2000 ident: 503 publication-title: Quantum Computation and Quantum Information – volume: 6 start-page: 173 issn: 1533-7146 year: 2006 ident: 476 publication-title: Quantum Inform. Comput. doi: 10.26421/QIC6.2-3 – ident: 213 doi: 10.1038/nature13403 – ident: 219 doi: 10.1103/RevModPhys.81.865 – ident: 231 doi: 10.1145/780543.780545 – ident: 373 doi: 10.1103/PhysRevLett.104.123601 – ident: 19 doi: 10.1103/PhysRevLett.80.1121 – ident: 91 doi: 10.1126/science.1211914 – ident: 533 doi: 10.1140/epjd/e2009-00224-4 – ident: 43 doi: 10.1038/nphys2251 – ident: 206 doi: 10.1038/nature07125 – ident: 484 doi: 10.1103/PhysRevA.71.042336 – ident: 64 doi: 10.1103/PhysRevLett.103.020503 – ident: 153 doi: 10.1103/PhysRevLett.102.160501 – ident: 303 doi: 10.1103/PhysRevA.64.042315 – ident: 149 doi: 10.1103/PhysRevA.80.042327 – volume: 42 issn: 1751-8113 year: 2009 ident: 429 publication-title: J. Phys. A: Math. Theor. – ident: 474 doi: 10.1103/PhysRevA.57.822 – ident: 75 doi: 10.1007/BF01507634 – ident: 430 doi: 10.1103/PhysRevD.45.2843 – ident: 79 doi: 10.1515/9781400854554 – ident: 76 doi: 10.1103/PhysRev.130.2529 – ident: 167 doi: 10.1103/PhysRevA.78.022322 – ident: 257 doi: 10.1103/PhysRevLett.92.087902 – ident: 331 doi: 10.1103/PhysRevLett.28.938 – ident: 459 doi: 10.1038/nphys885 – ident: 35 doi: 10.1126/science.273.5278.1073 – ident: 525 doi: 10.1103/PhysRevA.62.022311 – ident: 105 doi: 10.1103/PhysRevLett.92.180403 – ident: 532 doi: 10.1103/PhysRevA.78.062321 – ident: 191 doi: 10.1103/PhysRevLett.86.4988 – ident: 26 doi: 10.1038/nature09008 – ident: 502 doi: 10.1103/PhysRevLett.111.120401 – volume: 9 start-page: 322 issn: 1367-2630 year: 2007 ident: 516 publication-title: New J. Phys. doi: 10.1088/1367-2630/9/9/322 – ident: 433 doi: 10.1103/PhysRevLett.106.110402 – ident: 408 doi: 10.1109/PROC.1963.1664 – ident: 332 doi: 10.1103/PhysRevLett.49.91 – ident: 486 doi: 10.1103/PhysRevLett.99.120503 – ident: 21 doi: 10.1103/RevModPhys.74.145 – ident: 501 doi: 10.1103/PhysRevA.86.012108 – ident: 341 doi: 10.1103/PhysRevLett.95.240406 – ident: 290 doi: 10.1016/S0375-9601(99)00099-7 – ident: 308 doi: 10.1103/PhysRevA.65.032314 – year: 2014 ident: 381 – ident: 133 doi: 10.1103/PhysRevA.77.054301 – ident: 343 doi: 10.1103/PhysRevLett.108.100401 – ident: 388 doi: 10.1038/nature04627 – ident: 8 doi: 10.1103/PhysRevLett.69.2881 – ident: 107 doi: 10.1103/PhysRevLett.93.230501 – ident: 314 doi: 10.1103/PhysRevA.59.141 – ident: 326 doi: 10.1103/PhysRevA.65.042302 – ident: 394 doi: 10.1103/PhysRevLett.103.040404 – ident: 268 doi: 10.1103/PhysRevA.78.020304 – ident: 113 doi: 10.1016/j.physrep.2005.04.006 – ident: 178 doi: 10.1103/PhysRevA.81.012105 – ident: 72 doi: 10.1038/nature06184 – year: 2010 ident: 549 – year: 2013 ident: 555 – volume: 14 start-page: R415 issn: 0953-8984 year: 2002 ident: 90 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/14/15/201 – ident: 229 doi: 10.1103/PhysRevA.62.062314 – volume: 7 start-page: 459 issn: 1533-7146 year: 2007 ident: 124 publication-title: Quantum Inform. Comput. doi: 10.26421/QIC7.5-6-3 – ident: 544 doi: 10.1103/PhysRevA.64.022303 – ident: 302 doi: 10.1103/PhysRevLett.80.2245 – ident: 384 doi: 10.1103/PhysRevLett.90.167901 – ident: 239 doi: 10.1007/s11128-005-5664-1 – ident: 330 doi: 10.1103/PhysRevA.78.032112 – ident: 500 doi: 10.1103/PhysRevA.72.042339 – ident: 548 doi: 10.1002/prop.201200079 – ident: 119 doi: 10.1103/PhysRevA.74.052105 – ident: 115 doi: 10.1103/PhysRevA.71.060308 – ident: 204 doi: 10.1103/PhysRevLett.109.190404 – volume: 7 start-page: 229 issn: 1367-2630 year: 2005 ident: 225 publication-title: New J. Phys. doi: 10.1088/1367-2630/7/1/229 – year: 1997 ident: 244 publication-title: Quantum Optics doi: 10.1017/CBO9780511813993 – ident: 83 doi: 10.1103/RevModPhys.75.715 – ident: 329 doi: 10.1016/0375-9601(95)00214-N – ident: 10 doi: 10.1137/S0097539795293172 – ident: 322 doi: 10.1016/0375-9601(91)90805-I – ident: 260 doi: 10.1103/PhysRevA.85.062327 – ident: 117 doi: 10.1016/j.optcom.2006.01.061 – ident: 318 doi: 10.1103/PhysRevA.68.042307 – ident: 141 doi: 10.1103/PhysRevLett.100.080502 – volume: 38 year: 1982 ident: 236 publication-title: Proc. of Symposia in Pure Mathematics – ident: 523 doi: 10.1038/nphoton.2008.130 – ident: 61 doi: 10.1038/nphys507 – ident: 56 doi: 10.1038/nature04279 – ident: 240 doi: 10.1142/S0219749903000371 – ident: 527 doi: 10.1103/PhysRevLett.91.130401 – ident: 28 doi: 10.1038/ncomms3654 – volume: 12 issn: 1367-2630 year: 2010 ident: 261 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/5/053002 – ident: 504 doi: 10.1103/PhysRevA.88.042305 – ident: 434 doi: 10.1103/PhysRevA.85.052329 – ident: 347 doi: 10.1103/PhysRevLett.65.1838 – ident: 364 doi: 10.1126/science.1097522 – ident: 367 doi: 10.1103/PhysRevLett.92.220402 – volume: 42 issn: 0305-4470 year: 2009 ident: 150 publication-title: J. Phys. – ident: 521 doi: 10.1126/science.1057357 – ident: 498 doi: 10.1080/09500340008244050 – ident: 350 doi: 10.1126/science.1221856 – ident: 208 doi: 10.1080/0950034021000011536 – ident: 248 doi: 10.1103/PhysRevA.71.032349 – ident: 420 doi: 10.1016/S0034-4877(07)00003-1 – ident: 97 doi: 10.1038/nature05231 – ident: 198 doi: 10.1103/PhysRevA.78.012334 – ident: 452 doi: 10.1103/PhysRevA.74.052304 – ident: 199 doi: 10.1038/nature12802 – ident: 22 doi: 10.1103/PhysRevLett.95.010503 – volume: 42 issn: 0953-4075 year: 2009 ident: 414 publication-title: J. Phys. B: At. Mol. Opt. Phys. – ident: 493 doi: 10.1103/physrevlett.112.155304 – volume: 39 start-page: 621 issn: 0953-4075 year: 2006 ident: 121 publication-title: J. Phys. B: Atom. Mol. Opt. Phys. doi: 10.1088/0953-4075/39/15/S09 – ident: 552 doi: 10.1103/PhysRevLett.93.140402 – ident: 187 doi: 10.1103/PhysRevA.79.032322 – ident: 292 doi: 10.1080/09500340008244048 – ident: 102 doi: 10.1007/3-540-44874-8_8 – ident: 33 doi: 10.1038/nphoton.2011.35 – ident: 69 doi: 10.1038/ncomms1556 – ident: 514 doi: 10.1103/PhysRevA.79.052304 – ident: 17 doi: 10.1103/PhysRevA.50.R895 – ident: 127 doi: 10.1103/PhysRevA.76.022312 – ident: 170 doi: 10.1038/nphys1781 – ident: 309 doi: 10.1080/09500349908231260 – ident: 387 doi: 10.1103/PhysRevLett.97.050501 – ident: 379 doi: 10.1103/PhysRevLett.107.210404 – volume: 11 issn: 1367-2630 year: 2009 ident: 511 publication-title: New J. Phys. – ident: 283 doi: 10.1103/PhysRevLett.105.130501 – year: 2013 ident: 211 – volume: 7 start-page: 689 issn: 1533-7146 year: 2007 ident: 485 publication-title: Quantum Inform. Comput. doi: 10.26421/QIC7.8-1 – ident: 220 doi: 10.1016/j.physrep.2009.02.004 – volume: 3 year: 2013 ident: 558 publication-title: Phys. Rev. doi: 10.1103/PhysRevX.3.031015 – ident: 51 doi: 10.1038/nature03064 – volume: 39 start-page: 2689 issn: 0305-4470 year: 2006 ident: 120 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/39/11/009 – ident: 34 doi: 10.1007/BF02650179 – ident: 338 doi: 10.1038/nature07121 – ident: 250 doi: 10.1073/pnas.0908329106 – ident: 48 doi: 10.1038/nature02961 – ident: 531 doi: 10.1103/PhysRevLett.103.200503 – ident: 515 doi: 10.1103/PhysRevLett.99.250405 – ident: 136 doi: 10.1103/PhysRevA.78.042103 – ident: 159 doi: 10.1103/PhysRevLett.106.110402 – year: 1976 ident: 201 publication-title: Quantum Detection and Estimation Theory – ident: 163 doi: 10.1016/j.aop.2013.03.003 – ident: 275 doi: 10.1103/physrevlett.112.160401 – ident: 494 doi: 10.1364/JOSAB.24.000275 – ident: 210 doi: 10.1103/PhysRevLett.111.093603 – ident: 71 doi: 10.1038/nature09568 – ident: 216 doi: 10.1017/CBO9780511535048 – ident: 312 doi: 10.1006/aphy.2001.6201 – ident: 246 doi: 10.1103/PhysRevLett.84.2726 – ident: 304 doi: 10.1063/1.1497700 – ident: 396 doi: 10.1103/RevModPhys.76.1267 – ident: 182 doi: 10.1103/PhysRevA.81.052330 – ident: 416 doi: 10.1103/PhysRev.93.99 – ident: 464 doi: 10.1103/PhysRevLett.105.190504 – ident: 298 doi: 10.1007/s00220-003-0981-7 – ident: 142 doi: 10.1103/PhysRevLett.100.220401 – ident: 228 doi: 10.1063/1.881360 – ident: 519 doi: 10.1038/nature07127 – ident: 175 doi: 10.1103/PhysRevA.65.040101 – ident: 253 doi: 10.1103/PhysRevA.62.052310 – ident: 207 doi: 10.1103/PhysRevLett.79.3865 – ident: 382 doi: 10.1103/PhysRevLett.113.040503 – ident: 386 doi: 10.1103/PhysRevLett.95.260502 – ident: 368 doi: 10.1103/PhysRevLett.70.1244 – ident: 96 doi: 10.1038/nature05244 – ident: 147 doi: 10.1103/PhysRevA.79.032102 – ident: 185 doi: 10.1142/S0217979213450537 – ident: 256 doi: 10.1103/PhysRevLett.87.040401 – volume: 57 start-page: 1619 ident: 317 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.57.1619 – ident: 140 doi: 10.1103/PhysRevB.77.205419 – ident: 353 doi: 10.1103/PhysRevLett.111.130406 – volume: 47 issn: 0953-4075 year: 2014 ident: 436 publication-title: J. Phys. B: At. Mol. Opt. Phys. – ident: 108 doi: 10.1103/PhysRevLett.93.140404 – ident: 183 doi: 10.1103/PhysRevA.85.032318 – ident: 383 doi: 10.1103/physreva.68.052101 – ident: 410 doi: 10.1007/BF01336768 – ident: 221 doi: 10.1103/RevModPhys.82.277 – ident: 457 doi: 10.1103/PhysRevLett.105.193602 – ident: 234 doi: 10.1103/PhysRevLett.77.1413 – ident: 538 doi: 10.1126/science.1227193 – ident: 325 doi: 10.1007/BF00669912 – ident: 453 doi: 10.1103/PhysRevA.58.2733 – volume: 9 start-page: 106 issn: 1367-2630 year: 2001 ident: 129 publication-title: New J. Phys. doi: 10.1088/1367-2630/9/4/106 – volume: 4 start-page: 401 issn: 1533-7146 year: 2004 ident: 385 publication-title: Quantum Inform. Comput. doi: 10.26421/QIC4.5-6 – ident: 123 doi: 10.1126/science.1142654 – ident: 539 doi: 10.1038/ncomms3432 – ident: 372 doi: 10.1103/PhysRevLett.100.190403 – ident: 400 doi: 10.1103/PhysRevLett.98.077602 – ident: 355 doi: 10.1103/PhysRevA.66.062305 – ident: 378 doi: 10.1103/PhysRevLett.106.230501 – ident: 559 doi: 10.1038/nature13461 – ident: 431 doi: 10.1103/PhysRevLett.110.130406 – ident: 52 doi: 10.1038/nature06670 – ident: 276 doi: 10.1103/PhysRevA.61.042314 – ident: 492 doi: 10.1103/PhysRevA.68.062306 – ident: 126 doi: 10.1103/PhysRevA.75.062336 – ident: 130 doi: 10.1103/PhysRevA.75.062324 – volume: 8 start-page: 147 issn: 1367-2630 year: 2006 ident: 284 publication-title: New J. Phys. doi: 10.1088/1367-2630/8/8/147 – ident: 306 doi: 10.1103/PhysRevA.58.883 – ident: 337 doi: 10.1038/35057215 – volume: 70 start-page: 1381 issn: 0034-4885 year: 2007 ident: 277 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/70/8/R03 – ident: 168 doi: 10.1126/science.1178683 – ident: 477 doi: 10.1103/PhysRevLett.83.3562 – ident: 489 doi: 10.1103/PhysRevA.71.012319 – ident: 281 doi: 10.1103/PhysRevA.63.032306 – volume: 53 start-page: 1295 year: 1999 ident: 402 publication-title: Russ. Math. Surv. doi: 10.1070/RM1998v053n06ABEH000091 – year: 2005 ident: 15 publication-title: Politics and Physics in Uncertain Times – ident: 145 doi: 10.1103/PhysRevLett.100.080501 – ident: 437 doi: 10.1103/PhysRevLett.70.548 – ident: 468 doi: 10.1103/PhysRevA.58.826 – ident: 286 doi: 10.1103/PhysRevA.75.062307 – ident: 73 doi: 10.1038/nphoton.2009.93 – ident: 334 doi: 10.1103/PhysRevLett.73.1923 – ident: 280 doi: 10.1103/PhysRevLett.82.5385 – ident: 62 doi: 10.1038/nature05346 – ident: 148 doi: 10.1103/PhysRevLett.103.030502 – year: 2006 ident: 274 – ident: 510 doi: 10.1103/PhysRevA.82.052308 – ident: 541 doi: 10.1038/ncomms5502 – ident: 217 doi: 10.1103/RevModPhys.80.517 – ident: 513 doi: 10.1103/PhysRevA.87.012328 – ident: 265 doi: 10.1103/PhysRevA.54.3824 – ident: 470 doi: 10.1007/s00220-006-1535-6 – ident: 356 doi: 10.1080/09500340308234554 – ident: 528 doi: 10.1038/nature08171 – ident: 233 doi: 10.1103/PhysRevLett.87.167904 – volume: 4 start-page: 442 issn: 1464-4266 year: 2002 ident: 423 publication-title: J. Opt. doi: 10.1088/1464-4266/4/6/313 – ident: 479 doi: 10.1103/PhysRevA.69.062311 – ident: 269 doi: 10.1103/PhysRevLett.103.110502 – ident: 301 doi: 10.1103/PhysRevLett.78.5022 – ident: 139 doi: 10.1103/PhysRevE.77.011112 – year: 2007 ident: 84 publication-title: Decoherence and the Quantum-to-Classical Transition – ident: 374 doi: 10.1103/PhysRevLett.105.150401 – ident: 536 doi: 10.1038/ncomms1951 – ident: 299 doi: 10.1007/3-540-33133-6_6 – ident: 20 doi: 10.1038/nature02570 – year: 2004 ident: 6 publication-title: Unspeakable in Quantum Mechanics – ident: 247 doi: 10.1103/PhysRevLett.86.3658 – ident: 401 doi: 10.1142/S0129055X03001709 – ident: 111 doi: 10.1103/PhysRevA.71.032350 – ident: 535 doi: 10.1103/PhysRevA.77.032345 – ident: 89 doi: 10.1038/nature07288 – ident: 537 doi: 10.1103/physrevlett.113.060503 – ident: 160 doi: 10.1103/PhysRevLett.106.090501 – ident: 103 doi: 10.1016/j.physleta.2003.09.044 – ident: 152 doi: 10.1103/PhysRevA.79.042302 – ident: 316 doi: 10.1103/PhysRevLett.78.2275 – volume: 42 issn: 0953-4075 year: 2009 ident: 154 publication-title: J. Phys. – ident: 255 doi: 10.1080/09500340110105975 – volume: 34 start-page: 10327 issn: 0305-4470 ident: 311 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/34/47/329 – ident: 395 doi: 10.1103/PhysRevA.77.030301 – ident: 518 doi: 10.1038/35106500 – year: 2014 ident: 543 – ident: 456 doi: 10.1049/iet-cta.2009.0508 – ident: 444 doi: 10.1103/PhysRevA.81.032310 – ident: 445 doi: 10.1103/PhysRevA.82.032327 – ident: 214 doi: 10.1103/PhysRevLett.112.150802 – ident: 32 doi: 10.1038/nphys1958 – ident: 411 doi: 10.1016/S0375-9601(99)00609-X – ident: 174 doi: 10.1103/PhysRevLett.89.277901 – ident: 100 doi: 10.1103/PhysRevLett.84.2722 – ident: 335 doi: 10.1103/PhysRevLett.81.5039 – ident: 407 doi: 10.1007/BF01608499 – ident: 358 doi: 10.1103/PhysRevLett.91.227901 – ident: 348 doi: 10.1103/PhysRevD.35.3066 – year: 2013 ident: 29 – volume: 43 issn: 1751-8113 year: 2010 ident: 432 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/43/24/245303 – ident: 495 doi: 10.1103/PhysRevA.47.5138 – ident: 458 doi: 10.1038/ncomms3027 – ident: 415 doi: 10.1016/0370-1573(82)90102-8 – volume: 14 issn: 1367-2630 year: 2014 ident: 375 publication-title: New J. Phys. – ident: 180 doi: 10.1103/PhysRevA.77.032342 – ident: 87 doi: 10.1103/PhysRevLett.77.4887 – ident: 101 doi: 10.1103/PhysRevA.65.052327 – ident: 227 doi: 10.1119/1.16243 – volume: 10 issn: 1367-2630 year: 2008 ident: 517 publication-title: New J. Phys. doi: 10.1088/1367-2630/10/5/053026 – ident: 1 doi: 10.1103/PhysRev.47.777 – volume: 11 start-page: 073051 issn: 1367-2630 year: 2009 ident: 346 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/7/073051 – year: 2000 ident: 13 publication-title: Quantum Information – ident: 321 doi: 10.1007/BF00417500 – ident: 122 doi: 10.1103/PhysRevA.74.024304 – year: 1976 ident: 403 publication-title: Quantum Theory of Open Systems – ident: 42 doi: 10.1038/nphys2253 – ident: 155 doi: 10.1126/science.1172260 – ident: 323 doi: 10.1016/0375-9601(92)90949-M – ident: 488 doi: 10.1103/PhysRevLett.91.107903 – ident: 82 doi: 10.1007/3-540-45338-5_8 – volume: 1 start-page: 195 year: 1964 ident: 5 publication-title: Physics doi: 10.1103/PhysicsPhysiqueFizika.1.195 – ident: 443 doi: 10.1103/PhysRevA.82.052323 – ident: 7 doi: 10.1103/PhysRevLett.67.661 – ident: 370 doi: 10.1103/PhysRevLett.78.2547 – ident: 131 doi: 10.1103/PhysRevA.75.062119 – ident: 41 doi: 10.1038/nphys2252 – ident: 397 doi: 10.1007/3-540-12732-1 – ident: 339 doi: 10.1103/PhysRevLett.100.150404 – ident: 205 doi: 10.1103/PhysRevA.54.R4649 – ident: 77 doi: 10.1103/PhysRev.131.2766 – ident: 151 doi: 10.1126/science.1167343 – ident: 31 doi: 10.1126/science.1097576 – year: 2009 ident: 471 – ident: 177 doi: 10.1103/PhysRevA.82.032112 – volume: 13 issn: 1367-2630 year: 2011 ident: 446 publication-title: New J. Phys. – ident: 262 doi: 10.1103/PhysRevLett.104.210501 – year: 2006 ident: 480 publication-title: Proc. of the Int. School of Physics ‘Enrico Fermi’ on Quantum Computers, Algorithms and Chaos – ident: 156 doi: 10.1103/PhysRevLett.105.210502 – ident: 259 doi: 10.1103/PhysRevA.81.062318 – ident: 315 doi: 10.1088/0305-4470/34/47/329 – ident: 352 doi: 10.1038/nature12012 – ident: 23 doi: 10.1103/PhysRevLett.97.120405 – volume: 37 start-page: L173 issn: 0305-4470 year: 2004 ident: 424 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/37/15/L04 – ident: 18 doi: 10.1038/37539 – ident: 36 doi: 10.1103/PhysRevLett.81.3108 – ident: 319 doi: 10.1103/PhysRevLett.23.880 – ident: 506 doi: 10.1103/PhysRevA.74.052316 – ident: 271 doi: 10.1103/PhysRevLett.80.5239 – ident: 359 doi: 10.1103/PhysRevLett.98.063604 – ident: 482 doi: 10.1038/nphys1157 – ident: 40 doi: 10.1038/nphys2259 – ident: 128 doi: 10.1103/PhysRevLett.99.240405 – ident: 366 doi: 10.1103/PhysRevLett.83.3103 – ident: 520 doi: 10.1126/science.1171544 – ident: 88 doi: 10.1038/35002001 – ident: 530 doi: 10.1103/PhysRevA.75.052337 – volume: 11 issn: 1367-2630 year: 2009 ident: 361 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/10/103016 – ident: 376 doi: 10.1103/PhysRevLett.105.250403 – ident: 449 doi: 10.1103/PhysRevB.90.054304 – ident: 232 doi: 10.1016/S0375-9601(96)00706-2 – ident: 188 doi: 10.1126/science.290.5491.498 – ident: 135 doi: 10.1103/PhysRevA.77.032302 – year: 2007 ident: 25 – ident: 505 doi: 10.1103/PhysRevA.74.032318 – ident: 295 doi: 10.1103/PhysRevLett.90.107901 – ident: 491 doi: 10.1103/PhysRevA.71.062313 – ident: 450 doi: 10.1038/nphys2178 – ident: 66 doi: 10.1038/nphys1603 – ident: 109 doi: 10.1103/PhysRevA.69.022318 – ident: 324 doi: 10.1016/0375-9601(92)90711-T – year: 2002 ident: 222 publication-title: The Theory of Open Quantum Systems – volume: 41 issn: 0953-4075 year: 2008 ident: 144 publication-title: J. Phys. B: Atom. Mol. Opt. Phys. doi: 10.1088/0953-4075/41/23/235503 – ident: 192 doi: 10.1103/PhysRevLett.98.240401 – ident: 380 doi: 10.1103/PhysRevLett.106.180504 – ident: 38 doi: 10.1103/RevModPhys.80.885 – ident: 98 doi: 10.1103/PhysRevA.63.022116 – ident: 54 doi: 10.1038/35005011 – ident: 267 doi: 10.1103/PhysRevA.63.012307 – ident: 365 doi: 10.1103/PhysRevLett.74.4101 – volume: 40 start-page: 7821 issn: 1751-8113 year: 2007 ident: 242 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/40/28/S01 – ident: 340 doi: 10.1103/PhysRevLett.95.240405 – ident: 369 doi: 10.1103/PhysRevLett.77.4281 – ident: 197 doi: 10.1103/PhysRevA.76.010301 – ident: 86 doi: 10.1103/PhysRevLett.71.2360 – ident: 49 doi: 10.1126/science.1143835 – ident: 481 doi: 10.1103/PhysRevLett.86.5188 – ident: 143 doi: 10.1103/PhysRevA.78.012357 – ident: 24 doi: 10.1103/PhysRevLett.98.230501 – ident: 195 doi: 10.1103/PhysRevA.78.042307 – ident: 16 doi: 10.1103/PhysRevLett.76.4656 – ident: 547 doi: 10.1016/j.aop.2012.02.002 – ident: 30 doi: 10.1006/aphy.1996.0040 – ident: 435 doi: 10.1103/PhysRevA.86.020301 – ident: 439 doi: 10.1103/PhysRevA.73.010304 – ident: 508 doi: 10.1103/PhysRevLett.77.198 – ident: 68 doi: 10.1038/nature10770 – ident: 496 doi: 10.1038/35051038 – ident: 336 doi: 10.1103/PhysRevLett.81.3563 – ident: 190 doi: 10.1103/PhysRevLett.77.4728 – ident: 399 doi: 10.1016/0034-4877(72)90011-0 – year: 1993 ident: 405 publication-title: An Open Systems Approach to Quantum Optics doi: 10.1007/978-3-540-47620-7 – ident: 487 doi: 10.1103/PhysRevLett.100.160502 – ident: 169 doi: 10.1038/nphoton.2010.222 – ident: 70 doi: 10.1038/35096524 – ident: 483 doi: 10.1103/PhysRevA.65.012308 – ident: 360 doi: 10.1103/PhysRevLett.103.020504 – volume: 13 issn: 0150-536X year: 2011 ident: 540 publication-title: J. Opt. doi: 10.1088/2040-8978/13/6/064001 – ident: 550 doi: 10.1038/nature09801 – ident: 67 doi: 10.1038/nphoton.2011.354 – ident: 53 doi: 10.1038/nature09662 – ident: 85 doi: 10.1103/PhysRevA.53.1295 – ident: 63 doi: 10.1103/PhysRevLett.100.160502 – ident: 522 doi: 10.1038/nature05101 – volume: 34 start-page: 6891 issn: 0305-4470 year: 2001 ident: 297 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/34/35/314 – year: 1999 ident: 245 publication-title: Quantum Noise – ident: 37 doi: 10.1038/415039a – ident: 333 doi: 10.1103/PhysRevLett.49.1804 – volume: 14 issn: 1367-2630 year: 2012 ident: 377 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/10/105001 – ident: 58 doi: 10.1038/35000514 – ident: 173 doi: 10.1038/ncomms3851 – ident: 310 doi: 10.1016/S0375-9601(00)00157-2 – ident: 448 doi: 10.1103/PhysRevB.87.081305 – ident: 344 doi: 10.1103/PhysRevLett.82.1345 – ident: 421 doi: 10.1103/PhysRevA.67.012307 – ident: 553 doi: 10.1007/s10955-006-9143-6 – ident: 282 doi: 10.1038/nphys1372 – start-page: 333 year: 2011 ident: 44 publication-title: Proc. of ACM Symp. on the Theory of Computing – ident: 114 doi: 10.1103/PhysRevA.72.022312 – ident: 534 doi: 10.1103/PhysRevLett.98.100501 – ident: 14 doi: 10.1007/978-3-662-04209-0 – ident: 179 doi: 10.1103/PhysRevLett.99.160502 – ident: 296 doi: 10.1103/PhysRevA.62.032307 – ident: 184 doi: 10.1103/PhysRevLett.104.100502 – ident: 235 doi: 10.1016/0034-4877(76)90038-0 – ident: 80 doi: 10.1103/PhysRevA.31.1059 – ident: 112 doi: 10.1103/PhysRevB.71.153105 – ident: 243 doi: 10.1103/RevModPhys.84.621 – year: 1998 ident: 398 – ident: 463 doi: 10.1103/PhysRevA.72.042318 – ident: 293 doi: 10.1063/1.1494474 – ident: 92 doi: 10.1103/PhysRevLett.100.253601 – ident: 46 doi: 10.1103/PhysRevLett.89.067901 – ident: 176 doi: 10.1103/PhysRevA.65.042107 – ident: 118 doi: 10.1103/PhysRevA.73.040305 – ident: 263 doi: 10.1103/PhysRevA.84.052319 – volume: 3 start-page: 193 issn: 1533-7146 year: 2003 ident: 238 publication-title: Quantum Inform. Comput. doi: 10.26421/QIC3.3-1 – ident: 4 doi: 10.1017/S0305004100019137 – ident: 258 doi: 10.1103/PhysRevLett.96.170502 – ident: 390 doi: 10.1103/PhysRevA.78.022308 – ident: 526 doi: 10.1038/nphys961 – ident: 409 doi: 10.1103/PhysRev.140.A1051 – ident: 278 doi: 10.1103/PhysRevA.62.022302 – ident: 467 doi: 10.1103/PhysRevA.60.3496 – ident: 392 doi: 10.1103/PhysRevA.76.052303 – volume: 7 start-page: 1 issn: 1533-7146 year: 2007 ident: 218 publication-title: Quantum Inform. Comput. doi: 10.26421/QIC7.1-2-1 – volume: 43 issn: 1751-8113 year: 2010 ident: 158 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/43/27/275306 – ident: 490 doi: 10.1103/PhysRevA.82.032317 – ident: 95 doi: 10.1038/nature05273 – ident: 172 doi: 10.1103/PhysRevLett.109.150403 – ident: 189 doi: 10.1007/s00340-005-1917-z – volume: 7 start-page: 335 issn: 1533-7146 year: 2007 ident: 230 publication-title: Quantum Inform. Comput. doi: 10.26421/QIC7.4-5 – ident: 251 doi: 10.1109/TIT.2013.2257936 – ident: 12 doi: 10.1038/35005001 – ident: 99 doi: 10.1103/PhysRevA.65.012101 – ident: 45 doi: 10.1126/science.288.5473.2024 – volume: 40 start-page: S45 issn: 0953-4075 year: 2007 ident: 125 publication-title: J. Phys. doi: 10.1088/0953-4075/40/9/S02 – ident: 202 doi: 10.1126/science.1104149 – ident: 509 doi: 10.1103/PhysRevA.77.062322 – ident: 342 doi: 10.1103/PhysRevA.83.052104 – volume: 88 start-page: 20011 issn: 0295-5075 year: 2009 ident: 417 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/88/20011 – ident: 93 doi: 10.1038/nphys2682 – ident: 469 – ident: 212 doi: 10.1103/PhysRevLett.112.080801 – volume: 46 issn: 1751-8113 year: 2013 ident: 138 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/46/8/085301 – ident: 196 doi: 10.1038/nphys1342 – ident: 328 doi: 10.1038/ncomms1193 – ident: 270 doi: 10.1103/PhysRevLett.78.2031 – ident: 441 doi: 10.1103/PhysRevLett.105.020501 – volume: 16 issn: 1367-2630 year: 2014 ident: 542 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/11/113028 – ident: 237 doi: 10.1016/S0375-9601(97)00416-7 – volume: 43 issn: 1751-8113 year: 2010 ident: 288 publication-title: J. Phys. A: Math. Theor. – ident: 65 doi: 10.1103/PhysRevLett.103.160401 – ident: 466 doi: 10.1103/PhysRevLett.101.170502 – volume: 6 start-page: S90 issn: 1464-4266 year: 2004 ident: 106 publication-title: J. Opt. B: Quantum Semiclass. Opt. doi: 10.1088/1464-4266/6/3/015 – ident: 279 doi: 10.1103/PhysRevA.75.012305 – ident: 440 doi: 10.1038/35059017 – ident: 545 doi: 10.1006/aphy.2002.6268 – ident: 391 doi: 10.1103/PhysRevA.79.022112 – ident: 461 doi: 10.1126/science.1171544 – volume: 12 issn: 1367-2630 year: 2010 ident: 157 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/2/025011 – ident: 116 doi: 10.1103/PhysRevLett.97.140403 – volume: 11 issn: 1367-2630 year: 2009 ident: 442 publication-title: New J. Phys. – ident: 473 doi: 10.1103/PhysRevLett.108.180502 – ident: 289 doi: 10.1103/PhysRevLett.102.170503 – ident: 327 doi: 10.1103/PhysRevA.73.062105 – ident: 371 doi: 10.1103/PhysRevA.73.030303 – ident: 406 doi: 10.1063/1.522979 – ident: 161 doi: 10.1063/1.3637628 – year: 1992 ident: 404 publication-title: Atom-Photon Interactions: Basic Processes and Applications – ident: 74 doi: 10.1038/nature01888 – year: 2001 ident: 307 – ident: 9 doi: 10.1103/PhysRevLett.70.1895 – ident: 94 doi: 10.1038/nphys2681 – start-page: 69 ident: 226 publication-title: Bell’s Theorem, Quantum Theory and Conceptions of the Universe – ident: 546 doi: 10.1103/PhysRevA.70.012109 – ident: 345 doi: 10.1103/PhysRevLett.97.170408 – ident: 27 doi: 10.1038/nphys2300 – ident: 193 doi: 10.1103/PhysRevA.81.043802 |
SSID | ssj0011829 |
Score | 2.62683 |
SecondaryResourceType | review_article |
Snippet | One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 42001 |
SubjectTerms | Coherence Control systems Data processing Dynamical systems Dynamics Entanglement normal mode splitting quantum entanglement quantum information quantum optics Quantum theory Scaling laws strong coupling surface plasmon polariton vacuum Rabi splitting |
Title | Open-system dynamics of entanglement:a key issues review |
URI | https://iopscience.iop.org/article/10.1088/0034-4885/78/4/042001 https://www.ncbi.nlm.nih.gov/pubmed/25811809 https://www.proquest.com/docview/1669835265 https://www.proquest.com/docview/1762101568 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Ebz4_TG_qOBJSLelSZN4E3FMD-rBwW4lSRMRpRtuu_jX-9K0Q4U5xFsPeeX15aX5tfm930PonMDiI5I5LBkjmFprsDCSYmc7Ccu5VsyUap_3aa9P7wZs8KWK_2U4ql79MVwGoeAQwooQJ3z7MYoh71iLixZtQda1fQHXiu9e6Ul9tw-Ps3MEQM8BAFcmdQ3PvNt8252WwYP5wLPcgLobSNWuB97Jazyd6Nh8_FB1_M-zbaL1Cp1GV2H8FlqyxTZaLVmiZryDhKef4CD-HOWhl_04GrrIE9CL58BEv1QRvBiickLHUSiN2UX97s3TdQ9XrRewAUQxwU6nCrCIdJQQpYWCPStJYb4VJZ3UMp1qlwpuuXRO2jbROXxoJIlljuf-B0mS7KFGMSzsAYoUz6nyJFcJ1sZyAYjOko5t01xzY0gT0Trkmal0yX17jLesPB8XwsuX0swHJeMio1kIShPFM7NREOZYZHABUc-qJTpeNPisnvYM1ps_RFGFHU7BLE2lKJsK_DIGdpiOr1EXTbQfcmbmI2HCq-7Jw7-4c4TWAKixwBg6Ro3J-9SeABia6NMy3z8BxxT3pQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB0lVCAu_QBKU_qxlXqq5IR47bXNrSqN0oICByLlZtleuwfQJmqSC7-e8XoTiUohQr3twbOaHY_Xb9dv3gB8pbj4qOKBKM4pYd47Ip1iJPh-zkthDXe12ueoGI7Z7wmftOB8XQsznTWv_i5eJqHgFMKGECdj-zFGMO94T8ge62HWRRmhWRna8IJHdZVYxnd1vT5LQASdQHBjtqrj2XSrRztUG73YDD7rTWjwCvzK_cQ9ue0uF7br7v9Rdvzf53sNLxuUmn1PNm-g5asD2K3Zom5-CDLSUEgSgc7K1NN-nk1DFono1Z_ESD8zGb4gsnpi51kqkTmC8eDnzY8haVowEIfIYkGCLQxiEhUYpcZKg3tXXuC8G0b7hee2sKGQwgsVgvKn1Jb4wZHnngdRxh8lef4Wdqpp5d9BZkTJTCS7KrR2XkhEdp72_SkrrXCOdoCtwq5do08e22Tc6fqcXMooY8p0DIwWUjOdAtOB7tpslgQ6thl8w8jrZqnOtw3-spp6jesuHqaYyk-XaFYUStbNBZ4YgztNP9aqyw4cp7xZ-0i5jOp76v1z3PkMe9fnA335a3RxAvuI3XgiEX2AncXfpf-I-GhhP9Xp_wDMb_0I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open-system+dynamics+of+entanglement%3A+a+key+issues+review&rft.jtitle=Reports+on+progress+in+physics&rft.au=Aolita%2C+Leandro&rft.au=de+Melo%2C+Fernando&rft.au=Davidovich%2C+Luiz&rft.date=2015-04-01&rft.issn=0034-4885&rft.eissn=1361-6633&rft.volume=78&rft.issue=4&rft.spage=1&rft.epage=79&rft_id=info:doi/10.1088%2F0034-4885%2F78%2F4%2F042001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4885&client=summon |