Open-system dynamics of entanglement:a key issues review

One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against...

Full description

Saved in:
Bibliographic Details
Published inReports on progress in physics Vol. 78; no. 4; pp. 42001 - 79
Main Authors Aolita, Leandro, de Melo, Fernando, Davidovich, Luiz
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2015
Subjects
Online AccessGet full text
ISSN0034-4885
1361-6633
1361-6633
DOI10.1088/0034-4885/78/4/042001

Cover

Abstract One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations. In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors. In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information.
AbstractList One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information.
One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information.
One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information.One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information.
Author Aolita, Leandro
Davidovich, Luiz
de Melo, Fernando
Author_xml – sequence: 1
  givenname: Leandro
  surname: Aolita
  fullname: Aolita, Leandro
  organization: Freie Universität Berlin Dahlem Center for Complex Quantum Systems, 14195 Berlin, Germany
– sequence: 2
  givenname: Fernando
  surname: de Melo
  fullname: de Melo, Fernando
  organization: Centro Brasileiro de Pesquisas Físicas , Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ 22290-180, Brazil
– sequence: 3
  givenname: Luiz
  surname: Davidovich
  fullname: Davidovich, Luiz
  email: ldavid@if.ufrj.br
  organization: Instituto de Física, Universidade Federal do Rio de Janeiro , Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25811809$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1PwzAQhi1URD_gJ4AysoT6K44NE6r4kip1gdlykjNySZwQp6D-e1wVOrB0uhue5-703hSNfOsBoUuCbwiWco4x4ymXMpvncs7nmFOMyQmaECZIKgRjIzQ5MGM0DWEdASKpOkNjmsnYYjVBctWBT8M2DNAk1dabxpUhaW0CfjD-vYYmNrcm-YBt4kLYQEh6-HLwfY5OrakDXPzWGXp7fHhdPKfL1dPL4n6ZlpyRIbWFMPEaZTmlppBGKcwEFGA4JQKyQhRWyBxyZa0CTIsKc8UYZDavGMOcsRm63s_t-vYzrh9040IJdW08tJugSS4owSQT8jgqhJIsoyKL6NUvuikaqHTXu8b0W_0XTASyPVD2bQg92ANCsN49QO_C1btwdS411_sHRO_un1e6wQyu9UNvXH3UJnvbtZ1et5vex2iPOD-JMZdF
CODEN RPPHAG
CitedBy_id crossref_primary_10_1103_PhysRevResearch_6_013073
crossref_primary_10_1088_1361_6455_aaa65a
crossref_primary_10_1103_PhysRevResearch_2_043042
crossref_primary_10_1007_s13538_015_0367_2
crossref_primary_10_1007_s11128_021_03263_1
crossref_primary_10_1103_PhysRevA_105_012407
crossref_primary_10_1038_s41598_023_30561_8
crossref_primary_10_1103_PhysRevA_107_052419
crossref_primary_10_1088_0031_8949_91_6_063013
crossref_primary_10_1103_PhysRevA_96_032111
crossref_primary_10_1103_PhysRevLett_129_203604
crossref_primary_10_1088_1742_6596_2243_1_012116
crossref_primary_10_1002_prop_202300212
crossref_primary_10_1088_1742_6596_2243_1_012115
crossref_primary_10_1103_PhysRevB_103_085137
crossref_primary_10_1364_JOSAB_449257
crossref_primary_10_1103_PhysRevA_92_022311
crossref_primary_10_1103_PhysRevA_107_012410
crossref_primary_10_1103_PhysRevA_94_022317
crossref_primary_10_1103_PhysRevA_109_012410
crossref_primary_10_1142_S1230161217400066
crossref_primary_10_1007_s11128_018_2168_3
crossref_primary_10_1088_2399_6528_aaa2f1
crossref_primary_10_1103_PhysRevA_111_032418
crossref_primary_10_3390_e26070564
crossref_primary_10_1088_1402_4896_ad5913
crossref_primary_10_1103_PhysRevA_95_052126
crossref_primary_10_1038_s41598_018_32661_2
crossref_primary_10_1038_srep13843
crossref_primary_10_1007_s10958_019_04418_3
crossref_primary_10_1103_PhysRevResearch_4_013178
crossref_primary_10_1088_1402_4896_ac607e
crossref_primary_10_1140_epjd_e2015_60223_4
crossref_primary_10_1007_s11128_021_03287_7
crossref_primary_10_3390_app10207150
crossref_primary_10_1007_s11128_021_03309_4
crossref_primary_10_1134_S1063776120110011
crossref_primary_10_1103_PhysRevA_97_012322
crossref_primary_10_1364_OE_23_022330
crossref_primary_10_1038_s41534_020_00339_1
crossref_primary_10_1038_srep17520
crossref_primary_10_1038_srep39110
crossref_primary_10_7498_aps_71_20211881
crossref_primary_10_1007_s11128_016_1296_x
crossref_primary_10_1088_1751_8113_48_46_465301
crossref_primary_10_3390_e25010029
crossref_primary_10_1103_PhysRevResearch_1_033174
crossref_primary_10_1088_1361_6455_aa8b40
crossref_primary_10_1142_S0129055X20600089
crossref_primary_10_1142_S021988781850038X
crossref_primary_10_1088_1367_2630_17_8_081004
crossref_primary_10_1088_1674_1056_ab3e67
crossref_primary_10_1002_qute_202300146
crossref_primary_10_3390_math10030294
crossref_primary_10_1140_epjp_i2017_11364_5
crossref_primary_10_1088_1367_2630_aad8df
crossref_primary_10_1103_PhysRevA_109_032228
crossref_primary_10_1038_s41534_020_0271_7
crossref_primary_10_1103_PhysRevA_107_052409
crossref_primary_10_1103_PhysRevA_110_012429
crossref_primary_10_1007_s11128_019_2487_z
crossref_primary_10_1103_PhysRevB_98_155202
crossref_primary_10_4204_EPTCS_315_11
crossref_primary_10_1140_epjst_e2019_800042_9
crossref_primary_10_1007_s13538_016_0460_1
crossref_primary_10_1088_1367_2630_aacb9f
crossref_primary_10_1142_S0219749922500265
crossref_primary_10_1002_andp_202100584
crossref_primary_10_1103_PhysRevA_96_062325
crossref_primary_10_1364_AOP_399081
crossref_primary_10_1007_s11128_018_1909_7
crossref_primary_10_1038_s41598_019_39140_2
crossref_primary_10_1103_PhysRevA_104_042411
crossref_primary_10_1080_09500340_2019_1614237
crossref_primary_10_1209_0295_5075_112_10002
crossref_primary_10_1103_PhysRevA_109_022414
crossref_primary_10_1088_1361_6455_aaa2cf
crossref_primary_10_1103_PhysRevD_92_125026
crossref_primary_10_1002_qute_202300150
crossref_primary_10_1007_s11128_016_1290_3
crossref_primary_10_1103_PhysRevA_92_062114
crossref_primary_10_1103_PhysRevA_106_022417
crossref_primary_10_1103_PhysRevB_108_174310
crossref_primary_10_1007_s11128_015_1075_0
crossref_primary_10_3390_e24111532
crossref_primary_10_1103_PhysRevA_101_052107
crossref_primary_10_1103_PhysRevResearch_2_043232
crossref_primary_10_1103_PhysRevA_110_012456
crossref_primary_10_1140_epjd_e2019_90588_y
crossref_primary_10_1016_j_aop_2020_168073
crossref_primary_10_1007_s10955_019_02289_1
crossref_primary_10_1142_S0217732323500566
crossref_primary_10_3390_e21100917
crossref_primary_10_1038_s41598_019_55548_2
crossref_primary_10_1007_s10946_014_9451_2
crossref_primary_10_1007_s11128_015_1169_8
crossref_primary_10_1016_j_physa_2022_127035
crossref_primary_10_1016_j_aej_2024_02_050
crossref_primary_10_1103_PhysRevA_102_012221
crossref_primary_10_3390_e22020191
crossref_primary_10_1142_S021974991750006X
crossref_primary_10_1007_s10773_017_3526_0
crossref_primary_10_15407_mag16_03_228
crossref_primary_10_1103_PhysRevA_98_022329
crossref_primary_10_1007_s11128_019_2302_x
crossref_primary_10_1103_PhysRevB_95_245433
crossref_primary_10_1088_1367_2630_ab54ac
crossref_primary_10_1103_PhysRevLett_120_150402
crossref_primary_10_3390_e21010059
crossref_primary_10_1103_PhysRevLett_133_190403
crossref_primary_10_1364_OE_417294
crossref_primary_10_1103_PhysRevB_91_155310
crossref_primary_10_1134_S0030400X18050077
crossref_primary_10_1007_s11128_017_1704_x
crossref_primary_10_1007_s13538_015_0350_y
crossref_primary_10_1103_PhysRevA_100_022334
crossref_primary_10_3390_e23060708
crossref_primary_10_1103_PhysRevA_93_022313
crossref_primary_10_1088_1674_1056_24_12_120303
crossref_primary_10_1103_PhysRevA_95_012336
crossref_primary_10_1140_epjd_e2019_90586_1
crossref_primary_10_1016_j_physrep_2015_12_002
crossref_primary_10_1140_epjd_e2019_100251_0
crossref_primary_10_1088_1572_9494_ab6182
crossref_primary_10_1103_PhysRevA_111_012407
crossref_primary_10_1088_1402_4896_abfb63
crossref_primary_10_1016_j_physb_2017_02_011
crossref_primary_10_1364_JOSAB_36_001858
crossref_primary_10_1016_j_ijleo_2019_164088
crossref_primary_10_1088_1402_4896_ac8775
crossref_primary_10_1016_j_physrep_2016_06_008
crossref_primary_10_1103_PhysRevApplied_20_044014
crossref_primary_10_1007_s11128_016_1277_0
crossref_primary_10_1088_0256_307X_32_6_060302
crossref_primary_10_1007_s13538_021_00878_8
crossref_primary_10_1103_PhysRevA_94_012345
crossref_primary_10_1103_PhysRevE_91_062123
crossref_primary_10_1088_1361_6455_aa62ef
crossref_primary_10_3390_e24121774
crossref_primary_10_1007_s11128_022_03563_0
crossref_primary_10_1103_PhysRevA_102_042602
crossref_primary_10_1140_epjp_s13360_021_01493_x
crossref_primary_10_1088_1742_5468_ad5c5b
crossref_primary_10_1016_j_rinp_2019_102614
crossref_primary_10_1103_PhysRevA_100_022318
crossref_primary_10_1103_PhysRevLett_122_140502
crossref_primary_10_1088_1361_648X_aa7648
crossref_primary_10_1088_1402_4896_ac74ef
crossref_primary_10_1103_PhysRevResearch_5_043295
crossref_primary_10_1103_PhysRevA_104_052408
crossref_primary_10_1007_s11128_024_04407_9
crossref_primary_10_1016_j_physa_2021_126017
crossref_primary_10_1103_PhysRevA_96_033845
crossref_primary_10_1103_PhysRevA_97_022302
crossref_primary_10_1103_PhysRevX_10_031010
crossref_primary_10_1103_PhysRevB_102_184306
crossref_primary_10_1103_PhysRevB_98_014416
crossref_primary_10_1103_PhysRevResearch_3_043060
crossref_primary_10_1140_epjp_i2017_11439_3
crossref_primary_10_1103_PhysRevA_96_042338
crossref_primary_10_1103_PhysRevA_108_012620
crossref_primary_10_1103_PhysRevA_97_010301
crossref_primary_10_1103_PhysRevA_94_052335
crossref_primary_10_1088_1612_202X_abfa8c
crossref_primary_10_1103_PhysRevA_109_052606
crossref_primary_10_1103_PhysRevA_98_052344
crossref_primary_10_1103_PhysRevA_104_052201
crossref_primary_10_1103_PhysRevLett_124_180503
crossref_primary_10_3390_e23111409
crossref_primary_10_1016_j_physa_2016_06_128
crossref_primary_10_1038_s41598_018_25781_2
crossref_primary_10_1007_s11128_020_02629_1
crossref_primary_10_22331_q_2020_10_22_347
crossref_primary_10_1088_1612_2011_13_12_125204
crossref_primary_10_1103_PhysRevA_92_042322
crossref_primary_10_1103_PhysRevA_106_062431
crossref_primary_10_1088_2058_9565_ad4c91
crossref_primary_10_1088_1751_8121_ad4caa
crossref_primary_10_1140_epjp_s13360_022_02610_0
crossref_primary_10_1142_S0217979216501873
crossref_primary_10_1103_PhysRevA_102_062429
crossref_primary_10_1103_PhysRevA_94_012109
crossref_primary_10_1364_JOSAB_489223
crossref_primary_10_1007_s11128_022_03439_3
crossref_primary_10_1103_PhysRevA_106_022205
crossref_primary_10_1142_S0219749916500313
crossref_primary_10_1088_2058_9565_ad1693
crossref_primary_10_1103_PhysRevA_96_062124
crossref_primary_10_1007_s13538_019_00721_1
crossref_primary_10_1103_PhysRevD_107_016005
crossref_primary_10_1103_PhysRevA_97_012306
crossref_primary_10_1142_S1230161221500207
crossref_primary_10_1007_s10773_019_04235_z
crossref_primary_10_1140_epjp_s13360_021_01117_4
crossref_primary_10_1007_s11128_017_1580_4
crossref_primary_10_1142_S1230161222500019
crossref_primary_10_1038_s41598_022_22732_w
crossref_primary_10_1103_PhysRevA_92_032310
crossref_primary_10_1016_j_optcom_2020_126671
crossref_primary_10_1103_PhysRevB_109_L180408
crossref_primary_10_1140_epjp_i2016_16380_3
crossref_primary_10_1016_j_aop_2017_02_001
crossref_primary_10_1016_j_physa_2016_04_004
crossref_primary_10_1103_PhysRevResearch_4_043078
crossref_primary_10_1103_PhysRevA_92_032311
crossref_primary_10_1088_1367_2630_ad18ec
crossref_primary_10_1140_epjc_s10052_023_11939_4
crossref_primary_10_1103_PhysRevA_92_032319
crossref_primary_10_1142_S0217984919502543
crossref_primary_10_1016_j_physleta_2019_03_022
crossref_primary_10_1016_j_aop_2017_07_012
crossref_primary_10_1088_1751_8121_acb29d
crossref_primary_10_1103_PhysRevResearch_2_043062
crossref_primary_10_1142_S0219749917500472
crossref_primary_10_1140_epjd_e2016_60592_0
crossref_primary_10_1038_s41534_024_00883_0
crossref_primary_10_1007_s11128_015_1044_7
crossref_primary_10_1103_PhysRevA_97_022331
crossref_primary_10_1103_PhysRevLett_123_180503
crossref_primary_10_1209_0295_5075_127_20009
crossref_primary_10_1016_j_aop_2016_12_007
crossref_primary_10_1140_epjd_e2016_70680_8
crossref_primary_10_3390_e25010067
crossref_primary_10_1088_0256_307X_40_6_060302
crossref_primary_10_1088_1555_6611_aa6f6d
crossref_primary_10_1103_PhysRevB_108_104310
crossref_primary_10_1103_PhysRevLett_115_200502
crossref_primary_10_1103_PhysRevB_108_094114
crossref_primary_10_1088_1367_2630_aa7e06
crossref_primary_10_1109_ACCESS_2023_3271628
crossref_primary_10_1103_PhysRevB_110_075432
crossref_primary_10_1103_PhysRevA_98_052134
crossref_primary_10_1088_1402_4896_abd0bc
crossref_primary_10_1103_PhysRevA_103_052209
crossref_primary_10_1103_PhysRevA_98_052133
crossref_primary_10_1142_S0217732319501025
crossref_primary_10_1088_1367_2630_ac8f67
crossref_primary_10_1103_PhysRevA_105_032426
crossref_primary_10_1142_S0219749917500228
crossref_primary_10_1364_JOSAB_379261
crossref_primary_10_1103_PhysRevA_94_012309
crossref_primary_10_1007_s10773_020_04502_4
crossref_primary_10_1007_s11128_019_2443_y
crossref_primary_10_1088_1361_648X_ac0bea
crossref_primary_10_1142_S0219749921500234
crossref_primary_10_1007_s11128_020_02889_x
crossref_primary_10_1103_PhysRevA_107_022427
crossref_primary_10_3390_e19070331
Cites_doi 10.1103/PhysRevLett.91.070402
10.1038/nature12801
10.1103/PhysRevLett.98.140505
10.1103/PhysRevA.71.012318
10.1103/PhysRevA.78.042308
10.1103/PhysRevA.70.032326
10.1103/PhysRevA.79.022108
10.1103/PhysRevA.76.044101
10.1038/nature04251
10.1103/PhysRevA.88.062328
10.1103/PhysRevLett.95.210502
10.1016/S0375-9601(01)00142-6
10.1038/nphys2275
10.1103/PhysRevLett.99.180504
10.1103/PhysRevA.69.052105
10.1103/PhysRevA.59.4206
10.1103/PhysRevA.61.062313
10.1007/BF01449770
10.1103/PhysRevLett.106.130506
10.1088/1367-2630/10/9/095020
10.1103/PhysRevA.86.050302
10.1038/nphoton.2010.39
10.1103/PhysRevA.61.062312
10.1103/PhysRevA.73.062306
10.1103/PhysRevA.40.4277
10.1038/nature03347
10.1103/PhysRevA.60.2700
10.1103/PhysRevA.84.022324
10.1088/0034-4885/61/2/002
10.1063/1.1495917
10.1103/PhysRevA.78.060301
10.1103/PhysRevLett.112.150801
10.1007/BF01491891
10.1038/nphys1073
10.1103/RevModPhys.86.419
10.1103/PhysRevA.76.042127
10.1017/S0305004100013554
10.1088/1367-2630/9/7/237
10.1103/PhysRevLett.82.2417
10.1088/0305-4470/39/8/010
10.1103/PhysRevLett.24.549
10.1103/PhysRevLett.106.190502
10.1103/PhysRevLett.104.190401
10.1103/PhysRevLett.95.240407
10.1007/BF01645779
10.1103/PhysRevA.79.022303
10.1103/PhysRevLett.112.160501
10.1038/nature01974
10.1103/PhysRevA.85.012314
10.1103/PhysRevLett.94.060501
10.1103/PhysRevLett.103.240502
10.1103/PhysRevA.56.4452
10.1126/science.1139892
10.1103/PhysRevA.78.060302
10.1103/PhysRevLett.111.207202
10.1088/0305-4470/34/35/310
10.1007/s13538-011-0037-y
10.1088/1367-2630/9/7/230
10.1126/science.288.5467.824
10.1103/PhysRevLett.95.230502
10.1103/PhysRevA.77.012117
10.1103/PhysRevA.70.010301
10.1038/nphys1224
10.1038/nature02643
10.1007/s11128-009-0139-4
10.1103/PhysRevA.77.042305
10.1016/S0375-9601(00)00401-1
10.1103/PhysRevLett.86.2681
10.1103/PhysRevLett.85.2625
10.1103/PhysRevA.59.1829
10.1038/nature02377
10.1007/978-3-662-05328-7
10.26421/QIC3.6-5
10.1103/PhysRevLett.100.200407
10.1103/PhysRevLett.97.050401
10.1016/j.aop.2014.07.021
10.1103/PhysRevA.78.012335
10.1038/nature08363
10.1103/PhysRevLett.101.080503
10.1103/PhysRevA.47.R747
10.1103/PhysRevA.83.022311
10.26421/QIC6.2-3
10.1038/nature13403
10.1103/RevModPhys.81.865
10.1145/780543.780545
10.1103/PhysRevLett.104.123601
10.1103/PhysRevLett.80.1121
10.1126/science.1211914
10.1140/epjd/e2009-00224-4
10.1038/nphys2251
10.1038/nature07125
10.1103/PhysRevA.71.042336
10.1103/PhysRevLett.103.020503
10.1103/PhysRevLett.102.160501
10.1103/PhysRevA.64.042315
10.1103/PhysRevA.80.042327
10.1103/PhysRevA.57.822
10.1007/BF01507634
10.1103/PhysRevD.45.2843
10.1515/9781400854554
10.1103/PhysRev.130.2529
10.1103/PhysRevA.78.022322
10.1103/PhysRevLett.92.087902
10.1103/PhysRevLett.28.938
10.1038/nphys885
10.1126/science.273.5278.1073
10.1103/PhysRevA.62.022311
10.1103/PhysRevLett.92.180403
10.1103/PhysRevA.78.062321
10.1103/PhysRevLett.86.4988
10.1038/nature09008
10.1103/PhysRevLett.111.120401
10.1088/1367-2630/9/9/322
10.1103/PhysRevLett.106.110402
10.1109/PROC.1963.1664
10.1103/PhysRevLett.49.91
10.1103/PhysRevLett.99.120503
10.1103/RevModPhys.74.145
10.1103/PhysRevA.86.012108
10.1103/PhysRevLett.95.240406
10.1016/S0375-9601(99)00099-7
10.1103/PhysRevA.65.032314
10.1103/PhysRevA.77.054301
10.1103/PhysRevLett.108.100401
10.1038/nature04627
10.1103/PhysRevLett.69.2881
10.1103/PhysRevLett.93.230501
10.1103/PhysRevA.59.141
10.1103/PhysRevA.65.042302
10.1103/PhysRevLett.103.040404
10.1103/PhysRevA.78.020304
10.1016/j.physrep.2005.04.006
10.1103/PhysRevA.81.012105
10.1038/nature06184
10.1088/0953-8984/14/15/201
10.1103/PhysRevA.62.062314
10.26421/QIC7.5-6-3
10.1103/PhysRevA.64.022303
10.1103/PhysRevLett.80.2245
10.1103/PhysRevLett.90.167901
10.1007/s11128-005-5664-1
10.1103/PhysRevA.78.032112
10.1103/PhysRevA.72.042339
10.1002/prop.201200079
10.1103/PhysRevA.74.052105
10.1103/PhysRevA.71.060308
10.1103/PhysRevLett.109.190404
10.1088/1367-2630/7/1/229
10.1017/CBO9780511813993
10.1103/RevModPhys.75.715
10.1016/0375-9601(95)00214-N
10.1137/S0097539795293172
10.1016/0375-9601(91)90805-I
10.1103/PhysRevA.85.062327
10.1016/j.optcom.2006.01.061
10.1103/PhysRevA.68.042307
10.1103/PhysRevLett.100.080502
10.1038/nphoton.2008.130
10.1038/nphys507
10.1038/nature04279
10.1142/S0219749903000371
10.1103/PhysRevLett.91.130401
10.1038/ncomms3654
10.1088/1367-2630/12/5/053002
10.1103/PhysRevA.88.042305
10.1103/PhysRevA.85.052329
10.1103/PhysRevLett.65.1838
10.1126/science.1097522
10.1103/PhysRevLett.92.220402
10.1126/science.1057357
10.1080/09500340008244050
10.1126/science.1221856
10.1080/0950034021000011536
10.1103/PhysRevA.71.032349
10.1016/S0034-4877(07)00003-1
10.1038/nature05231
10.1103/PhysRevA.78.012334
10.1103/PhysRevA.74.052304
10.1038/nature12802
10.1103/PhysRevLett.95.010503
10.1103/physrevlett.112.155304
10.1088/0953-4075/39/15/S09
10.1103/PhysRevLett.93.140402
10.1103/PhysRevA.79.032322
10.1080/09500340008244048
10.1007/3-540-44874-8_8
10.1038/nphoton.2011.35
10.1038/ncomms1556
10.1103/PhysRevA.79.052304
10.1103/PhysRevA.50.R895
10.1103/PhysRevA.76.022312
10.1038/nphys1781
10.1080/09500349908231260
10.1103/PhysRevLett.97.050501
10.1103/PhysRevLett.107.210404
10.1103/PhysRevLett.105.130501
10.26421/QIC7.8-1
10.1016/j.physrep.2009.02.004
10.1103/PhysRevX.3.031015
10.1038/nature03064
10.1088/0305-4470/39/11/009
10.1007/BF02650179
10.1038/nature07121
10.1073/pnas.0908329106
10.1038/nature02961
10.1103/PhysRevLett.103.200503
10.1103/PhysRevLett.99.250405
10.1103/PhysRevA.78.042103
10.1016/j.aop.2013.03.003
10.1103/physrevlett.112.160401
10.1364/JOSAB.24.000275
10.1103/PhysRevLett.111.093603
10.1038/nature09568
10.1017/CBO9780511535048
10.1006/aphy.2001.6201
10.1103/PhysRevLett.84.2726
10.1063/1.1497700
10.1103/RevModPhys.76.1267
10.1103/PhysRevA.81.052330
10.1103/PhysRev.93.99
10.1103/PhysRevLett.105.190504
10.1007/s00220-003-0981-7
10.1103/PhysRevLett.100.220401
10.1063/1.881360
10.1038/nature07127
10.1103/PhysRevA.65.040101
10.1103/PhysRevA.62.052310
10.1103/PhysRevLett.79.3865
10.1103/PhysRevLett.113.040503
10.1103/PhysRevLett.95.260502
10.1103/PhysRevLett.70.1244
10.1038/nature05244
10.1103/PhysRevA.79.032102
10.1142/S0217979213450537
10.1103/PhysRevLett.87.040401
10.1103/PhysRevA.57.1619
10.1103/PhysRevB.77.205419
10.1103/PhysRevLett.111.130406
10.1103/PhysRevLett.93.140404
10.1103/PhysRevA.85.032318
10.1103/physreva.68.052101
10.1007/BF01336768
10.1103/RevModPhys.82.277
10.1103/PhysRevLett.105.193602
10.1103/PhysRevLett.77.1413
10.1126/science.1227193
10.1007/BF00669912
10.1103/PhysRevA.58.2733
10.1088/1367-2630/9/4/106
10.26421/QIC4.5-6
10.1126/science.1142654
10.1038/ncomms3432
10.1103/PhysRevLett.100.190403
10.1103/PhysRevLett.98.077602
10.1103/PhysRevA.66.062305
10.1103/PhysRevLett.106.230501
10.1038/nature13461
10.1103/PhysRevLett.110.130406
10.1038/nature06670
10.1103/PhysRevA.61.042314
10.1103/PhysRevA.68.062306
10.1103/PhysRevA.75.062336
10.1103/PhysRevA.75.062324
10.1088/1367-2630/8/8/147
10.1103/PhysRevA.58.883
10.1038/35057215
10.1088/0034-4885/70/8/R03
10.1126/science.1178683
10.1103/PhysRevLett.83.3562
10.1103/PhysRevA.71.012319
10.1103/PhysRevA.63.032306
10.1070/RM1998v053n06ABEH000091
10.1103/PhysRevLett.100.080501
10.1103/PhysRevLett.70.548
10.1103/PhysRevA.58.826
10.1103/PhysRevA.75.062307
10.1038/nphoton.2009.93
10.1103/PhysRevLett.73.1923
10.1103/PhysRevLett.82.5385
10.1038/nature05346
10.1103/PhysRevLett.103.030502
10.1103/PhysRevA.82.052308
10.1038/ncomms5502
10.1103/RevModPhys.80.517
10.1103/PhysRevA.87.012328
10.1103/PhysRevA.54.3824
10.1007/s00220-006-1535-6
10.1080/09500340308234554
10.1038/nature08171
10.1103/PhysRevLett.87.167904
10.1088/1464-4266/4/6/313
10.1103/PhysRevA.69.062311
10.1103/PhysRevLett.103.110502
10.1103/PhysRevLett.78.5022
10.1103/PhysRevE.77.011112
10.1103/PhysRevLett.105.150401
10.1038/ncomms1951
10.1007/3-540-33133-6_6
10.1038/nature02570
10.1103/PhysRevLett.86.3658
10.1142/S0129055X03001709
10.1103/PhysRevA.71.032350
10.1103/PhysRevA.77.032345
10.1038/nature07288
10.1103/physrevlett.113.060503
10.1103/PhysRevLett.106.090501
10.1016/j.physleta.2003.09.044
10.1103/PhysRevA.79.042302
10.1103/PhysRevLett.78.2275
10.1080/09500340110105975
10.1088/0305-4470/34/47/329
10.1103/PhysRevA.77.030301
10.1038/35106500
10.1049/iet-cta.2009.0508
10.1103/PhysRevA.81.032310
10.1103/PhysRevA.82.032327
10.1103/PhysRevLett.112.150802
10.1038/nphys1958
10.1016/S0375-9601(99)00609-X
10.1103/PhysRevLett.89.277901
10.1103/PhysRevLett.84.2722
10.1103/PhysRevLett.81.5039
10.1007/BF01608499
10.1103/PhysRevLett.91.227901
10.1103/PhysRevD.35.3066
10.1088/1751-8113/43/24/245303
10.1103/PhysRevA.47.5138
10.1038/ncomms3027
10.1016/0370-1573(82)90102-8
10.1103/PhysRevA.77.032342
10.1103/PhysRevLett.77.4887
10.1103/PhysRevA.65.052327
10.1119/1.16243
10.1088/1367-2630/10/5/053026
10.1103/PhysRev.47.777
10.1088/1367-2630/11/7/073051
10.1007/BF00417500
10.1103/PhysRevA.74.024304
10.1038/nphys2253
10.1126/science.1172260
10.1016/0375-9601(92)90949-M
10.1103/PhysRevLett.91.107903
10.1007/3-540-45338-5_8
10.1103/PhysicsPhysiqueFizika.1.195
10.1103/PhysRevA.82.052323
10.1103/PhysRevLett.67.661
10.1103/PhysRevLett.78.2547
10.1103/PhysRevA.75.062119
10.1038/nphys2252
10.1007/3-540-12732-1
10.1103/PhysRevLett.100.150404
10.1103/PhysRevA.54.R4649
10.1103/PhysRev.131.2766
10.1126/science.1167343
10.1126/science.1097576
10.1103/PhysRevA.82.032112
10.1103/PhysRevLett.104.210501
10.1103/PhysRevLett.105.210502
10.1103/PhysRevA.81.062318
10.1038/nature12012
10.1103/PhysRevLett.97.120405
10.1088/0305-4470/37/15/L04
10.1038/37539
10.1103/PhysRevLett.81.3108
10.1103/PhysRevLett.23.880
10.1103/PhysRevA.74.052316
10.1103/PhysRevLett.80.5239
10.1103/PhysRevLett.98.063604
10.1038/nphys1157
10.1038/nphys2259
10.1103/PhysRevLett.99.240405
10.1103/PhysRevLett.83.3103
10.1126/science.1171544
10.1038/35002001
10.1103/PhysRevA.75.052337
10.1088/1367-2630/11/10/103016
10.1103/PhysRevLett.105.250403
10.1103/PhysRevB.90.054304
10.1016/S0375-9601(96)00706-2
10.1126/science.290.5491.498
10.1103/PhysRevA.77.032302
10.1103/PhysRevA.74.032318
10.1103/PhysRevLett.90.107901
10.1103/PhysRevA.71.062313
10.1038/nphys2178
10.1038/nphys1603
10.1103/PhysRevA.69.022318
10.1016/0375-9601(92)90711-T
10.1088/0953-4075/41/23/235503
10.1103/PhysRevLett.98.240401
10.1103/PhysRevLett.106.180504
10.1103/RevModPhys.80.885
10.1103/PhysRevA.63.022116
10.1038/35005011
10.1103/PhysRevA.63.012307
10.1103/PhysRevLett.74.4101
10.1088/1751-8113/40/28/S01
10.1103/PhysRevLett.95.240405
10.1103/PhysRevLett.77.4281
10.1103/PhysRevA.76.010301
10.1103/PhysRevLett.71.2360
10.1126/science.1143835
10.1103/PhysRevLett.86.5188
10.1103/PhysRevA.78.012357
10.1103/PhysRevLett.98.230501
10.1103/PhysRevA.78.042307
10.1103/PhysRevLett.76.4656
10.1016/j.aop.2012.02.002
10.1006/aphy.1996.0040
10.1103/PhysRevA.86.020301
10.1103/PhysRevA.73.010304
10.1103/PhysRevLett.77.198
10.1038/nature10770
10.1038/35051038
10.1103/PhysRevLett.81.3563
10.1103/PhysRevLett.77.4728
10.1016/0034-4877(72)90011-0
10.1007/978-3-540-47620-7
10.1103/PhysRevLett.100.160502
10.1038/nphoton.2010.222
10.1038/35096524
10.1103/PhysRevA.65.012308
10.1103/PhysRevLett.103.020504
10.1088/2040-8978/13/6/064001
10.1038/nature09801
10.1038/nphoton.2011.354
10.1038/nature09662
10.1103/PhysRevA.53.1295
10.1038/nature05101
10.1088/0305-4470/34/35/314
10.1038/415039a
10.1103/PhysRevLett.49.1804
10.1088/1367-2630/14/10/105001
10.1038/35000514
10.1038/ncomms3851
10.1016/S0375-9601(00)00157-2
10.1103/PhysRevB.87.081305
10.1103/PhysRevLett.82.1345
10.1103/PhysRevA.67.012307
10.1007/s10955-006-9143-6
10.1038/nphys1372
10.1103/PhysRevA.72.022312
10.1103/PhysRevLett.98.100501
10.1007/978-3-662-04209-0
10.1103/PhysRevLett.99.160502
10.1103/PhysRevA.62.032307
10.1103/PhysRevLett.104.100502
10.1016/0034-4877(76)90038-0
10.1103/PhysRevA.31.1059
10.1103/PhysRevB.71.153105
10.1103/RevModPhys.84.621
10.1103/PhysRevA.72.042318
10.1063/1.1494474
10.1103/PhysRevLett.100.253601
10.1103/PhysRevLett.89.067901
10.1103/PhysRevA.65.042107
10.1103/PhysRevA.73.040305
10.1103/PhysRevA.84.052319
10.26421/QIC3.3-1
10.1017/S0305004100019137
10.1103/PhysRevLett.96.170502
10.1103/PhysRevA.78.022308
10.1038/nphys961
10.1103/PhysRev.140.A1051
10.1103/PhysRevA.62.022302
10.1103/PhysRevA.60.3496
10.1103/PhysRevA.76.052303
10.26421/QIC7.1-2-1
10.1088/1751-8113/43/27/275306
10.1103/PhysRevA.82.032317
10.1038/nature05273
10.1103/PhysRevLett.109.150403
10.1007/s00340-005-1917-z
10.26421/QIC7.4-5
10.1109/TIT.2013.2257936
10.1038/35005001
10.1103/PhysRevA.65.012101
10.1126/science.288.5473.2024
10.1088/0953-4075/40/9/S02
10.1126/science.1104149
10.1103/PhysRevA.77.062322
10.1103/PhysRevA.83.052104
10.1209/0295-5075/88/20011
10.1038/nphys2682
10.1103/PhysRevLett.112.080801
10.1088/1751-8113/46/8/085301
10.1038/nphys1342
10.1038/ncomms1193
10.1103/PhysRevLett.78.2031
10.1103/PhysRevLett.105.020501
10.1088/1367-2630/16/11/113028
10.1016/S0375-9601(97)00416-7
10.1103/PhysRevLett.103.160401
10.1103/PhysRevLett.101.170502
10.1088/1464-4266/6/3/015
10.1103/PhysRevA.75.012305
10.1038/35059017
10.1006/aphy.2002.6268
10.1103/PhysRevA.79.022112
10.1088/1367-2630/12/2/025011
10.1103/PhysRevLett.97.140403
10.1103/PhysRevLett.108.180502
10.1103/PhysRevLett.102.170503
10.1103/PhysRevA.73.062105
10.1103/PhysRevA.73.030303
10.1063/1.522979
10.1063/1.3637628
10.1038/nature01888
10.1103/PhysRevLett.70.1895
10.1038/nphys2681
10.1103/PhysRevA.70.012109
10.1103/PhysRevLett.97.170408
10.1038/nphys2300
10.1103/PhysRevA.81.043802
ContentType Journal Article
Copyright 2015 IOP Publishing Ltd
Copyright_xml – notice: 2015 IOP Publishing Ltd
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
H8D
L7M
DOI 10.1088/0034-4885/78/4/042001
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList PubMed
Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Open-system dynamics of entanglement:a key issues review
EISSN 1361-6633
EndPage 79
ExternalDocumentID 25811809
10_1088_0034_4885_78_4_042001
rop260029
Genre Journal Article
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ACNCT
ADIYS
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
WH7
XPP
ZMT
~02
AAYXX
ADEQX
CITATION
02O
1WK
29P
5ZI
9BW
AAGCF
ABEFU
ABTAH
ACARI
ACKIV
ACWPO
AERVB
AFFNX
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
MVM
NPM
OHT
Q02
S3P
T37
VO1
XOL
ZCG
ZY4
7X8
AEINN
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c431t-fb6a6639f422ab8a99036ebea4216e5b6bf687e79ff9e02bd04933e5f7d330433
IEDL.DBID IOP
ISSN 0034-4885
1361-6633
IngestDate Fri Sep 05 07:39:58 EDT 2025
Tue Aug 05 10:12:52 EDT 2025
Thu Apr 03 07:00:27 EDT 2025
Tue Jul 01 02:52:54 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Wed Aug 21 03:33:13 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-fb6a6639f422ab8a99036ebea4216e5b6bf687e79ff9e02bd04933e5f7d330433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://iopscience.iop.org/article/10.1088/0034-4885/78/4/042001/pdf
PMID 25811809
PQID 1669835265
PQPubID 23479
PageCount 79
ParticipantIDs crossref_primary_10_1088_0034_4885_78_4_042001
proquest_miscellaneous_1669835265
pubmed_primary_25811809
proquest_miscellaneous_1762101568
iop_journals_10_1088_0034_4885_78_4_042001
crossref_citationtrail_10_1088_0034_4885_78_4_042001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Reports on progress in physics
PublicationTitleAbbrev RoPP
PublicationTitleAlternate Rep. Prog. Phys
PublicationYear 2015
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Pineda C (129) 2001; 9
Ali M (436) 2014; 47
Hartmann L (451) 2007; 9
Gühne O (225) 2005; 7
Born M (15) 2005
1
2
3
4
7
8
9
Flammia S T (375) 2014; 14
Das S (414) 2009; 42
Carvalho A R R (446) 2011; 13
Drumond R C (150) 2009; 42
Abdel-Aty M (144) 2008; 41
Benatti F (417) 2009; 88
Hayden P M (297) 2001; 34
Davies E B (403) 1976
Breuer H P (222) 2002
Cavalcanti D (157) 2010; 12
Aaronson S (44) 2011
Scully M O (244) 1997
Schlosshauer M A (84) 2007
Yu T (469)
500
501
502
504
505
506
507
508
509
Brennen G K (305) 2003; 3
Moravčiková L (158) 2010; 43
510
Farías O J (543) 2014
512
Prauzner-Bechcicki J S (424) 2004; 37
513
514
515
Adesso G (242) 2007; 40
518
519
520
400
521
401
522
523
524
525
526
406
527
407
528
408
409
D’Hondt E (476) 2006; 6
Bell J S (6) 2004
Yu T (124) 2007; 7
530
410
531
411
532
412
533
413
534
535
415
536
Wu L-A (162) 2013; 15
416
Chen K (485) 2007; 7
537
538
418
539
419
Yönaç M (125) 2007; 40
Kay A (284) 2006; 8
Carmichael H (405) 1993
420
541
300
421
301
422
302
544
303
545
304
546
426
547
306
427
548
428
308
309
Steane A M (11) 1998; 61
von Neumann J (78) 1932
Leggett A J (90) 2002; 14
Vedral V (317); 57
550
430
551
310
431
552
553
312
433
554
313
434
314
435
556
315
557
316
437
438
559
318
439
319
Marrucci L (540) 2011; 13
Li J (442) 2009; 11
440
320
441
200
321
322
443
202
323
444
203
324
445
204
325
205
326
447
206
327
448
207
328
449
208
329
209
Das S (154) 2009; 42
Patanè D (516) 2007; 9
Eisert J (549) 2010
Preskill J (398) 1998
Dür W (277) 2007; 70
Brandão F G S L (29) 2013
450
330
210
331
452
332
453
212
333
454
213
334
455
214
335
456
215
336
457
216
337
458
217
338
459
Clarisse L (274) 2006
339
219
460
340
461
220
341
462
100
221
342
463
101
343
464
102
223
344
465
103
224
345
466
104
467
105
347
468
227
348
Kaszlikowski D (517) 2008; 10
107
228
349
108
229
109
Choi M-D (236) 1982; 38
Plenio M B (218) 2007; 7
470
350
351
110
231
352
473
111
232
353
474
112
233
354
475
113
234
355
114
235
356
477
115
357
116
237
358
479
117
359
Schachenmayer J (558) 2013; 3
118
239
119
10
12
14
16
17
18
19
Tiersch M (138) 2013; 46
360
481
Greenberger D M (226)
240
482
362
483
363
484
122
243
364
123
365
Tiersch M (471) 2009
486
366
487
246
367
488
126
247
368
489
127
248
369
128
249
20
21
22
23
24
26
27
Benatti F (120) 2006; 39
28
490
370
491
250
371
492
130
251
372
493
131
252
373
494
253
374
495
133
254
496
134
255
376
497
135
256
Aolita L (381) 2014
498
136
257
378
499
137
258
379
259
139
30
Ban M (425) 2006; 39
31
32
33
34
35
36
37
38
39
380
260
140
382
141
262
383
142
263
384
143
264
265
386
145
266
387
146
267
388
147
268
389
148
269
149
40
41
42
43
45
46
47
Ferraro A (241) 2005
48
49
390
An J-H (429) 2009; 42
270
391
271
392
151
272
393
152
273
394
153
395
275
396
155
276
397
156
278
399
279
159
50
51
52
Ozeri R (211) 2013
53
54
55
56
57
58
59
280
160
281
161
Gühne O (261) 2010; 12
282
283
163
164
285
165
286
166
287
167
168
289
169
Ioannou L M (230) 2007; 7
60
61
62
63
64
65
Tana R (106) 2004; 6
66
67
68
69
Mintert F (432) 2010; 43
290
170
291
171
292
172
293
173
294
174
295
175
296
176
177
298
178
299
179
70
Gardiner C W (245) 1999
Colbeck R (25) 2007
71
72
73
74
75
76
Kleckner D (529) 2008; 10
77
79
180
181
182
Kay A (288) 2010; 43
183
Nielsen M A (503) 2000
184
185
186
187
188
189
80
81
82
83
Cirac J I (478) 2001; 34
85
86
87
88
89
190
191
192
193
194
195
196
Paris M G A (423) 2002; 4
197
198
199
91
92
93
94
95
96
97
98
99
Helstrom A S (201) 1976
Yöna M (121) 2006; 39
Chen K (238) 2003; 3
Ledoux M (472) 2001
Moroder T (377) 2012; 14
Bell J S (5) 1964; 1
Rådmark M (361) 2009; 11
Lavoie J (346) 2009; 11
Krenn M (542) 2014; 16
Terra Cunha M O (132) 2007; 9
Nielsen M A (13) 2000
Brun T A (385) 2004; 4
Eisert J (307) 2001
Holevo A S (402) 1999; 53
Verstraete F (311); 34
Cohen-Tannoudji C (404) 1992
Campbell S (511) 2009; 11
Hein M (480) 2006
Kliesch M (555) 2013
References_xml – ident: 412
  doi: 10.1103/PhysRevLett.91.070402
– ident: 200
  doi: 10.1038/nature12801
– ident: 389
  doi: 10.1103/PhysRevLett.98.140505
– ident: 462
  doi: 10.1103/PhysRevA.71.012318
– ident: 393
  doi: 10.1103/PhysRevA.78.042308
– ident: 313
  doi: 10.1103/PhysRevA.70.032326
– ident: 287
  doi: 10.1103/PhysRevA.79.022108
– ident: 422
  doi: 10.1103/PhysRevA.76.044101
– ident: 55
  doi: 10.1038/nature04251
– ident: 164
  doi: 10.1103/PhysRevA.88.062328
– ident: 362
  doi: 10.1103/PhysRevLett.95.210502
– ident: 254
  doi: 10.1016/S0375-9601(01)00142-6
– ident: 39
  doi: 10.1038/nphys2275
– ident: 166
  doi: 10.1103/PhysRevLett.99.180504
– ident: 104
  doi: 10.1103/PhysRevA.69.052105
– ident: 418
  doi: 10.1103/PhysRevA.59.4206
– ident: 273
  doi: 10.1103/PhysRevA.61.062313
– ident: 223
  doi: 10.1007/BF01449770
– ident: 57
  doi: 10.1103/PhysRevLett.106.130506
– volume: 10
  issn: 1367-2630
  year: 2008
  ident: 529
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/9/095020
– ident: 465
  doi: 10.1103/PhysRevA.86.050302
– year: 2005
  ident: 241
  publication-title: Bibliopolis, Napoli
– ident: 209
  doi: 10.1038/nphoton.2010.39
– ident: 272
  doi: 10.1103/PhysRevA.61.062312
– ident: 413
  doi: 10.1103/PhysRevA.73.062306
– ident: 224
  doi: 10.1103/PhysRevA.40.4277
– ident: 60
  doi: 10.1038/nature03347
– ident: 438
  doi: 10.1103/PhysRevA.60.2700
– ident: 507
  doi: 10.1103/PhysRevA.84.022324
– volume: 61
  start-page: 117
  issn: 0034-4885
  year: 1998
  ident: 11
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/61/2/002
– ident: 266
  doi: 10.1063/1.1495917
– ident: 499
  doi: 10.1103/PhysRevA.78.060301
– ident: 215
  doi: 10.1103/PhysRevLett.112.150801
– ident: 2
  doi: 10.1007/BF01491891
– ident: 194
  doi: 10.1038/nphys1073
– ident: 354
  doi: 10.1103/RevModPhys.86.419
– ident: 426
  doi: 10.1103/PhysRevA.76.042127
– ident: 3
  doi: 10.1017/S0305004100013554
– volume: 9
  start-page: 237
  issn: 1367-2630
  year: 2007
  ident: 132
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/7/237
– ident: 454
  doi: 10.1103/PhysRevLett.82.2417
– volume: 39
  start-page: 1927
  issn: 0305-4470
  year: 2006
  ident: 425
  publication-title: J. Phys.
  doi: 10.1088/0305-4470/39/8/010
– ident: 320
  doi: 10.1103/PhysRevLett.24.549
– year: 1932
  ident: 78
  publication-title: Matematische Grundlagen der Quantenmechanic
– ident: 264
  doi: 10.1103/PhysRevLett.106.190502
– ident: 556
  doi: 10.1103/PhysRevLett.104.190401
– ident: 363
  doi: 10.1103/PhysRevLett.95.240407
– ident: 551
  doi: 10.1007/BF01645779
– ident: 497
  doi: 10.1103/PhysRevA.79.022303
– year: 2001
  ident: 472
  publication-title: The Concentration of Measure Phenomenon
– ident: 524
  doi: 10.1103/PhysRevLett.112.160501
– ident: 47
  doi: 10.1038/nature01974
– ident: 171
  doi: 10.1103/PhysRevA.85.012314
– ident: 357
  doi: 10.1103/PhysRevLett.94.060501
– ident: 146
  doi: 10.1103/PhysRevLett.103.240502
– ident: 291
  doi: 10.1103/PhysRevA.56.4452
– ident: 165
  doi: 10.1126/science.1139892
– ident: 181
  doi: 10.1103/PhysRevA.78.060302
– ident: 557
  doi: 10.1103/PhysRevLett.111.207202
– volume: 34
  start-page: 6837
  issn: 0305-4470
  year: 2001
  ident: 478
  publication-title: J. Phys.
  doi: 10.1088/0305-4470/34/35/310
– ident: 203
  doi: 10.1007/s13538-011-0037-y
– volume: 9
  start-page: 230
  issn: 1367-2630
  year: 2007
  ident: 451
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/7/230
– ident: 455
  doi: 10.1126/science.288.5467.824
– ident: 249
  doi: 10.1103/PhysRevLett.95.230502
– ident: 137
  doi: 10.1103/PhysRevA.77.012117
– ident: 110
  doi: 10.1103/PhysRevA.70.010301
– ident: 300
  doi: 10.1038/nphys1224
– ident: 59
  doi: 10.1038/nature02643
– ident: 427
  doi: 10.1103/PhysRevA.76.042127
– ident: 460
  doi: 10.1007/s11128-009-0139-4
– ident: 428
  doi: 10.1103/PhysRevA.77.042305
– ident: 252
  doi: 10.1016/S0375-9601(00)00401-1
– ident: 294
  doi: 10.1103/PhysRevLett.86.2681
– ident: 419
  doi: 10.1103/PhysRevLett.85.2625
– ident: 475
  doi: 10.1103/PhysRevA.59.1829
– ident: 50
  doi: 10.1038/nature02377
– ident: 81
  doi: 10.1007/978-3-662-05328-7
– volume: 3
  start-page: 619
  issn: 1533-7146
  year: 2003
  ident: 305
  publication-title: Quantum Inform. Comput.
  doi: 10.26421/QIC3.6-5
– ident: 512
  doi: 10.1103/PhysRevLett.100.200407
– ident: 554
  doi: 10.1103/PhysRevLett.97.050401
– ident: 186
  doi: 10.1016/j.aop.2014.07.021
– ident: 285
  doi: 10.1103/PhysRevA.78.012335
– ident: 349
  doi: 10.1038/nature08363
– ident: 134
  doi: 10.1103/PhysRevLett.101.080503
– ident: 351
  doi: 10.1103/PhysRevA.47.R747
– volume: 15
  issn: 1367-2630
  year: 2013
  ident: 162
  publication-title: New J. Phys.
– ident: 447
  doi: 10.1103/PhysRevA.83.022311
– year: 2000
  ident: 503
  publication-title: Quantum Computation and Quantum Information
– volume: 6
  start-page: 173
  issn: 1533-7146
  year: 2006
  ident: 476
  publication-title: Quantum Inform. Comput.
  doi: 10.26421/QIC6.2-3
– ident: 213
  doi: 10.1038/nature13403
– ident: 219
  doi: 10.1103/RevModPhys.81.865
– ident: 231
  doi: 10.1145/780543.780545
– ident: 373
  doi: 10.1103/PhysRevLett.104.123601
– ident: 19
  doi: 10.1103/PhysRevLett.80.1121
– ident: 91
  doi: 10.1126/science.1211914
– ident: 533
  doi: 10.1140/epjd/e2009-00224-4
– ident: 43
  doi: 10.1038/nphys2251
– ident: 206
  doi: 10.1038/nature07125
– ident: 484
  doi: 10.1103/PhysRevA.71.042336
– ident: 64
  doi: 10.1103/PhysRevLett.103.020503
– ident: 153
  doi: 10.1103/PhysRevLett.102.160501
– ident: 303
  doi: 10.1103/PhysRevA.64.042315
– ident: 149
  doi: 10.1103/PhysRevA.80.042327
– volume: 42
  issn: 1751-8113
  year: 2009
  ident: 429
  publication-title: J. Phys. A: Math. Theor.
– ident: 474
  doi: 10.1103/PhysRevA.57.822
– ident: 75
  doi: 10.1007/BF01507634
– ident: 430
  doi: 10.1103/PhysRevD.45.2843
– ident: 79
  doi: 10.1515/9781400854554
– ident: 76
  doi: 10.1103/PhysRev.130.2529
– ident: 167
  doi: 10.1103/PhysRevA.78.022322
– ident: 257
  doi: 10.1103/PhysRevLett.92.087902
– ident: 331
  doi: 10.1103/PhysRevLett.28.938
– ident: 459
  doi: 10.1038/nphys885
– ident: 35
  doi: 10.1126/science.273.5278.1073
– ident: 525
  doi: 10.1103/PhysRevA.62.022311
– ident: 105
  doi: 10.1103/PhysRevLett.92.180403
– ident: 532
  doi: 10.1103/PhysRevA.78.062321
– ident: 191
  doi: 10.1103/PhysRevLett.86.4988
– ident: 26
  doi: 10.1038/nature09008
– ident: 502
  doi: 10.1103/PhysRevLett.111.120401
– volume: 9
  start-page: 322
  issn: 1367-2630
  year: 2007
  ident: 516
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/9/322
– ident: 433
  doi: 10.1103/PhysRevLett.106.110402
– ident: 408
  doi: 10.1109/PROC.1963.1664
– ident: 332
  doi: 10.1103/PhysRevLett.49.91
– ident: 486
  doi: 10.1103/PhysRevLett.99.120503
– ident: 21
  doi: 10.1103/RevModPhys.74.145
– ident: 501
  doi: 10.1103/PhysRevA.86.012108
– ident: 341
  doi: 10.1103/PhysRevLett.95.240406
– ident: 290
  doi: 10.1016/S0375-9601(99)00099-7
– ident: 308
  doi: 10.1103/PhysRevA.65.032314
– year: 2014
  ident: 381
– ident: 133
  doi: 10.1103/PhysRevA.77.054301
– ident: 343
  doi: 10.1103/PhysRevLett.108.100401
– ident: 388
  doi: 10.1038/nature04627
– ident: 8
  doi: 10.1103/PhysRevLett.69.2881
– ident: 107
  doi: 10.1103/PhysRevLett.93.230501
– ident: 314
  doi: 10.1103/PhysRevA.59.141
– ident: 326
  doi: 10.1103/PhysRevA.65.042302
– ident: 394
  doi: 10.1103/PhysRevLett.103.040404
– ident: 268
  doi: 10.1103/PhysRevA.78.020304
– ident: 113
  doi: 10.1016/j.physrep.2005.04.006
– ident: 178
  doi: 10.1103/PhysRevA.81.012105
– ident: 72
  doi: 10.1038/nature06184
– year: 2010
  ident: 549
– year: 2013
  ident: 555
– volume: 14
  start-page: R415
  issn: 0953-8984
  year: 2002
  ident: 90
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/14/15/201
– ident: 229
  doi: 10.1103/PhysRevA.62.062314
– volume: 7
  start-page: 459
  issn: 1533-7146
  year: 2007
  ident: 124
  publication-title: Quantum Inform. Comput.
  doi: 10.26421/QIC7.5-6-3
– ident: 544
  doi: 10.1103/PhysRevA.64.022303
– ident: 302
  doi: 10.1103/PhysRevLett.80.2245
– ident: 384
  doi: 10.1103/PhysRevLett.90.167901
– ident: 239
  doi: 10.1007/s11128-005-5664-1
– ident: 330
  doi: 10.1103/PhysRevA.78.032112
– ident: 500
  doi: 10.1103/PhysRevA.72.042339
– ident: 548
  doi: 10.1002/prop.201200079
– ident: 119
  doi: 10.1103/PhysRevA.74.052105
– ident: 115
  doi: 10.1103/PhysRevA.71.060308
– ident: 204
  doi: 10.1103/PhysRevLett.109.190404
– volume: 7
  start-page: 229
  issn: 1367-2630
  year: 2005
  ident: 225
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/7/1/229
– year: 1997
  ident: 244
  publication-title: Quantum Optics
  doi: 10.1017/CBO9780511813993
– ident: 83
  doi: 10.1103/RevModPhys.75.715
– ident: 329
  doi: 10.1016/0375-9601(95)00214-N
– ident: 10
  doi: 10.1137/S0097539795293172
– ident: 322
  doi: 10.1016/0375-9601(91)90805-I
– ident: 260
  doi: 10.1103/PhysRevA.85.062327
– ident: 117
  doi: 10.1016/j.optcom.2006.01.061
– ident: 318
  doi: 10.1103/PhysRevA.68.042307
– ident: 141
  doi: 10.1103/PhysRevLett.100.080502
– volume: 38
  year: 1982
  ident: 236
  publication-title: Proc. of Symposia in Pure Mathematics
– ident: 523
  doi: 10.1038/nphoton.2008.130
– ident: 61
  doi: 10.1038/nphys507
– ident: 56
  doi: 10.1038/nature04279
– ident: 240
  doi: 10.1142/S0219749903000371
– ident: 527
  doi: 10.1103/PhysRevLett.91.130401
– ident: 28
  doi: 10.1038/ncomms3654
– volume: 12
  issn: 1367-2630
  year: 2010
  ident: 261
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/5/053002
– ident: 504
  doi: 10.1103/PhysRevA.88.042305
– ident: 434
  doi: 10.1103/PhysRevA.85.052329
– ident: 347
  doi: 10.1103/PhysRevLett.65.1838
– ident: 364
  doi: 10.1126/science.1097522
– ident: 367
  doi: 10.1103/PhysRevLett.92.220402
– volume: 42
  issn: 0305-4470
  year: 2009
  ident: 150
  publication-title: J. Phys.
– ident: 521
  doi: 10.1126/science.1057357
– ident: 498
  doi: 10.1080/09500340008244050
– ident: 350
  doi: 10.1126/science.1221856
– ident: 208
  doi: 10.1080/0950034021000011536
– ident: 248
  doi: 10.1103/PhysRevA.71.032349
– ident: 420
  doi: 10.1016/S0034-4877(07)00003-1
– ident: 97
  doi: 10.1038/nature05231
– ident: 198
  doi: 10.1103/PhysRevA.78.012334
– ident: 452
  doi: 10.1103/PhysRevA.74.052304
– ident: 199
  doi: 10.1038/nature12802
– ident: 22
  doi: 10.1103/PhysRevLett.95.010503
– volume: 42
  issn: 0953-4075
  year: 2009
  ident: 414
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
– ident: 493
  doi: 10.1103/physrevlett.112.155304
– volume: 39
  start-page: 621
  issn: 0953-4075
  year: 2006
  ident: 121
  publication-title: J. Phys. B: Atom. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/39/15/S09
– ident: 552
  doi: 10.1103/PhysRevLett.93.140402
– ident: 187
  doi: 10.1103/PhysRevA.79.032322
– ident: 292
  doi: 10.1080/09500340008244048
– ident: 102
  doi: 10.1007/3-540-44874-8_8
– ident: 33
  doi: 10.1038/nphoton.2011.35
– ident: 69
  doi: 10.1038/ncomms1556
– ident: 514
  doi: 10.1103/PhysRevA.79.052304
– ident: 17
  doi: 10.1103/PhysRevA.50.R895
– ident: 127
  doi: 10.1103/PhysRevA.76.022312
– ident: 170
  doi: 10.1038/nphys1781
– ident: 309
  doi: 10.1080/09500349908231260
– ident: 387
  doi: 10.1103/PhysRevLett.97.050501
– ident: 379
  doi: 10.1103/PhysRevLett.107.210404
– volume: 11
  issn: 1367-2630
  year: 2009
  ident: 511
  publication-title: New J. Phys.
– ident: 283
  doi: 10.1103/PhysRevLett.105.130501
– year: 2013
  ident: 211
– volume: 7
  start-page: 689
  issn: 1533-7146
  year: 2007
  ident: 485
  publication-title: Quantum Inform. Comput.
  doi: 10.26421/QIC7.8-1
– ident: 220
  doi: 10.1016/j.physrep.2009.02.004
– volume: 3
  year: 2013
  ident: 558
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevX.3.031015
– ident: 51
  doi: 10.1038/nature03064
– volume: 39
  start-page: 2689
  issn: 0305-4470
  year: 2006
  ident: 120
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/11/009
– ident: 34
  doi: 10.1007/BF02650179
– ident: 338
  doi: 10.1038/nature07121
– ident: 250
  doi: 10.1073/pnas.0908329106
– ident: 48
  doi: 10.1038/nature02961
– ident: 531
  doi: 10.1103/PhysRevLett.103.200503
– ident: 515
  doi: 10.1103/PhysRevLett.99.250405
– ident: 136
  doi: 10.1103/PhysRevA.78.042103
– ident: 159
  doi: 10.1103/PhysRevLett.106.110402
– year: 1976
  ident: 201
  publication-title: Quantum Detection and Estimation Theory
– ident: 163
  doi: 10.1016/j.aop.2013.03.003
– ident: 275
  doi: 10.1103/physrevlett.112.160401
– ident: 494
  doi: 10.1364/JOSAB.24.000275
– ident: 210
  doi: 10.1103/PhysRevLett.111.093603
– ident: 71
  doi: 10.1038/nature09568
– ident: 216
  doi: 10.1017/CBO9780511535048
– ident: 312
  doi: 10.1006/aphy.2001.6201
– ident: 246
  doi: 10.1103/PhysRevLett.84.2726
– ident: 304
  doi: 10.1063/1.1497700
– ident: 396
  doi: 10.1103/RevModPhys.76.1267
– ident: 182
  doi: 10.1103/PhysRevA.81.052330
– ident: 416
  doi: 10.1103/PhysRev.93.99
– ident: 464
  doi: 10.1103/PhysRevLett.105.190504
– ident: 298
  doi: 10.1007/s00220-003-0981-7
– ident: 142
  doi: 10.1103/PhysRevLett.100.220401
– ident: 228
  doi: 10.1063/1.881360
– ident: 519
  doi: 10.1038/nature07127
– ident: 175
  doi: 10.1103/PhysRevA.65.040101
– ident: 253
  doi: 10.1103/PhysRevA.62.052310
– ident: 207
  doi: 10.1103/PhysRevLett.79.3865
– ident: 382
  doi: 10.1103/PhysRevLett.113.040503
– ident: 386
  doi: 10.1103/PhysRevLett.95.260502
– ident: 368
  doi: 10.1103/PhysRevLett.70.1244
– ident: 96
  doi: 10.1038/nature05244
– ident: 147
  doi: 10.1103/PhysRevA.79.032102
– ident: 185
  doi: 10.1142/S0217979213450537
– ident: 256
  doi: 10.1103/PhysRevLett.87.040401
– volume: 57
  start-page: 1619
  ident: 317
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.57.1619
– ident: 140
  doi: 10.1103/PhysRevB.77.205419
– ident: 353
  doi: 10.1103/PhysRevLett.111.130406
– volume: 47
  issn: 0953-4075
  year: 2014
  ident: 436
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
– ident: 108
  doi: 10.1103/PhysRevLett.93.140404
– ident: 183
  doi: 10.1103/PhysRevA.85.032318
– ident: 383
  doi: 10.1103/physreva.68.052101
– ident: 410
  doi: 10.1007/BF01336768
– ident: 221
  doi: 10.1103/RevModPhys.82.277
– ident: 457
  doi: 10.1103/PhysRevLett.105.193602
– ident: 234
  doi: 10.1103/PhysRevLett.77.1413
– ident: 538
  doi: 10.1126/science.1227193
– ident: 325
  doi: 10.1007/BF00669912
– ident: 453
  doi: 10.1103/PhysRevA.58.2733
– volume: 9
  start-page: 106
  issn: 1367-2630
  year: 2001
  ident: 129
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/4/106
– volume: 4
  start-page: 401
  issn: 1533-7146
  year: 2004
  ident: 385
  publication-title: Quantum Inform. Comput.
  doi: 10.26421/QIC4.5-6
– ident: 123
  doi: 10.1126/science.1142654
– ident: 539
  doi: 10.1038/ncomms3432
– ident: 372
  doi: 10.1103/PhysRevLett.100.190403
– ident: 400
  doi: 10.1103/PhysRevLett.98.077602
– ident: 355
  doi: 10.1103/PhysRevA.66.062305
– ident: 378
  doi: 10.1103/PhysRevLett.106.230501
– ident: 559
  doi: 10.1038/nature13461
– ident: 431
  doi: 10.1103/PhysRevLett.110.130406
– ident: 52
  doi: 10.1038/nature06670
– ident: 276
  doi: 10.1103/PhysRevA.61.042314
– ident: 492
  doi: 10.1103/PhysRevA.68.062306
– ident: 126
  doi: 10.1103/PhysRevA.75.062336
– ident: 130
  doi: 10.1103/PhysRevA.75.062324
– volume: 8
  start-page: 147
  issn: 1367-2630
  year: 2006
  ident: 284
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/8/8/147
– ident: 306
  doi: 10.1103/PhysRevA.58.883
– ident: 337
  doi: 10.1038/35057215
– volume: 70
  start-page: 1381
  issn: 0034-4885
  year: 2007
  ident: 277
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/70/8/R03
– ident: 168
  doi: 10.1126/science.1178683
– ident: 477
  doi: 10.1103/PhysRevLett.83.3562
– ident: 489
  doi: 10.1103/PhysRevA.71.012319
– ident: 281
  doi: 10.1103/PhysRevA.63.032306
– volume: 53
  start-page: 1295
  year: 1999
  ident: 402
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM1998v053n06ABEH000091
– year: 2005
  ident: 15
  publication-title: Politics and Physics in Uncertain Times
– ident: 145
  doi: 10.1103/PhysRevLett.100.080501
– ident: 437
  doi: 10.1103/PhysRevLett.70.548
– ident: 468
  doi: 10.1103/PhysRevA.58.826
– ident: 286
  doi: 10.1103/PhysRevA.75.062307
– ident: 73
  doi: 10.1038/nphoton.2009.93
– ident: 334
  doi: 10.1103/PhysRevLett.73.1923
– ident: 280
  doi: 10.1103/PhysRevLett.82.5385
– ident: 62
  doi: 10.1038/nature05346
– ident: 148
  doi: 10.1103/PhysRevLett.103.030502
– year: 2006
  ident: 274
– ident: 510
  doi: 10.1103/PhysRevA.82.052308
– ident: 541
  doi: 10.1038/ncomms5502
– ident: 217
  doi: 10.1103/RevModPhys.80.517
– ident: 513
  doi: 10.1103/PhysRevA.87.012328
– ident: 265
  doi: 10.1103/PhysRevA.54.3824
– ident: 470
  doi: 10.1007/s00220-006-1535-6
– ident: 356
  doi: 10.1080/09500340308234554
– ident: 528
  doi: 10.1038/nature08171
– ident: 233
  doi: 10.1103/PhysRevLett.87.167904
– volume: 4
  start-page: 442
  issn: 1464-4266
  year: 2002
  ident: 423
  publication-title: J. Opt.
  doi: 10.1088/1464-4266/4/6/313
– ident: 479
  doi: 10.1103/PhysRevA.69.062311
– ident: 269
  doi: 10.1103/PhysRevLett.103.110502
– ident: 301
  doi: 10.1103/PhysRevLett.78.5022
– ident: 139
  doi: 10.1103/PhysRevE.77.011112
– year: 2007
  ident: 84
  publication-title: Decoherence and the Quantum-to-Classical Transition
– ident: 374
  doi: 10.1103/PhysRevLett.105.150401
– ident: 536
  doi: 10.1038/ncomms1951
– ident: 299
  doi: 10.1007/3-540-33133-6_6
– ident: 20
  doi: 10.1038/nature02570
– year: 2004
  ident: 6
  publication-title: Unspeakable in Quantum Mechanics
– ident: 247
  doi: 10.1103/PhysRevLett.86.3658
– ident: 401
  doi: 10.1142/S0129055X03001709
– ident: 111
  doi: 10.1103/PhysRevA.71.032350
– ident: 535
  doi: 10.1103/PhysRevA.77.032345
– ident: 89
  doi: 10.1038/nature07288
– ident: 537
  doi: 10.1103/physrevlett.113.060503
– ident: 160
  doi: 10.1103/PhysRevLett.106.090501
– ident: 103
  doi: 10.1016/j.physleta.2003.09.044
– ident: 152
  doi: 10.1103/PhysRevA.79.042302
– ident: 316
  doi: 10.1103/PhysRevLett.78.2275
– volume: 42
  issn: 0953-4075
  year: 2009
  ident: 154
  publication-title: J. Phys.
– ident: 255
  doi: 10.1080/09500340110105975
– volume: 34
  start-page: 10327
  issn: 0305-4470
  ident: 311
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/34/47/329
– ident: 395
  doi: 10.1103/PhysRevA.77.030301
– ident: 518
  doi: 10.1038/35106500
– year: 2014
  ident: 543
– ident: 456
  doi: 10.1049/iet-cta.2009.0508
– ident: 444
  doi: 10.1103/PhysRevA.81.032310
– ident: 445
  doi: 10.1103/PhysRevA.82.032327
– ident: 214
  doi: 10.1103/PhysRevLett.112.150802
– ident: 32
  doi: 10.1038/nphys1958
– ident: 411
  doi: 10.1016/S0375-9601(99)00609-X
– ident: 174
  doi: 10.1103/PhysRevLett.89.277901
– ident: 100
  doi: 10.1103/PhysRevLett.84.2722
– ident: 335
  doi: 10.1103/PhysRevLett.81.5039
– ident: 407
  doi: 10.1007/BF01608499
– ident: 358
  doi: 10.1103/PhysRevLett.91.227901
– ident: 348
  doi: 10.1103/PhysRevD.35.3066
– year: 2013
  ident: 29
– volume: 43
  issn: 1751-8113
  year: 2010
  ident: 432
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/43/24/245303
– ident: 495
  doi: 10.1103/PhysRevA.47.5138
– ident: 458
  doi: 10.1038/ncomms3027
– ident: 415
  doi: 10.1016/0370-1573(82)90102-8
– volume: 14
  issn: 1367-2630
  year: 2014
  ident: 375
  publication-title: New J. Phys.
– ident: 180
  doi: 10.1103/PhysRevA.77.032342
– ident: 87
  doi: 10.1103/PhysRevLett.77.4887
– ident: 101
  doi: 10.1103/PhysRevA.65.052327
– ident: 227
  doi: 10.1119/1.16243
– volume: 10
  issn: 1367-2630
  year: 2008
  ident: 517
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/5/053026
– ident: 1
  doi: 10.1103/PhysRev.47.777
– volume: 11
  start-page: 073051
  issn: 1367-2630
  year: 2009
  ident: 346
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/7/073051
– year: 2000
  ident: 13
  publication-title: Quantum Information
– ident: 321
  doi: 10.1007/BF00417500
– ident: 122
  doi: 10.1103/PhysRevA.74.024304
– year: 1976
  ident: 403
  publication-title: Quantum Theory of Open Systems
– ident: 42
  doi: 10.1038/nphys2253
– ident: 155
  doi: 10.1126/science.1172260
– ident: 323
  doi: 10.1016/0375-9601(92)90949-M
– ident: 488
  doi: 10.1103/PhysRevLett.91.107903
– ident: 82
  doi: 10.1007/3-540-45338-5_8
– volume: 1
  start-page: 195
  year: 1964
  ident: 5
  publication-title: Physics
  doi: 10.1103/PhysicsPhysiqueFizika.1.195
– ident: 443
  doi: 10.1103/PhysRevA.82.052323
– ident: 7
  doi: 10.1103/PhysRevLett.67.661
– ident: 370
  doi: 10.1103/PhysRevLett.78.2547
– ident: 131
  doi: 10.1103/PhysRevA.75.062119
– ident: 41
  doi: 10.1038/nphys2252
– ident: 397
  doi: 10.1007/3-540-12732-1
– ident: 339
  doi: 10.1103/PhysRevLett.100.150404
– ident: 205
  doi: 10.1103/PhysRevA.54.R4649
– ident: 77
  doi: 10.1103/PhysRev.131.2766
– ident: 151
  doi: 10.1126/science.1167343
– ident: 31
  doi: 10.1126/science.1097576
– year: 2009
  ident: 471
– ident: 177
  doi: 10.1103/PhysRevA.82.032112
– volume: 13
  issn: 1367-2630
  year: 2011
  ident: 446
  publication-title: New J. Phys.
– ident: 262
  doi: 10.1103/PhysRevLett.104.210501
– year: 2006
  ident: 480
  publication-title: Proc. of the Int. School of Physics ‘Enrico Fermi’ on Quantum Computers, Algorithms and Chaos
– ident: 156
  doi: 10.1103/PhysRevLett.105.210502
– ident: 259
  doi: 10.1103/PhysRevA.81.062318
– ident: 315
  doi: 10.1088/0305-4470/34/47/329
– ident: 352
  doi: 10.1038/nature12012
– ident: 23
  doi: 10.1103/PhysRevLett.97.120405
– volume: 37
  start-page: L173
  issn: 0305-4470
  year: 2004
  ident: 424
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/15/L04
– ident: 18
  doi: 10.1038/37539
– ident: 36
  doi: 10.1103/PhysRevLett.81.3108
– ident: 319
  doi: 10.1103/PhysRevLett.23.880
– ident: 506
  doi: 10.1103/PhysRevA.74.052316
– ident: 271
  doi: 10.1103/PhysRevLett.80.5239
– ident: 359
  doi: 10.1103/PhysRevLett.98.063604
– ident: 482
  doi: 10.1038/nphys1157
– ident: 40
  doi: 10.1038/nphys2259
– ident: 128
  doi: 10.1103/PhysRevLett.99.240405
– ident: 366
  doi: 10.1103/PhysRevLett.83.3103
– ident: 520
  doi: 10.1126/science.1171544
– ident: 88
  doi: 10.1038/35002001
– ident: 530
  doi: 10.1103/PhysRevA.75.052337
– volume: 11
  issn: 1367-2630
  year: 2009
  ident: 361
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/10/103016
– ident: 376
  doi: 10.1103/PhysRevLett.105.250403
– ident: 449
  doi: 10.1103/PhysRevB.90.054304
– ident: 232
  doi: 10.1016/S0375-9601(96)00706-2
– ident: 188
  doi: 10.1126/science.290.5491.498
– ident: 135
  doi: 10.1103/PhysRevA.77.032302
– year: 2007
  ident: 25
– ident: 505
  doi: 10.1103/PhysRevA.74.032318
– ident: 295
  doi: 10.1103/PhysRevLett.90.107901
– ident: 491
  doi: 10.1103/PhysRevA.71.062313
– ident: 450
  doi: 10.1038/nphys2178
– ident: 66
  doi: 10.1038/nphys1603
– ident: 109
  doi: 10.1103/PhysRevA.69.022318
– ident: 324
  doi: 10.1016/0375-9601(92)90711-T
– year: 2002
  ident: 222
  publication-title: The Theory of Open Quantum Systems
– volume: 41
  issn: 0953-4075
  year: 2008
  ident: 144
  publication-title: J. Phys. B: Atom. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/41/23/235503
– ident: 192
  doi: 10.1103/PhysRevLett.98.240401
– ident: 380
  doi: 10.1103/PhysRevLett.106.180504
– ident: 38
  doi: 10.1103/RevModPhys.80.885
– ident: 98
  doi: 10.1103/PhysRevA.63.022116
– ident: 54
  doi: 10.1038/35005011
– ident: 267
  doi: 10.1103/PhysRevA.63.012307
– ident: 365
  doi: 10.1103/PhysRevLett.74.4101
– volume: 40
  start-page: 7821
  issn: 1751-8113
  year: 2007
  ident: 242
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/40/28/S01
– ident: 340
  doi: 10.1103/PhysRevLett.95.240405
– ident: 369
  doi: 10.1103/PhysRevLett.77.4281
– ident: 197
  doi: 10.1103/PhysRevA.76.010301
– ident: 86
  doi: 10.1103/PhysRevLett.71.2360
– ident: 49
  doi: 10.1126/science.1143835
– ident: 481
  doi: 10.1103/PhysRevLett.86.5188
– ident: 143
  doi: 10.1103/PhysRevA.78.012357
– ident: 24
  doi: 10.1103/PhysRevLett.98.230501
– ident: 195
  doi: 10.1103/PhysRevA.78.042307
– ident: 16
  doi: 10.1103/PhysRevLett.76.4656
– ident: 547
  doi: 10.1016/j.aop.2012.02.002
– ident: 30
  doi: 10.1006/aphy.1996.0040
– ident: 435
  doi: 10.1103/PhysRevA.86.020301
– ident: 439
  doi: 10.1103/PhysRevA.73.010304
– ident: 508
  doi: 10.1103/PhysRevLett.77.198
– ident: 68
  doi: 10.1038/nature10770
– ident: 496
  doi: 10.1038/35051038
– ident: 336
  doi: 10.1103/PhysRevLett.81.3563
– ident: 190
  doi: 10.1103/PhysRevLett.77.4728
– ident: 399
  doi: 10.1016/0034-4877(72)90011-0
– year: 1993
  ident: 405
  publication-title: An Open Systems Approach to Quantum Optics
  doi: 10.1007/978-3-540-47620-7
– ident: 487
  doi: 10.1103/PhysRevLett.100.160502
– ident: 169
  doi: 10.1038/nphoton.2010.222
– ident: 70
  doi: 10.1038/35096524
– ident: 483
  doi: 10.1103/PhysRevA.65.012308
– ident: 360
  doi: 10.1103/PhysRevLett.103.020504
– volume: 13
  issn: 0150-536X
  year: 2011
  ident: 540
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/13/6/064001
– ident: 550
  doi: 10.1038/nature09801
– ident: 67
  doi: 10.1038/nphoton.2011.354
– ident: 53
  doi: 10.1038/nature09662
– ident: 85
  doi: 10.1103/PhysRevA.53.1295
– ident: 63
  doi: 10.1103/PhysRevLett.100.160502
– ident: 522
  doi: 10.1038/nature05101
– volume: 34
  start-page: 6891
  issn: 0305-4470
  year: 2001
  ident: 297
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/34/35/314
– year: 1999
  ident: 245
  publication-title: Quantum Noise
– ident: 37
  doi: 10.1038/415039a
– ident: 333
  doi: 10.1103/PhysRevLett.49.1804
– volume: 14
  issn: 1367-2630
  year: 2012
  ident: 377
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/10/105001
– ident: 58
  doi: 10.1038/35000514
– ident: 173
  doi: 10.1038/ncomms3851
– ident: 310
  doi: 10.1016/S0375-9601(00)00157-2
– ident: 448
  doi: 10.1103/PhysRevB.87.081305
– ident: 344
  doi: 10.1103/PhysRevLett.82.1345
– ident: 421
  doi: 10.1103/PhysRevA.67.012307
– ident: 553
  doi: 10.1007/s10955-006-9143-6
– ident: 282
  doi: 10.1038/nphys1372
– start-page: 333
  year: 2011
  ident: 44
  publication-title: Proc. of ACM Symp. on the Theory of Computing
– ident: 114
  doi: 10.1103/PhysRevA.72.022312
– ident: 534
  doi: 10.1103/PhysRevLett.98.100501
– ident: 14
  doi: 10.1007/978-3-662-04209-0
– ident: 179
  doi: 10.1103/PhysRevLett.99.160502
– ident: 296
  doi: 10.1103/PhysRevA.62.032307
– ident: 184
  doi: 10.1103/PhysRevLett.104.100502
– ident: 235
  doi: 10.1016/0034-4877(76)90038-0
– ident: 80
  doi: 10.1103/PhysRevA.31.1059
– ident: 112
  doi: 10.1103/PhysRevB.71.153105
– ident: 243
  doi: 10.1103/RevModPhys.84.621
– year: 1998
  ident: 398
– ident: 463
  doi: 10.1103/PhysRevA.72.042318
– ident: 293
  doi: 10.1063/1.1494474
– ident: 92
  doi: 10.1103/PhysRevLett.100.253601
– ident: 46
  doi: 10.1103/PhysRevLett.89.067901
– ident: 176
  doi: 10.1103/PhysRevA.65.042107
– ident: 118
  doi: 10.1103/PhysRevA.73.040305
– ident: 263
  doi: 10.1103/PhysRevA.84.052319
– volume: 3
  start-page: 193
  issn: 1533-7146
  year: 2003
  ident: 238
  publication-title: Quantum Inform. Comput.
  doi: 10.26421/QIC3.3-1
– ident: 4
  doi: 10.1017/S0305004100019137
– ident: 258
  doi: 10.1103/PhysRevLett.96.170502
– ident: 390
  doi: 10.1103/PhysRevA.78.022308
– ident: 526
  doi: 10.1038/nphys961
– ident: 409
  doi: 10.1103/PhysRev.140.A1051
– ident: 278
  doi: 10.1103/PhysRevA.62.022302
– ident: 467
  doi: 10.1103/PhysRevA.60.3496
– ident: 392
  doi: 10.1103/PhysRevA.76.052303
– volume: 7
  start-page: 1
  issn: 1533-7146
  year: 2007
  ident: 218
  publication-title: Quantum Inform. Comput.
  doi: 10.26421/QIC7.1-2-1
– volume: 43
  issn: 1751-8113
  year: 2010
  ident: 158
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/43/27/275306
– ident: 490
  doi: 10.1103/PhysRevA.82.032317
– ident: 95
  doi: 10.1038/nature05273
– ident: 172
  doi: 10.1103/PhysRevLett.109.150403
– ident: 189
  doi: 10.1007/s00340-005-1917-z
– volume: 7
  start-page: 335
  issn: 1533-7146
  year: 2007
  ident: 230
  publication-title: Quantum Inform. Comput.
  doi: 10.26421/QIC7.4-5
– ident: 251
  doi: 10.1109/TIT.2013.2257936
– ident: 12
  doi: 10.1038/35005001
– ident: 99
  doi: 10.1103/PhysRevA.65.012101
– ident: 45
  doi: 10.1126/science.288.5473.2024
– volume: 40
  start-page: S45
  issn: 0953-4075
  year: 2007
  ident: 125
  publication-title: J. Phys.
  doi: 10.1088/0953-4075/40/9/S02
– ident: 202
  doi: 10.1126/science.1104149
– ident: 509
  doi: 10.1103/PhysRevA.77.062322
– ident: 342
  doi: 10.1103/PhysRevA.83.052104
– volume: 88
  start-page: 20011
  issn: 0295-5075
  year: 2009
  ident: 417
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/88/20011
– ident: 93
  doi: 10.1038/nphys2682
– ident: 469
– ident: 212
  doi: 10.1103/PhysRevLett.112.080801
– volume: 46
  issn: 1751-8113
  year: 2013
  ident: 138
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/46/8/085301
– ident: 196
  doi: 10.1038/nphys1342
– ident: 328
  doi: 10.1038/ncomms1193
– ident: 270
  doi: 10.1103/PhysRevLett.78.2031
– ident: 441
  doi: 10.1103/PhysRevLett.105.020501
– volume: 16
  issn: 1367-2630
  year: 2014
  ident: 542
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/11/113028
– ident: 237
  doi: 10.1016/S0375-9601(97)00416-7
– volume: 43
  issn: 1751-8113
  year: 2010
  ident: 288
  publication-title: J. Phys. A: Math. Theor.
– ident: 65
  doi: 10.1103/PhysRevLett.103.160401
– ident: 466
  doi: 10.1103/PhysRevLett.101.170502
– volume: 6
  start-page: S90
  issn: 1464-4266
  year: 2004
  ident: 106
  publication-title: J. Opt. B: Quantum Semiclass. Opt.
  doi: 10.1088/1464-4266/6/3/015
– ident: 279
  doi: 10.1103/PhysRevA.75.012305
– ident: 440
  doi: 10.1038/35059017
– ident: 545
  doi: 10.1006/aphy.2002.6268
– ident: 391
  doi: 10.1103/PhysRevA.79.022112
– ident: 461
  doi: 10.1126/science.1171544
– volume: 12
  issn: 1367-2630
  year: 2010
  ident: 157
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/2/025011
– ident: 116
  doi: 10.1103/PhysRevLett.97.140403
– volume: 11
  issn: 1367-2630
  year: 2009
  ident: 442
  publication-title: New J. Phys.
– ident: 473
  doi: 10.1103/PhysRevLett.108.180502
– ident: 289
  doi: 10.1103/PhysRevLett.102.170503
– ident: 327
  doi: 10.1103/PhysRevA.73.062105
– ident: 371
  doi: 10.1103/PhysRevA.73.030303
– ident: 406
  doi: 10.1063/1.522979
– ident: 161
  doi: 10.1063/1.3637628
– year: 1992
  ident: 404
  publication-title: Atom-Photon Interactions: Basic Processes and Applications
– ident: 74
  doi: 10.1038/nature01888
– year: 2001
  ident: 307
– ident: 9
  doi: 10.1103/PhysRevLett.70.1895
– ident: 94
  doi: 10.1038/nphys2681
– start-page: 69
  ident: 226
  publication-title: Bell’s Theorem, Quantum Theory and Conceptions of the Universe
– ident: 546
  doi: 10.1103/PhysRevA.70.012109
– ident: 345
  doi: 10.1103/PhysRevLett.97.170408
– ident: 27
  doi: 10.1038/nphys2300
– ident: 193
  doi: 10.1103/PhysRevA.81.043802
SSID ssj0011829
Score 2.62683
SecondaryResourceType review_article
Snippet One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42001
SubjectTerms Coherence
Control systems
Data processing
Dynamical systems
Dynamics
Entanglement
normal mode splitting
quantum entanglement
quantum information
quantum optics
Quantum theory
Scaling laws
strong coupling
surface plasmon polariton
vacuum Rabi splitting
Title Open-system dynamics of entanglement:a key issues review
URI https://iopscience.iop.org/article/10.1088/0034-4885/78/4/042001
https://www.ncbi.nlm.nih.gov/pubmed/25811809
https://www.proquest.com/docview/1669835265
https://www.proquest.com/docview/1762101568
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Ebz4_TG_qOBJSLelSZN4E3FMD-rBwW4lSRMRpRtuu_jX-9K0Q4U5xFsPeeX15aX5tfm930PonMDiI5I5LBkjmFprsDCSYmc7Ccu5VsyUap_3aa9P7wZs8KWK_2U4ql79MVwGoeAQwooQJ3z7MYoh71iLixZtQda1fQHXiu9e6Ul9tw-Ps3MEQM8BAFcmdQ3PvNt8252WwYP5wLPcgLobSNWuB97Jazyd6Nh8_FB1_M-zbaL1Cp1GV2H8FlqyxTZaLVmiZryDhKef4CD-HOWhl_04GrrIE9CL58BEv1QRvBiickLHUSiN2UX97s3TdQ9XrRewAUQxwU6nCrCIdJQQpYWCPStJYb4VJZ3UMp1qlwpuuXRO2jbROXxoJIlljuf-B0mS7KFGMSzsAYoUz6nyJFcJ1sZyAYjOko5t01xzY0gT0Trkmal0yX17jLesPB8XwsuX0swHJeMio1kIShPFM7NREOZYZHABUc-qJTpeNPisnvYM1ps_RFGFHU7BLE2lKJsK_DIGdpiOr1EXTbQfcmbmI2HCq-7Jw7-4c4TWAKixwBg6Ro3J-9SeABia6NMy3z8BxxT3pQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB0lVCAu_QBKU_qxlXqq5IR47bXNrSqN0oICByLlZtleuwfQJmqSC7-e8XoTiUohQr3twbOaHY_Xb9dv3gB8pbj4qOKBKM4pYd47Ip1iJPh-zkthDXe12ueoGI7Z7wmftOB8XQsznTWv_i5eJqHgFMKGECdj-zFGMO94T8ge62HWRRmhWRna8IJHdZVYxnd1vT5LQASdQHBjtqrj2XSrRztUG73YDD7rTWjwCvzK_cQ9ue0uF7br7v9Rdvzf53sNLxuUmn1PNm-g5asD2K3Zom5-CDLSUEgSgc7K1NN-nk1DFono1Z_ESD8zGb4gsnpi51kqkTmC8eDnzY8haVowEIfIYkGCLQxiEhUYpcZKg3tXXuC8G0b7hee2sKGQwgsVgvKn1Jb4wZHnngdRxh8lef4Wdqpp5d9BZkTJTCS7KrR2XkhEdp72_SkrrXCOdoCtwq5do08e22Tc6fqcXMooY8p0DIwWUjOdAtOB7tpslgQ6thl8w8jrZqnOtw3-spp6jesuHqaYyk-XaFYUStbNBZ4YgztNP9aqyw4cp7xZ-0i5jOp76v1z3PkMe9fnA335a3RxAvuI3XgiEX2AncXfpf-I-GhhP9Xp_wDMb_0I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open-system+dynamics+of+entanglement%3A+a+key+issues+review&rft.jtitle=Reports+on+progress+in+physics&rft.au=Aolita%2C+Leandro&rft.au=de+Melo%2C+Fernando&rft.au=Davidovich%2C+Luiz&rft.date=2015-04-01&rft.issn=0034-4885&rft.eissn=1361-6633&rft.volume=78&rft.issue=4&rft.spage=1&rft.epage=79&rft_id=info:doi/10.1088%2F0034-4885%2F78%2F4%2F042001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4885&client=summon