Optical sensor-based algorithm for crop nitrogen fertilization
Nitrogen (N) fertilization for cereal crop production does not follow any kind of generalized methodology that guarantees maximum nitrogen use efficiency (NUE). The objective of this work was to amalgamate some of the current concepts for N management in cereal production into an applied algorithm....
Saved in:
| Published in | Communications in soil science and plant analysis Vol. 36; no. 19-20; pp. 2759 - 2781 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Philadelphia, PA
Taylor & Francis Group
01.10.2005
Taylor & Francis |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-3624 1532-2416 |
| DOI | 10.1080/00103620500303988 |
Cover
| Abstract | Nitrogen (N) fertilization for cereal crop production does not follow any kind of generalized methodology that guarantees maximum nitrogen use efficiency (NUE). The objective of this work was to amalgamate some of the current concepts for N management in cereal production into an applied algorithm. This work at Oklahoma State University from 1992 to present has focused primarily on the use of optical sensors in red and near infrared bands for predicting yield, and using that information in an algorithm to estimate fertilizer requirements. The current algorithm, "WheatN.1.0," may be separated into several discreet components: 1) mid-season prediction of grain yield, determined by dividing the normalized difference vegetative index (NDVI) by the number of days from planting to sensing (estimate of biomass produced per day on the specific date when sensor readings are collected); 2) estimating temporally dependent responsiveness to applied N by placing non-N-limiting strips in production fields each year, and comparing these to the farmer practice (response index); and 3) determining the spatial variability within each 0.4 m
2
area using the coefficient of variation (CV) from NDVI readings. These components are then integrated into a functional algorithm to estimate application rate whereby N removal is estimated based on the predicted yield potential for each 0.4 m
2
area and adjusted for the seasonally dependent responsiveness to applied N. This work shows that yield potential prediction equations for winter wheat can be reliably established with only 2 years of field data. Furthermore, basing mid-season N fertilizer rates on predicted yield potential and a response index can increase NUE by over 15% in winter wheat when compared to conventional methods. Using our optical sensor-based algorithm that employs yield prediction and N responsiveness by location (0.4 m
2
resolution) can increase yields and decrease environmental contamination due to excessive N fertilization.
*Contribution from the Oklahoma Agricultural Experiment Station. |
|---|---|
| AbstractList | Nitrogen (N) fertilization for cereal crop production does not follow any kind of generalized methodology that guarantees maximum nitrogen use efficiency (NUE). The objective of this work was to amalgamate some of the current concepts for N management in cereal production into an applied algorithm. This work at Oklahoma State University from 1992 to present has focused primarily on the use of optical sensors in red and near infrared bands for predicting yield, and using that information in an algorithm to estimate fertilizer requirements. The current algorithm, "WheatN.1.0," may be separated into several discreet components: 1) mid-season prediction of grain yield, determined by dividing the normalized difference vegetative index (NDVI) by the number of days from planting to sensing (estimate of biomass produced per day on the specific date when sensor readings are collected); 2) estimating temporally dependent responsiveness to applied N by placing non-N-limiting strips in production fields each year, and comparing these to the farmer practice (response index); and 3) determining the spatial variability within each 0.4 m
2
area using the coefficient of variation (CV) from NDVI readings. These components are then integrated into a functional algorithm to estimate application rate whereby N removal is estimated based on the predicted yield potential for each 0.4 m
2
area and adjusted for the seasonally dependent responsiveness to applied N. This work shows that yield potential prediction equations for winter wheat can be reliably established with only 2 years of field data. Furthermore, basing mid-season N fertilizer rates on predicted yield potential and a response index can increase NUE by over 15% in winter wheat when compared to conventional methods. Using our optical sensor-based algorithm that employs yield prediction and N responsiveness by location (0.4 m
2
resolution) can increase yields and decrease environmental contamination due to excessive N fertilization.
*Contribution from the Oklahoma Agricultural Experiment Station. |
| Author | Solie, J.B Freeman, K.W Martin, K.L Stone, M.L Raun, W.R Mullen, R.W Johnson, G.V Zhang, H Schepers, J.S |
| Author_xml | – sequence: 1 fullname: Raun, W.R – sequence: 2 fullname: Solie, J.B – sequence: 3 fullname: Stone, M.L – sequence: 4 fullname: Martin, K.L – sequence: 5 fullname: Freeman, K.W – sequence: 6 fullname: Mullen, R.W – sequence: 7 fullname: Zhang, H – sequence: 8 fullname: Schepers, J.S – sequence: 9 fullname: Johnson, G.V |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17302371$$DView record in Pascal Francis |
| BookMark | eNqNkMtKAzEUhoNUsFYfwJWz0d1oLjOZFESQ4g0EF-o6nMlkaiRNapKi9emNtiIoiKtwyPedy7-NBs47jdAewUcEC3yMMcGMU1xjzDAbC7GBhqRmtKQV4QM0_PgvM1Btoe0Yn3I5bjAdotPbeTIKbBG1iz6ULUTdFWCnPpj0OCt6HwoV_LxwJgU_1a7odUjGmjdIxrsdtNmDjXp3_Y7Qw8X5_eSqvLm9vJ6c3ZSqYiSVGlMNQCmhjSCcE8FAdwTaum5F3_Y1V-NuLEBgldcE2qmatKImFW9ZUytK2QgdrvrOg39e6JjkzESlrQWn_SLKiouKiopn8GANQsxn9QGcMlHOg5lBWErSMExZQzJHVlw-Lsag-28Ey49E5a9Es9P8cJRJnzGkAMb-aZ6sTONyoDN48cF2MsHS-vC1IvvH4D_0X5ZMrymb-yuzBy9hGjL4cEcxYZmueJMDewc33KiW |
| CODEN | CSOSA2 |
| CitedBy_id | crossref_primary_10_2134_cs2018_51_0202 crossref_primary_10_1016_j_eja_2024_127346 crossref_primary_10_1111_j_1365_3040_2012_02588_x crossref_primary_10_3390_su13095010 crossref_primary_10_3390_agronomy9060278 crossref_primary_10_1109_LSENS_2023_3330072 crossref_primary_10_1016_j_compag_2016_04_016 crossref_primary_10_1007_s11119_020_09730_6 crossref_primary_10_2134_agronj2012_0504 crossref_primary_10_1016_j_fcr_2018_01_007 crossref_primary_10_1007_s11119_023_10102_z crossref_primary_10_2134_agronj2018_09_0607 crossref_primary_10_2134_agronj2006_0103 crossref_primary_10_3390_nitrogen5040054 crossref_primary_10_1590_0034_737x201764040003 crossref_primary_10_1007_s13593_012_0094_9 crossref_primary_10_3390_rs70404527 crossref_primary_10_1007_s10533_012_9802_4 crossref_primary_10_2134_agronj2005_0164 crossref_primary_10_1016_j_compag_2018_08_008 crossref_primary_10_1016_j_eja_2023_126792 crossref_primary_10_2134_agronj2015_0037 crossref_primary_10_2134_cftm2017_01_0005 crossref_primary_10_1016_j_fcr_2024_109260 crossref_primary_10_2134_agronj2017_07_0425 crossref_primary_10_1080_01904160802208261 crossref_primary_10_1007_s11119_024_10138_9 crossref_primary_10_1117_1_JRS_11_036013 crossref_primary_10_2134_agronj2017_02_0112 crossref_primary_10_2134_agronj2012_0184 crossref_primary_10_2134_agronj2011_0249 crossref_primary_10_1016_j_eja_2024_127132 crossref_primary_10_1080_01904167_2018_1434202 crossref_primary_10_1080_01904167_2013_810249 crossref_primary_10_1080_01904167_2020_1766074 crossref_primary_10_1051_agro_2010034 crossref_primary_10_1590_S0100_06832013000500019 crossref_primary_10_1590_S0100_06832013000500018 crossref_primary_10_1007_s11119_021_09863_2 crossref_primary_10_1007_s11119_016_9433_1 crossref_primary_10_3390_rs14020394 crossref_primary_10_1016_j_agrformet_2024_110252 crossref_primary_10_1016_j_eja_2024_127120 crossref_primary_10_3390_s17102287 crossref_primary_10_1007_s11119_018_9589_y crossref_primary_10_1080_03650340_2019_1701658 crossref_primary_10_1007_s12571_020_01020_3 crossref_primary_10_1007_s11119_014_9377_2 crossref_primary_10_1109_JSTARS_2011_2179020 crossref_primary_10_1002_agj2_20397 crossref_primary_10_1002_agj2_20035 crossref_primary_10_2134_agronj15_0121 crossref_primary_10_18016_ksutarimdoga_vi_732913 crossref_primary_10_1002_agj2_20836 crossref_primary_10_1007_s11119_007_9043_z crossref_primary_10_3390_rs12193136 crossref_primary_10_1155_2012_582028 crossref_primary_10_3390_rs11091094 crossref_primary_10_2135_cropsci2015_06_0398 crossref_primary_10_1016_j_jcs_2024_104053 crossref_primary_10_3390_rs13071373 crossref_primary_10_1007_s11119_018_9599_9 crossref_primary_10_1080_15427528_2017_1359715 crossref_primary_10_3390_crops4020010 crossref_primary_10_1590_1809_4430_eng_agric_v43n6e20230136_2023 crossref_primary_10_1080_03650340_2017_1411589 crossref_primary_10_2134_agronj2019_03_0217 crossref_primary_10_1109_TGRS_2021_3099624 crossref_primary_10_1016_j_compag_2018_05_012 crossref_primary_10_1007_s13593_012_0111_z crossref_primary_10_1155_2018_5670479 crossref_primary_10_1007_s13593_024_01003_0 crossref_primary_10_1016_j_agsy_2010_12_002 crossref_primary_10_1590_S0100_69162009000100011 crossref_primary_10_2134_agronj2013_0104 crossref_primary_10_3923_aj_2010_6_11 crossref_primary_10_1007_s11119_022_09957_5 crossref_primary_10_1007_s11119_024_10178_1 crossref_primary_10_1094_CM_2011_0725_01_RS crossref_primary_10_56093_ijas_v87i4_69470 crossref_primary_10_3390_agronomy12081804 crossref_primary_10_1016_j_fcr_2006_07_007 crossref_primary_10_2135_cropsci2016_01_0049 crossref_primary_10_2135_cropsci2016_02_0135 crossref_primary_10_2134_age2018_07_0016 crossref_primary_10_1080_00103624_2013_812735 crossref_primary_10_4081_ija_2021_1951 crossref_primary_10_1007_s11119_018_9581_6 crossref_primary_10_1590_S0100_204X2015000900013 crossref_primary_10_1016_j_eja_2018_06_008 crossref_primary_10_2134_agronj2011_0040 crossref_primary_10_1002_agj2_20621 crossref_primary_10_1002_agj2_20620 crossref_primary_10_1186_s40659_020_00312_4 crossref_primary_10_3389_fpls_2023_1282217 crossref_primary_10_1016_j_eja_2012_05_005 crossref_primary_10_1007_s11119_017_9499_4 crossref_primary_10_1007_s40808_021_01329_8 crossref_primary_10_2139_ssrn_3270532 crossref_primary_10_3389_fpls_2022_951181 crossref_primary_10_3390_su141811209 crossref_primary_10_1016_j_compag_2022_107479 crossref_primary_10_3390_su11030706 crossref_primary_10_2134_agronj2009_0114 crossref_primary_10_1016_j_crope_2023_11_001 crossref_primary_10_1007_s13738_024_03083_x crossref_primary_10_3390_s151127832 crossref_primary_10_3390_agronomy10081157 crossref_primary_10_1111_j_1574_0862_2009_00387_x crossref_primary_10_1590_0034_737X201663010014 crossref_primary_10_2134_agronj2016_09_0519 crossref_primary_10_2136_sssaj2008_0150 crossref_primary_10_1016_j_fcr_2020_107901 crossref_primary_10_1002_agj2_20007 crossref_primary_10_1002_agj2_20248 crossref_primary_10_2134_agronj2018_11_0726 crossref_primary_10_1007_s11119_016_9430_4 crossref_primary_10_3390_s20041127 crossref_primary_10_1007_s11119_010_9190_5 crossref_primary_10_1016_j_scitotenv_2020_136956 crossref_primary_10_1016_j_fcr_2007_03_023 crossref_primary_10_2134_agronj2018_12_0787 crossref_primary_10_1016_j_compag_2023_107858 crossref_primary_10_1007_s11119_013_9330_9 crossref_primary_10_2134_agronj2016_01_0041 crossref_primary_10_2134_agronj13_0578 crossref_primary_10_3390_s17040672 crossref_primary_10_2134_agronj2008_0162Rx crossref_primary_10_3390_rs12091440 crossref_primary_10_2134_agronj2008_0072x crossref_primary_10_1007_s10705_017_9865_7 crossref_primary_10_1016_j_compag_2017_12_015 crossref_primary_10_4236_ojss_2017_710020 crossref_primary_10_1007_s11119_020_09733_3 crossref_primary_10_1016_j_eja_2021_126287 crossref_primary_10_1016_j_fcr_2013_12_018 crossref_primary_10_1007_s11119_013_9326_5 crossref_primary_10_3390_agronomy11112098 crossref_primary_10_2134_agronj14_0494 crossref_primary_10_1007_s10705_023_10302_z crossref_primary_10_1007_s11119_015_9412_y crossref_primary_10_1007_s11119_010_9209_y crossref_primary_10_3390_agronomy10101533 crossref_primary_10_1016_j_eja_2023_126854 crossref_primary_10_1080_01904167_2024_2447840 crossref_primary_10_1155_2021_1443191 crossref_primary_10_1080_01904167_2015_1109109 crossref_primary_10_3390_rs12223783 crossref_primary_10_1590_S0100_204X2011000400015 crossref_primary_10_29059_cienciauat_v19i2_1925 crossref_primary_10_2134_agronj2017_05_0279 crossref_primary_10_29133_yyutbd_726039 crossref_primary_10_1080_00103624_2014_904337 crossref_primary_10_7745_KJSSF_2014_47_3_217 crossref_primary_10_1017_S0014479721000028 crossref_primary_10_1016_j_compag_2014_10_021 crossref_primary_10_1007_s11119_008_9092_y crossref_primary_10_1080_01904160802679974 crossref_primary_10_2134_agronj2016_07_0414 crossref_primary_10_1016_j_compag_2017_12_031 crossref_primary_10_1002_agj2_20566 crossref_primary_10_2134_agronj2016_12_0732 crossref_primary_10_1007_s11119_010_9210_5 crossref_primary_10_1007_s11119_010_9158_5 crossref_primary_10_1002_agg2_20024 crossref_primary_10_1016_j_fcr_2025_109829 crossref_primary_10_3389_fsufs_2022_959681 crossref_primary_10_1016_j_fcr_2020_108000 crossref_primary_10_1007_s11119_019_09704_3 crossref_primary_10_1017_S002185961500074X crossref_primary_10_1146_annurev_environ_041008_093740 crossref_primary_10_1007_s11119_023_09990_y crossref_primary_10_1016_j_heliyon_2024_e28065 crossref_primary_10_3390_agronomy13020527 crossref_primary_10_1007_s11119_014_9385_2 crossref_primary_10_1002_jpln_201200338 crossref_primary_10_1016_j_indcrop_2020_112699 crossref_primary_10_1590_1678_4499_20190387 crossref_primary_10_1016_j_compag_2011_03_009 crossref_primary_10_3390_agriculture8040048 crossref_primary_10_3390_s19040981 crossref_primary_10_5897_AJAR2017_12597 crossref_primary_10_3390_agriculture14010161 crossref_primary_10_1016_j_fcr_2017_11_006 crossref_primary_10_2134_agronj2011_0213 crossref_primary_10_1007_s11119_012_9291_4 crossref_primary_10_2134_agronj2018_03_0217 crossref_primary_10_1590_1678_992x_2017_0301 crossref_primary_10_1080_01904160600927997 crossref_primary_10_1007_s11119_024_10185_2 crossref_primary_10_1080_01904160802403144 crossref_primary_10_1007_s13593_018_0505_7 crossref_primary_10_1007_s11119_010_9196_z crossref_primary_10_1016_j_eja_2021_126244 crossref_primary_10_1038_s41598_020_68415_2 crossref_primary_10_1080_01904167_2022_2046075 crossref_primary_10_1002_jsfa_6729 crossref_primary_10_1080_09064710802322139 crossref_primary_10_1007_s11119_016_9431_3 crossref_primary_10_1080_01904167_2022_2035757 crossref_primary_10_1016_j_compag_2025_110110 crossref_primary_10_1016_j_fcr_2022_108740 crossref_primary_10_1016_j_jcs_2022_103535 crossref_primary_10_2134_agronj14_0573 crossref_primary_10_1002_agj2_20107 crossref_primary_10_1007_s11119_019_09705_2 crossref_primary_10_1016_j_fcr_2021_108205 crossref_primary_10_3390_s23136218 crossref_primary_10_1016_j_compag_2024_108899 |
| Cites_doi | 10.13031/2013.27700 10.2134/agronj1994.00021962008600060002x 10.1081/PLN-200042277 10.2136/sssaj2001.6541164x 10.1080/00103629909370298 10.1081/PLN-120017134 10.2136/sssaj1995.03615995005900060023x 10.2136/sssaj1999.6361724x 10.2134/agronj2001.933590x 10.2134/agronj1999.00021962009100030001x 10.1016/S1161-0301(01)00107-1 10.1080/00103629709369912 10.1080/00103620009370527 10.2134/agronj2002.0815 10.2134/agronj1990.00021962008200030026x 10.1080/01904169109364201 10.2134/agronj2001.931131x 10.2136/sssaj1998.03615995006200030020x 10.2134/jnrlse.1997.0132 10.2136/sssaj1997.03615995006100040032x 10.2134/agronj2003.0347 10.1080/00103629809370040 10.1080/01904169609365208 10.2136/sssaj2001.6541284x 10.2134/jpa1997.0147 10.13031/2013.27678 10.2136/sssaj1988.03615995005200040024x 10.2134/agronj1991.00021962008300020021x 10.2134/agronj1990.00021962008200030025x 10.1080/01904169209364335 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2005 2006 INIST-CNRS |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2005 – notice: 2006 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
| DOI | 10.1080/00103620500303988 |
| DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1532-2416 |
| EndPage | 2781 |
| ExternalDocumentID | 17302371 10_1080_00103620500303988 130381 US201301046746 |
| GeographicLocations | United States North America Oklahoma America |
| GroupedDBID | .7F .QJ 07X 0BK 0R~ 29F 2DF 30N 3YN 4.4 5GY 5VS AAAVI AAENE AAGME AAJMT AALDU AAMIU AAOAP AAPUL AAQRR ABCCY ABEFU ABFIM ABFMO ABHAV ABJNI ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ABXYU ACBBU ACDHJ ACGEJ ACGFS ACIWK ACPRK ACQMU ACTIO ACZPZ ADCVX ADGTB ADGTR ADOPC ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFDYB AFKVX AFOLD AFRAH AFWLO AGDLA AGMYJ AHDLD AI. AIJEM AIRXU AJBAX AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU APNXG AQRUH AURDB AVBZW AWYRJ BFWEY BLEHA C0. C5I CAG CCCUG CE4 COF CS3 CWRZV DGEBU DKSSO DLOXE DU5 EBS ECGQY EJD E~A E~B F5P FBQ FUNRP FVPDL GTTXZ HF~ HGUVV HZ~ H~P IPNFZ J.P JEPSP KYCEM L84 LJTGL M4Z NA5 NUSFT NX0 O9- OWHGL P2P PCLFJ RIG RNANH ROSJB RTWRZ S-T SNACF TEI TFL TFT TFW TGX TQWBC TTHFI TWF UB7 UT5 UU3 V1K VH1 Y6R ZGOLN ~02 ~KM ~S~ AAGDL AAHBH AAHIA ABPAQ AFRVT AHDZW AIYEW AQTUD H13 TASJS TBQAZ TDBHL TUROJ AAQLA AAYXX ABTAA ACFTK CITATION ADYSH IQODW 7S9 L.6 |
| ID | FETCH-LOGICAL-c431t-e02eaa221278166183aed1ab55b8fbf56c9d98a80c010a2dc51b85146b375c223 |
| ISSN | 0010-3624 |
| IngestDate | Fri Sep 05 13:26:19 EDT 2025 Mon Jul 21 09:18:09 EDT 2025 Wed Oct 01 02:48:09 EDT 2025 Thu Apr 24 23:09:28 EDT 2025 Mon Oct 20 23:47:36 EDT 2025 Mon May 13 12:09:09 EDT 2019 Wed Dec 27 19:07:36 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19-20 |
| Keywords | yield based nitrogen fertilization Nitrogen fertilization Monocotyledones corn Optical sensor Nitrogen rate calculator Nitrogen Algorithm Cereal crop Topdressing topdress nitrogen Gramineae Angiospermae Spermatophyta Yield wheat Triticum aestivum |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c431t-e02eaa221278166183aed1ab55b8fbf56c9d98a80c010a2dc51b85146b375c223 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 46842846 |
| PQPubID | 24069 |
| PageCount | 23 |
| ParticipantIDs | fao_agris_US201301046746 proquest_miscellaneous_46842846 crossref_primary_10_1080_00103620500303988 crossref_citationtrail_10_1080_00103620500303988 pascalfrancis_primary_17302371 informaworld_taylorfrancis_310_1080_00103620500303988 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2005-10-00 |
| PublicationDateYYYYMMDD | 2005-10-01 |
| PublicationDate_xml | – month: 10 year: 2005 text: 2005-10-00 |
| PublicationDecade | 2000 |
| PublicationPlace | Philadelphia, PA |
| PublicationPlace_xml | – name: Philadelphia, PA |
| PublicationTitle | Communications in soil science and plant analysis |
| PublicationYear | 2005 |
| Publisher | Taylor & Francis Group Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis |
| References | CIT0010 CIT0031 CIT0012 Stone M. L. (CIT0027) 1996; 39 CIT0034 CIT0011 CIT0033 CIT0014 CIT0036 CIT0013 CIT0035 CIT0015 CIT0037 CIT0018 CIT0017 Black A. L. (CIT0001) 1988 Dahnke W. C. (CIT0004) 1988 CIT0019 Varvel G. E. (CIT0032) 1997; 10 CIT0021 CIT0020 Rehm G. (CIT0023) 1989 CIT0022 Taylor S. L. (CIT0028) 1997; 26 Schmitt M. A. (CIT0024) 1998 Solie J. B. (CIT0026) 1996; 39 CIT0003 CIT0025 Tkachuk R. (CIT0030) 1977 CIT0002 CIT0005 (CIT0016) 2000 CIT0007 CIT0029 CIT0006 CIT0009 CIT0008 |
| References_xml | – volume: 39 start-page: 1983 year: 1996 ident: CIT0026 publication-title: Trans. ASAE doi: 10.13031/2013.27700 – ident: CIT0002 doi: 10.2134/agronj1994.00021962008600060002x – ident: CIT0022 doi: 10.1081/PLN-200042277 – ident: CIT0015 doi: 10.2136/sssaj2001.6541164x – ident: CIT0029 doi: 10.1080/00103629909370298 – ident: CIT0008 doi: 10.1081/PLN-120017134 – ident: CIT0009 – volume-title: Choosing a Crop Yield Goal year: 1988 ident: CIT0004 – ident: CIT0005 doi: 10.2136/sssaj1995.03615995005900060023x – ident: CIT0025 doi: 10.2136/sssaj1999.6361724x – ident: CIT0006 doi: 10.2134/agronj2001.933590x – volume-title: A soil nitrogen test option for N recommendations with corn year: 1998 ident: CIT0024 – ident: CIT0017 doi: 10.2134/agronj1999.00021962009100030001x – ident: CIT0012 doi: 10.1016/S1161-0301(01)00107-1 – ident: CIT0011 doi: 10.1080/00103629709369912 – ident: CIT0010 doi: 10.1080/00103620009370527 – ident: CIT0020 doi: 10.2134/agronj2002.0815 – ident: CIT0034 doi: 10.2134/agronj1990.00021962008200030026x – ident: CIT0018 doi: 10.1080/01904169109364201 – ident: CIT0019 doi: 10.2134/agronj2001.931131x – ident: CIT0021 doi: 10.2136/sssaj1998.03615995006200030020x – volume: 26 start-page: 132 year: 1997 ident: CIT0028 publication-title: Journal of Natural Resources Life Sci. Educ. doi: 10.2134/jnrlse.1997.0132 – ident: CIT0031 doi: 10.2136/sssaj1997.03615995006100040032x – ident: CIT0013 doi: 10.2134/agronj2003.0347 – ident: CIT0035 doi: 10.1080/00103629809370040 – ident: CIT0037 doi: 10.1080/01904169609365208 – volume-title: Plant Food Uptake for Great Plains Crops year: 2000 ident: CIT0016 – start-page: 78 volume-title: Nutritional Standards and Methods of Evaluation for Food Legume Breeders year: 1977 ident: CIT0030 – ident: CIT0014 doi: 10.2136/sssaj2001.6541284x – volume-title: Setting realistic crop yield goals year: 1989 ident: CIT0023 – volume: 10 start-page: 147 year: 1997 ident: CIT0032 publication-title: Journal of Prod. Agric. doi: 10.2134/jpa1997.0147 – volume: 39 start-page: 1623 year: 1996 ident: CIT0027 publication-title: Trans. ASAE doi: 10.13031/2013.27678 – volume-title: Central Great Plains Profitable Wheat Management Workshop Proceedings year: 1988 ident: CIT0001 – ident: CIT0003 doi: 10.2136/sssaj1988.03615995005200040024x – ident: CIT0007 doi: 10.2134/agronj1991.00021962008300020021x – ident: CIT0033 doi: 10.2134/agronj1990.00021962008200030025x – ident: CIT0036 doi: 10.1080/01904169209364335 |
| SSID | ssj0019702 |
| Score | 2.2276003 |
| Snippet | Nitrogen (N) fertilization for cereal crop production does not follow any kind of generalized methodology that guarantees maximum nitrogen use efficiency... |
| SourceID | proquest pascalfrancis crossref informaworld fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2759 |
| SubjectTerms | Agronomy. Soil science and plant productions algorithms Biological and medical sciences corn equations fertilizer application fertilizer rate calculator fertilizer rates Fundamental and applied biological sciences. Psychology General agronomy. Plant production grain crops grain yield nitrogen fertilizers Nitrogen rate calculator Nitrogen, phosphorus, potassium fertilizations normalized difference vegetative index prediction Soil-plant relationships. Soil fertility. Fertilization. Amendments spatial variation temporal variation topdress nitrogen Triticum aestivum wheat yield based nitrogen fertilization Zea mays |
| Title | Optical sensor-based algorithm for crop nitrogen fertilization |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00103620500303988 https://www.proquest.com/docview/46842846 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-2416 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019702 issn: 0010-3624 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-2416 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019702 issn: 0010-3624 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF45zqU9VH0q7iPlUPVQRASY5XGpZLWJrDRNDrEVqxe0uyxJJWqowVLVX98ZdgFjV-7jgvAadmFnmJ3ZmfmGkDeCphGLEjBLbM-zPCkDiwspLNdjIaNjaYcMDcXPl_507p0v6GIwSDeiltYVPxE_f5tX8j9UhTagK2bJ_gNl206hAc6BvnAECsPxr2h8Vaid6BJs0Xxl4YqUmCy7zcHiv_tWRxBihS4TPttVDr2YKUZRZzr1clMv7eWJ1CGyZf5Vp0vqlIIiY3U4ugIx6fxD61pu3XSRh9d5ppwe511J5xrzu958Ndvd5g7B4JNubHYfaBvH1kpUlOO-yoNuJKqCNGk4JwKamcWJG1A4C1SBlkZcBhoOXOqf6t8dsd7EQTq43toUJdM4UuUA-xDal1fx2fziIp6dLmZvi-8WVhdDL7wutXJADl2Q_vaQHE6mH7_ctP6mKLAVrrx-m8b_jSjs26P2NJiDlOVbKLcYXstKoH6qSqPsrPK16jJ7SB5om8OYKAZ6RAZy-Zjcn9yuNO6KfELea1YyNlnJaFnJgHENZCWjYSWjx0pPyfzsdPZhaunSGpYAjbGypO1KxlyE90fHMch1JhOHcUp5mPKU-iJKopCFtoC3Z24iqMNBN_d8Pg6oAJXyGRkugXGOiBG4LmcikomMUo9zwRyseSbcxIYLHcZGxG6mKxYadx7Ln2Sx08LTbs3wiLxrbykU6Mq-i4-ABjGDSSvj-bWLrngMXAg8H4beJExc1Ztgmiy7PcXVj2pE6J5bxnue4rhH9O65AyzLFTgj8rrhghgkOLrl2FLm6zL20BUOZsDzP17xgtzrvsGXZFit1vIV6MQVP9YM_Qv7R7Bs |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB7RcoAeeKOGR7sHTkhbvF57HxekUBEFaMOhjdSbZXu9pSJko40jVfx6ZvYRaIpy6N3vGY_n5W8A3llZ5jov0CxhQoTCuTQ01tmQC51pGTuWaTIUTyfJeCq-XsiLzuG27NIqyYYuW6CIRlbT5SZndJ8S96EpTpBwJolF4zzLduC-REWfKhjEbLKOIuQpa9HCSdYkXPRRzf8NceNd2il1tYFdSkmTeonnVrYFL27J7uZBGj0G1W-lzUP5ebTy5sj-3kB5vPten8CjTlcNhi1zPYV7bv4M9oaXdYfX4Z7Dx--LxhkenKE5XNXhJ3wUi2A4u6zqK__jV4A7C47rahFMrnxdIbMGI0rknnW_P1_AdPT5_HgcdiUZQouahg8d405rTrDwFHBEeaBdEWkjpclKU8rE5kWe6YxZXLbmhZWRQZ1OJCZOpUVV5CXszqu524cg5dxom7vC5aUwxuqIamVZXjBsGGk9ANYTRNkOr5zKZsxUtIY13TiaAbxfd1m0YB3bGu8jlZXGQ1uq6RmnEC4FvFOR4NT_kl75xnnSEf72SMpf-wHILV3iLas4uMFWf9edUjmnNBrAYc9nCm8-hXP03FWrpRIUQkX18dUdpz6EB-Pz0xN18mXy7TU87DFpWfQGdn29cm9R2_LmoLlSfwCauRmz |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAceFddCm0OnJBSHMfO44K0LV2V14JUVurNGjtOqVg2q8QrIX49M0l2abdoD737PePx2N_4G8ZeW1XmkBd4LeFShtK5NDTW2VBIyEDFjmdAF8Uv4-R0Ij-eq_M-NqfpwyrpDl12RBGtrabNPS_KZUTc2zY3QSK4Ig2N8yzbYncTQsToBwcfr0CEPOUdWTiZmkTIJaj5vyauHUtbJVRr1KUUMwkNLlvZ5bu4Ybrb82j0qEu62rQ0hhSG8vNw4c2h_bNG8njrqT5mD3tPNRh2qvWE3XGzp-zB8KLu2TrcM_bu67x9Cg_O8DJc1eERHolFMJxeVPWl__ErwIkFx3U1D8aXvq5QVYMRhXFP-7-fz9lkdPL9-DTsEzKEFv0MHzouHIAgUniCG9EagCsiMEqZrDSlSmxe5Blk3OKwQRRWRQY9OpmYOFUWHZEdtj2rZm6XBakQBmzuCpeX0hgLEWXKsqLgWDACGDC-lIe2PVs5Jc2Y6mhFarq2NAP2ZlVl3lF1bCq8i0LWgIvW6MmZIACX4O5UJtj1Vclr3z6d9HK_2ZL2v_2AqQ1V4g2j2L-mVf_GnVIypzQasIOlmmnc9wTmwMxVi0ZLAlDReXxxy64P2L1v70f684fxpz12P6ZPHe3b0ku27euFe4Wuljf77Yb6C_96GFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+sensor-based+algorithm+for+crop+nitrogen+fertilization&rft.jtitle=Communications+in+soil+science+and+plant+analysis&rft.au=Raun%2C+W+R&rft.au=Solie%2C+J+B&rft.au=Stone%2C+M+L&rft.au=Martin%2C+K+L&rft.date=2005-10-01&rft.issn=0010-3624&rft.volume=36&rft.issue=19-20+p.2759-2781&rft.spage=2759&rft.epage=2781&rft_id=info:doi/10.1080%2F00103620500303988&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3624&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3624&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3624&client=summon |