Optical sensor-based algorithm for crop nitrogen fertilization

Nitrogen (N) fertilization for cereal crop production does not follow any kind of generalized methodology that guarantees maximum nitrogen use efficiency (NUE). The objective of this work was to amalgamate some of the current concepts for N management in cereal production into an applied algorithm....

Full description

Saved in:
Bibliographic Details
Published inCommunications in soil science and plant analysis Vol. 36; no. 19-20; pp. 2759 - 2781
Main Authors Raun, W.R, Solie, J.B, Stone, M.L, Martin, K.L, Freeman, K.W, Mullen, R.W, Zhang, H, Schepers, J.S, Johnson, G.V
Format Journal Article
LanguageEnglish
Published Philadelphia, PA Taylor & Francis Group 01.10.2005
Taylor & Francis
Subjects
Online AccessGet full text
ISSN0010-3624
1532-2416
DOI10.1080/00103620500303988

Cover

Abstract Nitrogen (N) fertilization for cereal crop production does not follow any kind of generalized methodology that guarantees maximum nitrogen use efficiency (NUE). The objective of this work was to amalgamate some of the current concepts for N management in cereal production into an applied algorithm. This work at Oklahoma State University from 1992 to present has focused primarily on the use of optical sensors in red and near infrared bands for predicting yield, and using that information in an algorithm to estimate fertilizer requirements. The current algorithm, "WheatN.1.0," may be separated into several discreet components: 1) mid-season prediction of grain yield, determined by dividing the normalized difference vegetative index (NDVI) by the number of days from planting to sensing (estimate of biomass produced per day on the specific date when sensor readings are collected); 2) estimating temporally dependent responsiveness to applied N by placing non-N-limiting strips in production fields each year, and comparing these to the farmer practice (response index); and 3) determining the spatial variability within each 0.4 m 2 area using the coefficient of variation (CV) from NDVI readings. These components are then integrated into a functional algorithm to estimate application rate whereby N removal is estimated based on the predicted yield potential for each 0.4 m 2 area and adjusted for the seasonally dependent responsiveness to applied N. This work shows that yield potential prediction equations for winter wheat can be reliably established with only 2 years of field data. Furthermore, basing mid-season N fertilizer rates on predicted yield potential and a response index can increase NUE by over 15% in winter wheat when compared to conventional methods. Using our optical sensor-based algorithm that employs yield prediction and N responsiveness by location (0.4 m 2 resolution) can increase yields and decrease environmental contamination due to excessive N fertilization. *Contribution from the Oklahoma Agricultural Experiment Station.
AbstractList Nitrogen (N) fertilization for cereal crop production does not follow any kind of generalized methodology that guarantees maximum nitrogen use efficiency (NUE). The objective of this work was to amalgamate some of the current concepts for N management in cereal production into an applied algorithm. This work at Oklahoma State University from 1992 to present has focused primarily on the use of optical sensors in red and near infrared bands for predicting yield, and using that information in an algorithm to estimate fertilizer requirements. The current algorithm, "WheatN.1.0," may be separated into several discreet components: 1) mid-season prediction of grain yield, determined by dividing the normalized difference vegetative index (NDVI) by the number of days from planting to sensing (estimate of biomass produced per day on the specific date when sensor readings are collected); 2) estimating temporally dependent responsiveness to applied N by placing non-N-limiting strips in production fields each year, and comparing these to the farmer practice (response index); and 3) determining the spatial variability within each 0.4 m 2 area using the coefficient of variation (CV) from NDVI readings. These components are then integrated into a functional algorithm to estimate application rate whereby N removal is estimated based on the predicted yield potential for each 0.4 m 2 area and adjusted for the seasonally dependent responsiveness to applied N. This work shows that yield potential prediction equations for winter wheat can be reliably established with only 2 years of field data. Furthermore, basing mid-season N fertilizer rates on predicted yield potential and a response index can increase NUE by over 15% in winter wheat when compared to conventional methods. Using our optical sensor-based algorithm that employs yield prediction and N responsiveness by location (0.4 m 2 resolution) can increase yields and decrease environmental contamination due to excessive N fertilization. *Contribution from the Oklahoma Agricultural Experiment Station.
Author Solie, J.B
Freeman, K.W
Martin, K.L
Stone, M.L
Raun, W.R
Mullen, R.W
Johnson, G.V
Zhang, H
Schepers, J.S
Author_xml – sequence: 1
  fullname: Raun, W.R
– sequence: 2
  fullname: Solie, J.B
– sequence: 3
  fullname: Stone, M.L
– sequence: 4
  fullname: Martin, K.L
– sequence: 5
  fullname: Freeman, K.W
– sequence: 6
  fullname: Mullen, R.W
– sequence: 7
  fullname: Zhang, H
– sequence: 8
  fullname: Schepers, J.S
– sequence: 9
  fullname: Johnson, G.V
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17302371$$DView record in Pascal Francis
BookMark eNqNkMtKAzEUhoNUsFYfwJWz0d1oLjOZFESQ4g0EF-o6nMlkaiRNapKi9emNtiIoiKtwyPedy7-NBs47jdAewUcEC3yMMcGMU1xjzDAbC7GBhqRmtKQV4QM0_PgvM1Btoe0Yn3I5bjAdotPbeTIKbBG1iz6ULUTdFWCnPpj0OCt6HwoV_LxwJgU_1a7odUjGmjdIxrsdtNmDjXp3_Y7Qw8X5_eSqvLm9vJ6c3ZSqYiSVGlMNQCmhjSCcE8FAdwTaum5F3_Y1V-NuLEBgldcE2qmatKImFW9ZUytK2QgdrvrOg39e6JjkzESlrQWn_SLKiouKiopn8GANQsxn9QGcMlHOg5lBWErSMExZQzJHVlw-Lsag-28Ey49E5a9Es9P8cJRJnzGkAMb-aZ6sTONyoDN48cF2MsHS-vC1IvvH4D_0X5ZMrymb-yuzBy9hGjL4cEcxYZmueJMDewc33KiW
CODEN CSOSA2
CitedBy_id crossref_primary_10_2134_cs2018_51_0202
crossref_primary_10_1016_j_eja_2024_127346
crossref_primary_10_1111_j_1365_3040_2012_02588_x
crossref_primary_10_3390_su13095010
crossref_primary_10_3390_agronomy9060278
crossref_primary_10_1109_LSENS_2023_3330072
crossref_primary_10_1016_j_compag_2016_04_016
crossref_primary_10_1007_s11119_020_09730_6
crossref_primary_10_2134_agronj2012_0504
crossref_primary_10_1016_j_fcr_2018_01_007
crossref_primary_10_1007_s11119_023_10102_z
crossref_primary_10_2134_agronj2018_09_0607
crossref_primary_10_2134_agronj2006_0103
crossref_primary_10_3390_nitrogen5040054
crossref_primary_10_1590_0034_737x201764040003
crossref_primary_10_1007_s13593_012_0094_9
crossref_primary_10_3390_rs70404527
crossref_primary_10_1007_s10533_012_9802_4
crossref_primary_10_2134_agronj2005_0164
crossref_primary_10_1016_j_compag_2018_08_008
crossref_primary_10_1016_j_eja_2023_126792
crossref_primary_10_2134_agronj2015_0037
crossref_primary_10_2134_cftm2017_01_0005
crossref_primary_10_1016_j_fcr_2024_109260
crossref_primary_10_2134_agronj2017_07_0425
crossref_primary_10_1080_01904160802208261
crossref_primary_10_1007_s11119_024_10138_9
crossref_primary_10_1117_1_JRS_11_036013
crossref_primary_10_2134_agronj2017_02_0112
crossref_primary_10_2134_agronj2012_0184
crossref_primary_10_2134_agronj2011_0249
crossref_primary_10_1016_j_eja_2024_127132
crossref_primary_10_1080_01904167_2018_1434202
crossref_primary_10_1080_01904167_2013_810249
crossref_primary_10_1080_01904167_2020_1766074
crossref_primary_10_1051_agro_2010034
crossref_primary_10_1590_S0100_06832013000500019
crossref_primary_10_1590_S0100_06832013000500018
crossref_primary_10_1007_s11119_021_09863_2
crossref_primary_10_1007_s11119_016_9433_1
crossref_primary_10_3390_rs14020394
crossref_primary_10_1016_j_agrformet_2024_110252
crossref_primary_10_1016_j_eja_2024_127120
crossref_primary_10_3390_s17102287
crossref_primary_10_1007_s11119_018_9589_y
crossref_primary_10_1080_03650340_2019_1701658
crossref_primary_10_1007_s12571_020_01020_3
crossref_primary_10_1007_s11119_014_9377_2
crossref_primary_10_1109_JSTARS_2011_2179020
crossref_primary_10_1002_agj2_20397
crossref_primary_10_1002_agj2_20035
crossref_primary_10_2134_agronj15_0121
crossref_primary_10_18016_ksutarimdoga_vi_732913
crossref_primary_10_1002_agj2_20836
crossref_primary_10_1007_s11119_007_9043_z
crossref_primary_10_3390_rs12193136
crossref_primary_10_1155_2012_582028
crossref_primary_10_3390_rs11091094
crossref_primary_10_2135_cropsci2015_06_0398
crossref_primary_10_1016_j_jcs_2024_104053
crossref_primary_10_3390_rs13071373
crossref_primary_10_1007_s11119_018_9599_9
crossref_primary_10_1080_15427528_2017_1359715
crossref_primary_10_3390_crops4020010
crossref_primary_10_1590_1809_4430_eng_agric_v43n6e20230136_2023
crossref_primary_10_1080_03650340_2017_1411589
crossref_primary_10_2134_agronj2019_03_0217
crossref_primary_10_1109_TGRS_2021_3099624
crossref_primary_10_1016_j_compag_2018_05_012
crossref_primary_10_1007_s13593_012_0111_z
crossref_primary_10_1155_2018_5670479
crossref_primary_10_1007_s13593_024_01003_0
crossref_primary_10_1016_j_agsy_2010_12_002
crossref_primary_10_1590_S0100_69162009000100011
crossref_primary_10_2134_agronj2013_0104
crossref_primary_10_3923_aj_2010_6_11
crossref_primary_10_1007_s11119_022_09957_5
crossref_primary_10_1007_s11119_024_10178_1
crossref_primary_10_1094_CM_2011_0725_01_RS
crossref_primary_10_56093_ijas_v87i4_69470
crossref_primary_10_3390_agronomy12081804
crossref_primary_10_1016_j_fcr_2006_07_007
crossref_primary_10_2135_cropsci2016_01_0049
crossref_primary_10_2135_cropsci2016_02_0135
crossref_primary_10_2134_age2018_07_0016
crossref_primary_10_1080_00103624_2013_812735
crossref_primary_10_4081_ija_2021_1951
crossref_primary_10_1007_s11119_018_9581_6
crossref_primary_10_1590_S0100_204X2015000900013
crossref_primary_10_1016_j_eja_2018_06_008
crossref_primary_10_2134_agronj2011_0040
crossref_primary_10_1002_agj2_20621
crossref_primary_10_1002_agj2_20620
crossref_primary_10_1186_s40659_020_00312_4
crossref_primary_10_3389_fpls_2023_1282217
crossref_primary_10_1016_j_eja_2012_05_005
crossref_primary_10_1007_s11119_017_9499_4
crossref_primary_10_1007_s40808_021_01329_8
crossref_primary_10_2139_ssrn_3270532
crossref_primary_10_3389_fpls_2022_951181
crossref_primary_10_3390_su141811209
crossref_primary_10_1016_j_compag_2022_107479
crossref_primary_10_3390_su11030706
crossref_primary_10_2134_agronj2009_0114
crossref_primary_10_1016_j_crope_2023_11_001
crossref_primary_10_1007_s13738_024_03083_x
crossref_primary_10_3390_s151127832
crossref_primary_10_3390_agronomy10081157
crossref_primary_10_1111_j_1574_0862_2009_00387_x
crossref_primary_10_1590_0034_737X201663010014
crossref_primary_10_2134_agronj2016_09_0519
crossref_primary_10_2136_sssaj2008_0150
crossref_primary_10_1016_j_fcr_2020_107901
crossref_primary_10_1002_agj2_20007
crossref_primary_10_1002_agj2_20248
crossref_primary_10_2134_agronj2018_11_0726
crossref_primary_10_1007_s11119_016_9430_4
crossref_primary_10_3390_s20041127
crossref_primary_10_1007_s11119_010_9190_5
crossref_primary_10_1016_j_scitotenv_2020_136956
crossref_primary_10_1016_j_fcr_2007_03_023
crossref_primary_10_2134_agronj2018_12_0787
crossref_primary_10_1016_j_compag_2023_107858
crossref_primary_10_1007_s11119_013_9330_9
crossref_primary_10_2134_agronj2016_01_0041
crossref_primary_10_2134_agronj13_0578
crossref_primary_10_3390_s17040672
crossref_primary_10_2134_agronj2008_0162Rx
crossref_primary_10_3390_rs12091440
crossref_primary_10_2134_agronj2008_0072x
crossref_primary_10_1007_s10705_017_9865_7
crossref_primary_10_1016_j_compag_2017_12_015
crossref_primary_10_4236_ojss_2017_710020
crossref_primary_10_1007_s11119_020_09733_3
crossref_primary_10_1016_j_eja_2021_126287
crossref_primary_10_1016_j_fcr_2013_12_018
crossref_primary_10_1007_s11119_013_9326_5
crossref_primary_10_3390_agronomy11112098
crossref_primary_10_2134_agronj14_0494
crossref_primary_10_1007_s10705_023_10302_z
crossref_primary_10_1007_s11119_015_9412_y
crossref_primary_10_1007_s11119_010_9209_y
crossref_primary_10_3390_agronomy10101533
crossref_primary_10_1016_j_eja_2023_126854
crossref_primary_10_1080_01904167_2024_2447840
crossref_primary_10_1155_2021_1443191
crossref_primary_10_1080_01904167_2015_1109109
crossref_primary_10_3390_rs12223783
crossref_primary_10_1590_S0100_204X2011000400015
crossref_primary_10_29059_cienciauat_v19i2_1925
crossref_primary_10_2134_agronj2017_05_0279
crossref_primary_10_29133_yyutbd_726039
crossref_primary_10_1080_00103624_2014_904337
crossref_primary_10_7745_KJSSF_2014_47_3_217
crossref_primary_10_1017_S0014479721000028
crossref_primary_10_1016_j_compag_2014_10_021
crossref_primary_10_1007_s11119_008_9092_y
crossref_primary_10_1080_01904160802679974
crossref_primary_10_2134_agronj2016_07_0414
crossref_primary_10_1016_j_compag_2017_12_031
crossref_primary_10_1002_agj2_20566
crossref_primary_10_2134_agronj2016_12_0732
crossref_primary_10_1007_s11119_010_9210_5
crossref_primary_10_1007_s11119_010_9158_5
crossref_primary_10_1002_agg2_20024
crossref_primary_10_1016_j_fcr_2025_109829
crossref_primary_10_3389_fsufs_2022_959681
crossref_primary_10_1016_j_fcr_2020_108000
crossref_primary_10_1007_s11119_019_09704_3
crossref_primary_10_1017_S002185961500074X
crossref_primary_10_1146_annurev_environ_041008_093740
crossref_primary_10_1007_s11119_023_09990_y
crossref_primary_10_1016_j_heliyon_2024_e28065
crossref_primary_10_3390_agronomy13020527
crossref_primary_10_1007_s11119_014_9385_2
crossref_primary_10_1002_jpln_201200338
crossref_primary_10_1016_j_indcrop_2020_112699
crossref_primary_10_1590_1678_4499_20190387
crossref_primary_10_1016_j_compag_2011_03_009
crossref_primary_10_3390_agriculture8040048
crossref_primary_10_3390_s19040981
crossref_primary_10_5897_AJAR2017_12597
crossref_primary_10_3390_agriculture14010161
crossref_primary_10_1016_j_fcr_2017_11_006
crossref_primary_10_2134_agronj2011_0213
crossref_primary_10_1007_s11119_012_9291_4
crossref_primary_10_2134_agronj2018_03_0217
crossref_primary_10_1590_1678_992x_2017_0301
crossref_primary_10_1080_01904160600927997
crossref_primary_10_1007_s11119_024_10185_2
crossref_primary_10_1080_01904160802403144
crossref_primary_10_1007_s13593_018_0505_7
crossref_primary_10_1007_s11119_010_9196_z
crossref_primary_10_1016_j_eja_2021_126244
crossref_primary_10_1038_s41598_020_68415_2
crossref_primary_10_1080_01904167_2022_2046075
crossref_primary_10_1002_jsfa_6729
crossref_primary_10_1080_09064710802322139
crossref_primary_10_1007_s11119_016_9431_3
crossref_primary_10_1080_01904167_2022_2035757
crossref_primary_10_1016_j_compag_2025_110110
crossref_primary_10_1016_j_fcr_2022_108740
crossref_primary_10_1016_j_jcs_2022_103535
crossref_primary_10_2134_agronj14_0573
crossref_primary_10_1002_agj2_20107
crossref_primary_10_1007_s11119_019_09705_2
crossref_primary_10_1016_j_fcr_2021_108205
crossref_primary_10_3390_s23136218
crossref_primary_10_1016_j_compag_2024_108899
Cites_doi 10.13031/2013.27700
10.2134/agronj1994.00021962008600060002x
10.1081/PLN-200042277
10.2136/sssaj2001.6541164x
10.1080/00103629909370298
10.1081/PLN-120017134
10.2136/sssaj1995.03615995005900060023x
10.2136/sssaj1999.6361724x
10.2134/agronj2001.933590x
10.2134/agronj1999.00021962009100030001x
10.1016/S1161-0301(01)00107-1
10.1080/00103629709369912
10.1080/00103620009370527
10.2134/agronj2002.0815
10.2134/agronj1990.00021962008200030026x
10.1080/01904169109364201
10.2134/agronj2001.931131x
10.2136/sssaj1998.03615995006200030020x
10.2134/jnrlse.1997.0132
10.2136/sssaj1997.03615995006100040032x
10.2134/agronj2003.0347
10.1080/00103629809370040
10.1080/01904169609365208
10.2136/sssaj2001.6541284x
10.2134/jpa1997.0147
10.13031/2013.27678
10.2136/sssaj1988.03615995005200040024x
10.2134/agronj1991.00021962008300020021x
10.2134/agronj1990.00021962008200030025x
10.1080/01904169209364335
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2005
2006 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2005
– notice: 2006 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1080/00103620500303988
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1532-2416
EndPage 2781
ExternalDocumentID 17302371
10_1080_00103620500303988
130381
US201301046746
GeographicLocations United States
North America
Oklahoma
America
GroupedDBID .7F
.QJ
07X
0BK
0R~
29F
2DF
30N
3YN
4.4
5GY
5VS
AAAVI
AAENE
AAGME
AAJMT
AALDU
AAMIU
AAOAP
AAPUL
AAQRR
ABCCY
ABEFU
ABFIM
ABFMO
ABHAV
ABJNI
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ABXYU
ACBBU
ACDHJ
ACGEJ
ACGFS
ACIWK
ACPRK
ACQMU
ACTIO
ACZPZ
ADCVX
ADGTB
ADGTR
ADOPC
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFDYB
AFKVX
AFOLD
AFRAH
AFWLO
AGDLA
AGMYJ
AHDLD
AI.
AIJEM
AIRXU
AJBAX
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
APNXG
AQRUH
AURDB
AVBZW
AWYRJ
BFWEY
BLEHA
C0.
C5I
CAG
CCCUG
CE4
COF
CS3
CWRZV
DGEBU
DKSSO
DLOXE
DU5
EBS
ECGQY
EJD
E~A
E~B
F5P
FBQ
FUNRP
FVPDL
GTTXZ
HF~
HGUVV
HZ~
H~P
IPNFZ
J.P
JEPSP
KYCEM
L84
LJTGL
M4Z
NA5
NUSFT
NX0
O9-
OWHGL
P2P
PCLFJ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEI
TFL
TFT
TFW
TGX
TQWBC
TTHFI
TWF
UB7
UT5
UU3
V1K
VH1
Y6R
ZGOLN
~02
~KM
~S~
AAGDL
AAHBH
AAHIA
ABPAQ
AFRVT
AHDZW
AIYEW
AQTUD
H13
TASJS
TBQAZ
TDBHL
TUROJ
AAQLA
AAYXX
ABTAA
ACFTK
CITATION
ADYSH
IQODW
7S9
L.6
ID FETCH-LOGICAL-c431t-e02eaa221278166183aed1ab55b8fbf56c9d98a80c010a2dc51b85146b375c223
ISSN 0010-3624
IngestDate Fri Sep 05 13:26:19 EDT 2025
Mon Jul 21 09:18:09 EDT 2025
Wed Oct 01 02:48:09 EDT 2025
Thu Apr 24 23:09:28 EDT 2025
Mon Oct 20 23:47:36 EDT 2025
Mon May 13 12:09:09 EDT 2019
Wed Dec 27 19:07:36 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 19-20
Keywords yield based nitrogen fertilization
Nitrogen fertilization
Monocotyledones
corn
Optical sensor
Nitrogen rate calculator
Nitrogen
Algorithm
Cereal crop
Topdressing
topdress nitrogen
Gramineae
Angiospermae
Spermatophyta
Yield
wheat
Triticum aestivum
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c431t-e02eaa221278166183aed1ab55b8fbf56c9d98a80c010a2dc51b85146b375c223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 46842846
PQPubID 24069
PageCount 23
ParticipantIDs fao_agris_US201301046746
proquest_miscellaneous_46842846
crossref_primary_10_1080_00103620500303988
crossref_citationtrail_10_1080_00103620500303988
pascalfrancis_primary_17302371
informaworld_taylorfrancis_310_1080_00103620500303988
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-10-00
PublicationDateYYYYMMDD 2005-10-01
PublicationDate_xml – month: 10
  year: 2005
  text: 2005-10-00
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
PublicationTitle Communications in soil science and plant analysis
PublicationYear 2005
Publisher Taylor & Francis Group
Taylor & Francis
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
References CIT0010
CIT0031
CIT0012
Stone M. L. (CIT0027) 1996; 39
CIT0034
CIT0011
CIT0033
CIT0014
CIT0036
CIT0013
CIT0035
CIT0015
CIT0037
CIT0018
CIT0017
Black A. L. (CIT0001) 1988
Dahnke W. C. (CIT0004) 1988
CIT0019
Varvel G. E. (CIT0032) 1997; 10
CIT0021
CIT0020
Rehm G. (CIT0023) 1989
CIT0022
Taylor S. L. (CIT0028) 1997; 26
Schmitt M. A. (CIT0024) 1998
Solie J. B. (CIT0026) 1996; 39
CIT0003
CIT0025
Tkachuk R. (CIT0030) 1977
CIT0002
CIT0005
(CIT0016) 2000
CIT0007
CIT0029
CIT0006
CIT0009
CIT0008
References_xml – volume: 39
  start-page: 1983
  year: 1996
  ident: CIT0026
  publication-title: Trans. ASAE
  doi: 10.13031/2013.27700
– ident: CIT0002
  doi: 10.2134/agronj1994.00021962008600060002x
– ident: CIT0022
  doi: 10.1081/PLN-200042277
– ident: CIT0015
  doi: 10.2136/sssaj2001.6541164x
– ident: CIT0029
  doi: 10.1080/00103629909370298
– ident: CIT0008
  doi: 10.1081/PLN-120017134
– ident: CIT0009
– volume-title: Choosing a Crop Yield Goal
  year: 1988
  ident: CIT0004
– ident: CIT0005
  doi: 10.2136/sssaj1995.03615995005900060023x
– ident: CIT0025
  doi: 10.2136/sssaj1999.6361724x
– ident: CIT0006
  doi: 10.2134/agronj2001.933590x
– volume-title: A soil nitrogen test option for N recommendations with corn
  year: 1998
  ident: CIT0024
– ident: CIT0017
  doi: 10.2134/agronj1999.00021962009100030001x
– ident: CIT0012
  doi: 10.1016/S1161-0301(01)00107-1
– ident: CIT0011
  doi: 10.1080/00103629709369912
– ident: CIT0010
  doi: 10.1080/00103620009370527
– ident: CIT0020
  doi: 10.2134/agronj2002.0815
– ident: CIT0034
  doi: 10.2134/agronj1990.00021962008200030026x
– ident: CIT0018
  doi: 10.1080/01904169109364201
– ident: CIT0019
  doi: 10.2134/agronj2001.931131x
– ident: CIT0021
  doi: 10.2136/sssaj1998.03615995006200030020x
– volume: 26
  start-page: 132
  year: 1997
  ident: CIT0028
  publication-title: Journal of Natural Resources Life Sci. Educ.
  doi: 10.2134/jnrlse.1997.0132
– ident: CIT0031
  doi: 10.2136/sssaj1997.03615995006100040032x
– ident: CIT0013
  doi: 10.2134/agronj2003.0347
– ident: CIT0035
  doi: 10.1080/00103629809370040
– ident: CIT0037
  doi: 10.1080/01904169609365208
– volume-title: Plant Food Uptake for Great Plains Crops
  year: 2000
  ident: CIT0016
– start-page: 78
  volume-title: Nutritional Standards and Methods of Evaluation for Food Legume Breeders
  year: 1977
  ident: CIT0030
– ident: CIT0014
  doi: 10.2136/sssaj2001.6541284x
– volume-title: Setting realistic crop yield goals
  year: 1989
  ident: CIT0023
– volume: 10
  start-page: 147
  year: 1997
  ident: CIT0032
  publication-title: Journal of Prod. Agric.
  doi: 10.2134/jpa1997.0147
– volume: 39
  start-page: 1623
  year: 1996
  ident: CIT0027
  publication-title: Trans. ASAE
  doi: 10.13031/2013.27678
– volume-title: Central Great Plains Profitable Wheat Management Workshop Proceedings
  year: 1988
  ident: CIT0001
– ident: CIT0003
  doi: 10.2136/sssaj1988.03615995005200040024x
– ident: CIT0007
  doi: 10.2134/agronj1991.00021962008300020021x
– ident: CIT0033
  doi: 10.2134/agronj1990.00021962008200030025x
– ident: CIT0036
  doi: 10.1080/01904169209364335
SSID ssj0019702
Score 2.2276003
Snippet Nitrogen (N) fertilization for cereal crop production does not follow any kind of generalized methodology that guarantees maximum nitrogen use efficiency...
SourceID proquest
pascalfrancis
crossref
informaworld
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2759
SubjectTerms Agronomy. Soil science and plant productions
algorithms
Biological and medical sciences
corn
equations
fertilizer application
fertilizer rate calculator
fertilizer rates
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
grain crops
grain yield
nitrogen fertilizers
Nitrogen rate calculator
Nitrogen, phosphorus, potassium fertilizations
normalized difference vegetative index
prediction
Soil-plant relationships. Soil fertility. Fertilization. Amendments
spatial variation
temporal variation
topdress nitrogen
Triticum aestivum
wheat
yield based nitrogen fertilization
Zea mays
Title Optical sensor-based algorithm for crop nitrogen fertilization
URI https://www.tandfonline.com/doi/abs/10.1080/00103620500303988
https://www.proquest.com/docview/46842846
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-2416
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019702
  issn: 0010-3624
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-2416
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019702
  issn: 0010-3624
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF45zqU9VH0q7iPlUPVQRASY5XGpZLWJrDRNDrEVqxe0uyxJJWqowVLVX98ZdgFjV-7jgvAadmFnmJ3ZmfmGkDeCphGLEjBLbM-zPCkDiwspLNdjIaNjaYcMDcXPl_507p0v6GIwSDeiltYVPxE_f5tX8j9UhTagK2bJ_gNl206hAc6BvnAECsPxr2h8Vaid6BJs0Xxl4YqUmCy7zcHiv_tWRxBihS4TPttVDr2YKUZRZzr1clMv7eWJ1CGyZf5Vp0vqlIIiY3U4ugIx6fxD61pu3XSRh9d5ppwe511J5xrzu958Ndvd5g7B4JNubHYfaBvH1kpUlOO-yoNuJKqCNGk4JwKamcWJG1A4C1SBlkZcBhoOXOqf6t8dsd7EQTq43toUJdM4UuUA-xDal1fx2fziIp6dLmZvi-8WVhdDL7wutXJADl2Q_vaQHE6mH7_ctP6mKLAVrrx-m8b_jSjs26P2NJiDlOVbKLcYXstKoH6qSqPsrPK16jJ7SB5om8OYKAZ6RAZy-Zjcn9yuNO6KfELea1YyNlnJaFnJgHENZCWjYSWjx0pPyfzsdPZhaunSGpYAjbGypO1KxlyE90fHMch1JhOHcUp5mPKU-iJKopCFtoC3Z24iqMNBN_d8Pg6oAJXyGRkugXGOiBG4LmcikomMUo9zwRyseSbcxIYLHcZGxG6mKxYadx7Ln2Sx08LTbs3wiLxrbykU6Mq-i4-ABjGDSSvj-bWLrngMXAg8H4beJExc1Ztgmiy7PcXVj2pE6J5bxnue4rhH9O65AyzLFTgj8rrhghgkOLrl2FLm6zL20BUOZsDzP17xgtzrvsGXZFit1vIV6MQVP9YM_Qv7R7Bs
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB7RcoAeeKOGR7sHTkhbvF57HxekUBEFaMOhjdSbZXu9pSJko40jVfx6ZvYRaIpy6N3vGY_n5W8A3llZ5jov0CxhQoTCuTQ01tmQC51pGTuWaTIUTyfJeCq-XsiLzuG27NIqyYYuW6CIRlbT5SZndJ8S96EpTpBwJolF4zzLduC-REWfKhjEbLKOIuQpa9HCSdYkXPRRzf8NceNd2il1tYFdSkmTeonnVrYFL27J7uZBGj0G1W-lzUP5ebTy5sj-3kB5vPten8CjTlcNhi1zPYV7bv4M9oaXdYfX4Z7Dx--LxhkenKE5XNXhJ3wUi2A4u6zqK__jV4A7C47rahFMrnxdIbMGI0rknnW_P1_AdPT5_HgcdiUZQouahg8d405rTrDwFHBEeaBdEWkjpclKU8rE5kWe6YxZXLbmhZWRQZ1OJCZOpUVV5CXszqu524cg5dxom7vC5aUwxuqIamVZXjBsGGk9ANYTRNkOr5zKZsxUtIY13TiaAbxfd1m0YB3bGu8jlZXGQ1uq6RmnEC4FvFOR4NT_kl75xnnSEf72SMpf-wHILV3iLas4uMFWf9edUjmnNBrAYc9nCm8-hXP03FWrpRIUQkX18dUdpz6EB-Pz0xN18mXy7TU87DFpWfQGdn29cm9R2_LmoLlSfwCauRmz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAceFddCm0OnJBSHMfO44K0LV2V14JUVurNGjtOqVg2q8QrIX49M0l2abdoD737PePx2N_4G8ZeW1XmkBd4LeFShtK5NDTW2VBIyEDFjmdAF8Uv4-R0Ij-eq_M-NqfpwyrpDl12RBGtrabNPS_KZUTc2zY3QSK4Ig2N8yzbYncTQsToBwcfr0CEPOUdWTiZmkTIJaj5vyauHUtbJVRr1KUUMwkNLlvZ5bu4Ybrb82j0qEu62rQ0hhSG8vNw4c2h_bNG8njrqT5mD3tPNRh2qvWE3XGzp-zB8KLu2TrcM_bu67x9Cg_O8DJc1eERHolFMJxeVPWl__ErwIkFx3U1D8aXvq5QVYMRhXFP-7-fz9lkdPL9-DTsEzKEFv0MHzouHIAgUniCG9EagCsiMEqZrDSlSmxe5Blk3OKwQRRWRQY9OpmYOFUWHZEdtj2rZm6XBakQBmzuCpeX0hgLEWXKsqLgWDACGDC-lIe2PVs5Jc2Y6mhFarq2NAP2ZlVl3lF1bCq8i0LWgIvW6MmZIACX4O5UJtj1Vclr3z6d9HK_2ZL2v_2AqQ1V4g2j2L-mVf_GnVIypzQasIOlmmnc9wTmwMxVi0ZLAlDReXxxy64P2L1v70f684fxpz12P6ZPHe3b0ku27euFe4Wuljf77Yb6C_96GFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+sensor-based+algorithm+for+crop+nitrogen+fertilization&rft.jtitle=Communications+in+soil+science+and+plant+analysis&rft.au=Raun%2C+W+R&rft.au=Solie%2C+J+B&rft.au=Stone%2C+M+L&rft.au=Martin%2C+K+L&rft.date=2005-10-01&rft.issn=0010-3624&rft.volume=36&rft.issue=19-20+p.2759-2781&rft.spage=2759&rft.epage=2781&rft_id=info:doi/10.1080%2F00103620500303988&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3624&client=summon