Activity-aware essential tremor evaluation using deep learning method based on acceleration data

Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable...

Full description

Saved in:
Bibliographic Details
Published inParkinsonism & related disorders Vol. 58; pp. 17 - 22
Main Authors Zheng, Xiaochen, Vieira, Alba, Marcos, Sergio Labrador, Aladro, Yolanda, Ordieres-Meré, Joaquín
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2019
Subjects
Online AccessGet full text
ISSN1353-8020
1873-5126
1873-5126
DOI10.1016/j.parkreldis.2018.08.001

Cover

Abstract Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable performances in both quantifying tremor and voluntary human activity recognition (HAR). To create an automated system of a reference scale using motion sensors supported by deep learning algorithms to accurately rate ET severity during voluntary activities, and to propose an IOTA based blockchain application to share anonymously tremor data. A smartwatch-based tremor monitoring system was used to collect motion data from 20 subjects while they were doing standard tasks. Two neurologists rated ET by Fahn-Tolosa Marin Tremor Rating Scale (FTMTRS). Supported by deep learning techniques, activity classification models (ACMs) and tremor evaluation models (TEMs) were created and algorithms were implemented, to distinguish voluntary human activities and evaluate tremor severity respectively. A practical application example showed that the proposed ACMs can classify six typical activities with high accuracy (89.73%–98.84%) and the results produced by the TEMs are significantly correlated with the FTMTRS ratings of two neurologists (r1 = 0.92, p1 = 0.008; r2 = 0.93, p2 = 0.007). This study demonstrated that motion sensor data, supported by deep learning algorithms, can be used to classify human activities and evaluate essential tremor severity during different activities. •An automatized system to score Essential Tremor is presented.•It classifies the tremor level, but also it automatically identifies the action done.•Accuracy in classification of activities is over 89%.•High degree of correlation (>90%) with two neurologists for scoring of the tremor.•An anonymized exchange of patients' data based on blockchain IOTA is presented.
AbstractList Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable performances in both quantifying tremor and voluntary human activity recognition (HAR).BACKGROUNDEssential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable performances in both quantifying tremor and voluntary human activity recognition (HAR).To create an automated system of a reference scale using motion sensors supported by deep learning algorithms to accurately rate ET severity during voluntary activities, and to propose an IOTA based blockchain application to share anonymously tremor data.OBJECTIVETo create an automated system of a reference scale using motion sensors supported by deep learning algorithms to accurately rate ET severity during voluntary activities, and to propose an IOTA based blockchain application to share anonymously tremor data.A smartwatch-based tremor monitoring system was used to collect motion data from 20 subjects while they were doing standard tasks. Two neurologists rated ET by Fahn-Tolosa Marin Tremor Rating Scale (FTMTRS). Supported by deep learning techniques, activity classification models (ACMs) and tremor evaluation models (TEMs) were created and algorithms were implemented, to distinguish voluntary human activities and evaluate tremor severity respectively.METHODA smartwatch-based tremor monitoring system was used to collect motion data from 20 subjects while they were doing standard tasks. Two neurologists rated ET by Fahn-Tolosa Marin Tremor Rating Scale (FTMTRS). Supported by deep learning techniques, activity classification models (ACMs) and tremor evaluation models (TEMs) were created and algorithms were implemented, to distinguish voluntary human activities and evaluate tremor severity respectively.A practical application example showed that the proposed ACMs can classify six typical activities with high accuracy (89.73%-98.84%) and the results produced by the TEMs are significantly correlated with the FTMTRS ratings of two neurologists (r1 = 0.92, p1 = 0.008; r2 = 0.93, p2 = 0.007).RESULTA practical application example showed that the proposed ACMs can classify six typical activities with high accuracy (89.73%-98.84%) and the results produced by the TEMs are significantly correlated with the FTMTRS ratings of two neurologists (r1 = 0.92, p1 = 0.008; r2 = 0.93, p2 = 0.007).This study demonstrated that motion sensor data, supported by deep learning algorithms, can be used to classify human activities and evaluate essential tremor severity during different activities.CONCLUSIONThis study demonstrated that motion sensor data, supported by deep learning algorithms, can be used to classify human activities and evaluate essential tremor severity during different activities.
Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable performances in both quantifying tremor and voluntary human activity recognition (HAR). To create an automated system of a reference scale using motion sensors supported by deep learning algorithms to accurately rate ET severity during voluntary activities, and to propose an IOTA based blockchain application to share anonymously tremor data. A smartwatch-based tremor monitoring system was used to collect motion data from 20 subjects while they were doing standard tasks. Two neurologists rated ET by Fahn-Tolosa Marin Tremor Rating Scale (FTMTRS). Supported by deep learning techniques, activity classification models (ACMs) and tremor evaluation models (TEMs) were created and algorithms were implemented, to distinguish voluntary human activities and evaluate tremor severity respectively. A practical application example showed that the proposed ACMs can classify six typical activities with high accuracy (89.73%-98.84%) and the results produced by the TEMs are significantly correlated with the FTMTRS ratings of two neurologists (r  = 0.92, p  = 0.008; r  = 0.93, p  = 0.007). This study demonstrated that motion sensor data, supported by deep learning algorithms, can be used to classify human activities and evaluate essential tremor severity during different activities.
Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable performances in both quantifying tremor and voluntary human activity recognition (HAR). To create an automated system of a reference scale using motion sensors supported by deep learning algorithms to accurately rate ET severity during voluntary activities, and to propose an IOTA based blockchain application to share anonymously tremor data. A smartwatch-based tremor monitoring system was used to collect motion data from 20 subjects while they were doing standard tasks. Two neurologists rated ET by Fahn-Tolosa Marin Tremor Rating Scale (FTMTRS). Supported by deep learning techniques, activity classification models (ACMs) and tremor evaluation models (TEMs) were created and algorithms were implemented, to distinguish voluntary human activities and evaluate tremor severity respectively. A practical application example showed that the proposed ACMs can classify six typical activities with high accuracy (89.73%–98.84%) and the results produced by the TEMs are significantly correlated with the FTMTRS ratings of two neurologists (r1 = 0.92, p1 = 0.008; r2 = 0.93, p2 = 0.007). This study demonstrated that motion sensor data, supported by deep learning algorithms, can be used to classify human activities and evaluate essential tremor severity during different activities. •An automatized system to score Essential Tremor is presented.•It classifies the tremor level, but also it automatically identifies the action done.•Accuracy in classification of activities is over 89%.•High degree of correlation (>90%) with two neurologists for scoring of the tremor.•An anonymized exchange of patients' data based on blockchain IOTA is presented.
Author Zheng, Xiaochen
Vieira, Alba
Aladro, Yolanda
Marcos, Sergio Labrador
Ordieres-Meré, Joaquín
Author_xml – sequence: 1
  givenname: Xiaochen
  surname: Zheng
  fullname: Zheng, Xiaochen
  organization: Department of Industrial Engineering, Universidad Politécnica de Madrid, Madrid, Spain
– sequence: 2
  givenname: Alba
  surname: Vieira
  fullname: Vieira, Alba
  organization: Neurology Service, Hospital Universitario de Getafe, Getafe, Madrid, Spain
– sequence: 3
  givenname: Sergio Labrador
  surname: Marcos
  fullname: Marcos, Sergio Labrador
  organization: Neurology Service, Hospital Universitario de Getafe, Getafe, Madrid, Spain
– sequence: 4
  givenname: Yolanda
  surname: Aladro
  fullname: Aladro, Yolanda
  organization: Neurology Service, Hospital Universitario de Getafe, Getafe, Madrid, Spain
– sequence: 5
  givenname: Joaquín
  orcidid: 0000-0002-9677-6764
  surname: Ordieres-Meré
  fullname: Ordieres-Meré, Joaquín
  email: j.ordieres@upm.es
  organization: Department of Industrial Engineering, Universidad Politécnica de Madrid, Madrid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30122598$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi3Uql_0L6AcuWQ7tuvEviBKBRSpUi9wNrP2BLx1ksV2ttp_T5YtIPW00ki2pWceWe97zo6GcSDGKg4LDry5Wi3WmB4TRR_yQgDXC5gH-Ct2xnUra8VFczTfpZK1BgGn7DznFQC0CuQJO5XAhVBGn7HvN66ETSjbGp8wUUU501ACxqok6sdU0QbjhCWMQzXlMPyoPNG6ioRp2L16Kj9HXy0xk69mBp2jSGm_4LHga3bcYcx0-XxesG-fPn69vavvHz5_ub25r9215KX2pmvwum3Am2UrhFGaN1KajhunfAfagEAURgM32HDXtJqE9spzUERLQ_KCvd1712n8NVEutg95_kvEgcYpWwEGpFCNkjP65hmdlj15u06hx7S1f1OZAb0HXBpzTtT9QzjYXQF2Zf8XYHcFWJgH-Lz67sWqC-VPGiVhiIcIPuwFNIe1CZRsdoEGRz4kcsX6MRwief9C4mIYgsP4SNvDFL8BJDG_Zw
CitedBy_id crossref_primary_10_1016_j_future_2020_05_047
crossref_primary_10_1016_j_apacoust_2023_109476
crossref_primary_10_3390_s25010266
crossref_primary_10_1080_17483107_2020_1776776
crossref_primary_10_1109_TETC_2019_2936881
crossref_primary_10_1186_s12984_023_01302_9
crossref_primary_10_2196_13583
crossref_primary_10_3390_jcm13237009
crossref_primary_10_1038_s41598_021_88919_9
crossref_primary_10_1007_s44196_021_00052_7
crossref_primary_10_1016_j_parkreldis_2022_01_021
crossref_primary_10_1088_1757_899X_688_4_044072
crossref_primary_10_1155_2024_5787563
crossref_primary_10_14483_23448393_21091
crossref_primary_10_3390_s20236897
crossref_primary_10_1002_mds_29376
crossref_primary_10_1002_ett_4333
crossref_primary_10_1007_s00415_024_12354_9
crossref_primary_10_3389_fbloc_2021_580227
crossref_primary_10_3389_fnhum_2021_736155
Cites_doi 10.3389/fneur.2017.00096
10.1016/j.parkreldis.2011.04.017
10.1212/WNL.55.10.1547
10.1001/jama.2014.1397
10.1109/JBHI.2016.2633287
10.3414/ME9243
10.1038/nature14539
10.1093/ageing/afj072
10.1016/j.jneumeth.2014.04.021
10.1016/j.parkreldis.2011.01.001
10.1002/mds.23201
10.1016/j.parkreldis.2016.10.002
10.1002/mds.22838
10.1016/j.parkreldis.2013.09.009
10.1016/j.eswa.2016.04.032
10.18535/ijecs/v7i4.05
10.1016/j.parkreldis.2017.05.018
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier Ltd.
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.parkreldis.2018.08.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5126
EndPage 22
ExternalDocumentID 30122598
10_1016_j_parkreldis_2018_08_001
S1353802018303316
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABGSF
ABIVO
ABJNI
ABMAC
ABMZM
ABTEW
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSU
SSZ
T5K
Z5R
~G-
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
LCYCR
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c431t-d9f6a4760d9b72295816339f19c5df08902aa298019a61c678e28d5d105eeb9e3
IEDL.DBID .~1
ISSN 1353-8020
1873-5126
IngestDate Sun Sep 28 07:56:05 EDT 2025
Thu Apr 03 07:02:28 EDT 2025
Wed Oct 01 01:43:37 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Fri Feb 23 02:22:45 EST 2024
Tue Oct 14 19:30:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
IoTA
Human activity recognition
Essential tremor
Convolutional neural network
Blockchain
Language English
License Copyright © 2018. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-d9f6a4760d9b72295816339f19c5df08902aa298019a61c678e28d5d105eeb9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9677-6764
PMID 30122598
PQID 2090325653
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2090325653
pubmed_primary_30122598
crossref_primary_10_1016_j_parkreldis_2018_08_001
crossref_citationtrail_10_1016_j_parkreldis_2018_08_001
elsevier_sciencedirect_doi_10_1016_j_parkreldis_2018_08_001
elsevier_clinicalkey_doi_10_1016_j_parkreldis_2018_08_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Parkinsonism & related disorders
PublicationTitleAlternate Parkinsonism Relat Disord
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ronao, Cho (bib20) 2016; 59
Zeng, Nguyen, Yu, Mengshoel, Zhu, Wu (bib17) 2014
Joundi, Brittain, Jenkinson, Green, Aziz (bib11) 2011; 17
Pulliam, Eichenseer, Goetz, Waln, Hunter, Jankovic (bib14) 2014; 20
Zheng, Ordieres-Meré (bib21) 2014
Zheng, Ordieres-Mere (bib22) 2015
Elble (bib8) 2000; 55
Sztyler, Stuckenschmidt (bib27) 2016
Schuhmayer, Weber, Kieler, Voller, Pirker, Auff (bib15) 2017; 41
Abadi, Agarwal, Barham, Brevdo, Chen, Citro (bib23) 2016
Krizhevsky, Sutskever, Hinton (bib18) 2012
Divya, Biradar (bib25) 2018; 7
Popov (bib26) 2016
Wile, Ranawaya, Kiss (bib12) 2014; 230
Mostile, Giuffrida, Adam, Davidson, Jankovic (bib4) 2010; 25
Louis, Ferreira (bib1) 2010; 25
Hopfner, Haubenberger, Galpern, Gwinn, Van't Veer, White (bib6) 2016; 33
Elias, Shah (bib2) 2014; 311
Heldman, Jankovic, Vaillancourt, Prodoehl, Elble, Giuffrida (bib3) 2011; 17
Thanvi, Lo, Robinson (bib9) 2006; 35
Yang, Nguyen, San, Li, Krishnaswamy (bib30) 2015
Chen, Xue (bib31) 2015
Zheng, Campos, Ordieres-Meré, Balseiro, Marcos, Aladro (bib13) 2017; 8
LeCun, Bengio, Hinton (bib16) 2015; 521
Rigas, Tzallas, Tsipouras, Bougia, Tripoliti, Baga (bib7) 2012; 16
LeCun, Kavukcuoglu, Farabet (bib28) 2010
Fahn, Tolosa, Marin (bib5) 1993; vol. 2
Ravì, Wong, Lo, Yang (bib19) 2017; 21
Zeng, Nguyen, Yu, Mengshoel, Zhu, Wu (bib29) 2014
Mamorita, Iizuka, Takeuchi, Shirataka, Ikeda (bib10) 2009; 48
Tang (bib24) 2016
Ronao (10.1016/j.parkreldis.2018.08.001_bib20) 2016; 59
Mamorita (10.1016/j.parkreldis.2018.08.001_bib10) 2009; 48
Zeng (10.1016/j.parkreldis.2018.08.001_bib17) 2014
Zheng (10.1016/j.parkreldis.2018.08.001_bib21) 2014
LeCun (10.1016/j.parkreldis.2018.08.001_bib28) 2010
Heldman (10.1016/j.parkreldis.2018.08.001_bib3) 2011; 17
Divya (10.1016/j.parkreldis.2018.08.001_bib25) 2018; 7
Thanvi (10.1016/j.parkreldis.2018.08.001_bib9) 2006; 35
Schuhmayer (10.1016/j.parkreldis.2018.08.001_bib15) 2017; 41
Yang (10.1016/j.parkreldis.2018.08.001_bib30) 2015
Pulliam (10.1016/j.parkreldis.2018.08.001_bib14) 2014; 20
Chen (10.1016/j.parkreldis.2018.08.001_bib31) 2015
Rigas (10.1016/j.parkreldis.2018.08.001_bib7) 2012; 16
Sztyler (10.1016/j.parkreldis.2018.08.001_bib27) 2016
Zheng (10.1016/j.parkreldis.2018.08.001_bib13) 2017; 8
Zeng (10.1016/j.parkreldis.2018.08.001_bib29) 2014
LeCun (10.1016/j.parkreldis.2018.08.001_bib16) 2015; 521
Elble (10.1016/j.parkreldis.2018.08.001_bib8) 2000; 55
Mostile (10.1016/j.parkreldis.2018.08.001_bib4) 2010; 25
Louis (10.1016/j.parkreldis.2018.08.001_bib1) 2010; 25
Zheng (10.1016/j.parkreldis.2018.08.001_bib22) 2015
Elias (10.1016/j.parkreldis.2018.08.001_bib2) 2014; 311
Fahn (10.1016/j.parkreldis.2018.08.001_bib5) 1993; vol. 2
Joundi (10.1016/j.parkreldis.2018.08.001_bib11) 2011; 17
Hopfner (10.1016/j.parkreldis.2018.08.001_bib6) 2016; 33
Ravì (10.1016/j.parkreldis.2018.08.001_bib19) 2017; 21
Wile (10.1016/j.parkreldis.2018.08.001_bib12) 2014; 230
Krizhevsky (10.1016/j.parkreldis.2018.08.001_bib18) 2012
Popov (10.1016/j.parkreldis.2018.08.001_bib26) 2016
Tang (10.1016/j.parkreldis.2018.08.001_bib24) 2016
Abadi (10.1016/j.parkreldis.2018.08.001_bib23) 2016
References_xml – start-page: 242
  year: 2015
  end-page: 248
  ident: bib22
  article-title: Detection and Analysis of Tremor Using a System Based on Smart Device and NoSQL Database
– year: 2015
  ident: bib30
  article-title: Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition
– volume: 35
  start-page: 344
  year: 2006
  end-page: 349
  ident: bib9
  article-title: Essential tremor-the most common movement disorder in older people
  publication-title: Age Ageing
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib16
  article-title: Deep learning
  publication-title: Nature
– year: 2014
  ident: bib21
  article-title: Development of a Human Movement Monitoring System Based on Wearable Devices
– volume: 230
  start-page: 1
  year: 2014
  end-page: 4
  ident: bib12
  article-title: Smart watch accelerometry for analysis and diagnosis of tremor
  publication-title: J. Neurosci. Meth.
– volume: vol. 2
  start-page: 271
  year: 1993
  end-page: 280
  ident: bib5
  publication-title: Clinical Rating Scale for Tremor. Parkinson's Disease and Movement Disorders
– volume: 16
  start-page: 478
  year: 2012
  end-page: 487
  ident: bib7
  article-title: Assessment of tremor activity in the Parkinson's disease using a set of wearable sensors. Information Technology in Biomedicine
  publication-title: IEEE Transactions on
– volume: 41
  start-page: 79
  year: 2017
  end-page: 85
  ident: bib15
  article-title: Task-dependent variability of essential tremor
  publication-title: Park. Relat. Disord.
– volume: 8
  year: 2017
  ident: bib13
  article-title: Continuous monitoring of essential tremor using a portable system based on smartwatch
  publication-title: Front. Neurol.
– year: 2016
  ident: bib23
  article-title: Tensorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems
– volume: 7
  start-page: 23823
  year: 2018
  end-page: 23826
  ident: bib25
  article-title: IOTA-next generation block chain
  publication-title: International Journal Of Engineering And Computer Science
– volume: 17
  start-page: 537
  year: 2011
  end-page: 542
  ident: bib3
  article-title: Essential tremor quantification during activities of daily living
  publication-title: Park. Relat. Disord.
– volume: 25
  start-page: 534
  year: 2010
  end-page: 541
  ident: bib1
  article-title: How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor
  publication-title: Mov. Disord.
– start-page: 1488
  year: 2015
  end-page: 1492
  ident: bib31
  article-title: A Deep Learning Approach to Human Activity Recognition Based on Single Accelerometer
– volume: 17
  start-page: 288
  year: 2011
  end-page: 290
  ident: bib11
  article-title: Rapid tremor frequency assessment with the iPhone accelerometer
  publication-title: Park. Relat. Disord.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib18
  article-title: Imagenet Classification with Deep Convolutional Neural Networks
– start-page: 131
  year: 2016
  ident: bib26
  article-title: The Tangle. Cit. on
– year: 2016
  ident: bib24
  article-title: Learn: TensorFlow's High-level Module for Distributed Machine Learning
– start-page: 1
  year: 2016
  end-page: 9
  ident: bib27
  article-title: On-body Localization of Wearable Devices: an Investigation of Position-aware Activity Recognition
– volume: 21
  start-page: 56
  year: 2017
  end-page: 64
  ident: bib19
  article-title: A deep learning approach to on-node sensor data analytics for mobile or wearable devices
  publication-title: IEEE Journal of Biomedical and Health Informatics
– start-page: 253
  year: 2010
  end-page: 256
  ident: bib28
  article-title: Convolutional Networks and Applications in Vision
– volume: 48
  start-page: 589
  year: 2009
  end-page: 594
  ident: bib10
  article-title: Development of a system for measurement and analysis of tremor using a three-axis accelerometer
  publication-title: Method Inf. Med.
– start-page: 197
  year: 2014
  end-page: 205
  ident: bib29
  article-title: Convolutional Neural Networks for Human Activity Recognition Using mobile Sensors
– volume: 25
  start-page: 1938
  year: 2010
  end-page: 1943
  ident: bib4
  article-title: Correlation between Kinesia system assessments and clinical tremor scores in patients with essential tremor
  publication-title: Mov. Disord.
– volume: 33
  start-page: 27
  year: 2016
  end-page: 35
  ident: bib6
  article-title: Knowledge gaps and research recommendations for essential tremor
  publication-title: Park. Relat. Disord.
– volume: 55
  start-page: 1547
  year: 2000
  end-page: 1551
  ident: bib8
  article-title: Essential tremor frequency decreases with time
  publication-title: Neurology
– start-page: 197
  year: 2014
  end-page: 205
  ident: bib17
  article-title: Convolutional Neural Networks for Human Activity Recognition Using mobile Sensors
– volume: 59
  start-page: 235
  year: 2016
  end-page: 244
  ident: bib20
  article-title: Human activity recognition with smartphone sensors using deep learning neural networks
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 37
  year: 2014
  end-page: 40
  ident: bib14
  article-title: Continuous in-home monitoring of essential tremor
  publication-title: Park. Relat. Disord.
– volume: 311
  start-page: 948
  year: 2014
  end-page: 954
  ident: bib2
  publication-title: Tremor. JAMA
– volume: vol. 2
  start-page: 271
  year: 1993
  ident: 10.1016/j.parkreldis.2018.08.001_bib5
– volume: 8
  year: 2017
  ident: 10.1016/j.parkreldis.2018.08.001_bib13
  article-title: Continuous monitoring of essential tremor using a portable system based on smartwatch
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2017.00096
– year: 2014
  ident: 10.1016/j.parkreldis.2018.08.001_bib21
– volume: 17
  start-page: 537
  year: 2011
  ident: 10.1016/j.parkreldis.2018.08.001_bib3
  article-title: Essential tremor quantification during activities of daily living
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2011.04.017
– volume: 55
  start-page: 1547
  year: 2000
  ident: 10.1016/j.parkreldis.2018.08.001_bib8
  article-title: Essential tremor frequency decreases with time
  publication-title: Neurology
  doi: 10.1212/WNL.55.10.1547
– volume: 311
  start-page: 948
  year: 2014
  ident: 10.1016/j.parkreldis.2018.08.001_bib2
  publication-title: Tremor. JAMA
  doi: 10.1001/jama.2014.1397
– start-page: 242
  year: 2015
  ident: 10.1016/j.parkreldis.2018.08.001_bib22
– volume: 21
  start-page: 56
  year: 2017
  ident: 10.1016/j.parkreldis.2018.08.001_bib19
  article-title: A deep learning approach to on-node sensor data analytics for mobile or wearable devices
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2016.2633287
– start-page: 253
  year: 2010
  ident: 10.1016/j.parkreldis.2018.08.001_bib28
– start-page: 197
  year: 2014
  ident: 10.1016/j.parkreldis.2018.08.001_bib29
– volume: 48
  start-page: 589
  year: 2009
  ident: 10.1016/j.parkreldis.2018.08.001_bib10
  article-title: Development of a system for measurement and analysis of tremor using a three-axis accelerometer
  publication-title: Method Inf. Med.
  doi: 10.3414/ME9243
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.parkreldis.2018.08.001_bib16
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 16
  start-page: 478
  year: 2012
  ident: 10.1016/j.parkreldis.2018.08.001_bib7
  article-title: Assessment of tremor activity in the Parkinson's disease using a set of wearable sensors. Information Technology in Biomedicine
  publication-title: IEEE Transactions on
– volume: 35
  start-page: 344
  year: 2006
  ident: 10.1016/j.parkreldis.2018.08.001_bib9
  article-title: Essential tremor-the most common movement disorder in older people
  publication-title: Age Ageing
  doi: 10.1093/ageing/afj072
– start-page: 197
  year: 2014
  ident: 10.1016/j.parkreldis.2018.08.001_bib17
– volume: 230
  start-page: 1
  year: 2014
  ident: 10.1016/j.parkreldis.2018.08.001_bib12
  article-title: Smart watch accelerometry for analysis and diagnosis of tremor
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2014.04.021
– start-page: 1097
  year: 2012
  ident: 10.1016/j.parkreldis.2018.08.001_bib18
– start-page: 1488
  year: 2015
  ident: 10.1016/j.parkreldis.2018.08.001_bib31
– volume: 17
  start-page: 288
  year: 2011
  ident: 10.1016/j.parkreldis.2018.08.001_bib11
  article-title: Rapid tremor frequency assessment with the iPhone accelerometer
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2011.01.001
– year: 2016
  ident: 10.1016/j.parkreldis.2018.08.001_bib24
– volume: 25
  start-page: 1938
  year: 2010
  ident: 10.1016/j.parkreldis.2018.08.001_bib4
  article-title: Correlation between Kinesia system assessments and clinical tremor scores in patients with essential tremor
  publication-title: Mov. Disord.
  doi: 10.1002/mds.23201
– volume: 33
  start-page: 27
  year: 2016
  ident: 10.1016/j.parkreldis.2018.08.001_bib6
  article-title: Knowledge gaps and research recommendations for essential tremor
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2016.10.002
– volume: 25
  start-page: 534
  year: 2010
  ident: 10.1016/j.parkreldis.2018.08.001_bib1
  article-title: How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22838
– volume: 20
  start-page: 37
  year: 2014
  ident: 10.1016/j.parkreldis.2018.08.001_bib14
  article-title: Continuous in-home monitoring of essential tremor
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2013.09.009
– volume: 59
  start-page: 235
  year: 2016
  ident: 10.1016/j.parkreldis.2018.08.001_bib20
  article-title: Human activity recognition with smartphone sensors using deep learning neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.032
– year: 2015
  ident: 10.1016/j.parkreldis.2018.08.001_bib30
– volume: 7
  start-page: 23823
  issue: 04
  year: 2018
  ident: 10.1016/j.parkreldis.2018.08.001_bib25
  article-title: IOTA-next generation block chain
  publication-title: International Journal Of Engineering And Computer Science
  doi: 10.18535/ijecs/v7i4.05
– start-page: 131
  year: 2016
  ident: 10.1016/j.parkreldis.2018.08.001_bib26
– year: 2016
  ident: 10.1016/j.parkreldis.2018.08.001_bib23
– volume: 41
  start-page: 79
  year: 2017
  ident: 10.1016/j.parkreldis.2018.08.001_bib15
  article-title: Task-dependent variability of essential tremor
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2017.05.018
– start-page: 1
  year: 2016
  ident: 10.1016/j.parkreldis.2018.08.001_bib27
SSID ssj0007503
Score 2.3858044
Snippet Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17
SubjectTerms Accelerometry - instrumentation
Accelerometry - methods
Adult
Aged
Aged, 80 and over
Blockchain
Convolutional neural network
Deep Learning
Essential tremor
Essential Tremor - diagnosis
Essential Tremor - physiopathology
Female
Human activity recognition
Humans
IoTA
Male
Microcomputers
Middle Aged
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
Motor Activity - physiology
Title Activity-aware essential tremor evaluation using deep learning method based on acceleration data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1353802018303316
https://dx.doi.org/10.1016/j.parkreldis.2018.08.001
https://www.ncbi.nlm.nih.gov/pubmed/30122598
https://www.proquest.com/docview/2090325653
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5126
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007503
  issn: 1353-8020
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-5126
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007503
  issn: 1353-8020
  databaseCode: .~1
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5126
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007503
  issn: 1353-8020
  databaseCode: ACRLP
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5126
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007503
  issn: 1353-8020
  databaseCode: AIKHN
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5126
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007503
  issn: 1353-8020
  databaseCode: AKRWK
  dateStart: 19950701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIL6I386PEcHXuHZpuwafxlDm1xB1sLeaJemYjq6UiW_-7d416YagMPCptORom17vfu39cj9CzoPAUxAZm8xLlWSBiWImdRwxnmot04jztFRReOhF3X5wOwgHK6RTrYVBWqWL_Taml9HaHWm42Wzk43HjGRUbYkA74JQe5z623Q6CFqoYXHwtaB5Ypys_ukLOcLRj81iOVy6L98JM9Bgbd_tx2czTycP8kqL-gqBlKrreIpsOQ9K2vcxtsmKyHbL-4Krku-S1rawmBJOfsjAU24Nn8CZP6KxAYi1dtPimyHsfUW1MTp2AxIhaVWmKCU5TGCOVguRkXYUipXSP9K-vXjpd5pQUmAKAMGNapJEMWpGnxbCFAt4xwDAuUl-oUKce1hqlbArIVkJGvoIEZpqxDjWAL2OGwvB9sppNM3NIKAACPy6lYyOALiYVQqMEu-BSYLc3USOtavIS5dqMo9rFJKn4ZG_JYtoTnPYEhTA9v0b8uWVuW20sYSOq55NUS0kh-CWQD5awvZzb_nC5Ja3PKndI4I3EMovMzPQDBwlwfgDKvEYOrJ_M74djJTMU8dG_zn1MNmBP2D9BJ2R1VnyYU8BGs2G9dP46WWt3nu4fcXtz1-19A8nwEGU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4Bk2AviI0f62DDk_ZqmtSJG4snhIa6QXkZSLwZ13ZQoQpVVMQbf_vuYqcVEkiV9pr4lMQ5333Jfb4P4GeWJRYjY48npTU887LgxhWSi9I5U0ohykZFYXgpB9fZn5v8ZgVO270wRKuMsT_E9CZaxyPdOJvd6Xjc_UuKDQWiHXTKRIhUrsKHLO_16Qvs6GXB86BCXfPVlQtOwyOdJ5C8pqZ-qP3Ejalzd1o03TyjPswbOeo9DNrkorMt2Iwgkp2E-_wEK776DOvDWCbfhtsTG0QhuHk2tWfUH7zCpTxhs5qYtWzR45sR8f2OOe-nLCpI3LEgK80owzmGY4y1mJ2CrzDilO7A9dmvq9MBj1IK3CJCmHGnSmmyvkycGvVJwbtAHCZUmSqbuzKhYqMxPYXpShmZWsxgvle43CH68n6kvNiFteqx8l-AISJIi0Y7ViJ28aVSjjTYlTCK2r2pDvTbydM29hknuYuJbgll93ox7ZqmXZMSZpJ2IJ1bTkOvjSVsVPt-dLuXFKOfxoSwhO3x3PaVzy1p_aN1B41LkuospvKPTzRIofcjUhYd2At-Mn8eQaXMXBVf_-vah7AxuBpe6Ivfl-f78BHPqPBb6ADWZvWT_4ZAaTb63iyEf3FnEGU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity-aware+essential+tremor+evaluation+using+deep+learning+method+based+on+acceleration+data&rft.jtitle=Parkinsonism+%26+related+disorders&rft.au=Zheng%2C+Xiaochen&rft.au=Vieira%2C+Alba&rft.au=Marcos%2C+Sergio+Labrador&rft.au=Aladro%2C+Yolanda&rft.date=2019-01-01&rft.issn=1873-5126&rft.eissn=1873-5126&rft.volume=58&rft.spage=17&rft_id=info:doi/10.1016%2Fj.parkreldis.2018.08.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1353-8020&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1353-8020&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1353-8020&client=summon