Activity-aware essential tremor evaluation using deep learning method based on acceleration data
Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable...
Saved in:
| Published in | Parkinsonism & related disorders Vol. 58; pp. 17 - 22 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.01.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1353-8020 1873-5126 1873-5126 |
| DOI | 10.1016/j.parkreldis.2018.08.001 |
Cover
| Abstract | Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable performances in both quantifying tremor and voluntary human activity recognition (HAR).
To create an automated system of a reference scale using motion sensors supported by deep learning algorithms to accurately rate ET severity during voluntary activities, and to propose an IOTA based blockchain application to share anonymously tremor data.
A smartwatch-based tremor monitoring system was used to collect motion data from 20 subjects while they were doing standard tasks. Two neurologists rated ET by Fahn-Tolosa Marin Tremor Rating Scale (FTMTRS). Supported by deep learning techniques, activity classification models (ACMs) and tremor evaluation models (TEMs) were created and algorithms were implemented, to distinguish voluntary human activities and evaluate tremor severity respectively.
A practical application example showed that the proposed ACMs can classify six typical activities with high accuracy (89.73%–98.84%) and the results produced by the TEMs are significantly correlated with the FTMTRS ratings of two neurologists (r1 = 0.92, p1 = 0.008; r2 = 0.93, p2 = 0.007).
This study demonstrated that motion sensor data, supported by deep learning algorithms, can be used to classify human activities and evaluate essential tremor severity during different activities.
•An automatized system to score Essential Tremor is presented.•It classifies the tremor level, but also it automatically identifies the action done.•Accuracy in classification of activities is over 89%.•High degree of correlation (>90%) with two neurologists for scoring of the tremor.•An anonymized exchange of patients' data based on blockchain IOTA is presented. |
|---|---|
| AbstractList | Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable performances in both quantifying tremor and voluntary human activity recognition (HAR).BACKGROUNDEssential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable performances in both quantifying tremor and voluntary human activity recognition (HAR).To create an automated system of a reference scale using motion sensors supported by deep learning algorithms to accurately rate ET severity during voluntary activities, and to propose an IOTA based blockchain application to share anonymously tremor data.OBJECTIVETo create an automated system of a reference scale using motion sensors supported by deep learning algorithms to accurately rate ET severity during voluntary activities, and to propose an IOTA based blockchain application to share anonymously tremor data.A smartwatch-based tremor monitoring system was used to collect motion data from 20 subjects while they were doing standard tasks. Two neurologists rated ET by Fahn-Tolosa Marin Tremor Rating Scale (FTMTRS). Supported by deep learning techniques, activity classification models (ACMs) and tremor evaluation models (TEMs) were created and algorithms were implemented, to distinguish voluntary human activities and evaluate tremor severity respectively.METHODA smartwatch-based tremor monitoring system was used to collect motion data from 20 subjects while they were doing standard tasks. Two neurologists rated ET by Fahn-Tolosa Marin Tremor Rating Scale (FTMTRS). Supported by deep learning techniques, activity classification models (ACMs) and tremor evaluation models (TEMs) were created and algorithms were implemented, to distinguish voluntary human activities and evaluate tremor severity respectively.A practical application example showed that the proposed ACMs can classify six typical activities with high accuracy (89.73%-98.84%) and the results produced by the TEMs are significantly correlated with the FTMTRS ratings of two neurologists (r1 = 0.92, p1 = 0.008; r2 = 0.93, p2 = 0.007).RESULTA practical application example showed that the proposed ACMs can classify six typical activities with high accuracy (89.73%-98.84%) and the results produced by the TEMs are significantly correlated with the FTMTRS ratings of two neurologists (r1 = 0.92, p1 = 0.008; r2 = 0.93, p2 = 0.007).This study demonstrated that motion sensor data, supported by deep learning algorithms, can be used to classify human activities and evaluate essential tremor severity during different activities.CONCLUSIONThis study demonstrated that motion sensor data, supported by deep learning algorithms, can be used to classify human activities and evaluate essential tremor severity during different activities. Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable performances in both quantifying tremor and voluntary human activity recognition (HAR). To create an automated system of a reference scale using motion sensors supported by deep learning algorithms to accurately rate ET severity during voluntary activities, and to propose an IOTA based blockchain application to share anonymously tremor data. A smartwatch-based tremor monitoring system was used to collect motion data from 20 subjects while they were doing standard tasks. Two neurologists rated ET by Fahn-Tolosa Marin Tremor Rating Scale (FTMTRS). Supported by deep learning techniques, activity classification models (ACMs) and tremor evaluation models (TEMs) were created and algorithms were implemented, to distinguish voluntary human activities and evaluate tremor severity respectively. A practical application example showed that the proposed ACMs can classify six typical activities with high accuracy (89.73%-98.84%) and the results produced by the TEMs are significantly correlated with the FTMTRS ratings of two neurologists (r = 0.92, p = 0.008; r = 0.93, p = 0.007). This study demonstrated that motion sensor data, supported by deep learning algorithms, can be used to classify human activities and evaluate essential tremor severity during different activities. Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective assessment during a clinical visit, underestimating the fluctuations tremor during different daily activities. Motion sensors have shown favorable performances in both quantifying tremor and voluntary human activity recognition (HAR). To create an automated system of a reference scale using motion sensors supported by deep learning algorithms to accurately rate ET severity during voluntary activities, and to propose an IOTA based blockchain application to share anonymously tremor data. A smartwatch-based tremor monitoring system was used to collect motion data from 20 subjects while they were doing standard tasks. Two neurologists rated ET by Fahn-Tolosa Marin Tremor Rating Scale (FTMTRS). Supported by deep learning techniques, activity classification models (ACMs) and tremor evaluation models (TEMs) were created and algorithms were implemented, to distinguish voluntary human activities and evaluate tremor severity respectively. A practical application example showed that the proposed ACMs can classify six typical activities with high accuracy (89.73%–98.84%) and the results produced by the TEMs are significantly correlated with the FTMTRS ratings of two neurologists (r1 = 0.92, p1 = 0.008; r2 = 0.93, p2 = 0.007). This study demonstrated that motion sensor data, supported by deep learning algorithms, can be used to classify human activities and evaluate essential tremor severity during different activities. •An automatized system to score Essential Tremor is presented.•It classifies the tremor level, but also it automatically identifies the action done.•Accuracy in classification of activities is over 89%.•High degree of correlation (>90%) with two neurologists for scoring of the tremor.•An anonymized exchange of patients' data based on blockchain IOTA is presented. |
| Author | Zheng, Xiaochen Vieira, Alba Aladro, Yolanda Marcos, Sergio Labrador Ordieres-Meré, Joaquín |
| Author_xml | – sequence: 1 givenname: Xiaochen surname: Zheng fullname: Zheng, Xiaochen organization: Department of Industrial Engineering, Universidad Politécnica de Madrid, Madrid, Spain – sequence: 2 givenname: Alba surname: Vieira fullname: Vieira, Alba organization: Neurology Service, Hospital Universitario de Getafe, Getafe, Madrid, Spain – sequence: 3 givenname: Sergio Labrador surname: Marcos fullname: Marcos, Sergio Labrador organization: Neurology Service, Hospital Universitario de Getafe, Getafe, Madrid, Spain – sequence: 4 givenname: Yolanda surname: Aladro fullname: Aladro, Yolanda organization: Neurology Service, Hospital Universitario de Getafe, Getafe, Madrid, Spain – sequence: 5 givenname: Joaquín orcidid: 0000-0002-9677-6764 surname: Ordieres-Meré fullname: Ordieres-Meré, Joaquín email: j.ordieres@upm.es organization: Department of Industrial Engineering, Universidad Politécnica de Madrid, Madrid, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30122598$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1v1DAQhi3Uql_0L6AcuWQ7tuvEviBKBRSpUi9wNrP2BLx1ksV2ttp_T5YtIPW00ki2pWceWe97zo6GcSDGKg4LDry5Wi3WmB4TRR_yQgDXC5gH-Ct2xnUra8VFczTfpZK1BgGn7DznFQC0CuQJO5XAhVBGn7HvN66ETSjbGp8wUUU501ACxqok6sdU0QbjhCWMQzXlMPyoPNG6ioRp2L16Kj9HXy0xk69mBp2jSGm_4LHga3bcYcx0-XxesG-fPn69vavvHz5_ub25r9215KX2pmvwum3Am2UrhFGaN1KajhunfAfagEAURgM32HDXtJqE9spzUERLQ_KCvd1712n8NVEutg95_kvEgcYpWwEGpFCNkjP65hmdlj15u06hx7S1f1OZAb0HXBpzTtT9QzjYXQF2Zf8XYHcFWJgH-Lz67sWqC-VPGiVhiIcIPuwFNIe1CZRsdoEGRz4kcsX6MRwief9C4mIYgsP4SNvDFL8BJDG_Zw |
| CitedBy_id | crossref_primary_10_1016_j_future_2020_05_047 crossref_primary_10_1016_j_apacoust_2023_109476 crossref_primary_10_3390_s25010266 crossref_primary_10_1080_17483107_2020_1776776 crossref_primary_10_1109_TETC_2019_2936881 crossref_primary_10_1186_s12984_023_01302_9 crossref_primary_10_2196_13583 crossref_primary_10_3390_jcm13237009 crossref_primary_10_1038_s41598_021_88919_9 crossref_primary_10_1007_s44196_021_00052_7 crossref_primary_10_1016_j_parkreldis_2022_01_021 crossref_primary_10_1088_1757_899X_688_4_044072 crossref_primary_10_1155_2024_5787563 crossref_primary_10_14483_23448393_21091 crossref_primary_10_3390_s20236897 crossref_primary_10_1002_mds_29376 crossref_primary_10_1002_ett_4333 crossref_primary_10_1007_s00415_024_12354_9 crossref_primary_10_3389_fbloc_2021_580227 crossref_primary_10_3389_fnhum_2021_736155 |
| Cites_doi | 10.3389/fneur.2017.00096 10.1016/j.parkreldis.2011.04.017 10.1212/WNL.55.10.1547 10.1001/jama.2014.1397 10.1109/JBHI.2016.2633287 10.3414/ME9243 10.1038/nature14539 10.1093/ageing/afj072 10.1016/j.jneumeth.2014.04.021 10.1016/j.parkreldis.2011.01.001 10.1002/mds.23201 10.1016/j.parkreldis.2016.10.002 10.1002/mds.22838 10.1016/j.parkreldis.2013.09.009 10.1016/j.eswa.2016.04.032 10.18535/ijecs/v7i4.05 10.1016/j.parkreldis.2017.05.018 |
| ContentType | Journal Article |
| Copyright | 2018 Copyright © 2018. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.parkreldis.2018.08.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1873-5126 |
| EndPage | 22 |
| ExternalDocumentID | 30122598 10_1016_j_parkreldis_2018_08_001 S1353802018303316 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABGSF ABIVO ABJNI ABMAC ABMZM ABTEW ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSN SSU SSZ T5K Z5R ~G- ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS LCYCR RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c431t-d9f6a4760d9b72295816339f19c5df08902aa298019a61c678e28d5d105eeb9e3 |
| IEDL.DBID | .~1 |
| ISSN | 1353-8020 1873-5126 |
| IngestDate | Sun Sep 28 07:56:05 EDT 2025 Thu Apr 03 07:02:28 EDT 2025 Wed Oct 01 01:43:37 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Fri Feb 23 02:22:45 EST 2024 Tue Oct 14 19:30:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning IoTA Human activity recognition Essential tremor Convolutional neural network Blockchain |
| Language | English |
| License | Copyright © 2018. Published by Elsevier Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c431t-d9f6a4760d9b72295816339f19c5df08902aa298019a61c678e28d5d105eeb9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9677-6764 |
| PMID | 30122598 |
| PQID | 2090325653 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2090325653 pubmed_primary_30122598 crossref_primary_10_1016_j_parkreldis_2018_08_001 crossref_citationtrail_10_1016_j_parkreldis_2018_08_001 elsevier_sciencedirect_doi_10_1016_j_parkreldis_2018_08_001 elsevier_clinicalkey_doi_10_1016_j_parkreldis_2018_08_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Parkinsonism & related disorders |
| PublicationTitleAlternate | Parkinsonism Relat Disord |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ronao, Cho (bib20) 2016; 59 Zeng, Nguyen, Yu, Mengshoel, Zhu, Wu (bib17) 2014 Joundi, Brittain, Jenkinson, Green, Aziz (bib11) 2011; 17 Pulliam, Eichenseer, Goetz, Waln, Hunter, Jankovic (bib14) 2014; 20 Zheng, Ordieres-Meré (bib21) 2014 Zheng, Ordieres-Mere (bib22) 2015 Elble (bib8) 2000; 55 Sztyler, Stuckenschmidt (bib27) 2016 Schuhmayer, Weber, Kieler, Voller, Pirker, Auff (bib15) 2017; 41 Abadi, Agarwal, Barham, Brevdo, Chen, Citro (bib23) 2016 Krizhevsky, Sutskever, Hinton (bib18) 2012 Divya, Biradar (bib25) 2018; 7 Popov (bib26) 2016 Wile, Ranawaya, Kiss (bib12) 2014; 230 Mostile, Giuffrida, Adam, Davidson, Jankovic (bib4) 2010; 25 Louis, Ferreira (bib1) 2010; 25 Hopfner, Haubenberger, Galpern, Gwinn, Van't Veer, White (bib6) 2016; 33 Elias, Shah (bib2) 2014; 311 Heldman, Jankovic, Vaillancourt, Prodoehl, Elble, Giuffrida (bib3) 2011; 17 Thanvi, Lo, Robinson (bib9) 2006; 35 Yang, Nguyen, San, Li, Krishnaswamy (bib30) 2015 Chen, Xue (bib31) 2015 Zheng, Campos, Ordieres-Meré, Balseiro, Marcos, Aladro (bib13) 2017; 8 LeCun, Bengio, Hinton (bib16) 2015; 521 Rigas, Tzallas, Tsipouras, Bougia, Tripoliti, Baga (bib7) 2012; 16 LeCun, Kavukcuoglu, Farabet (bib28) 2010 Fahn, Tolosa, Marin (bib5) 1993; vol. 2 Ravì, Wong, Lo, Yang (bib19) 2017; 21 Zeng, Nguyen, Yu, Mengshoel, Zhu, Wu (bib29) 2014 Mamorita, Iizuka, Takeuchi, Shirataka, Ikeda (bib10) 2009; 48 Tang (bib24) 2016 Ronao (10.1016/j.parkreldis.2018.08.001_bib20) 2016; 59 Mamorita (10.1016/j.parkreldis.2018.08.001_bib10) 2009; 48 Zeng (10.1016/j.parkreldis.2018.08.001_bib17) 2014 Zheng (10.1016/j.parkreldis.2018.08.001_bib21) 2014 LeCun (10.1016/j.parkreldis.2018.08.001_bib28) 2010 Heldman (10.1016/j.parkreldis.2018.08.001_bib3) 2011; 17 Divya (10.1016/j.parkreldis.2018.08.001_bib25) 2018; 7 Thanvi (10.1016/j.parkreldis.2018.08.001_bib9) 2006; 35 Schuhmayer (10.1016/j.parkreldis.2018.08.001_bib15) 2017; 41 Yang (10.1016/j.parkreldis.2018.08.001_bib30) 2015 Pulliam (10.1016/j.parkreldis.2018.08.001_bib14) 2014; 20 Chen (10.1016/j.parkreldis.2018.08.001_bib31) 2015 Rigas (10.1016/j.parkreldis.2018.08.001_bib7) 2012; 16 Sztyler (10.1016/j.parkreldis.2018.08.001_bib27) 2016 Zheng (10.1016/j.parkreldis.2018.08.001_bib13) 2017; 8 Zeng (10.1016/j.parkreldis.2018.08.001_bib29) 2014 LeCun (10.1016/j.parkreldis.2018.08.001_bib16) 2015; 521 Elble (10.1016/j.parkreldis.2018.08.001_bib8) 2000; 55 Mostile (10.1016/j.parkreldis.2018.08.001_bib4) 2010; 25 Louis (10.1016/j.parkreldis.2018.08.001_bib1) 2010; 25 Zheng (10.1016/j.parkreldis.2018.08.001_bib22) 2015 Elias (10.1016/j.parkreldis.2018.08.001_bib2) 2014; 311 Fahn (10.1016/j.parkreldis.2018.08.001_bib5) 1993; vol. 2 Joundi (10.1016/j.parkreldis.2018.08.001_bib11) 2011; 17 Hopfner (10.1016/j.parkreldis.2018.08.001_bib6) 2016; 33 Ravì (10.1016/j.parkreldis.2018.08.001_bib19) 2017; 21 Wile (10.1016/j.parkreldis.2018.08.001_bib12) 2014; 230 Krizhevsky (10.1016/j.parkreldis.2018.08.001_bib18) 2012 Popov (10.1016/j.parkreldis.2018.08.001_bib26) 2016 Tang (10.1016/j.parkreldis.2018.08.001_bib24) 2016 Abadi (10.1016/j.parkreldis.2018.08.001_bib23) 2016 |
| References_xml | – start-page: 242 year: 2015 end-page: 248 ident: bib22 article-title: Detection and Analysis of Tremor Using a System Based on Smart Device and NoSQL Database – year: 2015 ident: bib30 article-title: Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition – volume: 35 start-page: 344 year: 2006 end-page: 349 ident: bib9 article-title: Essential tremor-the most common movement disorder in older people publication-title: Age Ageing – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib16 article-title: Deep learning publication-title: Nature – year: 2014 ident: bib21 article-title: Development of a Human Movement Monitoring System Based on Wearable Devices – volume: 230 start-page: 1 year: 2014 end-page: 4 ident: bib12 article-title: Smart watch accelerometry for analysis and diagnosis of tremor publication-title: J. Neurosci. Meth. – volume: vol. 2 start-page: 271 year: 1993 end-page: 280 ident: bib5 publication-title: Clinical Rating Scale for Tremor. Parkinson's Disease and Movement Disorders – volume: 16 start-page: 478 year: 2012 end-page: 487 ident: bib7 article-title: Assessment of tremor activity in the Parkinson's disease using a set of wearable sensors. Information Technology in Biomedicine publication-title: IEEE Transactions on – volume: 41 start-page: 79 year: 2017 end-page: 85 ident: bib15 article-title: Task-dependent variability of essential tremor publication-title: Park. Relat. Disord. – volume: 8 year: 2017 ident: bib13 article-title: Continuous monitoring of essential tremor using a portable system based on smartwatch publication-title: Front. Neurol. – year: 2016 ident: bib23 article-title: Tensorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems – volume: 7 start-page: 23823 year: 2018 end-page: 23826 ident: bib25 article-title: IOTA-next generation block chain publication-title: International Journal Of Engineering And Computer Science – volume: 17 start-page: 537 year: 2011 end-page: 542 ident: bib3 article-title: Essential tremor quantification during activities of daily living publication-title: Park. Relat. Disord. – volume: 25 start-page: 534 year: 2010 end-page: 541 ident: bib1 article-title: How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor publication-title: Mov. Disord. – start-page: 1488 year: 2015 end-page: 1492 ident: bib31 article-title: A Deep Learning Approach to Human Activity Recognition Based on Single Accelerometer – volume: 17 start-page: 288 year: 2011 end-page: 290 ident: bib11 article-title: Rapid tremor frequency assessment with the iPhone accelerometer publication-title: Park. Relat. Disord. – start-page: 1097 year: 2012 end-page: 1105 ident: bib18 article-title: Imagenet Classification with Deep Convolutional Neural Networks – start-page: 131 year: 2016 ident: bib26 article-title: The Tangle. Cit. on – year: 2016 ident: bib24 article-title: Learn: TensorFlow's High-level Module for Distributed Machine Learning – start-page: 1 year: 2016 end-page: 9 ident: bib27 article-title: On-body Localization of Wearable Devices: an Investigation of Position-aware Activity Recognition – volume: 21 start-page: 56 year: 2017 end-page: 64 ident: bib19 article-title: A deep learning approach to on-node sensor data analytics for mobile or wearable devices publication-title: IEEE Journal of Biomedical and Health Informatics – start-page: 253 year: 2010 end-page: 256 ident: bib28 article-title: Convolutional Networks and Applications in Vision – volume: 48 start-page: 589 year: 2009 end-page: 594 ident: bib10 article-title: Development of a system for measurement and analysis of tremor using a three-axis accelerometer publication-title: Method Inf. Med. – start-page: 197 year: 2014 end-page: 205 ident: bib29 article-title: Convolutional Neural Networks for Human Activity Recognition Using mobile Sensors – volume: 25 start-page: 1938 year: 2010 end-page: 1943 ident: bib4 article-title: Correlation between Kinesia system assessments and clinical tremor scores in patients with essential tremor publication-title: Mov. Disord. – volume: 33 start-page: 27 year: 2016 end-page: 35 ident: bib6 article-title: Knowledge gaps and research recommendations for essential tremor publication-title: Park. Relat. Disord. – volume: 55 start-page: 1547 year: 2000 end-page: 1551 ident: bib8 article-title: Essential tremor frequency decreases with time publication-title: Neurology – start-page: 197 year: 2014 end-page: 205 ident: bib17 article-title: Convolutional Neural Networks for Human Activity Recognition Using mobile Sensors – volume: 59 start-page: 235 year: 2016 end-page: 244 ident: bib20 article-title: Human activity recognition with smartphone sensors using deep learning neural networks publication-title: Expert Syst. Appl. – volume: 20 start-page: 37 year: 2014 end-page: 40 ident: bib14 article-title: Continuous in-home monitoring of essential tremor publication-title: Park. Relat. Disord. – volume: 311 start-page: 948 year: 2014 end-page: 954 ident: bib2 publication-title: Tremor. JAMA – volume: vol. 2 start-page: 271 year: 1993 ident: 10.1016/j.parkreldis.2018.08.001_bib5 – volume: 8 year: 2017 ident: 10.1016/j.parkreldis.2018.08.001_bib13 article-title: Continuous monitoring of essential tremor using a portable system based on smartwatch publication-title: Front. Neurol. doi: 10.3389/fneur.2017.00096 – year: 2014 ident: 10.1016/j.parkreldis.2018.08.001_bib21 – volume: 17 start-page: 537 year: 2011 ident: 10.1016/j.parkreldis.2018.08.001_bib3 article-title: Essential tremor quantification during activities of daily living publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2011.04.017 – volume: 55 start-page: 1547 year: 2000 ident: 10.1016/j.parkreldis.2018.08.001_bib8 article-title: Essential tremor frequency decreases with time publication-title: Neurology doi: 10.1212/WNL.55.10.1547 – volume: 311 start-page: 948 year: 2014 ident: 10.1016/j.parkreldis.2018.08.001_bib2 publication-title: Tremor. JAMA doi: 10.1001/jama.2014.1397 – start-page: 242 year: 2015 ident: 10.1016/j.parkreldis.2018.08.001_bib22 – volume: 21 start-page: 56 year: 2017 ident: 10.1016/j.parkreldis.2018.08.001_bib19 article-title: A deep learning approach to on-node sensor data analytics for mobile or wearable devices publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2016.2633287 – start-page: 253 year: 2010 ident: 10.1016/j.parkreldis.2018.08.001_bib28 – start-page: 197 year: 2014 ident: 10.1016/j.parkreldis.2018.08.001_bib29 – volume: 48 start-page: 589 year: 2009 ident: 10.1016/j.parkreldis.2018.08.001_bib10 article-title: Development of a system for measurement and analysis of tremor using a three-axis accelerometer publication-title: Method Inf. Med. doi: 10.3414/ME9243 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.parkreldis.2018.08.001_bib16 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 16 start-page: 478 year: 2012 ident: 10.1016/j.parkreldis.2018.08.001_bib7 article-title: Assessment of tremor activity in the Parkinson's disease using a set of wearable sensors. Information Technology in Biomedicine publication-title: IEEE Transactions on – volume: 35 start-page: 344 year: 2006 ident: 10.1016/j.parkreldis.2018.08.001_bib9 article-title: Essential tremor-the most common movement disorder in older people publication-title: Age Ageing doi: 10.1093/ageing/afj072 – start-page: 197 year: 2014 ident: 10.1016/j.parkreldis.2018.08.001_bib17 – volume: 230 start-page: 1 year: 2014 ident: 10.1016/j.parkreldis.2018.08.001_bib12 article-title: Smart watch accelerometry for analysis and diagnosis of tremor publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2014.04.021 – start-page: 1097 year: 2012 ident: 10.1016/j.parkreldis.2018.08.001_bib18 – start-page: 1488 year: 2015 ident: 10.1016/j.parkreldis.2018.08.001_bib31 – volume: 17 start-page: 288 year: 2011 ident: 10.1016/j.parkreldis.2018.08.001_bib11 article-title: Rapid tremor frequency assessment with the iPhone accelerometer publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2011.01.001 – year: 2016 ident: 10.1016/j.parkreldis.2018.08.001_bib24 – volume: 25 start-page: 1938 year: 2010 ident: 10.1016/j.parkreldis.2018.08.001_bib4 article-title: Correlation between Kinesia system assessments and clinical tremor scores in patients with essential tremor publication-title: Mov. Disord. doi: 10.1002/mds.23201 – volume: 33 start-page: 27 year: 2016 ident: 10.1016/j.parkreldis.2018.08.001_bib6 article-title: Knowledge gaps and research recommendations for essential tremor publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2016.10.002 – volume: 25 start-page: 534 year: 2010 ident: 10.1016/j.parkreldis.2018.08.001_bib1 article-title: How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor publication-title: Mov. Disord. doi: 10.1002/mds.22838 – volume: 20 start-page: 37 year: 2014 ident: 10.1016/j.parkreldis.2018.08.001_bib14 article-title: Continuous in-home monitoring of essential tremor publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2013.09.009 – volume: 59 start-page: 235 year: 2016 ident: 10.1016/j.parkreldis.2018.08.001_bib20 article-title: Human activity recognition with smartphone sensors using deep learning neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.04.032 – year: 2015 ident: 10.1016/j.parkreldis.2018.08.001_bib30 – volume: 7 start-page: 23823 issue: 04 year: 2018 ident: 10.1016/j.parkreldis.2018.08.001_bib25 article-title: IOTA-next generation block chain publication-title: International Journal Of Engineering And Computer Science doi: 10.18535/ijecs/v7i4.05 – start-page: 131 year: 2016 ident: 10.1016/j.parkreldis.2018.08.001_bib26 – year: 2016 ident: 10.1016/j.parkreldis.2018.08.001_bib23 – volume: 41 start-page: 79 year: 2017 ident: 10.1016/j.parkreldis.2018.08.001_bib15 article-title: Task-dependent variability of essential tremor publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2017.05.018 – start-page: 1 year: 2016 ident: 10.1016/j.parkreldis.2018.08.001_bib27 |
| SSID | ssj0007503 |
| Score | 2.3858044 |
| Snippet | Essential tremor (ET), one of the most common neurological disorders is typically evaluated with validated rating scales which only provide a subjective... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 17 |
| SubjectTerms | Accelerometry - instrumentation Accelerometry - methods Adult Aged Aged, 80 and over Blockchain Convolutional neural network Deep Learning Essential tremor Essential Tremor - diagnosis Essential Tremor - physiopathology Female Human activity recognition Humans IoTA Male Microcomputers Middle Aged Monitoring, Ambulatory - instrumentation Monitoring, Ambulatory - methods Motor Activity - physiology |
| Title | Activity-aware essential tremor evaluation using deep learning method based on acceleration data |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1353802018303316 https://dx.doi.org/10.1016/j.parkreldis.2018.08.001 https://www.ncbi.nlm.nih.gov/pubmed/30122598 https://www.proquest.com/docview/2090325653 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5126 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007503 issn: 1353-8020 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-5126 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007503 issn: 1353-8020 databaseCode: .~1 dateStart: 19950701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5126 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007503 issn: 1353-8020 databaseCode: ACRLP dateStart: 19950701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5126 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007503 issn: 1353-8020 databaseCode: AIKHN dateStart: 19950701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5126 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007503 issn: 1353-8020 databaseCode: AKRWK dateStart: 19950701 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIL6I386PEcHXuHZpuwafxlDm1xB1sLeaJemYjq6UiW_-7d416YagMPCptORom17vfu39cj9CzoPAUxAZm8xLlWSBiWImdRwxnmot04jztFRReOhF3X5wOwgHK6RTrYVBWqWL_Taml9HaHWm42Wzk43HjGRUbYkA74JQe5z623Q6CFqoYXHwtaB5Ypys_ukLOcLRj81iOVy6L98JM9Bgbd_tx2czTycP8kqL-gqBlKrreIpsOQ9K2vcxtsmKyHbL-4Krku-S1rawmBJOfsjAU24Nn8CZP6KxAYi1dtPimyHsfUW1MTp2AxIhaVWmKCU5TGCOVguRkXYUipXSP9K-vXjpd5pQUmAKAMGNapJEMWpGnxbCFAt4xwDAuUl-oUKce1hqlbArIVkJGvoIEZpqxDjWAL2OGwvB9sppNM3NIKAACPy6lYyOALiYVQqMEu-BSYLc3USOtavIS5dqMo9rFJKn4ZG_JYtoTnPYEhTA9v0b8uWVuW20sYSOq55NUS0kh-CWQD5awvZzb_nC5Ja3PKndI4I3EMovMzPQDBwlwfgDKvEYOrJ_M74djJTMU8dG_zn1MNmBP2D9BJ2R1VnyYU8BGs2G9dP46WWt3nu4fcXtz1-19A8nwEGU |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4Bk2AviI0f62DDk_ZqmtSJG4snhIa6QXkZSLwZ13ZQoQpVVMQbf_vuYqcVEkiV9pr4lMQ5333Jfb4P4GeWJRYjY48npTU887LgxhWSi9I5U0ohykZFYXgpB9fZn5v8ZgVO270wRKuMsT_E9CZaxyPdOJvd6Xjc_UuKDQWiHXTKRIhUrsKHLO_16Qvs6GXB86BCXfPVlQtOwyOdJ5C8pqZ-qP3Ejalzd1o03TyjPswbOeo9DNrkorMt2Iwgkp2E-_wEK776DOvDWCbfhtsTG0QhuHk2tWfUH7zCpTxhs5qYtWzR45sR8f2OOe-nLCpI3LEgK80owzmGY4y1mJ2CrzDilO7A9dmvq9MBj1IK3CJCmHGnSmmyvkycGvVJwbtAHCZUmSqbuzKhYqMxPYXpShmZWsxgvle43CH68n6kvNiFteqx8l-AISJIi0Y7ViJ28aVSjjTYlTCK2r2pDvTbydM29hknuYuJbgll93ox7ZqmXZMSZpJ2IJ1bTkOvjSVsVPt-dLuXFKOfxoSwhO3x3PaVzy1p_aN1B41LkuospvKPTzRIofcjUhYd2At-Mn8eQaXMXBVf_-vah7AxuBpe6Ivfl-f78BHPqPBb6ADWZvWT_4ZAaTb63iyEf3FnEGU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity-aware+essential+tremor+evaluation+using+deep+learning+method+based+on+acceleration+data&rft.jtitle=Parkinsonism+%26+related+disorders&rft.au=Zheng%2C+Xiaochen&rft.au=Vieira%2C+Alba&rft.au=Marcos%2C+Sergio+Labrador&rft.au=Aladro%2C+Yolanda&rft.date=2019-01-01&rft.issn=1873-5126&rft.eissn=1873-5126&rft.volume=58&rft.spage=17&rft_id=info:doi/10.1016%2Fj.parkreldis.2018.08.001&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1353-8020&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1353-8020&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1353-8020&client=summon |