Robust estimation of adaptive tensors of curvature by tensor voting
Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, w...
        Saved in:
      
    
          | Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 27; no. 3; pp. 434 - 449 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Los Alamitos, CA
          IEEE
    
        01.03.2005
     IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0162-8828 1939-3539  | 
| DOI | 10.1109/TPAMI.2005.62 | 
Cover
| Abstract | Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise. | 
    
|---|---|
| AbstractList | Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise. Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated.  | 
    
| Author | Chi-Keung Tang Wai-Shun Tong  | 
    
| Author_xml | – sequence: 1 givenname: Wai-Shun surname: TONG fullname: TONG, Wai-Shun organization: Vision and Graphics Group, Computer Science Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong-Kong – sequence: 2 givenname: Chi-Keung surname: TANG fullname: TANG, Chi-Keung organization: Vision and Graphics Group, Computer Science Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong-Kong  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16474724$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15747797$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqF0k1rGzEQBmBREhLHzbGnQlkCbU7r6vvjGEzaBlJaSnoWs7vaorBeuZLWkH8fOXYxBJqcBOIZjTSvztDRGEaH0DuCF4Rg8_nu59X3mwXFWCwkfYNmxDBTM8HMEZphImmtNdWn6Cyle4wJF5idoFMiFFfKqBla_grNlHLlUvYryD6MVegr6GCd_cZV2Y0pxLTda6e4gTxFVzUP-_1qE7If_7xFxz0MyZ3v1zn6_eX6bvmtvv3x9WZ5dVu3nJFcN1r3VNIOOCGSGAxamgaU4h1tsWO0oQqcoNAoLHuAjimgoJUQTriu7wmbo8vduesY_k7lxnblU-uGAUYXpmS1kZRwrHGRn16UUnEtlFavQqpxsYYXePEM3ocpjuW5VktVjKSsoA97NDUr19l1LDOND_bfuAv4uAeQWhj6CGPr08FJXiDddqt3ro0hpej6A8F2G7t9it1uY7el8xyxZ771-SnNHMEP_616v6vyzrlDB1Z-jNTsEYwYt08 | 
    
| CODEN | ITPIDJ | 
    
| CitedBy_id | crossref_primary_10_1016_j_cviu_2006_09_007 crossref_primary_10_1109_TMI_2013_2263151 crossref_primary_10_1016_j_cad_2009_01_006 crossref_primary_10_1109_TASE_2020_2988314 crossref_primary_10_1109_TMI_2011_2129526 crossref_primary_10_1109_TMI_2007_905081 crossref_primary_10_1109_TPAMI_2022_3215475 crossref_primary_10_1016_j_imavis_2010_08_009 crossref_primary_10_1007_s00211_013_0584_y crossref_primary_10_1016_j_sigpro_2007_03_019 crossref_primary_10_1109_TCYB_2015_2430526 crossref_primary_10_1016_j_cad_2013_08_008 crossref_primary_10_1049_iet_ipr_2019_0214 crossref_primary_10_2139_ssrn_3371409 crossref_primary_10_1016_j_cagd_2008_01_002 crossref_primary_10_1109_TVCG_2012_113 crossref_primary_10_1007_s11042_018_6363_0 crossref_primary_10_1155_2010_240309 crossref_primary_10_12677_CSA_2015_56031 crossref_primary_10_21122_2309_4923_2023_2_49_58 crossref_primary_10_1016_j_cad_2008_12_004 crossref_primary_10_3722_cadaps_2011_193_210 crossref_primary_10_1016_j_cagd_2007_07_004 crossref_primary_10_1051_e3sconf_202450803003 crossref_primary_10_1109_TGRS_2014_2344714 crossref_primary_10_1016_j_autcon_2013_01_005 crossref_primary_10_1109_TIP_2008_2002306 crossref_primary_10_1109_TIP_2016_2564646 crossref_primary_10_1371_journal_pcbi_1007962 crossref_primary_10_1088_1755_1315_252_2_022096 crossref_primary_10_1111_j_1467_8659_2007_01109_x crossref_primary_10_1007_s00371_008_0268_2  | 
    
| Cites_doi | 10.1109/CVPR.1997.609361 10.1007/978-1-4612-4466-0 10.1016/b978-0-444-50353-4.x5000-8 10.1016/S0010-4485(99)00042-1 10.1109/34.946987 10.1145/508352.508354 10.5244/C.13.14 10.1109/TPAMI.2002.1008395 10.1117/12.302451 10.1006/cviu.1997.0533 10.1109/34.368172 10.1109/ROBOT.1996.509246 10.1109/CVPR.2001.990471 10.1109/34.730559 10.1109/ICCV.1995.466840 10.1109/CVPR.1989.37837 10.1109/ICPR.2002.1044847 10.1007/3-540-47969-4_23 10.1016/S0262-8856(03)00060-X 10.1142/S0218654398000088 10.1109/34.57680 10.1109/34.3881 10.1016/0262-8856(86)90029-6 10.1109/ICCV.1999.791252  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2005 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005  | 
    
| Copyright_xml | – notice: 2005 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005  | 
    
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7SE JG9 7X8 F28 FR3  | 
    
| DOI | 10.1109/TPAMI.2005.62 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Corrosion Abstracts Materials Research Database MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Materials Research Database Corrosion Abstracts MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database Technology Research Database Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science Applied Sciences  | 
    
| EISSN | 1939-3539 | 
    
| EndPage | 449 | 
    
| ExternalDocumentID | 2352223551 15747797 16474724 10_1109_TPAMI_2005_62 1388268  | 
    
| Genre | orig-research Validation Studies Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7SE JG9 7X8 F28 FR3  | 
    
| ID | FETCH-LOGICAL-c431t-b88f262da4116190a869ba774d2c0e32b27ae52ab706faad37a2a8755e5edff13 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0162-8828 | 
    
| IngestDate | Thu Oct 02 12:11:57 EDT 2025 Thu Oct 02 20:45:26 EDT 2025 Sun Sep 28 08:22:22 EDT 2025 Mon Jun 30 07:15:19 EDT 2025 Thu Apr 03 06:54:22 EDT 2025 Mon Jul 21 09:14:11 EDT 2025 Wed Oct 01 06:40:45 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Tue Aug 26 16:40:08 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Curvature tensor Computer vision tensor voting Robust estimation Curvature  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c431t-b88f262da4116190a869ba774d2c0e32b27ae52ab706faad37a2a8755e5edff13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3  | 
    
| PMID | 15747797 | 
    
| PQID | 867674623 | 
    
| PQPubID | 23500 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_867674623 proquest_miscellaneous_896214080 proquest_miscellaneous_67485787 crossref_citationtrail_10_1109_TPAMI_2005_62 proquest_miscellaneous_28067494 pubmed_primary_15747797 crossref_primary_10_1109_TPAMI_2005_62 pascalfrancis_primary_16474724 ieee_primary_1388268  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2005-03-01 | 
    
| PublicationDateYYYYMMDD | 2005-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2005 text: 2005-03-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Los Alamitos, CA | 
    
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence | 
    
| PublicationTitleAbbrev | TPAMI | 
    
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell | 
    
| PublicationYear | 2005 | 
    
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 Carmo (ref3) 1976 ref11 ref10 ref2 ref1 ref17 ref16 ref19 Tong (ref24) 2004 Sander (ref18) ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 Douros (ref4) ref6 ref5 Tong (ref25) 2004  | 
    
| References_xml | – ident: ref1 doi: 10.1109/CVPR.1997.609361 – year: 2004 ident: ref24 article-title: Multiscale Tensor Voting – volume-title: Scanning 2002 Proc. ident: ref4 article-title: Three-Dimensional Surface Curvature Estimation Using Quadric Surface Patches – ident: ref6 doi: 10.1007/978-1-4612-4466-0 – ident: ref14 doi: 10.1016/b978-0-444-50353-4.x5000-8 – ident: ref28 doi: 10.1016/S0010-4485(99)00042-1 – ident: ref22 doi: 10.1109/34.946987 – volume-title: technical report, The Hong Kong University of Science and Technology year: 2004 ident: ref25 article-title: Robust Estimation of Adaptive Tensors of Curvature by Tensor Voting Results – ident: ref16 doi: 10.1145/508352.508354 – ident: ref29 doi: 10.5244/C.13.14 – ident: ref21 doi: 10.1109/TPAMI.2002.1008395 – ident: ref10 doi: 10.1117/12.302451 – start-page: 1165 volume-title: Proc. Int’l Conf. Pattern Recognition ident: ref18 article-title: Stable Surface Estimation – ident: ref5 doi: 10.1006/cviu.1997.0533 – ident: ref26 doi: 10.1109/34.368172 – ident: ref8 doi: 10.1109/ROBOT.1996.509246 – volume-title: Differential Geometry of Curves and Surfaces year: 1976 ident: ref3 – ident: ref15 doi: 10.1109/CVPR.2001.990471 – ident: ref11 doi: 10.1109/34.730559 – ident: ref23 doi: 10.1109/ICCV.1995.466840 – ident: ref7 doi: 10.1109/CVPR.1989.37837 – ident: ref17 doi: 10.1109/ICPR.2002.1044847 – ident: ref12 doi: 10.1007/3-540-47969-4_23 – ident: ref9 doi: 10.1016/S0262-8856(03)00060-X – ident: ref13 doi: 10.1142/S0218654398000088 – ident: ref19 doi: 10.1109/34.57680 – ident: ref2 doi: 10.1109/34.3881 – ident: ref27 doi: 10.1016/0262-8856(86)90029-6 – ident: ref20 doi: 10.1109/ICCV.1999.791252  | 
    
| SSID | ssj0014503 | 
    
| Score | 2.028571 | 
    
| Snippet | Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a... In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions...  | 
    
| SourceID | proquest pubmed pascalfrancis crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 434 | 
    
| SubjectTerms | Algorithms Applied sciences Artificial Intelligence Clouds Computer errors Computer science; control theory; systems Computer vision Curvature curvature tensor Error correction Errors Exact sciences and technology Feedback Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Index Terms- Curvature Information Storage and Retrieval - methods Mathematical analysis Misalignment Noise Noise robustness Numerical Analysis, Computer-Assisted Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Quantization Reproducibility of Results Scattering Sensitivity and Specificity Studies Subtraction Technique Surface fitting Tensile stress tensor voting Tensors Voting  | 
    
| Title | Robust estimation of adaptive tensors of curvature by tensor voting | 
    
| URI | https://ieeexplore.ieee.org/document/1388268 https://www.ncbi.nlm.nih.gov/pubmed/15747797 https://www.proquest.com/docview/867674623 https://www.proquest.com/docview/28067494 https://www.proquest.com/docview/67485787 https://www.proquest.com/docview/896214080  | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBQgs0FIoPiFOzTRzHcY5VRVWQFiHUSr1F_hhfQJtqkyDRX1-Pk90tiJW4Rc4oSjwe59kzfg_gA1YGc8ziRpVLhXZFahTHVDpfOOuELB2dRp5_lVc34sttebsDp-uzMIgYi89wRpcxl-9aO9BW2VleBDwo1S7sVkqOZ7XWGQNRRhXkgGBChIdlxIZP8-z62_n887h9IqN6TRkwdEU0T49-RVFbhSojdRc6x4-qFtthZ_z9XO7DfPXiY9XJj9nQm5m9_4vT8X-_7Dk8m3AoOx8HzgvYwcUB7K80HtgU8gfw9BFh4SFcfG_N0PWMqDnGM4-s9Uw7fUezJqNq-HbZUZsdaLN3WCIzv6d29qulGuuXcHP56friKp1kGFIb0EUffKc8l9xpkQd4WGdaydroABsdtxkW3PBKY8m1qTLpdfB2pbkOy6ASS3Te58Ur2Fu0CzwCZqUvtbGysEIIb53hzqDLjbUKw_NkAqcrjzR24ignqYyfTVyrZHUTfUnamWUjeQIf1-Z3IznHNsND6vON0djdCZz84e7NfSnCEOEigeOV_5sptrtGEcedCLAxgffruyEoKdOiF9gOXUPp6krUYrsFabzQZJkA22KhasnD6ldlCbweR97m9aYB_Obfn3UMTyLBbKyUewt7_XLAdwE69eYkxswDmnMWuQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOFFo-QqH1AXFqtoljO8mxqqi20K0Q2kq9Rf6YXECbapMgwa9n7GR3C2IlblE8imyPJ362x-8BvMfcYIpJ2KhysdAui03BMVauzpx1QknnbyPPrtX0Rny6lbc7cLK-C4OIIfkMJ_4xnOW7xvZ-q-w0zQgPquIBPJRCCDnc1lqfGQgZdJAJw1CM00Jiw6h5Ov9yNrscNlBU0K-RhKJzT_R0bzIK6io-N1K31D31oGuxHXiGCehiD2arqg95J98mfWcm9tdfrI7_27Zn8HREouxsGDrPYQcX-7C3UnlgY9Dvw5N7lIUHcP61MX3bMU_OMdx6ZE3NtNN3_r_JfD58s2z9O9v77d5-icz8HN-zH43Psn4BNxcf5-fTeBRiiC3hi468V9RccadFSgCxTHShSqMJODpuE8y44blGybXJE1Vr8neuuaaFkESJrq7T7CXsLpoFvgZmVS21sSqz5MHaOsOdQZcaawuk76kITlYeqezIUu7FMr5XYbWSlFXwpVfPlJXiEXxYm98N9BzbDA98n2-Mhu6O4OgPd2_KlaAhwkUEhyv_V2N0t1XhWe4EAccIjtelFJb-rEUvsOnbyh9Y56IU2y28yov_XUbAtlgUpeK0_i2SCF4NI29TvXEAv_l3s47h0XQ-u6quLq8_H8LjQDcb8ubewm637PEdAanOHIX4-Q1LvRoG | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+estimation+of+adaptive+tensors+of+curvature+by+tensor+voting&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wai-Shun+Tong%2C+Wai-Shun+Tong&rft.au=Chi-Keung+Tang%2C+Chi-Keung+Tang&rft.date=2005-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=27&rft.issue=3&rft.spage=434&rft_id=info:doi/10.1109%2FTPAMI.2005.62&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2352223551 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |