Robust estimation of adaptive tensors of curvature by tensor voting

Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, w...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 27; no. 3; pp. 434 - 449
Main Authors TONG, Wai-Shun, TANG, Chi-Keung
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.03.2005
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
DOI10.1109/TPAMI.2005.62

Cover

Abstract Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.
AbstractList Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.
Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.
In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated.
Author Chi-Keung Tang
Wai-Shun Tong
Author_xml – sequence: 1
  givenname: Wai-Shun
  surname: TONG
  fullname: TONG, Wai-Shun
  organization: Vision and Graphics Group, Computer Science Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong-Kong
– sequence: 2
  givenname: Chi-Keung
  surname: TANG
  fullname: TANG, Chi-Keung
  organization: Vision and Graphics Group, Computer Science Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong-Kong
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16474724$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15747797$$D View this record in MEDLINE/PubMed
BookMark eNqF0k1rGzEQBmBREhLHzbGnQlkCbU7r6vvjGEzaBlJaSnoWs7vaorBeuZLWkH8fOXYxBJqcBOIZjTSvztDRGEaH0DuCF4Rg8_nu59X3mwXFWCwkfYNmxDBTM8HMEZphImmtNdWn6Cyle4wJF5idoFMiFFfKqBla_grNlHLlUvYryD6MVegr6GCd_cZV2Y0pxLTda6e4gTxFVzUP-_1qE7If_7xFxz0MyZ3v1zn6_eX6bvmtvv3x9WZ5dVu3nJFcN1r3VNIOOCGSGAxamgaU4h1tsWO0oQqcoNAoLHuAjimgoJUQTriu7wmbo8vduesY_k7lxnblU-uGAUYXpmS1kZRwrHGRn16UUnEtlFavQqpxsYYXePEM3ocpjuW5VktVjKSsoA97NDUr19l1LDOND_bfuAv4uAeQWhj6CGPr08FJXiDddqt3ro0hpej6A8F2G7t9it1uY7el8xyxZ771-SnNHMEP_616v6vyzrlDB1Z-jNTsEYwYt08
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_cviu_2006_09_007
crossref_primary_10_1109_TMI_2013_2263151
crossref_primary_10_1016_j_cad_2009_01_006
crossref_primary_10_1109_TASE_2020_2988314
crossref_primary_10_1109_TMI_2011_2129526
crossref_primary_10_1109_TMI_2007_905081
crossref_primary_10_1109_TPAMI_2022_3215475
crossref_primary_10_1016_j_imavis_2010_08_009
crossref_primary_10_1007_s00211_013_0584_y
crossref_primary_10_1016_j_sigpro_2007_03_019
crossref_primary_10_1109_TCYB_2015_2430526
crossref_primary_10_1016_j_cad_2013_08_008
crossref_primary_10_1049_iet_ipr_2019_0214
crossref_primary_10_2139_ssrn_3371409
crossref_primary_10_1016_j_cagd_2008_01_002
crossref_primary_10_1109_TVCG_2012_113
crossref_primary_10_1007_s11042_018_6363_0
crossref_primary_10_1155_2010_240309
crossref_primary_10_12677_CSA_2015_56031
crossref_primary_10_21122_2309_4923_2023_2_49_58
crossref_primary_10_1016_j_cad_2008_12_004
crossref_primary_10_3722_cadaps_2011_193_210
crossref_primary_10_1016_j_cagd_2007_07_004
crossref_primary_10_1051_e3sconf_202450803003
crossref_primary_10_1109_TGRS_2014_2344714
crossref_primary_10_1016_j_autcon_2013_01_005
crossref_primary_10_1109_TIP_2008_2002306
crossref_primary_10_1109_TIP_2016_2564646
crossref_primary_10_1371_journal_pcbi_1007962
crossref_primary_10_1088_1755_1315_252_2_022096
crossref_primary_10_1111_j_1467_8659_2007_01109_x
crossref_primary_10_1007_s00371_008_0268_2
Cites_doi 10.1109/CVPR.1997.609361
10.1007/978-1-4612-4466-0
10.1016/b978-0-444-50353-4.x5000-8
10.1016/S0010-4485(99)00042-1
10.1109/34.946987
10.1145/508352.508354
10.5244/C.13.14
10.1109/TPAMI.2002.1008395
10.1117/12.302451
10.1006/cviu.1997.0533
10.1109/34.368172
10.1109/ROBOT.1996.509246
10.1109/CVPR.2001.990471
10.1109/34.730559
10.1109/ICCV.1995.466840
10.1109/CVPR.1989.37837
10.1109/ICPR.2002.1044847
10.1007/3-540-47969-4_23
10.1016/S0262-8856(03)00060-X
10.1142/S0218654398000088
10.1109/34.57680
10.1109/34.3881
10.1016/0262-8856(86)90029-6
10.1109/ICCV.1999.791252
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7SE
JG9
7X8
F28
FR3
DOI 10.1109/TPAMI.2005.62
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Corrosion Abstracts
Materials Research Database
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Corrosion Abstracts
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 449
ExternalDocumentID 2352223551
15747797
16474724
10_1109_TPAMI_2005_62
1388268
Genre orig-research
Validation Studies
Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7SE
JG9
7X8
F28
FR3
ID FETCH-LOGICAL-c431t-b88f262da4116190a869ba774d2c0e32b27ae52ab706faad37a2a8755e5edff13
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Thu Oct 02 12:11:57 EDT 2025
Thu Oct 02 20:45:26 EDT 2025
Sun Sep 28 08:22:22 EDT 2025
Mon Jun 30 07:15:19 EDT 2025
Thu Apr 03 06:54:22 EDT 2025
Mon Jul 21 09:14:11 EDT 2025
Wed Oct 01 06:40:45 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Aug 26 16:40:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Curvature tensor
Computer vision
tensor voting
Robust estimation
Curvature
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-b88f262da4116190a869ba774d2c0e32b27ae52ab706faad37a2a8755e5edff13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 15747797
PQID 867674623
PQPubID 23500
PageCount 16
ParticipantIDs proquest_journals_867674623
proquest_miscellaneous_896214080
proquest_miscellaneous_67485787
crossref_citationtrail_10_1109_TPAMI_2005_62
proquest_miscellaneous_28067494
pubmed_primary_15747797
crossref_primary_10_1109_TPAMI_2005_62
pascalfrancis_primary_16474724
ieee_primary_1388268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-03-01
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2005
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Carmo (ref3) 1976
ref11
ref10
ref2
ref1
ref17
ref16
ref19
Tong (ref24) 2004
Sander (ref18)
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
Douros (ref4)
ref6
ref5
Tong (ref25) 2004
References_xml – ident: ref1
  doi: 10.1109/CVPR.1997.609361
– year: 2004
  ident: ref24
  article-title: Multiscale Tensor Voting
– volume-title: Scanning 2002 Proc.
  ident: ref4
  article-title: Three-Dimensional Surface Curvature Estimation Using Quadric Surface Patches
– ident: ref6
  doi: 10.1007/978-1-4612-4466-0
– ident: ref14
  doi: 10.1016/b978-0-444-50353-4.x5000-8
– ident: ref28
  doi: 10.1016/S0010-4485(99)00042-1
– ident: ref22
  doi: 10.1109/34.946987
– volume-title: technical report, The Hong Kong University of Science and Technology
  year: 2004
  ident: ref25
  article-title: Robust Estimation of Adaptive Tensors of Curvature by Tensor Voting Results
– ident: ref16
  doi: 10.1145/508352.508354
– ident: ref29
  doi: 10.5244/C.13.14
– ident: ref21
  doi: 10.1109/TPAMI.2002.1008395
– ident: ref10
  doi: 10.1117/12.302451
– start-page: 1165
  volume-title: Proc. Int’l Conf. Pattern Recognition
  ident: ref18
  article-title: Stable Surface Estimation
– ident: ref5
  doi: 10.1006/cviu.1997.0533
– ident: ref26
  doi: 10.1109/34.368172
– ident: ref8
  doi: 10.1109/ROBOT.1996.509246
– volume-title: Differential Geometry of Curves and Surfaces
  year: 1976
  ident: ref3
– ident: ref15
  doi: 10.1109/CVPR.2001.990471
– ident: ref11
  doi: 10.1109/34.730559
– ident: ref23
  doi: 10.1109/ICCV.1995.466840
– ident: ref7
  doi: 10.1109/CVPR.1989.37837
– ident: ref17
  doi: 10.1109/ICPR.2002.1044847
– ident: ref12
  doi: 10.1007/3-540-47969-4_23
– ident: ref9
  doi: 10.1016/S0262-8856(03)00060-X
– ident: ref13
  doi: 10.1142/S0218654398000088
– ident: ref19
  doi: 10.1109/34.57680
– ident: ref2
  doi: 10.1109/34.3881
– ident: ref27
  doi: 10.1016/0262-8856(86)90029-6
– ident: ref20
  doi: 10.1109/ICCV.1999.791252
SSID ssj0014503
Score 2.028571
Snippet Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a...
In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 434
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Clouds
Computer errors
Computer science; control theory; systems
Computer vision
Curvature
curvature tensor
Error correction
Errors
Exact sciences and technology
Feedback
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Index Terms- Curvature
Information Storage and Retrieval - methods
Mathematical analysis
Misalignment
Noise
Noise robustness
Numerical Analysis, Computer-Assisted
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Quantization
Reproducibility of Results
Scattering
Sensitivity and Specificity
Studies
Subtraction Technique
Surface fitting
Tensile stress
tensor voting
Tensors
Voting
Title Robust estimation of adaptive tensors of curvature by tensor voting
URI https://ieeexplore.ieee.org/document/1388268
https://www.ncbi.nlm.nih.gov/pubmed/15747797
https://www.proquest.com/docview/867674623
https://www.proquest.com/docview/28067494
https://www.proquest.com/docview/67485787
https://www.proquest.com/docview/896214080
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBQgs0FIoPiFOzTRzHcY5VRVWQFiHUSr1F_hhfQJtqkyDRX1-Pk90tiJW4Rc4oSjwe59kzfg_gA1YGc8ziRpVLhXZFahTHVDpfOOuELB2dRp5_lVc34sttebsDp-uzMIgYi89wRpcxl-9aO9BW2VleBDwo1S7sVkqOZ7XWGQNRRhXkgGBChIdlxIZP8-z62_n887h9IqN6TRkwdEU0T49-RVFbhSojdRc6x4-qFtthZ_z9XO7DfPXiY9XJj9nQm5m9_4vT8X-_7Dk8m3AoOx8HzgvYwcUB7K80HtgU8gfw9BFh4SFcfG_N0PWMqDnGM4-s9Uw7fUezJqNq-HbZUZsdaLN3WCIzv6d29qulGuuXcHP56friKp1kGFIb0EUffKc8l9xpkQd4WGdaydroABsdtxkW3PBKY8m1qTLpdfB2pbkOy6ASS3Te58Ur2Fu0CzwCZqUvtbGysEIIb53hzqDLjbUKw_NkAqcrjzR24ignqYyfTVyrZHUTfUnamWUjeQIf1-Z3IznHNsND6vON0djdCZz84e7NfSnCEOEigeOV_5sptrtGEcedCLAxgffruyEoKdOiF9gOXUPp6krUYrsFabzQZJkA22KhasnD6ldlCbweR97m9aYB_Obfn3UMTyLBbKyUewt7_XLAdwE69eYkxswDmnMWuQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOFFo-QqH1AXFqtoljO8mxqqi20K0Q2kq9Rf6YXECbapMgwa9n7GR3C2IlblE8imyPJ362x-8BvMfcYIpJ2KhysdAui03BMVauzpx1QknnbyPPrtX0Rny6lbc7cLK-C4OIIfkMJ_4xnOW7xvZ-q-w0zQgPquIBPJRCCDnc1lqfGQgZdJAJw1CM00Jiw6h5Ov9yNrscNlBU0K-RhKJzT_R0bzIK6io-N1K31D31oGuxHXiGCehiD2arqg95J98mfWcm9tdfrI7_27Zn8HREouxsGDrPYQcX-7C3UnlgY9Dvw5N7lIUHcP61MX3bMU_OMdx6ZE3NtNN3_r_JfD58s2z9O9v77d5-icz8HN-zH43Psn4BNxcf5-fTeBRiiC3hi468V9RccadFSgCxTHShSqMJODpuE8y44blGybXJE1Vr8neuuaaFkESJrq7T7CXsLpoFvgZmVS21sSqz5MHaOsOdQZcaawuk76kITlYeqezIUu7FMr5XYbWSlFXwpVfPlJXiEXxYm98N9BzbDA98n2-Mhu6O4OgPd2_KlaAhwkUEhyv_V2N0t1XhWe4EAccIjtelFJb-rEUvsOnbyh9Y56IU2y28yov_XUbAtlgUpeK0_i2SCF4NI29TvXEAv_l3s47h0XQ-u6quLq8_H8LjQDcb8ubewm637PEdAanOHIX4-Q1LvRoG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+estimation+of+adaptive+tensors+of+curvature+by+tensor+voting&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wai-Shun+Tong%2C+Wai-Shun+Tong&rft.au=Chi-Keung+Tang%2C+Chi-Keung+Tang&rft.date=2005-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=27&rft.issue=3&rft.spage=434&rft_id=info:doi/10.1109%2FTPAMI.2005.62&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2352223551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon