Natural Aging Life Prediction of Rubber Products Using Artificial Bee Colony Algorithm to Identify Acceleration Factor
We aim to predict the natural aging life of 8016 ethylene propylene rubber accurately and quickly. Based on the time-temperature equivalent superposition principle, the artificial bee colony algorithm was introduced to calculate the acceleration factor of the accelerated aging test, and the calculat...
Saved in:
| Published in | Polymers Vol. 14; no. 17; p. 3439 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
23.08.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-4360 2073-4360 |
| DOI | 10.3390/polym14173439 |
Cover
| Summary: | We aim to predict the natural aging life of 8016 ethylene propylene rubber accurately and quickly. Based on the time-temperature equivalent superposition principle, the artificial bee colony algorithm was introduced to calculate the acceleration factor of the accelerated aging test, and the calculation of the acceleration factor was considered an optimization problem, which avoided the error superposition problem caused by data fitting at each temperature. Based on the traditional Arrhenius equation, a power exponential factor was introduced to consider the non-Arrhenius phenomenon during the rubber aging process. Finally, the aging prediction curve of 8106 ethylene propylene rubber at 25 °C was obtained. The prediction results show that the artificial bee colony algorithm can quickly and accurately identify the acceleration factor of the accelerated aging test. The dispersion coefficients between the predicted and measured results of the improved and traditional Arrhenius equations are 1.0351 and 1.6653, respectively, which indicates that the improved Arrhenius equation is more advantageous in predicting the long-term aging process of rubber products. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2073-4360 2073-4360 |
| DOI: | 10.3390/polym14173439 |