Covariance Matrix Adaptation for Multi-objective Optimization

The covariancematrix adaptation evolution strategy (CMA-ES) is one of themost powerful evolutionary algorithms for real-valued single-objective optimization. In this paper, we develop a variant of the CMA-ES for multi-objective optimization (MOO). We first introduce a single-objective, elitist CMA-E...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary computation Vol. 15; no. 1; pp. 1 - 28
Main Authors Igel, Christian, Hansen, Nikolaus, Roth, Stefan
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.03.2007
Subjects
Online AccessGet full text
ISSN1063-6560
1530-9304
DOI10.1162/evco.2007.15.1.1

Cover

More Information
Summary:The covariancematrix adaptation evolution strategy (CMA-ES) is one of themost powerful evolutionary algorithms for real-valued single-objective optimization. In this paper, we develop a variant of the CMA-ES for multi-objective optimization (MOO). We first introduce a single-objective, elitist CMA-ES using plus-selection and step size control based on a success rule. This algorithm is compared to the standard CMA-ES. The elitist CMA-ES turns out to be slightly faster on unimodal functions, but is more prone to getting stuck in sub-optimal local minima. In the new multi-objective CMAES (MO-CMA-ES) a population of individuals that adapt their search strategy as in the elitist CMA-ES is maintained. These are subject to multi-objective selection. The selection is based on non-dominated sorting using either the crowding-distance or the contributing hypervolume as second sorting criterion. Both the elitist single-objective CMA-ES and the MO-CMA-ES inherit important invariance properties, in particular invariance against rotation of the search space, from the original CMA-ES. The benefits of the new MO-CMA-ES in comparison to the well-known NSGA-II and to NSDE, a multi-objective differential evolution algorithm, are experimentally shown.
Bibliography:Spring, 2007
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1063-6560
1530-9304
DOI:10.1162/evco.2007.15.1.1