Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells

The regenerative capacity of skeletal muscle has been usually attributed to resident satellite cells, which, upon activation by local or distant stimuli, initiate a myogenic differentiation program. Although recent studies have revealed that bone-marrow-derived progenitor cells may also participate...

Full description

Saved in:
Bibliographic Details
Published inExperimental cell research Vol. 300; no. 2; pp. 418 - 426
Main Authors Santa María, Lorena, Rojas, Cecilia V., Minguell, José J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2004
Subjects
Online AccessGet full text
ISSN0014-4827
1090-2422
DOI10.1016/j.yexcr.2004.07.017

Cover

Abstract The regenerative capacity of skeletal muscle has been usually attributed to resident satellite cells, which, upon activation by local or distant stimuli, initiate a myogenic differentiation program. Although recent studies have revealed that bone-marrow-derived progenitor cells may also participate in regenerative myogenesis, the signals and mechanisms involved in this process have not been elucidated. This study was designed to investigate whether signals from injured rat skeletal muscle were competent to induce a program of myogenic differentiation in expanded cultures of rat bone-marrow-derived mesenchymal stem cells (MSC). We observed that the incubation of MSC with a conditioned medium prepared from chemically damaged but not undamaged muscle resulted in a time-dependent change from fibroblast-like into elongated multinucleated cells, a transient increase in the number of MyoD positive cells, and the subsequent onset of myogenin, α-actinin, and myosin heavy chain expression. These results show that damaged rat skeletal muscle is endowed with the capacity to induce myogenic differentiation of bone-marrow-derived mesenchymal progenitors.
AbstractList The regenerative capacity of skeletal muscle has been usually attributed to resident satellite cells, which, upon activation by local or distant stimuli, initiate a myogenic differentiation program. Although recent studies have revealed that bone-marrow-derived progenitor cells may also participate in regenerative myogenesis, the signals and mechanisms involved in this process have not been elucidated. This study was designed to investigate whether signals from injured rat skeletal muscle were competent to induce a program of myogenic differentiation in expanded cultures of rat bone-marrow-derived mesenchymal stem cells (MSC). We observed that the incubation of MSC with a conditioned medium prepared from chemically damaged but not undamaged muscle resulted in a time-dependent change from fibroblast-like into elongated multinucleated cells, a transient increase in the number of MyoD positive cells, and the subsequent onset of myogenin, alpha-actinin, and myosin heavy chain expression. These results show that damaged rat skeletal muscle is endowed with the capacity to induce myogenic differentiation of bone-marrow-derived mesenchymal progenitors.The regenerative capacity of skeletal muscle has been usually attributed to resident satellite cells, which, upon activation by local or distant stimuli, initiate a myogenic differentiation program. Although recent studies have revealed that bone-marrow-derived progenitor cells may also participate in regenerative myogenesis, the signals and mechanisms involved in this process have not been elucidated. This study was designed to investigate whether signals from injured rat skeletal muscle were competent to induce a program of myogenic differentiation in expanded cultures of rat bone-marrow-derived mesenchymal stem cells (MSC). We observed that the incubation of MSC with a conditioned medium prepared from chemically damaged but not undamaged muscle resulted in a time-dependent change from fibroblast-like into elongated multinucleated cells, a transient increase in the number of MyoD positive cells, and the subsequent onset of myogenin, alpha-actinin, and myosin heavy chain expression. These results show that damaged rat skeletal muscle is endowed with the capacity to induce myogenic differentiation of bone-marrow-derived mesenchymal progenitors.
The regenerative capacity of skeletal muscle has been usually attributed to resident satellite cells, which, upon activation by local or distant stimuli, initiate a myogenic differentiation program. Although recent studies have revealed that bone-marrow-derived progenitor cells may also participate in regenerative myogenesis, the signals and mechanisms involved in this process have not been elucidated. This study was designed to investigate whether signals from injured rat skeletal muscle were competent to induce a program of myogenic differentiation in expanded cultures of rat bone-marrow-derived mesenchymal stem cells (MSC). We observed that the incubation of MSC with a conditioned medium prepared from chemically damaged but not undamaged muscle resulted in a time-dependent change from fibroblast-like into elongated multinucleated cells, a transient increase in the number of MyoD positive cells, and the subsequent onset of myogenin, α-actinin, and myosin heavy chain expression. These results show that damaged rat skeletal muscle is endowed with the capacity to induce myogenic differentiation of bone-marrow-derived mesenchymal progenitors.
The regenerative capacity of skeletal muscle has been usually attributed to resident satellite cells, which, upon activation by local or distant stimuli, initiate a myogenic differentiation program. Although recent studies have revealed that bone-marrow-derived progenitor cells may also participate in regenerative myogenesis, the signals and mechanisms involved in this process have not been elucidated. This study was designed to investigate whether signals from injured rat skeletal muscle were competent to induce a program of myogenic differentiation in expanded cultures of rat bone-marrow-derived mesenchymal stem cells (MSC). We observed that the incubation of MSC with a conditioned medium prepared from chemically damaged but not undamaged muscle resulted in a time- dependent change from fibroblast-like into elongated multinucleated cells, a transient increase in the number of MyoD positive cells, and the subsequent onset of myogenin, alpha -actinin, and myosin heavy chain expression. These results show that damaged rat skeletal muscle is endowed with the capacity to induce myogenic differentiation of bone-marrow-derived mesenchymal progenitors.
Author Minguell, José J.
Rojas, Cecilia V.
Santa María, Lorena
Author_xml – sequence: 1
  givenname: Lorena
  surname: Santa María
  fullname: Santa María, Lorena
  email: lsantamaria@inta.cl
  organization: Programa de Terapias Celulares, INTA, Universidad de Chile, Santiago, Chile
– sequence: 2
  givenname: Cecilia V.
  surname: Rojas
  fullname: Rojas, Cecilia V.
  organization: Programa de Terapias Celulares, INTA, Universidad de Chile, Santiago, Chile
– sequence: 3
  givenname: José J.
  surname: Minguell
  fullname: Minguell, José J.
  organization: Programa de Terapias Celulares, INTA, Universidad de Chile, Santiago, Chile
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15475006$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFJ0BCXrFLuE6cOFmwQBV_UiUWwNpy7OvBQ2IX2ynMG_Sx6-m0LFiUlaWr8x0dn3NGTnzwSMhLBjUD1r_Z1Xv8o2PdAPAaRA1MPCEbBiNUDW-aE7IBYLziQyNOyVlKOwAYBtY_I6es46ID6Dfk5qvbejUnamNYqFGL2qKh05qpD5mu_uGSfuKMWc10WZOekTpvVo102YcteqepcdZiRJ-dyi54GiyNKtOpRK4WFWP4XRmM7rpYLZjQ6x_7pbiljAvVOM_pOXlqSw58cf-ek-8f3n-7-FRdfvn4-eLdZaV5y3LVTsaCHkB3rdIT6tGMthWohYVpbBl0wk4D59ZyLczEp65tGq5w7FCMYzuJ9py8PvpexfBrxZTl4tIhgfIY1iT7fuyBtfBfISt-Y9M3RfjqXrhOCxp5FV358V4-lFwE41GgY0gpopXa5buaclRulgzkYVC5k3eDysOgEoQsgxa2_Yf9a_8o9fZIYWny2mGUSbtSOhoXUWdpgnuUvwVZgr6n
CitedBy_id crossref_primary_10_1038_s41598_020_75102_9
crossref_primary_10_1007_s13577_011_0008_1
crossref_primary_10_1016_j_neulet_2006_07_049
crossref_primary_10_1089_scd_2006_15_665
crossref_primary_10_1007_s12010_014_1128_3
crossref_primary_10_1016_j_biomaterials_2009_09_022
crossref_primary_10_1097_AOG_0b013e3181d56cc5
crossref_primary_10_3727_096368911X580554
crossref_primary_10_1016_j_jss_2007_08_016
crossref_primary_10_1007_s12010_013_0458_x
crossref_primary_10_1074_jbc_M114_629774
crossref_primary_10_4103_0022_3859_32215
crossref_primary_10_1080_13645700801969758
crossref_primary_10_1134_S2079086419050062
crossref_primary_10_4252_wjsc_v2_i4_67
crossref_primary_10_1111_j_1469_7580_2009_01138_x
crossref_primary_10_1002_bdrc_20134
crossref_primary_10_1016_j_alcohol_2010_12_005
crossref_primary_10_1016_j_blre_2005_11_002
crossref_primary_10_1038_s41598_021_00627_6
crossref_primary_10_1016_j_biomaterials_2010_08_101
crossref_primary_10_1089_dna_2010_1154
crossref_primary_10_1186_1479_5876_7_6
crossref_primary_10_1007_s10350_007_9153_8
crossref_primary_10_1259_bjr_25927054
crossref_primary_10_1002_adfm_201703853
crossref_primary_10_1152_physrev_00043_2011
crossref_primary_10_1007_s13233_016_4107_4
crossref_primary_10_1016_j_colsurfb_2014_06_056
crossref_primary_10_1016_j_injury_2005_07_028
crossref_primary_10_3349_ymj_2011_52_6_999
crossref_primary_10_1016_S0020_1383_08_70012_3
crossref_primary_10_1089_scd_2007_0220
crossref_primary_10_1089_scd_2006_0118
crossref_primary_10_1097_01_wco_0000177382_62156_82
crossref_primary_10_1016_j_jshs_2017_05_007
crossref_primary_10_1634_stemcells_2005_0260
crossref_primary_10_1089_scd_2005_14_408
crossref_primary_10_1186_s40580_023_00398_y
crossref_primary_10_3390_cells12131729
crossref_primary_10_1155_2013_626258
crossref_primary_10_1007_s00441_006_0308_z
crossref_primary_10_1371_journal_pone_0067739
crossref_primary_10_4061_2011_201371
crossref_primary_10_1128_MCB_25_21_9509_9519_2005
crossref_primary_10_1111_nmo_12182
crossref_primary_10_2217_17460751_1_4_497
Cites_doi 10.1016/S0092-8674(03)00437-9
10.1007/PL00000882
10.1002/jcp.1041530318
10.1007/BF00304506
10.1046/j.1432-0436.2001.680407.x
10.1177/000313489906500106
10.1038/43919
10.1002/ar.1128
10.1016/j.biocel.2003.11.001
10.1126/science.284.5411.143
10.1182/blood.V98.9.2615
10.1016/0012-1606(86)90235-6
10.1126/science.279.5356.1528
10.1016/S0092-8674(02)01078-4
10.1152/physrev.00019.2003
10.1038/nrg1109
10.1002/mus.880181212
10.1172/JCI16157
10.1006/abbi.2000.2100
10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
10.1111/j.1365-2990.1990.tb01159.x
10.1177/153537020122600603
10.1002/jcp.1041600320
10.1002/jcp.1041590222
10.1083/jcb.200212064
10.1101/gad.10.10.1173
10.1007/s004290050237
10.1006/dbio.1997.8803
10.1002/art.10696
10.1034/j.1399-0004.2000.570103.x
10.1002/(SICI)1097-4644(19981001)71:1<55::AID-JCB6>3.0.CO;2-0
10.1242/jcs.112.17.2895
ContentType Journal Article
Copyright 2004 Elsevier Inc.
Copyright_xml – notice: 2004 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1016/j.yexcr.2004.07.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1090-2422
EndPage 426
ExternalDocumentID 15475006
10_1016_j_yexcr_2004_07_017
S0014482704003982
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9M8
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABOCM
ABPIV
ABPPZ
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACKIV
ACNCT
ACPRK
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AETEA
AFDAS
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CAG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LG5
LPU
LX2
M41
MO0
MVM
N9A
NEJ
O-L
O9-
OAUVE
OHT
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TEORI
TWZ
VH1
VQA
WH7
WUQ
X7L
X7M
XOL
XPP
Y6R
YYP
YZZ
ZA5
ZCA
ZGI
ZKB
ZMT
ZU3
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
EFKBS
FR3
P64
7X8
ID FETCH-LOGICAL-c431t-3bdf0c80c53acbec9d9f37ec7f0b931057fb844ff4c7db4b53224ae95e7993b73
IEDL.DBID AIKHN
ISSN 0014-4827
IngestDate Fri Sep 05 13:17:11 EDT 2025
Fri Sep 05 00:15:43 EDT 2025
Wed Feb 19 01:48:13 EST 2025
Tue Jul 01 00:52:46 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Fri Feb 23 02:25:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Myogenic differentiation
Injured muscle
Mesenchymal stem cells
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c431t-3bdf0c80c53acbec9d9f37ec7f0b931057fb844ff4c7db4b53224ae95e7993b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://americanae.aecid.es/americanae/es/registros/registro.do?tipoRegistro=MTD&idBib=3261429
PMID 15475006
PQID 19939262
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_66960130
proquest_miscellaneous_19939262
pubmed_primary_15475006
crossref_citationtrail_10_1016_j_yexcr_2004_07_017
crossref_primary_10_1016_j_yexcr_2004_07_017
elsevier_sciencedirect_doi_10_1016_j_yexcr_2004_07_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-11-01
PublicationDateYYYYMMDD 2004-11-01
PublicationDate_xml – month: 11
  year: 2004
  text: 2004-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Experimental cell research
PublicationTitleAlternate Exp Cell Res
PublicationYear 2004
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Williams, Southerland, Souza, Calcutt, Cartledge (bib7) 1999; 65
Jones, Kinsey, English, Jones, Straszynski, Meredith, Markham, Jack, Emery, McGonagle (bib25) 2002; 46
Li, Chan, Cai, Leung, Cheng, Lee, Lee (bib22) 2000; 384
Peter, Liang, Kim, Widmer, Mikos (bib24) 1998; 71
LaBarge, Blau (bib15) 2002; 111
Minguell, Erices, Conget (bib12) 2001; 226
Jaiswal, Haynesworth, Caplan, Bruder (bib23) 1997; 64
Caldwell, Mattley, Weller (bib26) 1990; 16
Reyes, Lund, Lenvik, Aguilar, Koodle, Verfaillie (bib10) 2001; 98
Ferrari, Cusella-De Angelis, Coletta, Paolucci, Stornaiuolo, Mavilio (bib13) 1998; 279
Cooper, Tajbakhsh, Mouly, Cossu, Buckingham, Butler-Browne (bib20) 1999; 112
Chargé, Rudnicki (bib2) 2004; 84
Chen, Quinn (bib28) 1992; 153
Smith, Janney, Allen (bib19) 1994; 159
Zammit, Beauchamp (bib3) 2001; 68
Tatsumi, Anderson, Nevoret, Halevy, Allen (bib30) 1998; 194
Kitzmann, Fernandez (bib31) 2001; 58
Polesskaya, Seale, Rudnicki (bib5) 2003; 113
Bischoff (bib1) 1994; vol. 2
Parker, Seale, Rudnicki (bib18) 2003; 4
Young, Steele, Bray, Hudson, Floyd, Hawkins, Thomas, Austin, Edwards (bib8) 2001; 264
Bischoff (bib21) 1986; 115
Sabourin, Rudnicki (bib17) 2000; 57
Majka, Jackson, Majesky, Goodell, Hirschi (bib6) 2003; 111
Pittenger, Mackay, Beck, Jaiswal, Douglas, Mosca, Moorman, Simonetti, Craig, Marshak (bib9) 1999; 284
De Bari, Dell'Accio, Vandenabeele, Vermeesch, Raymackers, Luyten (bib16) 2003; 160
Megency, Kablar, Garret, Anderson, Rudnicki (bib32) 1996; 10
Wakitani, Saito, Caplan (bib11) 1995; 18
Barry, Murphy (bib33) 2004; 36
Gussoni, Soneoka, Strickland, Buzney, Khan, Flint, Kunkel, Mulligan (bib4) 1999; 401
Chen, Birnbaum, Yablonka-Reuveni, Quinn (bib29) 1994; 160
Bittner, Shofer, Weipolshammer, Ivanova, Streubel, Hauser, Freilinger, Hoger, Elbe-Burger, Wachtlerm (bib14) 1999; 199
Kami, Noguchi, Senba (bib27) 1995; 280
Parker (10.1016/j.yexcr.2004.07.017_bib18) 2003; 4
Ferrari (10.1016/j.yexcr.2004.07.017_bib13) 1998; 279
Williams (10.1016/j.yexcr.2004.07.017_bib7) 1999; 65
Tatsumi (10.1016/j.yexcr.2004.07.017_bib30) 1998; 194
Kami (10.1016/j.yexcr.2004.07.017_bib27) 1995; 280
Chen (10.1016/j.yexcr.2004.07.017_bib29) 1994; 160
Bischoff (10.1016/j.yexcr.2004.07.017_bib1) 1994; vol. 2
Bittner (10.1016/j.yexcr.2004.07.017_bib14) 1999; 199
Bischoff (10.1016/j.yexcr.2004.07.017_bib21) 1986; 115
Barry (10.1016/j.yexcr.2004.07.017_bib33) 2004; 36
Young (10.1016/j.yexcr.2004.07.017_bib8) 2001; 264
Jaiswal (10.1016/j.yexcr.2004.07.017_bib23) 1997; 64
Cooper (10.1016/j.yexcr.2004.07.017_bib20) 1999; 112
Reyes (10.1016/j.yexcr.2004.07.017_bib10) 2001; 98
De Bari (10.1016/j.yexcr.2004.07.017_bib16) 2003; 160
Chargé (10.1016/j.yexcr.2004.07.017_bib2) 2004; 84
Kitzmann (10.1016/j.yexcr.2004.07.017_bib31) 2001; 58
Minguell (10.1016/j.yexcr.2004.07.017_bib12) 2001; 226
LaBarge (10.1016/j.yexcr.2004.07.017_bib15) 2002; 111
Sabourin (10.1016/j.yexcr.2004.07.017_bib17) 2000; 57
Pittenger (10.1016/j.yexcr.2004.07.017_bib9) 1999; 284
Megency (10.1016/j.yexcr.2004.07.017_bib32) 1996; 10
Peter (10.1016/j.yexcr.2004.07.017_bib24) 1998; 71
Zammit (10.1016/j.yexcr.2004.07.017_bib3) 2001; 68
Gussoni (10.1016/j.yexcr.2004.07.017_bib4) 1999; 401
Caldwell (10.1016/j.yexcr.2004.07.017_bib26) 1990; 16
Smith (10.1016/j.yexcr.2004.07.017_bib19) 1994; 159
Chen (10.1016/j.yexcr.2004.07.017_bib28) 1992; 153
Li (10.1016/j.yexcr.2004.07.017_bib22) 2000; 384
Polesskaya (10.1016/j.yexcr.2004.07.017_bib5) 2003; 113
Jones (10.1016/j.yexcr.2004.07.017_bib25) 2002; 46
Majka (10.1016/j.yexcr.2004.07.017_bib6) 2003; 111
Wakitani (10.1016/j.yexcr.2004.07.017_bib11) 1995; 18
References_xml – volume: 113
  start-page: 841
  year: 2003
  end-page: 852
  ident: bib5
  article-title: Wnt signalling induce the myogenic specification of resident CD45
  publication-title: Cell
– volume: 46
  start-page: 3349
  year: 2002
  end-page: 3360
  ident: bib25
  article-title: Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells
  publication-title: Arthritis Rheum.
– volume: 10
  start-page: 1173
  year: 1996
  end-page: 1183
  ident: bib32
  article-title: MyoD is required for myogenesis stem cell function in adult skeletal muscle
  publication-title: Genes Dev.
– volume: 284
  start-page: 143
  year: 1999
  end-page: 147
  ident: bib9
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
– volume: 112
  start-page: 2895
  year: 1999
  end-page: 2901
  ident: bib20
  article-title: In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle
  publication-title: J. Cell Sci.
– volume: 84
  start-page: 209
  year: 2004
  end-page: 238
  ident: bib2
  article-title: Cellular and molecular regulation of muscle regeneration
  publication-title: Physiol. Rev.
– volume: 226
  start-page: 507
  year: 2001
  end-page: 520
  ident: bib12
  article-title: Mesenchymal stem cells
  publication-title: Exp. Biol. Med.
– volume: 4
  start-page: 495
  year: 2003
  end-page: 505
  ident: bib18
  article-title: Looking back to the embryo: defining transcriptional networks in adult myogenesis
  publication-title: Nat. Rev.
– volume: 18
  start-page: 1417
  year: 1995
  end-page: 1426
  ident: bib11
  article-title: Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine
  publication-title: Muscle Nerve
– volume: 111
  start-page: 589
  year: 2002
  end-page: 601
  ident: bib15
  article-title: Biological progression from adult bone marrow to mononucleated muscle stem cell to multinucleate muscle fiber in response to injury
  publication-title: Cell
– volume: 16
  start-page: 225
  year: 1990
  end-page: 238
  ident: bib26
  article-title: Role of the basement membrane in the regeneration of skeletal muscle
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 160
  start-page: 563
  year: 1994
  end-page: 572
  ident: bib29
  article-title: Separation of mouse crushed muscle extract into distinct mitogenic activities by heparin affinity chromatography
  publication-title: J. Cell. Physiol.
– volume: vol. 2
  start-page: 97
  year: 1994
  end-page: 118
  ident: bib1
  article-title: The satellite cell and muscle regeneration
  publication-title: Myogenesis
– volume: 280
  start-page: 11
  year: 1995
  end-page: 19
  ident: bib27
  article-title: Localization of myogenin, c-fos, c jun and muscle specific gene mRNA in regenerating rat skeletal muscle
  publication-title: Cell Tissue Res.
– volume: 71
  start-page: 55
  year: 1998
  end-page: 62
  ident: bib24
  article-title: Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, β-glycerolphosphate, and
  publication-title: J. Cell. Biochem.
– volume: 36
  start-page: 568
  year: 2004
  end-page: 584
  ident: bib33
  article-title: Mesenchymal stem cells: clinical applications and biological characterization
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 115
  start-page: 140
  year: 1986
  end-page: 147
  ident: bib21
  article-title: A satellite cell mitogen from crushed adult muscle
  publication-title: Dev. Biol.
– volume: 58
  start-page: 571
  year: 2001
  end-page: 579
  ident: bib31
  article-title: Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblast
  publication-title: Cell. Mol. Life Sci.
– volume: 159
  start-page: 379
  year: 1994
  end-page: 385
  ident: bib19
  article-title: Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells
  publication-title: J. Cell. Physiol.
– volume: 64
  start-page: 295
  year: 1997
  end-page: 312
  ident: bib23
  article-title: Osteogenic differentiation of purified, culture expanded human mesenchymal stem cells in vitro
  publication-title: J. Cell. Biochem.
– volume: 111
  start-page: 71
  year: 2003
  end-page: 79
  ident: bib6
  article-title: Distinct progenitor populations in skeletal muscle are bone derived and exhibit different cell fates during vascular regeneration
  publication-title: J. Clin. Invest.
– volume: 264
  start-page: 51
  year: 2001
  end-page: 62
  ident: bib8
  article-title: Human reserve pluripotent mesenchymal stem cells are present in the connective tissue of skeletal muscle and dermis derived from fetal, adult, and geriatric donors
  publication-title: Anat. Rec.
– volume: 194
  start-page: 114
  year: 1998
  end-page: 128
  ident: bib30
  article-title: HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells
  publication-title: Dev. Biol.
– volume: 68
  start-page: 193
  year: 2001
  end-page: 204
  ident: bib3
  article-title: The skeletal muscle satellite cell: stem cell or son of stem cell?
  publication-title: Differentiation
– volume: 98
  start-page: 2615
  year: 2001
  end-page: 2625
  ident: bib10
  article-title: Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells
  publication-title: Blood
– volume: 199
  start-page: 391
  year: 1999
  end-page: 396
  ident: bib14
  article-title: Recruitment of bone marrow derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice
  publication-title: Anat. Embryol.
– volume: 153
  start-page: 563
  year: 1992
  end-page: 574
  ident: bib28
  article-title: Partial characterization of skeletal myoblast mitogens in mouse crushed muscle extract
  publication-title: J. Cell. Physiol.
– volume: 160
  start-page: 909
  year: 2003
  end-page: 918
  ident: bib16
  article-title: Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane
  publication-title: J. Cell Biol.
– volume: 57
  start-page: 16
  year: 2000
  end-page: 25
  ident: bib17
  article-title: The molecular regulation of myogenesis
  publication-title: Clin. Genet.
– volume: 401
  start-page: 390
  year: 1999
  end-page: 394
  ident: bib4
  article-title: Dystrophin expression in the mdx mouse restored by stem cell transplantation
  publication-title: Nature
– volume: 65
  start-page: 22
  year: 1999
  end-page: 26
  ident: bib7
  article-title: Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes
  publication-title: Am. Surg.
– volume: 279
  start-page: 1528
  year: 1998
  end-page: 1530
  ident: bib13
  article-title: Muscle regeneration by bone marrow derived myogenic progenitors
  publication-title: Science
– volume: 384
  start-page: 263
  year: 2000
  end-page: 268
  ident: bib22
  article-title: Identification and purification of an intrinsic human muscle myogenic factor that enhances muscle repair and regeneration
  publication-title: Arch. Biochem. Biophys.
– volume: 113
  start-page: 841
  year: 2003
  ident: 10.1016/j.yexcr.2004.07.017_bib5
  article-title: Wnt signalling induce the myogenic specification of resident CD45+ adult stem cells during muscle regeneration
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00437-9
– volume: 58
  start-page: 571
  year: 2001
  ident: 10.1016/j.yexcr.2004.07.017_bib31
  article-title: Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblast
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/PL00000882
– volume: vol. 2
  start-page: 97
  year: 1994
  ident: 10.1016/j.yexcr.2004.07.017_bib1
  article-title: The satellite cell and muscle regeneration
– volume: 153
  start-page: 563
  year: 1992
  ident: 10.1016/j.yexcr.2004.07.017_bib28
  article-title: Partial characterization of skeletal myoblast mitogens in mouse crushed muscle extract
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041530318
– volume: 280
  start-page: 11
  year: 1995
  ident: 10.1016/j.yexcr.2004.07.017_bib27
  article-title: Localization of myogenin, c-fos, c jun and muscle specific gene mRNA in regenerating rat skeletal muscle
  publication-title: Cell Tissue Res.
  doi: 10.1007/BF00304506
– volume: 68
  start-page: 193
  year: 2001
  ident: 10.1016/j.yexcr.2004.07.017_bib3
  article-title: The skeletal muscle satellite cell: stem cell or son of stem cell?
  publication-title: Differentiation
  doi: 10.1046/j.1432-0436.2001.680407.x
– volume: 65
  start-page: 22
  year: 1999
  ident: 10.1016/j.yexcr.2004.07.017_bib7
  article-title: Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes
  publication-title: Am. Surg.
  doi: 10.1177/000313489906500106
– volume: 401
  start-page: 390
  year: 1999
  ident: 10.1016/j.yexcr.2004.07.017_bib4
  article-title: Dystrophin expression in the mdx mouse restored by stem cell transplantation
  publication-title: Nature
  doi: 10.1038/43919
– volume: 264
  start-page: 51
  year: 2001
  ident: 10.1016/j.yexcr.2004.07.017_bib8
  article-title: Human reserve pluripotent mesenchymal stem cells are present in the connective tissue of skeletal muscle and dermis derived from fetal, adult, and geriatric donors
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1128
– volume: 36
  start-page: 568
  year: 2004
  ident: 10.1016/j.yexcr.2004.07.017_bib33
  article-title: Mesenchymal stem cells: clinical applications and biological characterization
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2003.11.001
– volume: 284
  start-page: 143
  year: 1999
  ident: 10.1016/j.yexcr.2004.07.017_bib9
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
  doi: 10.1126/science.284.5411.143
– volume: 98
  start-page: 2615
  year: 2001
  ident: 10.1016/j.yexcr.2004.07.017_bib10
  article-title: Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells
  publication-title: Blood
  doi: 10.1182/blood.V98.9.2615
– volume: 115
  start-page: 140
  year: 1986
  ident: 10.1016/j.yexcr.2004.07.017_bib21
  article-title: A satellite cell mitogen from crushed adult muscle
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(86)90235-6
– volume: 279
  start-page: 1528
  year: 1998
  ident: 10.1016/j.yexcr.2004.07.017_bib13
  article-title: Muscle regeneration by bone marrow derived myogenic progenitors
  publication-title: Science
  doi: 10.1126/science.279.5356.1528
– volume: 111
  start-page: 589
  year: 2002
  ident: 10.1016/j.yexcr.2004.07.017_bib15
  article-title: Biological progression from adult bone marrow to mononucleated muscle stem cell to multinucleate muscle fiber in response to injury
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01078-4
– volume: 84
  start-page: 209
  year: 2004
  ident: 10.1016/j.yexcr.2004.07.017_bib2
  article-title: Cellular and molecular regulation of muscle regeneration
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00019.2003
– volume: 4
  start-page: 495
  year: 2003
  ident: 10.1016/j.yexcr.2004.07.017_bib18
  article-title: Looking back to the embryo: defining transcriptional networks in adult myogenesis
  publication-title: Nat. Rev.
  doi: 10.1038/nrg1109
– volume: 18
  start-page: 1417
  year: 1995
  ident: 10.1016/j.yexcr.2004.07.017_bib11
  article-title: Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine
  publication-title: Muscle Nerve
  doi: 10.1002/mus.880181212
– volume: 111
  start-page: 71
  year: 2003
  ident: 10.1016/j.yexcr.2004.07.017_bib6
  article-title: Distinct progenitor populations in skeletal muscle are bone derived and exhibit different cell fates during vascular regeneration
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI16157
– volume: 384
  start-page: 263
  year: 2000
  ident: 10.1016/j.yexcr.2004.07.017_bib22
  article-title: Identification and purification of an intrinsic human muscle myogenic factor that enhances muscle repair and regeneration
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2000.2100
– volume: 64
  start-page: 295
  year: 1997
  ident: 10.1016/j.yexcr.2004.07.017_bib23
  article-title: Osteogenic differentiation of purified, culture expanded human mesenchymal stem cells in vitro
  publication-title: J. Cell. Biochem.
  doi: 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
– volume: 16
  start-page: 225
  year: 1990
  ident: 10.1016/j.yexcr.2004.07.017_bib26
  article-title: Role of the basement membrane in the regeneration of skeletal muscle
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/j.1365-2990.1990.tb01159.x
– volume: 226
  start-page: 507
  year: 2001
  ident: 10.1016/j.yexcr.2004.07.017_bib12
  article-title: Mesenchymal stem cells
  publication-title: Exp. Biol. Med.
  doi: 10.1177/153537020122600603
– volume: 160
  start-page: 563
  year: 1994
  ident: 10.1016/j.yexcr.2004.07.017_bib29
  article-title: Separation of mouse crushed muscle extract into distinct mitogenic activities by heparin affinity chromatography
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041600320
– volume: 159
  start-page: 379
  year: 1994
  ident: 10.1016/j.yexcr.2004.07.017_bib19
  article-title: Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041590222
– volume: 160
  start-page: 909
  year: 2003
  ident: 10.1016/j.yexcr.2004.07.017_bib16
  article-title: Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200212064
– volume: 10
  start-page: 1173
  year: 1996
  ident: 10.1016/j.yexcr.2004.07.017_bib32
  article-title: MyoD is required for myogenesis stem cell function in adult skeletal muscle
  publication-title: Genes Dev.
  doi: 10.1101/gad.10.10.1173
– volume: 199
  start-page: 391
  year: 1999
  ident: 10.1016/j.yexcr.2004.07.017_bib14
  article-title: Recruitment of bone marrow derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice
  publication-title: Anat. Embryol.
  doi: 10.1007/s004290050237
– volume: 194
  start-page: 114
  year: 1998
  ident: 10.1016/j.yexcr.2004.07.017_bib30
  article-title: HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1997.8803
– volume: 46
  start-page: 3349
  year: 2002
  ident: 10.1016/j.yexcr.2004.07.017_bib25
  article-title: Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.10696
– volume: 57
  start-page: 16
  year: 2000
  ident: 10.1016/j.yexcr.2004.07.017_bib17
  article-title: The molecular regulation of myogenesis
  publication-title: Clin. Genet.
  doi: 10.1034/j.1399-0004.2000.570103.x
– volume: 71
  start-page: 55
  year: 1998
  ident: 10.1016/j.yexcr.2004.07.017_bib24
  article-title: Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, β-glycerolphosphate, and l-ascorbic acid
  publication-title: J. Cell. Biochem.
  doi: 10.1002/(SICI)1097-4644(19981001)71:1<55::AID-JCB6>3.0.CO;2-0
– volume: 112
  start-page: 2895
  year: 1999
  ident: 10.1016/j.yexcr.2004.07.017_bib20
  article-title: In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.17.2895
SSID ssj0008816
Score 2.0297623
Snippet The regenerative capacity of skeletal muscle has been usually attributed to resident satellite cells, which, upon activation by local or distant stimuli,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 418
SubjectTerms Animals
Cell Differentiation - physiology
Cell Division
Culture Media, Conditioned
Injured muscle
Male
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - physiology
Microscopy, Phase-Contrast
Muscle Development - physiology
Muscle, Skeletal - injuries
Muscle, Skeletal - physiology
MyoD Protein - physiology
Myogenic differentiation
Rats
Rats, Wistar
Reverse Transcriptase Polymerase Chain Reaction
Signal Transduction - physiology
Title Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells
URI https://dx.doi.org/10.1016/j.yexcr.2004.07.017
https://www.ncbi.nlm.nih.gov/pubmed/15475006
https://www.proquest.com/docview/19939262
https://www.proquest.com/docview/66960130
Volume 300
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrZC4IN4slOIDR0xD4sTxsaqoFhC9QKXeLD9hC0kqNovYS8_92Z1xkiIk2gPXyLZGnsnMN8nMNwCvvDIGM42Se-EMFzI6rqjKwluhcpdnJlPU7_zpqFociw8n5ckWHEy9MFRWOfr-wacnbz0-2Rtvc-9suaQeX0wG6lySGRaqRj-8nWO0r2ewvf_-4-LoyiHXdZqASus5bZjIh1KZ1yb8dokXVCQSzzS47J8B6joAmgLR4T24OyJItj8IeR-2QvsAbg8zJTcP4eLz8itxIjNqHGHeNOgwPLPrnrVdz6jvY3iy-o4BB5E3a9YrPIdhbo5aZs2mQ5NaOjZNTukH3bEuMjQWZrs28CYxN3KP1vsLj2qog8l92zR4GvFCM_obsHoEx4fvvhws-DhugTtEET0vrI-ZqzNXFsahapVXsZDByZhZVdA84GhrIWIUTqIqbYm-QJigyiAR5FhZPIZZi0I8BYYoSxnpfMwRocS6JEYcW1TW5zEI6Yo55NMdazdykdNIjB96Kjo71UkxNCVT6ExqVMwcXl9tOhuoOG5eXk3K039ZlMZgcfPGl5OqNb5rdGWmDd16panYkfgVr19RVZgRIiyYw5PBRv5IWgoEZ1n17H_Feg53BpJJ-vyzA7P-5zq8QEDU21249eb87e5o9pcCOw3J
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VWyG4IN4sr_rAEatR4sTxsaqotrTdC63Um-UnLJCkYrOI_Qf8bGacpAiJ9sA1si3LM5n5nMx8H8Bbr4zBm0bJvXCGCxkdV1Rl4a1Qucszkynqdz5bVosL8eGyvNyBw6kXhsoqx9g_xPQUrccn--Np7l-tVtTji5eBOpfkhoWqMQ7vChK1nsHuwfHJYnkdkOs6KaDSeE4TJvKhVOa1DT9d4gUVicQzCZf9M0HdBEBTIjp6APdHBMkOhk0-hJ3QPoI7g6bk9jH8-rj6RJzIjBpHmDcNBgzP7KZnbdcz6vsYnqy_YsJB5M2azRrXYXg3RyuzZtuhS60cm5RT-sF2rIsMnYXZrg28ScyN3KP3_sClGupgcp-3Da5GvNCM_gasn8DF0fvzwwUf5Ra4QxTR88L6mLk6c2VhHJpWeRULGZyMmVUF6QFHWwsRo3ASTWlLjAXCBFUGiSDHyuIpzFrcxHNgiLKUkc7HHBFKrEtixLFFZX0eg5CumEM-nbF2Ixc5SWJ801PR2RedDEMqmUJnUqNh5vDuetLVQMVx-_BqMp7-y6M0JovbJ-5Nptb4rtGRmTZ0m7WmYkfiV7x5RFXhjRBhwRyeDT7yZ6elQHCWVS_-d1t7cHdxfnaqT4-XJy_h3kA4SZ-CXsGs_74JrxEc9fbN6Py_AVv3D68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signals+from+damaged+but+not+undamaged+skeletal+muscle+induce+myogenic+differentiation+of+rat+bone-marrow-derived+mesenchymal+stem+cells&rft.jtitle=Experimental+cell+research&rft.au=Santa+Mar%C3%ADa%2C+Lorena&rft.au=Rojas%2C+Cecilia+V&rft.au=Minguell%2C+Jos%C3%A9+J&rft.date=2004-11-01&rft.issn=0014-4827&rft.volume=300&rft.issue=2&rft.spage=418&rft_id=info:doi/10.1016%2Fj.yexcr.2004.07.017&rft_id=info%3Apmid%2F15475006&rft.externalDocID=15475006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4827&client=summon