Effect of structural parameters on atomization characteristics and dust reduction performance of internal-mixing air-assisted atomizer nozzle
In this paper, the customized experimental spraying platform for dust control was used to study the atomization characteristics and dust reduction performance of the internal-mixing air-assisted atomizer nozzles under different structural parameters. Finally, based on the comprehensive consideration...
Saved in:
Published in | Process safety and environmental protection Vol. 128; pp. 316 - 328 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Rugby
Elsevier B.V
01.08.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0957-5820 1744-3598 |
DOI | 10.1016/j.psep.2019.06.014 |
Cover
Abstract | In this paper, the customized experimental spraying platform for dust control was used to study the atomization characteristics and dust reduction performance of the internal-mixing air-assisted atomizer nozzles under different structural parameters. Finally, based on the comprehensive consideration of the factors including the dust reduction efficiency and flow rate of the nozzle, the reasonable structure parameters for the nozzle were obtained.
[Display omitted]
•The internal-mixing air-assisted atomizer nozzles with different structural parameters were studied.•The efficiency was optimal when the diameter of the water-injection hole was 1.5mm and the number of air-injections holes was 4.•Based on the comprehensive consideration, the diameter of the air cap outlet should be in the range of 2.0–3.0 mm.
As a air-liquid two-phase flow nozzle, the internal-mixing air-assisted atomizer nozzle has been widely used in the field of spray technology for dust reduction. Structural parameters are important factors to influence the atomization characteristics and dust-reducing performance of the atomizing nozzle. However, the mechanism of the influences of the structural parameters is not clear. In this study, the customized experimental spraying platform for dust control was used to study the atomization characteristics and dust reduction performance of the nozzles under different structural parameters. Based on the experimental results, when the parameters such as water pressure and air pressure were constant, the dust reduction efficiency for both the total dust and the respiratory dust first increased then decreased with the increase of the diameter of the water-injection hole in the liquid cap and the number of air-injections holes. The dust reduction efficiency was optimal when the diameter of the water-injection hole in the liquid cap was 1.5mm and the number of air-injections holes was 4. As the diameter of the air cap outlet increased, the dust reduction efficiency for both the total dust and the respiratory dust was improved; however, the improvement was limited. Based on the comprehensive consideration of the factors including the dust reduction efficiency of the nozzle, the water flow rate, and the air flow rate, the diameter of the air cap outlet should be in the range of 2.0˜3.0mm. When an internal mixing air atomizing nozzle was used for dust reduction in industrial production sites, it is recommended have the diameter of the water-injection hole to be 1.5mm, the number of air-injection holes to be 4, and the diameter of the air cap outlet to be 2.0˜3.0mm. Under these recommended structural parameters, the dust reduction performance of the nozzle is good while the water consumption and air consumption remain relatively low. |
---|---|
AbstractList | In this paper, the customized experimental spraying platform for dust control was used to study the atomization characteristics and dust reduction performance of the internal-mixing air-assisted atomizer nozzles under different structural parameters. Finally, based on the comprehensive consideration of the factors including the dust reduction efficiency and flow rate of the nozzle, the reasonable structure parameters for the nozzle were obtained.
[Display omitted]
•The internal-mixing air-assisted atomizer nozzles with different structural parameters were studied.•The efficiency was optimal when the diameter of the water-injection hole was 1.5mm and the number of air-injections holes was 4.•Based on the comprehensive consideration, the diameter of the air cap outlet should be in the range of 2.0–3.0 mm.
As a air-liquid two-phase flow nozzle, the internal-mixing air-assisted atomizer nozzle has been widely used in the field of spray technology for dust reduction. Structural parameters are important factors to influence the atomization characteristics and dust-reducing performance of the atomizing nozzle. However, the mechanism of the influences of the structural parameters is not clear. In this study, the customized experimental spraying platform for dust control was used to study the atomization characteristics and dust reduction performance of the nozzles under different structural parameters. Based on the experimental results, when the parameters such as water pressure and air pressure were constant, the dust reduction efficiency for both the total dust and the respiratory dust first increased then decreased with the increase of the diameter of the water-injection hole in the liquid cap and the number of air-injections holes. The dust reduction efficiency was optimal when the diameter of the water-injection hole in the liquid cap was 1.5mm and the number of air-injections holes was 4. As the diameter of the air cap outlet increased, the dust reduction efficiency for both the total dust and the respiratory dust was improved; however, the improvement was limited. Based on the comprehensive consideration of the factors including the dust reduction efficiency of the nozzle, the water flow rate, and the air flow rate, the diameter of the air cap outlet should be in the range of 2.0˜3.0mm. When an internal mixing air atomizing nozzle was used for dust reduction in industrial production sites, it is recommended have the diameter of the water-injection hole to be 1.5mm, the number of air-injection holes to be 4, and the diameter of the air cap outlet to be 2.0˜3.0mm. Under these recommended structural parameters, the dust reduction performance of the nozzle is good while the water consumption and air consumption remain relatively low. As a air-liquid two-phase flow nozzle, the internal-mixing air-assisted atomizer nozzle has been widely used in the field of spray technology for dust reduction. Structural parameters are important factors to influence the atomization characteristics and dust-reducing performance of the atomizing nozzle. However, the mechanism of the influences of the structural parameters is not clear. In this study, the customized experimental spraying platform for dust control was used to study the atomization characteristics and dust reduction performance of the nozzles under different structural parameters. Based on the experimental results, when the parameters such as water pressure and air pressure were constant, the dust reduction efficiency for both the total dust and the respiratory dust first increased then decreased with the increase of the diameter of the water-injection hole in the liquid cap and the number of air-injections holes. The dust reduction efficiency was optimal when the diameter of the water-injection hole in the liquid cap was 1.5 mm and the number of air-injections holes was 4. As the diameter of the air cap outlet increased, the dust reduction efficiency for both the total dust and the respiratory dust was improved; however, the improvement was limited. Based on the comprehensive consideration of the factors including the dust reduction efficiency of the nozzle, the water flow rate, and the air flow rate, the diameter of the air cap outlet should be in the range of 2.0˜3.0 mm. When an internal mixing air atomizing nozzle was used for dust reduction in industrial production sites, it is recommended have the diameter of the water-injection hole to be 1.5 mm, the number of air-injection holes to be 4, and the diameter of the air cap outlet to be 2.0˜3.0 mm. Under these recommended structural parameters, the dust reduction performance of the nozzle is good while the water consumption and air consumption remain relatively low. |
Author | Shi, Yijie Li, Yongjun Zhang, Lianyang Wang, Pengfei |
Author_xml | – sequence: 1 givenname: Pengfei surname: Wang fullname: Wang, Pengfei email: pfwang@sina.cn organization: School of Resource, Environment & Safety Engineering, Hunan University of Science & Technology, Xiangtan 411201, China – sequence: 2 givenname: Yijie surname: Shi fullname: Shi, Yijie organization: Work Safety Key Lab on Prevention and Control of Air and Roof Disasters for Southern Coal Mines, Hunan University of Science & Technology, Xiangtan 411201, China – sequence: 3 givenname: Lianyang surname: Zhang fullname: Zhang, Lianyang organization: Department of Civil and Architectural Engineering and Mechanic, University of Arizona, Tucson, AZ 8572, USA – sequence: 4 givenname: Yongjun surname: Li fullname: Li, Yongjun organization: Work Safety Key Lab on Prevention and Control of Air and Roof Disasters for Southern Coal Mines, Hunan University of Science & Technology, Xiangtan 411201, China |
BookMark | eNp9kcFuFSEUholpE29bX8AViesZgWEYJnFjmlpNmrjRNWHgoNzMwAiM0fsOfecy3q5cdAXJ-b8_nI8rdBFiAITeUtJSQsX7Y7tmWFtG6NgS0RLKX6EDHThvun6UF-hAxn5oesnIa3SV85EQQtlAD-jxzjkwBUeHc0mbKVvSM1510gsUSBnHgHWJiz_p4uvd_KwjUyc-F28y1sFiu-WCE9hK75EVkotp0cHAXutDTQc9N4v_48MPrH1qdM6VB_tcDQmHeDrNcIMunZ4zvHk-r9H3T3ffbj83D1_vv9x-fGgM72hpOjEJOkEntaSTGK0wsiPWjdJ1wvVyFILLyRg6gO5dN4jJ8Yn1XFtLpKw-umv07ty7pvhrg1zUMW77I7NiTDLOGWGipuQ5ZVLMOYFTxpd_GkrSflaUqF2-OqpdvtrlKyJUlV9R9h-6Jr_o9Pdl6MMZgrr6bw9JZeOharQ-1T9SNvqX8Cd5b6Sj |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2019_117924 crossref_primary_10_1590_1517_7076_rmat_2024_0460 crossref_primary_10_1007_s11356_022_18623_2 crossref_primary_10_1007_s40789_020_00384_3 crossref_primary_10_1155_2020_1567461 crossref_primary_10_1007_s11356_021_14899_y crossref_primary_10_1016_j_psep_2019_09_031 crossref_primary_10_1016_j_scitotenv_2023_164994 crossref_primary_10_1007_s10853_025_10732_w crossref_primary_10_1016_j_energy_2025_134822 crossref_primary_10_1155_2019_7609748 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105096 crossref_primary_10_1016_j_fuel_2020_119428 crossref_primary_10_1016_j_scitotenv_2022_160710 crossref_primary_10_1016_j_tust_2022_104532 crossref_primary_10_1063_5_0226160 crossref_primary_10_1155_2020_4854391 crossref_primary_10_1016_j_apt_2021_08_020 crossref_primary_10_1016_j_icheatmasstransfer_2024_108534 crossref_primary_10_1016_j_apt_2019_08_007 crossref_primary_10_1016_j_ijrefrig_2021_06_011 crossref_primary_10_1016_j_powtec_2019_09_080 crossref_primary_10_1016_j_powtec_2019_08_048 crossref_primary_10_1016_j_apt_2019_08_006 crossref_primary_10_1177_1687814020977689 crossref_primary_10_1016_j_apt_2019_10_017 crossref_primary_10_1016_j_buildenv_2020_106745 crossref_primary_10_1016_j_apt_2023_104027 crossref_primary_10_1016_j_psep_2020_02_036 crossref_primary_10_1016_j_psep_2022_08_062 crossref_primary_10_1016_j_energy_2020_117214 crossref_primary_10_1016_j_buildenv_2020_107032 crossref_primary_10_1016_j_apt_2020_08_014 crossref_primary_10_1016_j_applthermaleng_2025_126271 crossref_primary_10_1080_15567036_2020_1769776 crossref_primary_10_1016_j_fuel_2020_118323 crossref_primary_10_1016_j_csite_2021_100896 crossref_primary_10_1021_acsomega_4c00881 crossref_primary_10_1080_15567036_2021_1971337 crossref_primary_10_1016_j_apt_2024_104558 crossref_primary_10_1016_j_psep_2019_07_010 crossref_primary_10_1016_j_tust_2019_103149 crossref_primary_10_1016_j_apr_2024_102379 crossref_primary_10_1016_j_powtec_2019_10_082 crossref_primary_10_1016_j_powtec_2024_120591 crossref_primary_10_3390_atmos13101543 crossref_primary_10_1016_j_tust_2022_104867 crossref_primary_10_1007_s42461_024_00955_x crossref_primary_10_1016_j_mtcomm_2022_104487 crossref_primary_10_3390_mi13050684 crossref_primary_10_1016_j_ceramint_2022_09_324 crossref_primary_10_1016_j_energy_2024_131188 crossref_primary_10_1016_j_psep_2019_08_027 crossref_primary_10_1016_j_psep_2019_12_009 crossref_primary_10_3390_app13116670 crossref_primary_10_1155_2019_6309160 crossref_primary_10_1155_2021_5473256 crossref_primary_10_1016_j_cherd_2024_05_010 crossref_primary_10_1016_j_ijmecsci_2019_06_037 crossref_primary_10_1080_01932691_2025_2454941 crossref_primary_10_1007_s13369_020_04937_1 crossref_primary_10_1007_s40430_020_02411_5 crossref_primary_10_3390_buildings13010150 crossref_primary_10_1007_s11356_024_35363_7 crossref_primary_10_1080_15567036_2024_2417794 crossref_primary_10_1016_j_powtec_2019_10_067 crossref_primary_10_1016_j_powtec_2019_07_040 crossref_primary_10_1080_15567036_2022_2088901 crossref_primary_10_1016_j_psep_2022_07_065 crossref_primary_10_1016_j_jclepro_2019_119343 crossref_primary_10_3390_atmos13040520 crossref_primary_10_1016_j_jclepro_2022_133315 crossref_primary_10_1016_j_powtec_2020_10_053 crossref_primary_10_1016_j_ijheatfluidflow_2020_108632 crossref_primary_10_1016_j_powtec_2020_10_059 crossref_primary_10_1016_j_cjche_2023_05_002 crossref_primary_10_1016_j_psep_2020_04_049 crossref_primary_10_1016_j_psep_2024_09_109 crossref_primary_10_1016_j_conbuildmat_2023_132378 crossref_primary_10_1016_j_buildenv_2024_111538 crossref_primary_10_1016_j_powtec_2021_04_095 crossref_primary_10_1016_j_fuel_2023_129627 crossref_primary_10_1007_s40789_021_00437_1 crossref_primary_10_1016_j_apr_2020_02_023 crossref_primary_10_4274_globecc_galenos_2023_68077 crossref_primary_10_1016_j_colsurfa_2022_128334 crossref_primary_10_1016_j_envpol_2020_114717 crossref_primary_10_3390_w16162347 crossref_primary_10_1007_s12597_024_00880_z crossref_primary_10_1016_j_buildenv_2021_108282 crossref_primary_10_1016_j_compag_2023_108193 crossref_primary_10_1016_j_psep_2019_10_012 crossref_primary_10_1007_s40789_021_00406_8 crossref_primary_10_3390_app112411628 crossref_primary_10_1299_jamdsm_2021jamdsm0003 crossref_primary_10_3389_fpls_2024_1405530 crossref_primary_10_1016_j_apt_2020_04_008 crossref_primary_10_1177_16878132221098851 crossref_primary_10_1016_j_molliq_2022_120956 crossref_primary_10_1016_j_apr_2020_02_010 crossref_primary_10_3390_pr12010224 |
Cites_doi | 10.7424/jsm130204 10.1016/j.psep.2016.07.003 10.1016/j.jclepro.2018.02.230 10.1016/j.ces.2005.10.012 10.1016/j.powtec.2018.11.042 10.1016/j.ces.2008.04.014 10.1016/j.applthermaleng.2014.11.068 10.1016/j.seppur.2008.05.006 10.1016/j.psep.2016.12.005 10.1016/j.apt.2018.01.012 10.1016/j.ijmultiphaseflow.2017.02.001 10.1016/j.jclepro.2017.08.027 10.1016/S0360-1285(02)00004-7 10.1016/j.buildenv.2018.08.061 10.1016/j.scitotenv.2012.11.003 10.29252/jafm.11.06.28115 10.1016/j.apt.2017.11.007 10.1016/j.powtec.2017.12.002 10.1103/PhysRevE.63.016302 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier Science Ltd. Aug 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier Science Ltd. Aug 2019 |
DBID | AAYXX CITATION 7ST 7TB 7U7 8FD C1K FR3 KR7 SOI |
DOI | 10.1016/j.psep.2019.06.014 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Toxicology Abstracts Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1744-3598 |
EndPage | 328 |
ExternalDocumentID | 10_1016_j_psep_2019_06_014 S0957582019305877 |
GroupedDBID | --K --M -QF .~1 0R~ 123 1B1 1~. 1~5 3EH 4.4 457 4G. 4P2 53G 5VS 7-5 71M 8P~ 8WZ A6W AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHIDL AHPOS AIAGR AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CAG COF CS3 DU5 EBS EDH EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ I-F IHE J1W JARJE KCYFY KOM M41 ML. MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SJN SPC SPCBC SSG SSJ SSR SSZ T5K UNMZH XFK ZE2 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMLS ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 7U7 8FD C1K EFKBS FR3 KR7 SOI |
ID | FETCH-LOGICAL-c431t-36b61be38a81b69d6c830df98f36f5896648bcc17ea5f376bf4b254add0885983 |
IEDL.DBID | AIKHN |
ISSN | 0957-5820 |
IngestDate | Wed Aug 13 08:12:34 EDT 2025 Tue Jul 01 01:44:15 EDT 2025 Thu Apr 24 23:02:58 EDT 2025 Fri Feb 23 02:21:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Internal-mixing air-assisted atomizer nozzle Dust Droplets Dust reduction performance Atomization characteristics Structural parameters |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c431t-36b61be38a81b69d6c830df98f36f5896648bcc17ea5f376bf4b254add0885983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2282442026 |
PQPubID | 2047550 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2282442026 crossref_citationtrail_10_1016_j_psep_2019_06_014 crossref_primary_10_1016_j_psep_2019_06_014 elsevier_sciencedirect_doi_10_1016_j_psep_2019_06_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Rugby |
PublicationPlace_xml | – name: Rugby |
PublicationTitle | Process safety and environmental protection |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Hede, Bach, Jensen (bib0150) 2008; 63 Ji, Chen, Zhao (bib0115) 1998; 20 Wang, Liu, Gui (bib0090) 2016; 41 Lefebvre, Ballal (bib0100) 2010 Song, Han, Wang (bib0170) 2015; 41 Tatyana, Olga, Irina (bib0010) 2019; 16 Prostanski (bib0175) 2013; 12 Li, Song (bib0185) 2004; 22 Zuo, Rameezdeen, Hagger (bib0025) 2017; 166 Bai, Xing, Wang (bib0110) 2015; 43 Liu, Gong, Li (bib0135) 2006; 61 Ju, Ling, Peng (bib0180) 2015; 47 Yue (bib0195) 2017; 34 Zhou, Yu (bib0145) 2000; 63 Ma, Kou (bib0040) 2006; 16 Liu, Nie, Hua (bib0055) 2019; 147 Gong, Fu (bib0190) 2006; 21 Lefebvre (bib0075) 1989 Zhang, Zhou, Qian (bib0015) 2018; 184 Cao, Zhu, Guo (bib0105) 2013; 27 Urbán, Zaremba, Malý (bib0140) 2017; 95 Nie, Ma, Cheng (bib0045) 2016; 103 Wang, Nie, Cheng (bib0050) 2018; 29 Shi, Jiang, Zhou (bib0020) 2008; 33 Yang, Nie, Lv (bib0060) 2019; 343 Wang, Tang, Liu (bib0085) 2018; 26 Zheng, Ji, Lu (bib0120) 2009; 27 Roudini, Wozniak (bib0155) 2018; 11 Wang, Cheng, Zhou (bib0095) 2016; 41 Ma, Dong, Yu (bib0125) 2015; 88 Cheng, Zhou, Zuo (bib0035) 2010; 35 Zhou, Zhang, Bai (bib0030) 2017; 106 Mohan, Jain, Meikap (bib0160) 2008; 63 Wang, Liu, Wang (bib0080) 2017; 42 Babinsky, Sojka (bib0130) 2002; 28 Jiang, Wang, Chen (bib0165) 2017; 49 Rasmussen, Levesque, Chénier (bib0005) 2013; 443 Zhou, Qin, Wang (bib0070) 2018; 326 Yu, Cheng, Peng (bib0065) 2018; 29 Wang, Liu, Tang (bib0200) 2015; 40 Tatyana (10.1016/j.psep.2019.06.014_bib0010) 2019; 16 Yang (10.1016/j.psep.2019.06.014_bib0060) 2019; 343 Hede (10.1016/j.psep.2019.06.014_bib0150) 2008; 63 Nie (10.1016/j.psep.2019.06.014_bib0045) 2016; 103 Cao (10.1016/j.psep.2019.06.014_bib0105) 2013; 27 Wang (10.1016/j.psep.2019.06.014_bib0200) 2015; 40 Ma (10.1016/j.psep.2019.06.014_bib0040) 2006; 16 Song (10.1016/j.psep.2019.06.014_bib0170) 2015; 41 Cheng (10.1016/j.psep.2019.06.014_bib0035) 2010; 35 Lefebvre (10.1016/j.psep.2019.06.014_bib0075) 1989 Zhou (10.1016/j.psep.2019.06.014_bib0145) 2000; 63 Ma (10.1016/j.psep.2019.06.014_bib0125) 2015; 88 Wang (10.1016/j.psep.2019.06.014_bib0050) 2018; 29 Lefebvre (10.1016/j.psep.2019.06.014_bib0100) 2010 Liu (10.1016/j.psep.2019.06.014_bib0135) 2006; 61 Zhang (10.1016/j.psep.2019.06.014_bib0015) 2018; 184 Zhou (10.1016/j.psep.2019.06.014_bib0030) 2017; 106 Mohan (10.1016/j.psep.2019.06.014_bib0160) 2008; 63 Ju (10.1016/j.psep.2019.06.014_bib0180) 2015; 47 Yue (10.1016/j.psep.2019.06.014_bib0195) 2017; 34 Rasmussen (10.1016/j.psep.2019.06.014_bib0005) 2013; 443 Li (10.1016/j.psep.2019.06.014_bib0185) 2004; 22 Shi (10.1016/j.psep.2019.06.014_bib0020) 2008; 33 Yu (10.1016/j.psep.2019.06.014_bib0065) 2018; 29 Roudini (10.1016/j.psep.2019.06.014_bib0155) 2018; 11 Babinsky (10.1016/j.psep.2019.06.014_bib0130) 2002; 28 Wang (10.1016/j.psep.2019.06.014_bib0080) 2017; 42 Zhou (10.1016/j.psep.2019.06.014_bib0070) 2018; 326 Wang (10.1016/j.psep.2019.06.014_bib0085) 2018; 26 Zheng (10.1016/j.psep.2019.06.014_bib0120) 2009; 27 Bai (10.1016/j.psep.2019.06.014_bib0110) 2015; 43 Jiang (10.1016/j.psep.2019.06.014_bib0165) 2017; 49 Liu (10.1016/j.psep.2019.06.014_bib0055) 2019; 147 Urbán (10.1016/j.psep.2019.06.014_bib0140) 2017; 95 Zuo (10.1016/j.psep.2019.06.014_bib0025) 2017; 166 Wang (10.1016/j.psep.2019.06.014_bib0090) 2016; 41 Ji (10.1016/j.psep.2019.06.014_bib0115) 1998; 20 Prostanski (10.1016/j.psep.2019.06.014_bib0175) 2013; 12 Wang (10.1016/j.psep.2019.06.014_bib0095) 2016; 41 Gong (10.1016/j.psep.2019.06.014_bib0190) 2006; 21 |
References_xml | – year: 2010 ident: bib0100 article-title: Air Turbine Combustion – volume: 16 start-page: 84 year: 2006 end-page: 89 ident: bib0040 article-title: Study of efficiency of dust suppression by mist spray and its matched parameters publication-title: China Saf. Scie. J. – volume: 106 start-page: 117 year: 2017 end-page: 128 ident: bib0030 article-title: The diffusion behavior law of respirable dust at fully mechanized caving face in coal mine, CFD numerical simulation and engineering application publication-title: J. Process Saf. Environ. Prot. – volume: 443 start-page: 520 year: 2013 end-page: 529 ident: bib0005 article-title: Canadian House Dust Study, Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes publication-title: J. Sci. Total Environ. – volume: 33 start-page: 1117 year: 2008 end-page: 1121 ident: bib0020 article-title: Experimental study on dust distribution regularity of fully mechanized mining face publication-title: J. China Coal Soc. – volume: 47 start-page: 131 year: 2015 end-page: 133 ident: bib0180 article-title: Application of water-air two-phase spray device on coal shearer in fully mechanized tunneling working site publication-title: J. Coal Eng. – volume: 21 start-page: 632 year: 2006 end-page: 636 ident: bib0190 article-title: A study of atomization characteristics of swirling air-liquid spray atomizers publication-title: J. Eng. Thermal Energy Power – volume: 184 start-page: 239 year: 2018 end-page: 250 ident: bib0015 article-title: Diffuse pollution characteristics of respirable dust in fully-mechanized mining face under various velocities based on CFD investigation publication-title: J. Clean. Prod. – volume: 61 start-page: 1741 year: 2006 end-page: 1747 ident: bib0135 article-title: Prediction of droplet size distribution in sprays of prefilming air-blast atomizers publication-title: J. Chem. Eng. Sci. – volume: 41 start-page: 137 year: 2016 end-page: 143 ident: bib0095 article-title: Influence of air supply pressure on the air-water spraying dust-settling in underground coal mine publication-title: J. China Coal Soc. – volume: 34 start-page: 259 year: 2017 end-page: 261 ident: bib0195 article-title: Dust distribution characteristics and control measures of reloading point in Tongxin fully mechanized caving face publication-title: J. Modern Mining – volume: 40 start-page: 2124 year: 2015 end-page: 2130 ident: bib0200 article-title: Experimental study on atomization characteristics and dust suppression efficiency of high-pressure spray in underground coal mine publication-title: J. China Coal Soc. – volume: 63 start-page: 3821 year: 2008 end-page: 3842 ident: bib0150 article-title: Two-fluid spray atomization and pneumatic nozzles for fluid bed coating/agglomeration purposes, a review publication-title: J. Chem. Eng. Sci. – volume: 41 start-page: 2256 year: 2016 end-page: 2272 ident: bib0090 article-title: Theoretical research on atomization characteristics and dust suppression efficiency of air-water spray in underground coal mine publication-title: J. China Coal Soc. – volume: 28 start-page: 303 year: 2002 end-page: 329 ident: bib0130 article-title: Modeling drop size distributions publication-title: J. Prog. Energy Combust. Sci. – volume: 22 start-page: 30 year: 2004 end-page: 32 ident: bib0185 article-title: Experiment and application of the technology of air-water spray and dust suppression publication-title: J. Sci. Technol. Shandong Coal – volume: 16 start-page: 1 year: 2019 end-page: 7 ident: bib0010 article-title: Health risk assessment of metal(loid)s exposure via indoor dust from urban area in Chelyabinsk, Russia publication-title: J. Int. J. Geomate – volume: 42 start-page: 1213 year: 2017 end-page: 1220 ident: bib0080 article-title: Experimental study on atomization characteristics of underground air-water atomization in coal mine publication-title: J. China Coal Soc. – volume: 63 start-page: 269 year: 2008 end-page: 277 ident: bib0160 article-title: Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber publication-title: J. Sep. Purif. Technol. – volume: 35 start-page: 1308 year: 2010 end-page: 1313 ident: bib0035 article-title: Experimental research on the relationship between nozzle spray pressure and atomization particle size publication-title: J. China Coal Soc. – volume: 147 start-page: 444 year: 2019 end-page: 460 ident: bib0055 article-title: Research on tunnel ventilation systems, dust diffusion and pollution behavior by air curtains based on CFD technology and field measurement publication-title: J. Build. Environ. – volume: 343 start-page: 754 year: 2019 end-page: 764 ident: bib0060 article-title: Effects of spraying pressure and installation angle of nozzles on atomization characteristics of external spraying system at a fully-mechanized mining face publication-title: J. Powder Technol. – year: 1989 ident: bib0075 article-title: Atomization and Sprays – volume: 11 start-page: 1455 year: 2018 end-page: 1469 ident: bib0155 article-title: Experimental investigation of spray characteristics of pre-filming air-blast atomizers publication-title: J. Appl. Fluid Mech. – volume: 26 start-page: 1348 year: 2018 end-page: 1359 ident: bib0085 article-title: Influence of air supply pressure on atomization characteristics and dust removal effect of air-water spray publication-title: J. Basic Sci. Eng. – volume: 12 start-page: 29 year: 2013 end-page: 34 ident: bib0175 article-title: Using of air-water spraying systems for improving dust control in mines publication-title: J. Sustain. Mining – volume: 88 start-page: 149 year: 2015 end-page: 156 ident: bib0125 article-title: An experimental study on the spray characteristics of the air-blast atomizer publication-title: J. Appl. Thermal Eng. – volume: 49 start-page: 151 year: 2017 end-page: 157 ident: bib0165 article-title: Analysis of atomization characteristics and dust removal effect of air - water spray publication-title: J. Harbin Inst. Technol. – volume: 41 start-page: 60 year: 2015 end-page: 64 ident: bib0170 article-title: Study on application of air-water spraying dust suppression system in coal mining machines publication-title: J. Ind. Saf. Environ. Prot. – volume: 43 start-page: 1 year: 2015 end-page: 6 ident: bib0110 article-title: Experimental and simulation study on atomization characteristics of internal mixing nozzles publication-title: J. Fluid Mach. – volume: 103 start-page: 126 year: 2016 end-page: 135 ident: bib0045 article-title: A novel spraying/negative-pressure secondary dust suppression device used in fully mechanized mining face, a case study publication-title: J. Process Saf. Environ. Prot. – volume: 20 start-page: 47 year: 1998 end-page: 49 ident: bib0115 article-title: Study on internal blend air-blast atomizer publication-title: J. Wuhan Univ. Technol. – volume: 29 start-page: 230 year: 2018 end-page: 244 ident: bib0050 article-title: Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel’s fully-mechanized working face publication-title: J. Adv. Powder Technol. – volume: 27 start-page: 56 year: 2013 end-page: 60 ident: bib0105 article-title: Study on assistant to improve quality of droplet atomization publication-title: J. Exp. Fluid Mech. – volume: 27 start-page: 79 year: 2009 end-page: 86 ident: bib0120 article-title: Study on atomization characteristics of the SCR air-blast atomizer in electric power plant publication-title: J. Environ. Eng. – volume: 95 start-page: 1 year: 2017 end-page: 11 ident: bib0140 article-title: Droplet dynamics and size characterization of high-velocity air-blast atomization publication-title: J. Int. J. Multiphase Flow – volume: 326 start-page: 7 year: 2018 end-page: 15 ident: bib0070 article-title: Effects of preparation parameters on the wetting features of surfactant-magnetized water for dust control in Luwa mine, China publication-title: J. Powder Technol. – volume: 166 start-page: 312 year: 2017 end-page: 320 ident: bib0025 article-title: Dust pollution control on construction sites, Awareness and self-responsibility of managers publication-title: J. Clean. Prod. – volume: 29 start-page: 941 year: 2018 end-page: 956 ident: bib0065 article-title: An investigation of the nozzle’s atomization dust suppression rules in a fully-mechanized excavation face based on the airflow-droplet-dust three-phase coupling model publication-title: J. Adv. Powder Technol. – volume: 63 start-page: 16302 year: 2000 ident: bib0145 article-title: Multifractality of drop breakup in the air-blast nozzle atomization process publication-title: J. Phys. Rev. E – year: 2010 ident: 10.1016/j.psep.2019.06.014_bib0100 – volume: 12 start-page: 29 issue: 2 year: 2013 ident: 10.1016/j.psep.2019.06.014_bib0175 article-title: Using of air-water spraying systems for improving dust control in mines publication-title: J. Sustain. Mining doi: 10.7424/jsm130204 – volume: 103 start-page: 126 year: 2016 ident: 10.1016/j.psep.2019.06.014_bib0045 article-title: A novel spraying/negative-pressure secondary dust suppression device used in fully mechanized mining face, a case study publication-title: J. Process Saf. Environ. Prot. doi: 10.1016/j.psep.2016.07.003 – volume: 22 start-page: 30 issue: 2 year: 2004 ident: 10.1016/j.psep.2019.06.014_bib0185 article-title: Experiment and application of the technology of air-water spray and dust suppression publication-title: J. Sci. Technol. Shandong Coal – volume: 184 start-page: 239 year: 2018 ident: 10.1016/j.psep.2019.06.014_bib0015 article-title: Diffuse pollution characteristics of respirable dust in fully-mechanized mining face under various velocities based on CFD investigation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.02.230 – volume: 41 start-page: 2256 issue: 9 year: 2016 ident: 10.1016/j.psep.2019.06.014_bib0090 article-title: Theoretical research on atomization characteristics and dust suppression efficiency of air-water spray in underground coal mine publication-title: J. China Coal Soc. – volume: 16 start-page: 1 year: 2019 ident: 10.1016/j.psep.2019.06.014_bib0010 article-title: Health risk assessment of metal(loid)s exposure via indoor dust from urban area in Chelyabinsk, Russia publication-title: J. Int. J. Geomate – volume: 61 start-page: 1741 issue: 6 year: 2006 ident: 10.1016/j.psep.2019.06.014_bib0135 article-title: Prediction of droplet size distribution in sprays of prefilming air-blast atomizers publication-title: J. Chem. Eng. Sci. doi: 10.1016/j.ces.2005.10.012 – volume: 343 start-page: 754 year: 2019 ident: 10.1016/j.psep.2019.06.014_bib0060 article-title: Effects of spraying pressure and installation angle of nozzles on atomization characteristics of external spraying system at a fully-mechanized mining face publication-title: J. Powder Technol. doi: 10.1016/j.powtec.2018.11.042 – year: 1989 ident: 10.1016/j.psep.2019.06.014_bib0075 – volume: 40 start-page: 2124 issue: 9 year: 2015 ident: 10.1016/j.psep.2019.06.014_bib0200 article-title: Experimental study on atomization characteristics and dust suppression efficiency of high-pressure spray in underground coal mine publication-title: J. China Coal Soc. – volume: 41 start-page: 137 issue: S1 year: 2016 ident: 10.1016/j.psep.2019.06.014_bib0095 article-title: Influence of air supply pressure on the air-water spraying dust-settling in underground coal mine publication-title: J. China Coal Soc. – volume: 63 start-page: 3821 issue: 14 year: 2008 ident: 10.1016/j.psep.2019.06.014_bib0150 article-title: Two-fluid spray atomization and pneumatic nozzles for fluid bed coating/agglomeration purposes, a review publication-title: J. Chem. Eng. Sci. doi: 10.1016/j.ces.2008.04.014 – volume: 21 start-page: 632 issue: 6 year: 2006 ident: 10.1016/j.psep.2019.06.014_bib0190 article-title: A study of atomization characteristics of swirling air-liquid spray atomizers publication-title: J. Eng. Thermal Energy Power – volume: 88 start-page: 149 issue: 12 year: 2015 ident: 10.1016/j.psep.2019.06.014_bib0125 article-title: An experimental study on the spray characteristics of the air-blast atomizer publication-title: J. Appl. Thermal Eng. doi: 10.1016/j.applthermaleng.2014.11.068 – volume: 63 start-page: 269 issue: 5 year: 2008 ident: 10.1016/j.psep.2019.06.014_bib0160 article-title: Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber publication-title: J. Sep. Purif. Technol. doi: 10.1016/j.seppur.2008.05.006 – volume: 35 start-page: 1308 issue: 8 year: 2010 ident: 10.1016/j.psep.2019.06.014_bib0035 article-title: Experimental research on the relationship between nozzle spray pressure and atomization particle size publication-title: J. China Coal Soc. – volume: 20 start-page: 47 issue: 3 year: 1998 ident: 10.1016/j.psep.2019.06.014_bib0115 article-title: Study on internal blend air-blast atomizer publication-title: J. Wuhan Univ. Technol. – volume: 106 start-page: 117 year: 2017 ident: 10.1016/j.psep.2019.06.014_bib0030 article-title: The diffusion behavior law of respirable dust at fully mechanized caving face in coal mine, CFD numerical simulation and engineering application publication-title: J. Process Saf. Environ. Prot. doi: 10.1016/j.psep.2016.12.005 – volume: 42 start-page: 1213 issue: 05 year: 2017 ident: 10.1016/j.psep.2019.06.014_bib0080 article-title: Experimental study on atomization characteristics of underground air-water atomization in coal mine publication-title: J. China Coal Soc. – volume: 29 start-page: 941 issue: 4 year: 2018 ident: 10.1016/j.psep.2019.06.014_bib0065 article-title: An investigation of the nozzle’s atomization dust suppression rules in a fully-mechanized excavation face based on the airflow-droplet-dust three-phase coupling model publication-title: J. Adv. Powder Technol. doi: 10.1016/j.apt.2018.01.012 – volume: 95 start-page: 1 year: 2017 ident: 10.1016/j.psep.2019.06.014_bib0140 article-title: Droplet dynamics and size characterization of high-velocity air-blast atomization publication-title: J. Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2017.02.001 – volume: 166 start-page: 312 year: 2017 ident: 10.1016/j.psep.2019.06.014_bib0025 article-title: Dust pollution control on construction sites, Awareness and self-responsibility of managers publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.08.027 – volume: 28 start-page: 303 issue: 4 year: 2002 ident: 10.1016/j.psep.2019.06.014_bib0130 article-title: Modeling drop size distributions publication-title: J. Prog. Energy Combust. Sci. doi: 10.1016/S0360-1285(02)00004-7 – volume: 147 start-page: 444 year: 2019 ident: 10.1016/j.psep.2019.06.014_bib0055 article-title: Research on tunnel ventilation systems, dust diffusion and pollution behavior by air curtains based on CFD technology and field measurement publication-title: J. Build. Environ. doi: 10.1016/j.buildenv.2018.08.061 – volume: 27 start-page: 56 issue: 1 year: 2013 ident: 10.1016/j.psep.2019.06.014_bib0105 article-title: Study on assistant to improve quality of droplet atomization publication-title: J. Exp. Fluid Mech. – volume: 443 start-page: 520 year: 2013 ident: 10.1016/j.psep.2019.06.014_bib0005 article-title: Canadian House Dust Study, Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes publication-title: J. Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.11.003 – volume: 49 start-page: 151 issue: 2 year: 2017 ident: 10.1016/j.psep.2019.06.014_bib0165 article-title: Analysis of atomization characteristics and dust removal effect of air - water spray publication-title: J. Harbin Inst. Technol. – volume: 16 start-page: 84 issue: 5 year: 2006 ident: 10.1016/j.psep.2019.06.014_bib0040 article-title: Study of efficiency of dust suppression by mist spray and its matched parameters publication-title: China Saf. Scie. J. – volume: 47 start-page: 131 issue: 4 year: 2015 ident: 10.1016/j.psep.2019.06.014_bib0180 article-title: Application of water-air two-phase spray device on coal shearer in fully mechanized tunneling working site publication-title: J. Coal Eng. – volume: 11 start-page: 1455 issue: 6 year: 2018 ident: 10.1016/j.psep.2019.06.014_bib0155 article-title: Experimental investigation of spray characteristics of pre-filming air-blast atomizers publication-title: J. Appl. Fluid Mech. doi: 10.29252/jafm.11.06.28115 – volume: 29 start-page: 230 year: 2018 ident: 10.1016/j.psep.2019.06.014_bib0050 article-title: Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel’s fully-mechanized working face publication-title: J. Adv. Powder Technol. doi: 10.1016/j.apt.2017.11.007 – volume: 326 start-page: 7 year: 2018 ident: 10.1016/j.psep.2019.06.014_bib0070 article-title: Effects of preparation parameters on the wetting features of surfactant-magnetized water for dust control in Luwa mine, China publication-title: J. Powder Technol. doi: 10.1016/j.powtec.2017.12.002 – volume: 33 start-page: 1117 issue: 10 year: 2008 ident: 10.1016/j.psep.2019.06.014_bib0020 article-title: Experimental study on dust distribution regularity of fully mechanized mining face publication-title: J. China Coal Soc. – volume: 27 start-page: 79 issue: 3 year: 2009 ident: 10.1016/j.psep.2019.06.014_bib0120 article-title: Study on atomization characteristics of the SCR air-blast atomizer in electric power plant publication-title: J. Environ. Eng. – volume: 26 start-page: 1348 issue: 6 year: 2018 ident: 10.1016/j.psep.2019.06.014_bib0085 article-title: Influence of air supply pressure on atomization characteristics and dust removal effect of air-water spray publication-title: J. Basic Sci. Eng. – volume: 63 start-page: 16302 issue: 1 year: 2000 ident: 10.1016/j.psep.2019.06.014_bib0145 article-title: Multifractality of drop breakup in the air-blast nozzle atomization process publication-title: J. Phys. Rev. E doi: 10.1103/PhysRevE.63.016302 – volume: 34 start-page: 259 issue: 7 year: 2017 ident: 10.1016/j.psep.2019.06.014_bib0195 article-title: Dust distribution characteristics and control measures of reloading point in Tongxin fully mechanized caving face publication-title: J. Modern Mining – volume: 43 start-page: 1 issue: 02 year: 2015 ident: 10.1016/j.psep.2019.06.014_bib0110 article-title: Experimental and simulation study on atomization characteristics of internal mixing nozzles publication-title: J. Fluid Mach. – volume: 41 start-page: 60 issue: 8 year: 2015 ident: 10.1016/j.psep.2019.06.014_bib0170 article-title: Study on application of air-water spraying dust suppression system in coal mining machines publication-title: J. Ind. Saf. Environ. Prot. |
SSID | ssj0001271 |
Score | 2.5190303 |
Snippet | In this paper, the customized experimental spraying platform for dust control was used to study the atomization characteristics and dust reduction performance... As a air-liquid two-phase flow nozzle, the internal-mixing air-assisted atomizer nozzle has been widely used in the field of spray technology for dust... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 316 |
SubjectTerms | Air flow Air injection Atomization characteristics Atomizing Droplets Dust Dust control Dust reduction performance Efficiency Flow velocity Industrial production Injection Internal-mixing air-assisted atomizer nozzle Multiphase flow Nozzles Parameters Reduction Spraying Structural parameters Two phase flow Water consumption Water flow Water pressure |
Title | Effect of structural parameters on atomization characteristics and dust reduction performance of internal-mixing air-assisted atomizer nozzle |
URI | https://dx.doi.org/10.1016/j.psep.2019.06.014 https://www.proquest.com/docview/2282442026 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BcoFDVSgIWlj50FtlliSO1zmiFWgLLapakLhZsWNLQbvZ1S4HxIF_0P_cmdjhoxIcOCbyWFZm_GYmmnkD8LW0eSaNK7lUleJC-owrmx3xVBhhPYbAgUvv54UcX4mz6_x6BUZdLwyVVUbsD5jeonV8M4hfczCv68EfDA4w2EUHVqDNquFwFdZS9PaqB2vH38_HF4-AnKRt3kXrOQnE3plQ5jVfOqKtTIqWxjMRr_mn_5C6dT-nH-FDjBvZcTjaJqy4Zgs2nrEJbsHOyVPTGi6Nt3b5Cf4GimI28yzQxRLVBiPS7ykVwyzZrGGYe09jSyazL0mcWdlUjAZ8sAXxvLZL5k_9BrRtHf4rTvi0vsOzsLJecIzKyYSquLVbsGZ2fz9x23B1enI5GvM4hoFbjC5uOepSJsZlqsQQVxaVtCo7qnyhfCZ9rjBfEspYmwxdmXvEK-OFwbQTgRMRLC9UtgO9Zta4XWDD3BuLKZ53RKqjrBKmFNKgtKehx3IPku7jaxs5ymlUxkR3xWg3mhSmSWGaKvISsQffHmXmgaHjzdV5p1P9ws40upA35fY7A9Dxli91ivmqECmmsZ_fue0XWKenUFG4Dz00AneAUc6t6cPq4UPSR1se_f7xqx9t-h9CvQIv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BThsxEB2l4dD2gFoKgpa2PnBDVtis1_EeEQIFArkUJG7W2mtLi5JNlHCo-Af-mZm1lxAkOHDd9VjWznjmzWrmDcBBYbNUGldwqUrFhfQpVzY94n1hhPUIgQOX3tVYDm_ExW1224GTtheGyiqj7w8-vfHW8Ukvfs3evKp6_xAcINjFAJajzarB4BNsCBpq3YWN4_PRcPzskJN-k3fRek4CsXcmlHnNl45oK5O8ofFMxFvx6ZWnbsLP2TfYjLiRHYejfYeOq7fg6ws2wS3YOV01reHSeGuXP-AxUBSzmWeBLpaoNhiRfk-pGGbJZjXD3HsaWzKZXSdxZkVdMhrwwRbE89osma_6DWjbKvxXnPBp9R_PwopqwRGVkwmVcWu3YPXs4WHituHm7PT6ZMjjGAZuEV3cc9SlTIxLVYEQV-altCo9Kn2ufCp9pjBfEspYmwxckXn0V8YLg2knOk70YFmu0h3o1rPa7QIbZN5YTPG8I1IdZZUwhZAGpT0NPZZ7kLQfX9vIUU6jMia6LUa706QwTQrTVJGXiD04fJaZB4aOd1dnrU71mp1pDCHvyu23BqDjLV_qPuarQvQxjf35wW3_wufh9dWlvjwfj37BF3oTqgv3oYsG4X4j4rk3f6JFPwFDjAKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+structural+parameters+on+atomization+characteristics+and+dust+reduction+performance+of+internal-mixing+air-assisted+atomizer+nozzle&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Wang%2C+Pengfei&rft.au=Shi%2C+Yijie&rft.au=Zhang%2C+Lianyang&rft.au=Li%2C+Yongjun&rft.date=2019-08-01&rft.issn=0957-5820&rft.volume=128&rft.spage=316&rft.epage=328&rft_id=info:doi/10.1016%2Fj.psep.2019.06.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_psep_2019_06_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon |