Unlock the algorithms: regulation of adaptive algorithms in reproduction

In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the quality, consistency, and transparency of their performance across specific age, racial, and ethnic groups. Embryology procedures do not fall...

Full description

Saved in:
Bibliographic Details
Published inFertility and sterility Vol. 120; no. 1; pp. 38 - 43
Main Author Curchoe, Carol Lynn
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2023
Subjects
Online AccessGet full text
ISSN0015-0282
1556-5653
1556-5653
DOI10.1016/j.fertnstert.2023.05.152

Cover

Abstract In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the quality, consistency, and transparency of their performance across specific age, racial, and ethnic groups. Embryology procedures do not fall under the federal regulation of “CLIA 88.” They are not tests per se; they are cell-based procedures. Likewise, many add-on procedures related to embryology, such as preimplantation genetic testing, are considered “laboratory-developed tests” and are not subject to Food and Drug Administration regulation at present. Should predictive artificial intelligence algorithms in reproduction be considered medical devices or laboratory-developed tests? Certain indications certainly carry a higher risk, such as medication dosage, where the consequences of mismanagement could be severe, whereas others, such as embryo selection, are noninterventional (selecting from a patient’s own embryos and the course of treatment does not change) and present little to no risk. The regulatory landscape is complex, involving data diversity and performance, real-world evidence, cybersecurity, and postmarket surveillance.
AbstractList In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the quality, consistency, and transparency of their performance across specific age, racial, and ethnic groups. Embryology procedures do not fall under the federal regulation of “CLIA 88.” They are not tests per se; they are cell-based procedures. Likewise, many add-on procedures related to embryology, such as preimplantation genetic testing, are considered “laboratory-developed tests” and are not subject to Food and Drug Administration regulation at present. Should predictive artificial intelligence algorithms in reproduction be considered medical devices or laboratory-developed tests? Certain indications certainly carry a higher risk, such as medication dosage, where the consequences of mismanagement could be severe, whereas others, such as embryo selection, are noninterventional (selecting from a patient’s own embryos and the course of treatment does not change) and present little to no risk. The regulatory landscape is complex, involving data diversity and performance, real-world evidence, cybersecurity, and postmarket surveillance.
In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the quality, consistency, and transparency of their performance across specific age, racial, and ethnic groups. Embryology procedures do not fall under the federal regulation of "CLIA 88." They are not tests per se; they are cell-based procedures. Likewise, many add-on procedures related to embryology, such as preimplantation genetic testing, are considered "laboratory-developed tests" and are not subject to Food and Drug Administration regulation at present. Should predictive artificial intelligence algorithms in reproduction be considered medical devices or laboratory-developed tests? Certain indications certainly carry a higher risk, such as medication dosage, where the consequences of mismanagement could be severe, whereas others, such as embryo selection, are noninterventional (selecting from a patient's own embryos and the course of treatment does not change) and present little to no risk. The regulatory landscape is complex, involving data diversity and performance, real-world evidence, cybersecurity, and postmarket surveillance.In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the quality, consistency, and transparency of their performance across specific age, racial, and ethnic groups. Embryology procedures do not fall under the federal regulation of "CLIA 88." They are not tests per se; they are cell-based procedures. Likewise, many add-on procedures related to embryology, such as preimplantation genetic testing, are considered "laboratory-developed tests" and are not subject to Food and Drug Administration regulation at present. Should predictive artificial intelligence algorithms in reproduction be considered medical devices or laboratory-developed tests? Certain indications certainly carry a higher risk, such as medication dosage, where the consequences of mismanagement could be severe, whereas others, such as embryo selection, are noninterventional (selecting from a patient's own embryos and the course of treatment does not change) and present little to no risk. The regulatory landscape is complex, involving data diversity and performance, real-world evidence, cybersecurity, and postmarket surveillance.
Author Curchoe, Carol Lynn
Author_xml – sequence: 1
  givenname: Carol Lynn
  orcidid: 0000-0002-7534-5906
  surname: Curchoe
  fullname: Curchoe, Carol Lynn
  email: carolc@aivf.co
  organization: ART Compass, an AIVF Technology, Newport Beach, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37217091$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1PGzEQhi1EVQLtX0B77GUXf8Qbbw9V24gvCamXcrac2VlwcOzU9iLl39chQSBOucxcnnlm5j0lxz54JKRitGGUtRfLZsCYfcqlNpxy0VDZMMmPyIRJ2dayleKYTChlsqZc8RNymtKSUtqyGf9MTsSMsxnt2ITc3HsX4KnKj1gZ9xCizY-r9L2K-DA6k23wVRgq05t1ts_vkcr6Aq1j6EfYYl_Ip8G4hF_3_YzcX13-nd_Ud3-ub-e_7mqYCpZrBtBNkRrTQW9UqzhXUw7tQg2slYz3HUMKA3YGZsYIyQcFg-yEQd5PsZwszsi3nbes_jdiynplE6BzxmMYk-aKKSpF14qCnu_RcbHCXq-jXZm40a_fF-DHDoAYUoo4aLD55ekcjXWaUb2NWy_1W9x6G7emUpe4i0B9ELzuOGD0924US1jPFqNOYNED9jYiZN0He4jk5wcJOOstGPeEm8MU_wF0z7hn
CitedBy_id crossref_primary_10_1115_1_4066280
crossref_primary_10_1186_s12911_025_02884_1
crossref_primary_10_1016_j_xfre_2024_09_002
Cites_doi 10.1136/jcp-2023-208887
10.1038/s41746-020-00324-0
10.1007/s10815-020-01706-9
10.1186/s12958-017-0262-5
10.1016/j.fertnstert.2008.10.061
10.1007/s10815-021-02350-7
10.1001/jama.2019.21579
10.1093/aje/kwac164
10.1007/s10815-022-02634-6
10.1007/s11606-023-08185-5
10.1186/s12958-020-00662-4
10.1001/jamainternmed.2021.2626
10.1097/GCO.0000000000000726
10.1016/j.fertnstert.2007.08.024
10.2196/41748
10.1016/j.ijmedinf.2022.104828
10.1016/j.fertnstert.2009.11.019
ContentType Journal Article
Copyright 2023 American Society for Reproductive Medicine
Copyright © 2023 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 American Society for Reproductive Medicine
– notice: Copyright © 2023 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.fertnstert.2023.05.152
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1556-5653
EndPage 43
ExternalDocumentID 37217091
10_1016_j_fertnstert_2023_05_152
S001502822300523X
Genre Journal Article
Review
GroupedDBID ---
--K
-~X
.1-
.55
.FO
.GJ
0R~
1B1
1P~
1~5
29H
34R
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
85S
AAEDT
AAEDW
AAFWJ
AALRI
AAQFI
AAQXK
AAXUO
AAYWO
ABCQX
ABFRF
ABJNI
ABLJU
ABMAC
ABWVN
ACGFO
ACIUM
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
ADVLN
AEFWE
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AGQPQ
AI.
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BELOY
C5W
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FDB
FEDTE
FGOYB
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N9A
NQ-
O9-
OK1
OQ.
P2P
PH~
R2-
ROL
RPZ
SDP
SEL
SES
SEW
SSZ
UNMZH
UV1
VH1
W2D
X7M
XH2
XJT
XPP
YOC
YZZ
Z5R
ZGI
ZXP
~S-
AACTN
AAIAV
ADPAM
AGZHU
AHPSJ
ALXNB
RIG
ZA5
AAYXX
CITATION
AFCTW
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c431t-1cc94e0aa9cda86822842c6b8f16512d91e0cfe9ac7aa352f8cf593ae2d4e7093
ISSN 0015-0282
1556-5653
IngestDate Sat Sep 27 18:45:54 EDT 2025
Mon Jul 21 05:41:20 EDT 2025
Wed Oct 01 05:21:57 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
Fri Feb 23 02:36:51 EST 2024
Tue Oct 14 19:39:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords regulatory affairs
FDA
Artificial intelligence
medical AI
Language English
License Copyright © 2023 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c431t-1cc94e0aa9cda86822842c6b8f16512d91e0cfe9ac7aa352f8cf593ae2d4e7093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7534-5906
PMID 37217091
PQID 2818053963
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2818053963
pubmed_primary_37217091
crossref_citationtrail_10_1016_j_fertnstert_2023_05_152
crossref_primary_10_1016_j_fertnstert_2023_05_152
elsevier_sciencedirect_doi_10_1016_j_fertnstert_2023_05_152
elsevier_clinicalkey_doi_10_1016_j_fertnstert_2023_05_152
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Fertility and sterility
PublicationTitleAlternate Fertil Steril
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Sudat, Wesson, Rhoads, Brown, Aboelata, Pressman (bib8) 2023; 192
Larkin (bib19) 2022; 328
Matheny, Whicher, Thadaney Israni (bib1) 2020; 323
Benjamens, Dhunnoo, Meskó (bib3) 2020; 3
Shapiro, Darmon, Barad, Albertini, Gleicher, Kushnir (bib18) 2017; 15
Huddleston, Rosen, Lamb, Modan, Cedars, Fujimoto (bib10) 2010; 94
Seifer, Frazier, Grainger (bib15) 2008; 90
Curchoe, Tarafdar, Aquilina, Seifer (bib4) 2022; 39
Gama, Griffiths, Vincent, Peters, Bramham (bib6) 2023
Fujimoto, Luke, Brown, Jain, Armstrong, Grainger (bib13) 2010; 93
Zhu, Gilbert, Chetty, Siddiqui (bib2) 2022; 165
Regan, Lowe, Make, Curtis, Chen, Cho (bib7) 2023
Ghidei, Wiltshire, Raker, Ayyar, Brayboy (bib11) 2022; 3
Khunte, Li, Behr, Zhao, Baker (bib12) 2020; 37
Kassi, McQueen, Kimelman, Confino, Yeh, Hutchinson (bib17) 2021; 38
Dubey, Tiwari (bib5) 2023; 11
Seifer, Simsek, Wantman, Kotlyar (bib14) 2020; 18
He, Zamani, Yevseyeva, Luo (bib20) 2023; 25
Wong, Otles, Donnelly, Krumm, McCullough, DeTroyer-Cooley (bib9) 2021; 181
Aly, Plowden, Christy (bib16) 2021; 33
Zhu (10.1016/j.fertnstert.2023.05.152_bib2) 2022; 165
He (10.1016/j.fertnstert.2023.05.152_bib20) 2023; 25
Kassi (10.1016/j.fertnstert.2023.05.152_bib17) 2021; 38
Sudat (10.1016/j.fertnstert.2023.05.152_bib8) 2023; 192
Ghidei (10.1016/j.fertnstert.2023.05.152_bib11) 2022; 3
Aly (10.1016/j.fertnstert.2023.05.152_bib16) 2021; 33
Curchoe (10.1016/j.fertnstert.2023.05.152_bib4) 2022; 39
Benjamens (10.1016/j.fertnstert.2023.05.152_bib3) 2020; 3
Regan (10.1016/j.fertnstert.2023.05.152_bib7) 2023
Matheny (10.1016/j.fertnstert.2023.05.152_bib1) 2020; 323
Larkin (10.1016/j.fertnstert.2023.05.152_bib19) 2022; 328
Huddleston (10.1016/j.fertnstert.2023.05.152_bib10) 2010; 94
Dubey (10.1016/j.fertnstert.2023.05.152_bib5) 2023; 11
Gama (10.1016/j.fertnstert.2023.05.152_bib6) 2023
Wong (10.1016/j.fertnstert.2023.05.152_bib9) 2021; 181
Khunte (10.1016/j.fertnstert.2023.05.152_bib12) 2020; 37
Seifer (10.1016/j.fertnstert.2023.05.152_bib15) 2008; 90
Fujimoto (10.1016/j.fertnstert.2023.05.152_bib13) 2010; 93
Seifer (10.1016/j.fertnstert.2023.05.152_bib14) 2020; 18
Shapiro (10.1016/j.fertnstert.2023.05.152_bib18) 2017; 15
References_xml – volume: 33
  start-page: 335
  year: 2021
  end-page: 342
  ident: bib16
  article-title: Factors contributing to persistent disparate outcomes of in vitro fertilization treatment
  publication-title: Curr Opin Obstet Gynecol
– volume: 3
  start-page: 14
  year: 2022
  end-page: 21
  ident: bib11
  article-title: Factors associated with disparate outcomes among Black women undergoing in vitro fertilization
  publication-title: F S Rep
– volume: 3
  start-page: 118
  year: 2020
  ident: bib3
  article-title: The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database
  publication-title: npj Digit Med
– year: 2023
  ident: bib6
  article-title: Performance and pitfalls of the tools for measuring glomerular filtration rate to guide chronic kidney disease diagnosis and assessment
  publication-title: J Clin Pathol
– volume: 18
  start-page: 113
  year: 2020
  ident: bib14
  article-title: Status of racial disparities between black and white women undergoing assisted reproductive technology in the US
  publication-title: Reprod Biol Endocrinol
– volume: 328
  start-page: 1679
  year: 2022
  ident: bib19
  article-title: Cybersecurity risk for medtronic insulin pump
  publication-title: JAMA
– volume: 181
  start-page: 1065
  year: 2021
  end-page: 1070
  ident: bib9
  article-title: External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients
  publication-title: JAMA Intern Med
– volume: 37
  start-page: 933
  year: 2020
  end-page: 943
  ident: bib12
  article-title: Blastocyst formation rate for Asians versus Caucasians and within body mass index categories
  publication-title: J Assist Reprod Genet
– volume: 94
  start-page: 2059
  year: 2010
  end-page: 2063
  ident: bib10
  article-title: Asian ethnicity in anonymous oocyte donors is associated with increased estradiol levels but comparable recipient pregnancy rates compared with Caucasians
  publication-title: Fertil Steril
– volume: 25
  year: 2023
  ident: bib20
  article-title: Artificial intelligence-based ethical hacking for health information systems: simulation study
  publication-title: J Med Internet Res
– volume: 93
  start-page: 382
  year: 2010
  end-page: 390
  ident: bib13
  article-title: Racial and ethnic disparities in assisted reproductive technology outcomes in the United States
  publication-title: Fertil Steril
– year: 2023
  ident: bib7
  article-title: Use of the spirometric "fixed-ratio" underdiagnoses COPD in African-Americans in a longitudinal cohort study
  publication-title: J Gen Intern Med
– volume: 90
  start-page: 1701
  year: 2008
  end-page: 1710
  ident: bib15
  article-title: Disparity in assisted reproductive technologies outcomes in black women compared with white women
  publication-title: Fertil Steril
– volume: 11
  year: 2023
  ident: bib5
  article-title: Artificial intelligence and remote patient monitoring in US healthcare market: a literature review
  publication-title: J Mark Access Health Policy
– volume: 165
  year: 2022
  ident: bib2
  article-title: The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: an analysis of the characteristics and intended use
  publication-title: Int J Med Inform
– volume: 15
  start-page: 44
  year: 2017
  ident: bib18
  article-title: Effect of race and ethnicity on utilization and outcomes of assisted reproductive technology in the USA
  publication-title: Reprod Biol Endocrinol
– volume: 323
  start-page: 509
  year: 2020
  end-page: 510
  ident: bib1
  article-title: Artificial intelligence in health care: a report from the national academy of medicine
  publication-title: JAMA
– volume: 39
  start-page: 2607
  year: 2022
  end-page: 2616
  ident: bib4
  article-title: SART CORS IVF registry: looking to the past to shape future perspectives
  publication-title: J Assist Reprod Genet
– volume: 38
  start-page: 3091
  year: 2021
  end-page: 3098
  ident: bib17
  article-title: Body mass index, not race, may be associated with an alteration in early embryo morphokinetics during in vitro fertilization
  publication-title: J Assist Reprod Genet
– volume: 192
  start-page: 703
  year: 2023
  end-page: 713
  ident: bib8
  article-title: Racial disparities in pulse oximeter device inaccuracy and estimated clinical impact on COVID-19 treatment course
  publication-title: Am J Epidemiol
– year: 2023
  ident: 10.1016/j.fertnstert.2023.05.152_bib6
  article-title: Performance and pitfalls of the tools for measuring glomerular filtration rate to guide chronic kidney disease diagnosis and assessment
  publication-title: J Clin Pathol
  doi: 10.1136/jcp-2023-208887
– volume: 3
  start-page: 118
  year: 2020
  ident: 10.1016/j.fertnstert.2023.05.152_bib3
  article-title: The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database
  publication-title: npj Digit Med
  doi: 10.1038/s41746-020-00324-0
– volume: 37
  start-page: 933
  year: 2020
  ident: 10.1016/j.fertnstert.2023.05.152_bib12
  article-title: Blastocyst formation rate for Asians versus Caucasians and within body mass index categories
  publication-title: J Assist Reprod Genet
  doi: 10.1007/s10815-020-01706-9
– volume: 15
  start-page: 44
  year: 2017
  ident: 10.1016/j.fertnstert.2023.05.152_bib18
  article-title: Effect of race and ethnicity on utilization and outcomes of assisted reproductive technology in the USA
  publication-title: Reprod Biol Endocrinol
  doi: 10.1186/s12958-017-0262-5
– volume: 93
  start-page: 382
  year: 2010
  ident: 10.1016/j.fertnstert.2023.05.152_bib13
  article-title: Racial and ethnic disparities in assisted reproductive technology outcomes in the United States
  publication-title: Fertil Steril
  doi: 10.1016/j.fertnstert.2008.10.061
– volume: 38
  start-page: 3091
  year: 2021
  ident: 10.1016/j.fertnstert.2023.05.152_bib17
  article-title: Body mass index, not race, may be associated with an alteration in early embryo morphokinetics during in vitro fertilization
  publication-title: J Assist Reprod Genet
  doi: 10.1007/s10815-021-02350-7
– volume: 323
  start-page: 509
  year: 2020
  ident: 10.1016/j.fertnstert.2023.05.152_bib1
  article-title: Artificial intelligence in health care: a report from the national academy of medicine
  publication-title: JAMA
  doi: 10.1001/jama.2019.21579
– volume: 192
  start-page: 703
  year: 2023
  ident: 10.1016/j.fertnstert.2023.05.152_bib8
  article-title: Racial disparities in pulse oximeter device inaccuracy and estimated clinical impact on COVID-19 treatment course
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwac164
– volume: 39
  start-page: 2607
  year: 2022
  ident: 10.1016/j.fertnstert.2023.05.152_bib4
  article-title: SART CORS IVF registry: looking to the past to shape future perspectives
  publication-title: J Assist Reprod Genet
  doi: 10.1007/s10815-022-02634-6
– year: 2023
  ident: 10.1016/j.fertnstert.2023.05.152_bib7
  article-title: Use of the spirometric "fixed-ratio" underdiagnoses COPD in African-Americans in a longitudinal cohort study
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-023-08185-5
– volume: 3
  start-page: 14
  issue: Suppl
  year: 2022
  ident: 10.1016/j.fertnstert.2023.05.152_bib11
  article-title: Factors associated with disparate outcomes among Black women undergoing in vitro fertilization
  publication-title: F S Rep
– volume: 18
  start-page: 113
  year: 2020
  ident: 10.1016/j.fertnstert.2023.05.152_bib14
  article-title: Status of racial disparities between black and white women undergoing assisted reproductive technology in the US
  publication-title: Reprod Biol Endocrinol
  doi: 10.1186/s12958-020-00662-4
– volume: 181
  start-page: 1065
  year: 2021
  ident: 10.1016/j.fertnstert.2023.05.152_bib9
  article-title: External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2021.2626
– volume: 33
  start-page: 335
  year: 2021
  ident: 10.1016/j.fertnstert.2023.05.152_bib16
  article-title: Factors contributing to persistent disparate outcomes of in vitro fertilization treatment
  publication-title: Curr Opin Obstet Gynecol
  doi: 10.1097/GCO.0000000000000726
– volume: 11
  year: 2023
  ident: 10.1016/j.fertnstert.2023.05.152_bib5
  article-title: Artificial intelligence and remote patient monitoring in US healthcare market: a literature review
  publication-title: J Mark Access Health Policy
– volume: 328
  start-page: 1679
  year: 2022
  ident: 10.1016/j.fertnstert.2023.05.152_bib19
  article-title: Cybersecurity risk for medtronic insulin pump
  publication-title: JAMA
– volume: 90
  start-page: 1701
  year: 2008
  ident: 10.1016/j.fertnstert.2023.05.152_bib15
  article-title: Disparity in assisted reproductive technologies outcomes in black women compared with white women
  publication-title: Fertil Steril
  doi: 10.1016/j.fertnstert.2007.08.024
– volume: 25
  year: 2023
  ident: 10.1016/j.fertnstert.2023.05.152_bib20
  article-title: Artificial intelligence-based ethical hacking for health information systems: simulation study
  publication-title: J Med Internet Res
  doi: 10.2196/41748
– volume: 165
  year: 2022
  ident: 10.1016/j.fertnstert.2023.05.152_bib2
  article-title: The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: an analysis of the characteristics and intended use
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2022.104828
– volume: 94
  start-page: 2059
  year: 2010
  ident: 10.1016/j.fertnstert.2023.05.152_bib10
  article-title: Asian ethnicity in anonymous oocyte donors is associated with increased estradiol levels but comparable recipient pregnancy rates compared with Caucasians
  publication-title: Fertil Steril
  doi: 10.1016/j.fertnstert.2009.11.019
SSID ssj0006172
Score 2.4493284
SecondaryResourceType review_article
Snippet In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 38
SubjectTerms Algorithms
Artificial Intelligence
FDA
Humans
Machine Learning
medical AI
regulatory affairs
Reproduction
Software
Title Unlock the algorithms: regulation of adaptive algorithms in reproduction
URI https://www.clinicalkey.com/#!/content/1-s2.0-S001502822300523X
https://dx.doi.org/10.1016/j.fertnstert.2023.05.152
https://www.ncbi.nlm.nih.gov/pubmed/37217091
https://www.proquest.com/docview/2818053963
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1556-5653
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006172
  issn: 0015-0282
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1556-5653
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006172
  issn: 0015-0282
  databaseCode: AKRWK
  dateStart: 19500101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVqp6QbxZXjISN5TKcZ6GU0HACrWcuqg3y3FsoLTeVdke4NczfiWL2pUWLtFuEufhz5757HwzBnjZYSsoGWsy2bjZqpKbrGXKZCUvZE1lT1vugpOPPtezefnppDoZ1-bz0SWrbl_9vjau5H9QxX2Iq4uS_Qdkh4viDvyN-OIWEcbtVhjPLbqiH547yrOvCxznfzv3EreLsMJ8JIOyl0uvEBpPCmEsy5DuNUGTVut0UmvPzv2kukvm7P4NXyvc8lFRQOjUIq8Of1m7PnnAikFoirY_GryqzpDUFX9ZREavQB_sW8jEcsXshhmA032DD2jdczmVKitcTtQ8JKhdQ2N57uEocOzZUJ6PjmiQB6ZDN2GHobGmE9j5-Pbwy8HgYh3tirKsINa7_sZ7sJsutYl2bBpWeHpxfBtuxXEBOQgg34Eb2t6F3aOofLgHs4A1QazJCONrMiJNFoYkpNdOId8tWUf6Psw_vD9-N8viKhiZQnK3ynKleKmplFz1sq2R0GHnUnXXmrxGttbzXFNlNJeqkRLptGmVqbCnadaXGl-9eAATu7D6ERDWqkLzqqu6pit9np7S9E1Vq67tK6rVFJpUSULFFPFupZIzkbSAp2KsaeFqWtBKYE1PIR9KLkOalC3K8ISDSGHA6LgENqotyr4ZykaqGCjglqVfJNgFWlP3iUxavbj8KVxuNHRL6JWm8DC0h-F9UlN6vPHIE9gbO9lTmKwuLvUz5Kyr7nlswX8AG_Oayw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlock+the+algorithms%3A+regulation+of+adaptive+algorithms+in+reproduction&rft.jtitle=Fertility+and+sterility&rft.au=Curchoe%2C+Carol+Lynn&rft.date=2023-07-01&rft.eissn=1556-5653&rft.volume=120&rft.issue=1&rft.spage=38&rft_id=info:doi/10.1016%2Fj.fertnstert.2023.05.152&rft_id=info%3Apmid%2F37217091&rft.externalDocID=37217091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-0282&client=summon