Unlock the algorithms: regulation of adaptive algorithms in reproduction
In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the quality, consistency, and transparency of their performance across specific age, racial, and ethnic groups. Embryology procedures do not fall...
Saved in:
| Published in | Fertility and sterility Vol. 120; no. 1; pp. 38 - 43 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0015-0282 1556-5653 1556-5653 |
| DOI | 10.1016/j.fertnstert.2023.05.152 |
Cover
| Abstract | In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the quality, consistency, and transparency of their performance across specific age, racial, and ethnic groups. Embryology procedures do not fall under the federal regulation of “CLIA 88.” They are not tests per se; they are cell-based procedures. Likewise, many add-on procedures related to embryology, such as preimplantation genetic testing, are considered “laboratory-developed tests” and are not subject to Food and Drug Administration regulation at present. Should predictive artificial intelligence algorithms in reproduction be considered medical devices or laboratory-developed tests? Certain indications certainly carry a higher risk, such as medication dosage, where the consequences of mismanagement could be severe, whereas others, such as embryo selection, are noninterventional (selecting from a patient’s own embryos and the course of treatment does not change) and present little to no risk. The regulatory landscape is complex, involving data diversity and performance, real-world evidence, cybersecurity, and postmarket surveillance. |
|---|---|
| AbstractList | In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the quality, consistency, and transparency of their performance across specific age, racial, and ethnic groups. Embryology procedures do not fall under the federal regulation of “CLIA 88.” They are not tests per se; they are cell-based procedures. Likewise, many add-on procedures related to embryology, such as preimplantation genetic testing, are considered “laboratory-developed tests” and are not subject to Food and Drug Administration regulation at present. Should predictive artificial intelligence algorithms in reproduction be considered medical devices or laboratory-developed tests? Certain indications certainly carry a higher risk, such as medication dosage, where the consequences of mismanagement could be severe, whereas others, such as embryo selection, are noninterventional (selecting from a patient’s own embryos and the course of treatment does not change) and present little to no risk. The regulatory landscape is complex, involving data diversity and performance, real-world evidence, cybersecurity, and postmarket surveillance. In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the quality, consistency, and transparency of their performance across specific age, racial, and ethnic groups. Embryology procedures do not fall under the federal regulation of "CLIA 88." They are not tests per se; they are cell-based procedures. Likewise, many add-on procedures related to embryology, such as preimplantation genetic testing, are considered "laboratory-developed tests" and are not subject to Food and Drug Administration regulation at present. Should predictive artificial intelligence algorithms in reproduction be considered medical devices or laboratory-developed tests? Certain indications certainly carry a higher risk, such as medication dosage, where the consequences of mismanagement could be severe, whereas others, such as embryo selection, are noninterventional (selecting from a patient's own embryos and the course of treatment does not change) and present little to no risk. The regulatory landscape is complex, involving data diversity and performance, real-world evidence, cybersecurity, and postmarket surveillance.In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the quality, consistency, and transparency of their performance across specific age, racial, and ethnic groups. Embryology procedures do not fall under the federal regulation of "CLIA 88." They are not tests per se; they are cell-based procedures. Likewise, many add-on procedures related to embryology, such as preimplantation genetic testing, are considered "laboratory-developed tests" and are not subject to Food and Drug Administration regulation at present. Should predictive artificial intelligence algorithms in reproduction be considered medical devices or laboratory-developed tests? Certain indications certainly carry a higher risk, such as medication dosage, where the consequences of mismanagement could be severe, whereas others, such as embryo selection, are noninterventional (selecting from a patient's own embryos and the course of treatment does not change) and present little to no risk. The regulatory landscape is complex, involving data diversity and performance, real-world evidence, cybersecurity, and postmarket surveillance. |
| Author | Curchoe, Carol Lynn |
| Author_xml | – sequence: 1 givenname: Carol Lynn orcidid: 0000-0002-7534-5906 surname: Curchoe fullname: Curchoe, Carol Lynn email: carolc@aivf.co organization: ART Compass, an AIVF Technology, Newport Beach, California |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37217091$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkE1PGzEQhi1EVQLtX0B77GUXf8Qbbw9V24gvCamXcrac2VlwcOzU9iLl39chQSBOucxcnnlm5j0lxz54JKRitGGUtRfLZsCYfcqlNpxy0VDZMMmPyIRJ2dayleKYTChlsqZc8RNymtKSUtqyGf9MTsSMsxnt2ITc3HsX4KnKj1gZ9xCizY-r9L2K-DA6k23wVRgq05t1ts_vkcr6Aq1j6EfYYl_Ip8G4hF_3_YzcX13-nd_Ud3-ub-e_7mqYCpZrBtBNkRrTQW9UqzhXUw7tQg2slYz3HUMKA3YGZsYIyQcFg-yEQd5PsZwszsi3nbes_jdiynplE6BzxmMYk-aKKSpF14qCnu_RcbHCXq-jXZm40a_fF-DHDoAYUoo4aLD55ekcjXWaUb2NWy_1W9x6G7emUpe4i0B9ELzuOGD0924US1jPFqNOYNED9jYiZN0He4jk5wcJOOstGPeEm8MU_wF0z7hn |
| CitedBy_id | crossref_primary_10_1115_1_4066280 crossref_primary_10_1186_s12911_025_02884_1 crossref_primary_10_1016_j_xfre_2024_09_002 |
| Cites_doi | 10.1136/jcp-2023-208887 10.1038/s41746-020-00324-0 10.1007/s10815-020-01706-9 10.1186/s12958-017-0262-5 10.1016/j.fertnstert.2008.10.061 10.1007/s10815-021-02350-7 10.1001/jama.2019.21579 10.1093/aje/kwac164 10.1007/s10815-022-02634-6 10.1007/s11606-023-08185-5 10.1186/s12958-020-00662-4 10.1001/jamainternmed.2021.2626 10.1097/GCO.0000000000000726 10.1016/j.fertnstert.2007.08.024 10.2196/41748 10.1016/j.ijmedinf.2022.104828 10.1016/j.fertnstert.2009.11.019 |
| ContentType | Journal Article |
| Copyright | 2023 American Society for Reproductive Medicine Copyright © 2023 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2023 American Society for Reproductive Medicine – notice: Copyright © 2023 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.fertnstert.2023.05.152 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1556-5653 |
| EndPage | 43 |
| ExternalDocumentID | 37217091 10_1016_j_fertnstert_2023_05_152 S001502822300523X |
| Genre | Journal Article Review |
| GroupedDBID | --- --K -~X .1- .55 .FO .GJ 0R~ 1B1 1P~ 1~5 29H 34R 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S AAEDT AAEDW AAFWJ AALRI AAQFI AAQXK AAXUO AAYWO ABCQX ABFRF ABJNI ABLJU ABMAC ABWVN ACGFO ACIUM ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO ADVLN AEFWE AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AGQPQ AI. AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BELOY C5W CS3 DU5 EBS EFJIC EFKBS EJD F5P FDB FEDTE FGOYB GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N9A NQ- O9- OK1 OQ. P2P PH~ R2- ROL RPZ SDP SEL SES SEW SSZ UNMZH UV1 VH1 W2D X7M XH2 XJT XPP YOC YZZ Z5R ZGI ZXP ~S- AACTN AAIAV ADPAM AGZHU AHPSJ ALXNB RIG ZA5 AAYXX CITATION AFCTW AGCQF CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c431t-1cc94e0aa9cda86822842c6b8f16512d91e0cfe9ac7aa352f8cf593ae2d4e7093 |
| ISSN | 0015-0282 1556-5653 |
| IngestDate | Sat Sep 27 18:45:54 EDT 2025 Mon Jul 21 05:41:20 EDT 2025 Wed Oct 01 05:21:57 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 Fri Feb 23 02:36:51 EST 2024 Tue Oct 14 19:39:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | regulatory affairs FDA Artificial intelligence medical AI |
| Language | English |
| License | Copyright © 2023 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c431t-1cc94e0aa9cda86822842c6b8f16512d91e0cfe9ac7aa352f8cf593ae2d4e7093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-7534-5906 |
| PMID | 37217091 |
| PQID | 2818053963 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2818053963 pubmed_primary_37217091 crossref_citationtrail_10_1016_j_fertnstert_2023_05_152 crossref_primary_10_1016_j_fertnstert_2023_05_152 elsevier_sciencedirect_doi_10_1016_j_fertnstert_2023_05_152 elsevier_clinicalkey_doi_10_1016_j_fertnstert_2023_05_152 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 2023-07-00 20230701 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Fertility and sterility |
| PublicationTitleAlternate | Fertil Steril |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Sudat, Wesson, Rhoads, Brown, Aboelata, Pressman (bib8) 2023; 192 Larkin (bib19) 2022; 328 Matheny, Whicher, Thadaney Israni (bib1) 2020; 323 Benjamens, Dhunnoo, Meskó (bib3) 2020; 3 Shapiro, Darmon, Barad, Albertini, Gleicher, Kushnir (bib18) 2017; 15 Huddleston, Rosen, Lamb, Modan, Cedars, Fujimoto (bib10) 2010; 94 Seifer, Frazier, Grainger (bib15) 2008; 90 Curchoe, Tarafdar, Aquilina, Seifer (bib4) 2022; 39 Gama, Griffiths, Vincent, Peters, Bramham (bib6) 2023 Fujimoto, Luke, Brown, Jain, Armstrong, Grainger (bib13) 2010; 93 Zhu, Gilbert, Chetty, Siddiqui (bib2) 2022; 165 Regan, Lowe, Make, Curtis, Chen, Cho (bib7) 2023 Ghidei, Wiltshire, Raker, Ayyar, Brayboy (bib11) 2022; 3 Khunte, Li, Behr, Zhao, Baker (bib12) 2020; 37 Kassi, McQueen, Kimelman, Confino, Yeh, Hutchinson (bib17) 2021; 38 Dubey, Tiwari (bib5) 2023; 11 Seifer, Simsek, Wantman, Kotlyar (bib14) 2020; 18 He, Zamani, Yevseyeva, Luo (bib20) 2023; 25 Wong, Otles, Donnelly, Krumm, McCullough, DeTroyer-Cooley (bib9) 2021; 181 Aly, Plowden, Christy (bib16) 2021; 33 Zhu (10.1016/j.fertnstert.2023.05.152_bib2) 2022; 165 He (10.1016/j.fertnstert.2023.05.152_bib20) 2023; 25 Kassi (10.1016/j.fertnstert.2023.05.152_bib17) 2021; 38 Sudat (10.1016/j.fertnstert.2023.05.152_bib8) 2023; 192 Ghidei (10.1016/j.fertnstert.2023.05.152_bib11) 2022; 3 Aly (10.1016/j.fertnstert.2023.05.152_bib16) 2021; 33 Curchoe (10.1016/j.fertnstert.2023.05.152_bib4) 2022; 39 Benjamens (10.1016/j.fertnstert.2023.05.152_bib3) 2020; 3 Regan (10.1016/j.fertnstert.2023.05.152_bib7) 2023 Matheny (10.1016/j.fertnstert.2023.05.152_bib1) 2020; 323 Larkin (10.1016/j.fertnstert.2023.05.152_bib19) 2022; 328 Huddleston (10.1016/j.fertnstert.2023.05.152_bib10) 2010; 94 Dubey (10.1016/j.fertnstert.2023.05.152_bib5) 2023; 11 Gama (10.1016/j.fertnstert.2023.05.152_bib6) 2023 Wong (10.1016/j.fertnstert.2023.05.152_bib9) 2021; 181 Khunte (10.1016/j.fertnstert.2023.05.152_bib12) 2020; 37 Seifer (10.1016/j.fertnstert.2023.05.152_bib15) 2008; 90 Fujimoto (10.1016/j.fertnstert.2023.05.152_bib13) 2010; 93 Seifer (10.1016/j.fertnstert.2023.05.152_bib14) 2020; 18 Shapiro (10.1016/j.fertnstert.2023.05.152_bib18) 2017; 15 |
| References_xml | – volume: 33 start-page: 335 year: 2021 end-page: 342 ident: bib16 article-title: Factors contributing to persistent disparate outcomes of in vitro fertilization treatment publication-title: Curr Opin Obstet Gynecol – volume: 3 start-page: 14 year: 2022 end-page: 21 ident: bib11 article-title: Factors associated with disparate outcomes among Black women undergoing in vitro fertilization publication-title: F S Rep – volume: 3 start-page: 118 year: 2020 ident: bib3 article-title: The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database publication-title: npj Digit Med – year: 2023 ident: bib6 article-title: Performance and pitfalls of the tools for measuring glomerular filtration rate to guide chronic kidney disease diagnosis and assessment publication-title: J Clin Pathol – volume: 18 start-page: 113 year: 2020 ident: bib14 article-title: Status of racial disparities between black and white women undergoing assisted reproductive technology in the US publication-title: Reprod Biol Endocrinol – volume: 328 start-page: 1679 year: 2022 ident: bib19 article-title: Cybersecurity risk for medtronic insulin pump publication-title: JAMA – volume: 181 start-page: 1065 year: 2021 end-page: 1070 ident: bib9 article-title: External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients publication-title: JAMA Intern Med – volume: 37 start-page: 933 year: 2020 end-page: 943 ident: bib12 article-title: Blastocyst formation rate for Asians versus Caucasians and within body mass index categories publication-title: J Assist Reprod Genet – volume: 94 start-page: 2059 year: 2010 end-page: 2063 ident: bib10 article-title: Asian ethnicity in anonymous oocyte donors is associated with increased estradiol levels but comparable recipient pregnancy rates compared with Caucasians publication-title: Fertil Steril – volume: 25 year: 2023 ident: bib20 article-title: Artificial intelligence-based ethical hacking for health information systems: simulation study publication-title: J Med Internet Res – volume: 93 start-page: 382 year: 2010 end-page: 390 ident: bib13 article-title: Racial and ethnic disparities in assisted reproductive technology outcomes in the United States publication-title: Fertil Steril – year: 2023 ident: bib7 article-title: Use of the spirometric "fixed-ratio" underdiagnoses COPD in African-Americans in a longitudinal cohort study publication-title: J Gen Intern Med – volume: 90 start-page: 1701 year: 2008 end-page: 1710 ident: bib15 article-title: Disparity in assisted reproductive technologies outcomes in black women compared with white women publication-title: Fertil Steril – volume: 11 year: 2023 ident: bib5 article-title: Artificial intelligence and remote patient monitoring in US healthcare market: a literature review publication-title: J Mark Access Health Policy – volume: 165 year: 2022 ident: bib2 article-title: The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: an analysis of the characteristics and intended use publication-title: Int J Med Inform – volume: 15 start-page: 44 year: 2017 ident: bib18 article-title: Effect of race and ethnicity on utilization and outcomes of assisted reproductive technology in the USA publication-title: Reprod Biol Endocrinol – volume: 323 start-page: 509 year: 2020 end-page: 510 ident: bib1 article-title: Artificial intelligence in health care: a report from the national academy of medicine publication-title: JAMA – volume: 39 start-page: 2607 year: 2022 end-page: 2616 ident: bib4 article-title: SART CORS IVF registry: looking to the past to shape future perspectives publication-title: J Assist Reprod Genet – volume: 38 start-page: 3091 year: 2021 end-page: 3098 ident: bib17 article-title: Body mass index, not race, may be associated with an alteration in early embryo morphokinetics during in vitro fertilization publication-title: J Assist Reprod Genet – volume: 192 start-page: 703 year: 2023 end-page: 713 ident: bib8 article-title: Racial disparities in pulse oximeter device inaccuracy and estimated clinical impact on COVID-19 treatment course publication-title: Am J Epidemiol – year: 2023 ident: 10.1016/j.fertnstert.2023.05.152_bib6 article-title: Performance and pitfalls of the tools for measuring glomerular filtration rate to guide chronic kidney disease diagnosis and assessment publication-title: J Clin Pathol doi: 10.1136/jcp-2023-208887 – volume: 3 start-page: 118 year: 2020 ident: 10.1016/j.fertnstert.2023.05.152_bib3 article-title: The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database publication-title: npj Digit Med doi: 10.1038/s41746-020-00324-0 – volume: 37 start-page: 933 year: 2020 ident: 10.1016/j.fertnstert.2023.05.152_bib12 article-title: Blastocyst formation rate for Asians versus Caucasians and within body mass index categories publication-title: J Assist Reprod Genet doi: 10.1007/s10815-020-01706-9 – volume: 15 start-page: 44 year: 2017 ident: 10.1016/j.fertnstert.2023.05.152_bib18 article-title: Effect of race and ethnicity on utilization and outcomes of assisted reproductive technology in the USA publication-title: Reprod Biol Endocrinol doi: 10.1186/s12958-017-0262-5 – volume: 93 start-page: 382 year: 2010 ident: 10.1016/j.fertnstert.2023.05.152_bib13 article-title: Racial and ethnic disparities in assisted reproductive technology outcomes in the United States publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2008.10.061 – volume: 38 start-page: 3091 year: 2021 ident: 10.1016/j.fertnstert.2023.05.152_bib17 article-title: Body mass index, not race, may be associated with an alteration in early embryo morphokinetics during in vitro fertilization publication-title: J Assist Reprod Genet doi: 10.1007/s10815-021-02350-7 – volume: 323 start-page: 509 year: 2020 ident: 10.1016/j.fertnstert.2023.05.152_bib1 article-title: Artificial intelligence in health care: a report from the national academy of medicine publication-title: JAMA doi: 10.1001/jama.2019.21579 – volume: 192 start-page: 703 year: 2023 ident: 10.1016/j.fertnstert.2023.05.152_bib8 article-title: Racial disparities in pulse oximeter device inaccuracy and estimated clinical impact on COVID-19 treatment course publication-title: Am J Epidemiol doi: 10.1093/aje/kwac164 – volume: 39 start-page: 2607 year: 2022 ident: 10.1016/j.fertnstert.2023.05.152_bib4 article-title: SART CORS IVF registry: looking to the past to shape future perspectives publication-title: J Assist Reprod Genet doi: 10.1007/s10815-022-02634-6 – year: 2023 ident: 10.1016/j.fertnstert.2023.05.152_bib7 article-title: Use of the spirometric "fixed-ratio" underdiagnoses COPD in African-Americans in a longitudinal cohort study publication-title: J Gen Intern Med doi: 10.1007/s11606-023-08185-5 – volume: 3 start-page: 14 issue: Suppl year: 2022 ident: 10.1016/j.fertnstert.2023.05.152_bib11 article-title: Factors associated with disparate outcomes among Black women undergoing in vitro fertilization publication-title: F S Rep – volume: 18 start-page: 113 year: 2020 ident: 10.1016/j.fertnstert.2023.05.152_bib14 article-title: Status of racial disparities between black and white women undergoing assisted reproductive technology in the US publication-title: Reprod Biol Endocrinol doi: 10.1186/s12958-020-00662-4 – volume: 181 start-page: 1065 year: 2021 ident: 10.1016/j.fertnstert.2023.05.152_bib9 article-title: External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2021.2626 – volume: 33 start-page: 335 year: 2021 ident: 10.1016/j.fertnstert.2023.05.152_bib16 article-title: Factors contributing to persistent disparate outcomes of in vitro fertilization treatment publication-title: Curr Opin Obstet Gynecol doi: 10.1097/GCO.0000000000000726 – volume: 11 year: 2023 ident: 10.1016/j.fertnstert.2023.05.152_bib5 article-title: Artificial intelligence and remote patient monitoring in US healthcare market: a literature review publication-title: J Mark Access Health Policy – volume: 328 start-page: 1679 year: 2022 ident: 10.1016/j.fertnstert.2023.05.152_bib19 article-title: Cybersecurity risk for medtronic insulin pump publication-title: JAMA – volume: 90 start-page: 1701 year: 2008 ident: 10.1016/j.fertnstert.2023.05.152_bib15 article-title: Disparity in assisted reproductive technologies outcomes in black women compared with white women publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2007.08.024 – volume: 25 year: 2023 ident: 10.1016/j.fertnstert.2023.05.152_bib20 article-title: Artificial intelligence-based ethical hacking for health information systems: simulation study publication-title: J Med Internet Res doi: 10.2196/41748 – volume: 165 year: 2022 ident: 10.1016/j.fertnstert.2023.05.152_bib2 article-title: The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: an analysis of the characteristics and intended use publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2022.104828 – volume: 94 start-page: 2059 year: 2010 ident: 10.1016/j.fertnstert.2023.05.152_bib10 article-title: Asian ethnicity in anonymous oocyte donors is associated with increased estradiol levels but comparable recipient pregnancy rates compared with Caucasians publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2009.11.019 |
| SSID | ssj0006172 |
| Score | 2.4493284 |
| SecondaryResourceType | review_article |
| Snippet | In the USA, the Food and Drug Administration plans to regulate artificial intelligence and machine learning software systems as medical devices to improve the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 38 |
| SubjectTerms | Algorithms Artificial Intelligence FDA Humans Machine Learning medical AI regulatory affairs Reproduction Software |
| Title | Unlock the algorithms: regulation of adaptive algorithms in reproduction |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S001502822300523X https://dx.doi.org/10.1016/j.fertnstert.2023.05.152 https://www.ncbi.nlm.nih.gov/pubmed/37217091 https://www.proquest.com/docview/2818053963 |
| Volume | 120 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1556-5653 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006172 issn: 0015-0282 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1556-5653 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006172 issn: 0015-0282 databaseCode: AKRWK dateStart: 19500101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVqp6QbxZXjISN5TKcZ6GU0HACrWcuqg3y3FsoLTeVdke4NczfiWL2pUWLtFuEufhz5757HwzBnjZYSsoGWsy2bjZqpKbrGXKZCUvZE1lT1vugpOPPtezefnppDoZ1-bz0SWrbl_9vjau5H9QxX2Iq4uS_Qdkh4viDvyN-OIWEcbtVhjPLbqiH547yrOvCxznfzv3EreLsMJ8JIOyl0uvEBpPCmEsy5DuNUGTVut0UmvPzv2kukvm7P4NXyvc8lFRQOjUIq8Of1m7PnnAikFoirY_GryqzpDUFX9ZREavQB_sW8jEcsXshhmA032DD2jdczmVKitcTtQ8JKhdQ2N57uEocOzZUJ6PjmiQB6ZDN2GHobGmE9j5-Pbwy8HgYh3tirKsINa7_sZ7sJsutYl2bBpWeHpxfBtuxXEBOQgg34Eb2t6F3aOofLgHs4A1QazJCONrMiJNFoYkpNdOId8tWUf6Psw_vD9-N8viKhiZQnK3ynKleKmplFz1sq2R0GHnUnXXmrxGttbzXFNlNJeqkRLptGmVqbCnadaXGl-9eAATu7D6ERDWqkLzqqu6pit9np7S9E1Vq67tK6rVFJpUSULFFPFupZIzkbSAp2KsaeFqWtBKYE1PIR9KLkOalC3K8ISDSGHA6LgENqotyr4ZykaqGCjglqVfJNgFWlP3iUxavbj8KVxuNHRL6JWm8DC0h-F9UlN6vPHIE9gbO9lTmKwuLvUz5Kyr7nlswX8AG_Oayw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlock+the+algorithms%3A+regulation+of+adaptive+algorithms+in+reproduction&rft.jtitle=Fertility+and+sterility&rft.au=Curchoe%2C+Carol+Lynn&rft.date=2023-07-01&rft.eissn=1556-5653&rft.volume=120&rft.issue=1&rft.spage=38&rft_id=info:doi/10.1016%2Fj.fertnstert.2023.05.152&rft_id=info%3Apmid%2F37217091&rft.externalDocID=37217091 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-0282&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-0282&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-0282&client=summon |