The amygdala modulates neuronal activation in the hippocampus in response to spatial novelty

Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption...

Full description

Saved in:
Bibliographic Details
Published inHippocampus Vol. 18; no. 2; pp. 169 - 181
Main Authors Sheth, Archana, Berretta, Sabina, Lange, Nicholas, Eichenbaum, Howard
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.01.2008
Subjects
Online AccessGet full text
ISSN1050-9631
1098-1063
1098-1063
DOI10.1002/hipo.20380

Cover

Abstract Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle‐treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos‐immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses. © 2007 Wiley‐Liss, Inc.
AbstractList Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle‐treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos‐immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses. © 2007 Wiley‐Liss, Inc.
Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle-treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos-immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses.Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle-treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos-immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses.
Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle-treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos-immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses.
Author Eichenbaum, Howard
Lange, Nicholas
Sheth, Archana
Berretta, Sabina
Author_xml – sequence: 1
  givenname: Archana
  surname: Sheth
  fullname: Sheth, Archana
  organization: Department of Psychology, Boston University, Boston, Massachusetts
– sequence: 2
  givenname: Sabina
  surname: Berretta
  fullname: Berretta, Sabina
  organization: Laboratory for Translational Neuroscience, McLean Hospital, Belmont, Massachusetts
– sequence: 3
  givenname: Nicholas
  surname: Lange
  fullname: Lange, Nicholas
  organization: Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
– sequence: 4
  givenname: Howard
  surname: Eichenbaum
  fullname: Eichenbaum, Howard
  email: hbe@bu.edu
  organization: Department of Psychology, Boston University, Boston, Massachusetts
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17960646$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1v1DAQQC1URD_gwg9AOXFASpmxN876iLbQFlb9kFpxQbK8zoQaEjvYTmH_Pdlu2wOqONmy3htr3j7b8cETY68RDhGAv79xQzjkIObwjO0hqHmJIMXO5l5BqaTAXbaf0g8AxArgBdvFWkmQM7nHvl3dUGH69ffGdKboQzN2JlMqPI0xeNMVxmZ3a7ILvnC-yBM9fTcEa_phTJunSGkIPlGRQ5GGiZwkH26py-uX7HlrukSv7s8Ddv3p49XipFyeH58uPixLOxMI5ZwjYt1WUjW1UHzF0QC31M4aW2FrORdS4tySIWMsR4u8UpVcmZXidqZIigP2djt3iOHXSCnr3iVLXWc8hTHpGjioqc8EvrkHx1VPjR6i601c64ceEwBbwMaQUqRWW5fvts_RuE4j6E1yvUmu75JPyrt_lMepT8G4hX-7jtb_IfXJ6cX5g1NuHZcy_Xl0TPypZS3qSn89O9ZHi-UXgZ8v9YX4CxLAoXM
CitedBy_id crossref_primary_10_7554_eLife_23040
crossref_primary_10_1016_j_brainres_2013_03_046
crossref_primary_10_3389_fnbeh_2022_852235
crossref_primary_10_1124_jpet_109_159186
crossref_primary_10_1073_pnas_0805284105
crossref_primary_10_1007_s10534_022_00420_6
crossref_primary_10_1002_hipo_22264
crossref_primary_10_1016_j_neuint_2017_01_014
crossref_primary_10_1242_jeb_244190
crossref_primary_10_1038_nn_2228
crossref_primary_10_1038_s41598_020_64224_9
crossref_primary_10_1037_a0017142
crossref_primary_10_1101_lm_1513109
crossref_primary_10_1002_mds_26154
crossref_primary_10_1016_j_neuroscience_2012_01_006
crossref_primary_10_7554_eLife_74758
crossref_primary_10_1515_REVNEURO_2010_21_1_1
crossref_primary_10_1126_science_1193785
crossref_primary_10_21307_ane_2019_029
crossref_primary_10_1016_j_neuroimage_2019_116404
crossref_primary_10_1515_rns_2011_019
crossref_primary_10_1007_s00213_020_05615_8
crossref_primary_10_1007_s00429_015_1015_x
crossref_primary_10_1016_j_neuint_2018_07_005
crossref_primary_10_1007_s11571_010_9150_9
crossref_primary_10_1111_j_1460_9568_2010_07485_x
crossref_primary_10_1016_j_neuroimage_2021_118563
crossref_primary_10_1002_mds_26460
crossref_primary_10_1016_j_physa_2018_03_098
crossref_primary_10_1016_j_nlm_2008_06_008
Cites_doi 10.1016/0306-4522(95)00417-3
10.1111/j.1460-9568.2005.04002.x
10.1523/JNEUROSCI.19-03-01142.1999
10.1002/hipo.10189
10.1016/S0301-0082(98)00003-3
10.1523/JNEUROSCI.16-10-03334.1996
10.1002/hipo.1068
10.1037/0735-7044.119.1.145
10.1523/JNEUROSCI.15-03-02482.1995
10.1101/lm.6705
10.1523/JNEUROSCI.22-07-02835.2002
10.1037/0033-295X.102.3.419
10.1016/S0003-3472(73)80065-X
10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P
10.1007/s00213-003-1761-y
10.1046/j.1460-9568.2002.02211.x
10.1073/pnas.0506034102
10.1016/S0893-133X(01)00225-1
10.1016/0006-8993(94)90481-2
10.1016/0304-3940(89)90819-7
10.1016/S0893-133X(00)00137-8
10.1016/j.mcn.2005.09.013
10.1523/JNEUROSCI.15-12-07796.1995
10.1016/S0166-4328(02)00045-1
10.1523/JNEUROSCI.13-02-00744.1993
10.1002/(SICI)1098-2396(199604)22:4<338::AID-SYN5>3.0.CO;2-C
10.1016/0006-8993(83)90095-1
10.1046/j.0953-816x.2001.01780.x
10.1016/j.biopsych.2004.01.004
10.1007/s000180050315
10.1037/0735-7044.116.4.530
10.1523/JNEUROSCI.20-21-08144.2000
10.1146/annurev.ne.14.030191.002225
10.1002/1096-9861(20010305)431:2<129::AID-CNE1060>3.0.CO;2-6
10.1016/j.schres.2005.09.021
10.1016/j.brainres.2005.05.052
10.1016/1040-8428(94)90021-3
10.1523/JNEUROSCI.0350-04.2004
10.1006/frne.1993.1006
10.1126/science.8351520
10.1002/hipo.20002
10.1098/rstb.2001.0945
10.1111/j.1749-6632.2000.tb06733.x
10.1126/science.3131879
10.1016/S0920-9964(98)00085-1
10.1001/archpsyc.1992.01820120009003
10.1016/S0306-4522(96)00371-5
10.1016/S0006-3223(98)00138-3
10.1097/00001756-199709080-00002
10.1002/hipo.450010207
10.1016/0014-4886(87)90086-0
10.1016/0006-3223(90)90039-5
10.1016/S0006-3223(97)80250-8
10.1192/bjp.172.2.110
10.1016/j.pscychresns.2005.05.006
10.1016/0165-1781(87)90108-9
10.1017/S0033291704004301
10.1002/cne.902900205
10.1016/0165-0270(89)90150-7
10.1523/JNEUROSCI.1958-04.2004
10.1006/nlme.1998.3875
10.1016/0920-1211(96)00021-6
10.1146/annurev.neuro.24.1.459
10.1007/s007020200073
10.1016/S0920-9964(01)00188-8
10.1007/BF00298263
10.1038/sj.mp.4000741
10.1002/cne.903560211
10.1016/S0165-0173(99)00041-7
10.1038/nn1190
10.1016/S0304-3940(97)00437-0
10.1001/archpsyc.1985.01790310046006
10.1002/cne.901890402
10.1016/0166-4328(94)90008-6
10.1038/1137
10.1176/appi.ajp.161.3.480
10.1085/jgp.107.6.663
10.1016/0006-8993(71)90358-1
10.1073/pnas.0504436102
10.1152/jn.1989.61.4.747
10.1002/hipo.10010
10.1176/jnp.9.3.460
10.1002/hipo.450040319
10.1002/hipo.20120
10.1016/j.biopsych.2006.06.025
10.1016/0306-4522(91)90247-L
10.1016/0091-3057(88)90413-3
10.1002/hipo.1065
10.1016/S0006-8993(97)00113-3
10.1016/S0920-9964(01)00324-3
10.1002/neu.10069
10.1523/JNEUROSCI.5205-03.2004
10.1093/brain/122.4.593
10.1046/j.1460-9568.2002.02092.x
10.1016/S0893-133X(01)00332-3
10.1523/JNEUROSCI.19-23-10530.1999
10.1101/lm.3.5.402
10.1038/sj.npp.1301038
10.1523/JNEUROSCI.23-17-06754.2003
10.1126/science.3037702
10.1016/j.neuroscience.2003.11.024
10.1002/hipo.1071
10.1007/BF01249119
10.1016/S0306-4522(96)00513-1
10.1523/JNEUROSCI.4964-05.2006
10.1016/S0301-0082(96)00021-4
10.1037/0735-7044.118.1.53
10.1016/S0006-3223(02)01541-X
10.1038/305527a0
10.1523/JNEUROSCI.21-14-05222.2001
10.1002/cne.903020308
10.1523/JNEUROSCI.1598-03.2004
10.1016/0166-4328(87)90034-9
10.1016/S0306-4522(96)00632-X
10.1242/jeb.199.1.173
ContentType Journal Article
Copyright Copyright © 2007 Wiley‐Liss, Inc.
(c) 2007 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2007 Wiley‐Liss, Inc.
– notice: (c) 2007 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/hipo.20380
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1098-1063
EndPage 181
ExternalDocumentID 17960646
10_1002_hipo_20380
HIPO20380
ark_67375_WNG_DCLK31JQ_P
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH
  funderid: MH60450
– fundername: NIH
  funderid: MH066280; MH60450; NS37483
– fundername: NIMH NIH HHS
  grantid: MH066280
– fundername: NINDS NIH HHS
  grantid: NS37483
– fundername: NIMH NIH HHS
  grantid: MH60450
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XJT
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWD
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4310-821117f569d7392b21a02cef4dc51fc2236618ceaeaac21c125956bab92c49e63
IEDL.DBID DR2
ISSN 1050-9631
1098-1063
IngestDate Fri Jul 11 07:57:04 EDT 2025
Mon Jul 21 05:55:02 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Tue Jul 01 02:05:52 EDT 2025
Wed Jan 22 16:22:00 EST 2025
Sun Sep 21 06:20:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
(c) 2007 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4310-821117f569d7392b21a02cef4dc51fc2236618ceaeaac21c125956bab92c49e63
Notes NIMH - No. MH60450
ark:/67375/WNG-DCLK31JQ-P
istex:84E75BD397CD11008D186A96B4BB5E0C90F7159F
NIH - No. MH066280; No. MH60450; No. NS37483
ArticleID:HIPO20380
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17960646
PQID 70209038
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_70209038
pubmed_primary_17960646
crossref_citationtrail_10_1002_hipo_20380
crossref_primary_10_1002_hipo_20380
wiley_primary_10_1002_hipo_20380_HIPO20380
istex_primary_ark_67375_WNG_DCLK31JQ_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Hippocampus
PublicationTitleAlternate Hippocampus
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Chaudhuri A. 1997. Neural activity mapping with inducible transcription factors. Neuroreport 8: v-ix.
Heckers S,Rauch SL,Goff D,Savage CR,Schacter DL,Fischman AJ,Alpert NM. 1998. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1: 318-323.
Shirane R,Sato S,Sato K,Kameyama M,Ogawa A,Yoshimoto T,Hatazawa J,Ito M. 1992. Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Childs Nerv Syst 8: 118-123.
Dragunow M,Faull R. 1989. The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29: 261-265.
Hoffman GE,Smith MS,Verbalis JG. 1993. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 14: 173-213.
Chagnac-Amitai Y, Connors BW. 1989. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 61: 747-758.
Heckers S,Konradi C. 2002. Hippocampal neurons in schizophrenia. J Neural Transm 109: 891-905.
Pare D,Dong J,Gaudreau H. 1995. Amygdalo-entorhinal relations and their reflection in the hippocampal formation: Generation of sharp sleep potentials. J Neurosci 15 (3 Pt 2): 2482-2503.
Swanson LW. 1992. Brain maps: structure of the rat brain. Amsterdam: Elsevier.
Morgan JI,Cohen DR,Hempstead JL,Curran T. 1987. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237: 192-197.
McDonald AJ,Mascagni F,Guo L. 1996. Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71: 55-75.
Rudy JW, Barrientos RM, O'Reilly RC. 2002. Hippocampal formation supports conditioning to memory of a context. Behav Neurosci 116: 530-538.
Harrison PJ. 1999. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122 (Pt 4): 593-624.
Campeau S,Falls WA,Cullinan WE,Helmreich DL,Davis M,Watson SJ. 1997. Elicitation and reduction of fear: Behavioural and neuroendocrine indices and brain induction of the immediate-early gene c-fos. Neuroscience 78: 1087-1104.
Cangioli I,Baldi E,Mannaioni PF,Bucherelli C,Blandina P,Passani MB. 2002. Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release. Eur J Neurosci 16: 521-528.
Pare D,Gaudreau H. 1996. Projection cells and interneurons of the lateral and basolateral amygdala: Distinct firing patterns and differential relation to theta and delta rhythms in conscious cats. J Neurosci 16: 3334-3350.
Reynolds GP. 1983. Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305: 527-529.
Richardson MP,Strange BA,Dolan RJ. 2004. Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci 7: 278-285.
Schneider F,Weiss U,Kessler C,Salloum JB,Posse S,Grodd W,Muller-Gartner HW. 1998. Differential amygdala activation in schizophrenia during sadness. Schizophr Res 34: 133-142.
Harrison PJ. 2004. The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174: 151-162.
Jenkins TA,Amin E,Pearce JM,Brown MW,Aggleton JP. 2004. Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: A c-fos expression study. Neuroscience 124: 43-52.
Benes FM,Berretta S. 2000. Amygdalo-entorhinal inputs to the hippocampal formation in relation to schizophrenia. Ann N Y Acad Sci 911: 293-304.
Grimm R,Schicknick H,Riede I,Gundelfinger ED,Herdegen T,Zuschratter W,Tischmeyer W. 1997. Suppression of c-fos induction in rat brain impairs retention of a brightness discrimination reaction. Learn Mem 3: 402-413.
Zhang ZJ,Reynolds GP. 2002. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55: 1-10.
Pitkanen A,Stefanacci L,Farb CR,Go GG,LeDoux JE,Amaral DG. 1995. Intrinsic connections of the rat amygdaloid complex: Projections originating in the lateral nucleus. J Comp Neurol 356: 288-310.
Morris RG. 2001. Episodic-like memory in animals: Psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356: 1453-1465.
Pennypacker K. 1997. Transcription factors in brain injury. Histol Histopathol 12: 1125-1133.
Vann SD,Brown MW,Erichsen JT,Aggleton JP. 2000. Using fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions. J Neurosci 20: 8144-8152.
Zhu XO,McCabe BJ,Aggleton JP,Brown MW. 1997. Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neurosci Lett 229: 141-143.
Piechaczyk M,Blanchard JM. 1994. c-fos proto-oncogene regulation and function. Crit Rev Oncol Hematol 17: 93-131.
Barnett JH,Sahakian BJ,Werners U,Hill KE,Brazil R,Gallagher O,Bullmore ET,Jones PB. 2005. Visuospatial learning and executive function are independently impaired in first-episode psychosis. Psychol Med 35: 1031-1041.
Weiss AP,Goff D,Schacter DL,Ditman T,Freudenreich O,Henderson D,Heckers S. 2006. Fronto-hippocampal function during temporal context monitoring in schizophrenia. Biol Psychiatry 60: 1268-1277.
Muller RU,Stead M,Pach J. 1996. The hippocampus as a cognitive graph. J Gen Physiol 107: 663-694.
Hatfield T,McGaugh JL. 1999. Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task. Neurobiol Learn Mem 71: 232-239.
Weiss AP,Zalesak M,DeWitt I,Goff D,Kunkel L,Heckers S. 2004. Impaired hippocampal function during the detection of novel words in schizophrenia. Biol Psychiatry 55: 668-675.
Lipska BK,Weinberger DR. 2000. To model a psychiatric disorder in animals: Schizophrenia as a reality test. Neuropsychopharmacology 23: 223-239.
McNaughton BL,Barnes CA,Gerrard JL,Gothard K,Jung MW,Knierim JJ,Kudrimoti H,Qin Y,Skaggs WE,Suster M,Weaver KL. 1996. Deciphering the hippocampal polyglot: The hippocampus as a path integration system. J Exp Biol 199 (Pt 1): 173-185.
Kim JJ,Lee HJ,Han JS,Packard MG. 2001. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J Neurosci 21: 5222-5228.
Gisabella B,Bolshakov VY,Benes FM. 2005. Regulation of synaptic plasticity in a schizophrenia model. Proc Natl Acad Sci USA 102: 13301-13306.
Aleman A,Kahn RS. 2005. Strange feelings: Do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol 77: 283-298.
Hess US,Lynch G,Gall CM. 1995. Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. J Neurosci 15: 7796-7809.
Benes FM,Khan Y,Vincent SL,Wickramasinghe R. 1996. Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22: 338-349.
Hughes P,Dragunow M. 1995. Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47: 133-178.
Simon P,Dupuis R,Costentin J. 1994. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61: 59-64.
Holt DJ,Kunkel L,Weiss AP,Goff DC,Wright CI,Shin LM,Rauch SL,Hootnick J,Heckers S. 2006. Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia. Schizophr Res 82: 153-162.
Weidenhofer J,Bowden NA,Scott RJ,Tooney PA. 2006. Altered gene expression in the amygdala in schizophrenia: Up-regulation of genes located in the cytomatrix active zone. Mol Cell Neurosci 31: 243-250.
Frank LM,Stanley GB,Brown EN. 2004. Hippocampal plasticity across multiple days of exposure to novel environments. J Neurosci 24: 7681-7689.
Ongur D,Zalesak M,Weiss AP,Ditman T,Titone D,Heckers S. 2005. Hippocampal activation during processing of previously seen visual stimulus pairs. Psychiatry Res 139: 191-198.
Simpson MD,Slater P,Deakin JF,Royston MC,Skan WJ. 1989. Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci Lett 107: 211-215.
Passani MB,Cangioli I,Baldi E,Bucherelli C,Mannaioni PF,Blandina P. 2001. Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur J Neurosci 14: 1522-1532.
Reynolds GP,Czudek C,Andrews HB. 1990. Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 27: 1038-1044.
Yang CQ,Kitamura N,Nishino N,Shirakawa O,Nakai H. 1998. Isotype-specific G protein abnormalities in the left superior temporal cortex and limbic structures of patients with chronic schizophrenia. Biol Psychiatry 43: 12-19.
Lee I,Hunsaker MR,Kesner RP. 2005. The role of hippocampal subregions in detecting spatial novelty. Behav Neurosci 119: 145-153.
McDonald AJ. 1998. Cortical pathways to the mammalian amygdala. Prog Neurobiol 55: 257-332.
Treves A,Rolls ET. 1994. Computational analysis of the role of the hippocampus in memory. Hippocampus 4: 374-391.
Huff NC,Rudy JW. 2004. The amygdala modulates hippocampus-dependent context memory formation and stores cue-shock associations. Behav Neurosci 118: 53-62.
Van Groen TaWJ. 1990. Extrinsic projections from area ca1 of the rat hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 302: 515-528.
Okada F,Crow TJ,Roberts GW. 1991. G proteins (Gi, Go) in the medial temporal lobe in schizophrenia: preliminary report of a neurochemical correlate of structural change. J Neural Transm Gen Sect 84: 147-153.
McClelland JL,McNaughton BL,O'Reilly RC. 1995. Why there are complementary learning systems in the hippocampus and neocortex
2002; 16
2006; 31
1991; 14
1994; 654
2002; 12
2004; 7
2004; 161
2004; 24
1996; 71
1997; 3
1994; 61
1997b; 77
1997; 9
2003; 53
1978
1997; 8
1992; 8
1989; 107
1987; 237
2005; 102
2004; 174
2006; 26
1991; 84
1999; 55
1992; 49
2005; 77
1983; 305
1989; 61
2000; 911
2002; 134
2005; 119
1992
2001; 24
1996; 16
2001; 25
2001; 21
2004; 55
2001; 431
1973; 21
1990; 27
1995; 47
1971; 34
1996; 199
1998; 1
1994; 17
2005; 15
2005; 12
2003; 23
1997; 755
2004; 124
1990; 302
2002; 52
2000; 5
2002; 57
2005; 139
2002; 55
2005; 21
2002; 116
1999; 122
1988; 31
1999; 403
1998; 43
1998; 44
1996; 107
2006; 60
1997; 229
1999; 19
1991; 44
1997; 12
2002; 109
2001; 11
1996; 25
2001; 14
1980; 189
1998; 55
2005; 35
1996; 22
1991; 1
1987; 97
1995; 15
2000; 23
2000; 20
1996; 50
2006
1993; 261
1995; 356
2005; 1051
1988; 240
1985; 42
1998; 172
1989; 29
1987; 24
1993; 14
2006; 82
1987; 22
1993; 13
2002; 26
1983; 288
2004; 14
2000; 31
1997; 78
2002; 22
1997a; 76
1995; 102
1989; 290
1999; 71
2004; 118
1998; 34
2001; 356
1994; 4
e_1_2_1_119_1
e_1_2_1_111_1
e_1_2_1_81_1
e_1_2_1_115_1
e_1_2_1_20_1
e_1_2_1_66_1
e_1_2_1_89_1
e_1_2_1_24_1
e_1_2_1_62_1
e_1_2_1_43_1
e_1_2_1_85_1
e_1_2_1_28_1
e_1_2_1_47_1
Pare D (e_1_2_1_84_1) 1995; 15
e_1_2_1_92_1
e_1_2_1_103_1
e_1_2_1_122_1
e_1_2_1_107_1
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_77_1
e_1_2_1_8_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_73_1
e_1_2_1_96_1
e_1_2_1_4_1
Aleman A (e_1_2_1_3_1) 2005; 77
e_1_2_1_110_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_58_1
McNaughton BL (e_1_2_1_72_1) 1996; 199
e_1_2_1_82_1
e_1_2_1_114_1
e_1_2_1_118_1
e_1_2_1_40_1
e_1_2_1_67_1
e_1_2_1_121_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_86_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
e_1_2_1_93_1
e_1_2_1_70_1
e_1_2_1_102_1
e_1_2_1_106_1
e_1_2_1_7_1
e_1_2_1_55_1
e_1_2_1_78_1
e_1_2_1_13_1
e_1_2_1_51_1
e_1_2_1_97_1
e_1_2_1_32_1
e_1_2_1_74_1
Vann SD (e_1_2_1_109_1) 2000; 20
Hess US (e_1_2_1_46_1) 1995; 15
e_1_2_1_17_1
e_1_2_1_36_1
e_1_2_1_59_1
e_1_2_1_60_1
e_1_2_1_113_1
e_1_2_1_117_1
e_1_2_1_41_1
e_1_2_1_68_1
e_1_2_1_120_1
e_1_2_1_45_1
e_1_2_1_83_1
e_1_2_1_22_1
e_1_2_1_49_1
e_1_2_1_26_1
Swanson LW (e_1_2_1_104_1) 1992
Berretta S (e_1_2_1_18_1) 2006
e_1_2_1_101_1
e_1_2_1_71_1
e_1_2_1_90_1
Lipska BK (e_1_2_1_64_1) 2002; 22
e_1_2_1_105_1
e_1_2_1_56_1
e_1_2_1_79_1
e_1_2_1_98_1
e_1_2_1_6_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_75_1
e_1_2_1_94_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_112_1
Hughes P (e_1_2_1_53_1) 1995; 47
e_1_2_1_116_1
e_1_2_1_42_1
e_1_2_1_65_1
e_1_2_1_88_1
e_1_2_1_23_1
e_1_2_1_61_1
e_1_2_1_27_1
e_1_2_1_69_1
Akirav I (e_1_2_1_2_1) 1999; 19
e_1_2_1_108_1
Pennypacker K (e_1_2_1_87_1) 1997; 12
e_1_2_1_100_1
e_1_2_1_91_1
e_1_2_1_30_1
e_1_2_1_76_1
e_1_2_1_5_1
e_1_2_1_57_1
O'Keefe JA (e_1_2_1_80_1) 1978
e_1_2_1_99_1
e_1_2_1_34_1
e_1_2_1_11_1
e_1_2_1_95_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: Pitkanen A,Stefanacci L,Farb CR,Go GG,LeDoux JE,Amaral DG. 1995. Intrinsic connections of the rat amygdaloid complex: Projections originating in the lateral nucleus. J Comp Neurol 356: 288-310.
– reference: Gotman J,Levtova V. 1996. Amygdala-hippocampus relationships in temporal lobe seizures: A phase-coherence study. Epilepsy Res 25: 51-57.
– reference: He J,Yamada K,Nabeshima T. 2002. A role of Fos expression in the CA3 region of the hippocampus in spatial memory formation in rats. Neuropsychopharmacology 26: 259-268.
– reference: McIntyre CK,Miyashita T,Setlow B,Marjon KD,Steward O,Guzowski JF,McGaugh JL. 2005. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. Proc Natl Acad Sci USA 102: 10718-10723.
– reference: Aleman A,Kahn RS. 2005. Strange feelings: Do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol 77: 283-298.
– reference: Cangioli I,Baldi E,Mannaioni PF,Bucherelli C,Blandina P,Passani MB. 2002. Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release. Eur J Neurosci 16: 521-528.
– reference: Sesack SR,Deutch AY,Roth RH,Bunney BS. 1989. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213-242.
– reference: Heckers S,Zalesak M,Weiss AP,Ditman T,Titone D. 2004. Hippocampal activation during transitive inference in humans. Hippocampus 14: 153-162.
– reference: Heckers S. 2001. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11: 520-528.
– reference: Pennypacker K. 1997. Transcription factors in brain injury. Histol Histopathol 12: 1125-1133.
– reference: McDonald AJ. 1998. Cortical pathways to the mammalian amygdala. Prog Neurobiol 55: 257-332.
– reference: Okada F,Crow TJ,Roberts GW. 1991. G proteins (Gi, Go) in the medial temporal lobe in schizophrenia: preliminary report of a neurochemical correlate of structural change. J Neural Transm Gen Sect 84: 147-153.
– reference: Campeau S,Falls WA,Cullinan WE,Helmreich DL,Davis M,Watson SJ. 1997. Elicitation and reduction of fear: Behavioural and neuroendocrine indices and brain induction of the immediate-early gene c-fos. Neuroscience 78: 1087-1104.
– reference: Vazdarjanova A,Guzowski JF. 2004. Differences in hippocampal neuronal population responses to modifications of an environmental context: Evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci 24: 6489-6496.
– reference: Benes FM. 2000. Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 31: 251-269.
– reference: Morgan JI,Curran T. 1991. Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14: 421-451.
– reference: Treit D,Fundytus M. 1988. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31: 959-962.
– reference: O'Keefe J,Dostrovsky J. 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34: 171-175.
– reference: Wirtshafter D. 2005. Cholinergic involvement in the cortical and hippocampal Fos expression induced in the rat by placement in a novel environment. Brain Res 1051: 57-65.
– reference: Akirav I,Richter-Levin G. 1999. Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat. J Neurosci 19: 10530-10535.
– reference: Wilson MA,McNaughton BL. 1993. Dynamics of the hippocampal ensemble code for space. Science 261: 1055-1058.
– reference: Yang CQ,Kitamura N,Nishino N,Shirakawa O,Nakai H. 1998. Isotype-specific G protein abnormalities in the left superior temporal cortex and limbic structures of patients with chronic schizophrenia. Biol Psychiatry 43: 12-19.
– reference: Kim JJ,Lee HJ,Han JS,Packard MG. 2001. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J Neurosci 21: 5222-5228.
– reference: Heckers S,Konradi C. 2002. Hippocampal neurons in schizophrenia. J Neural Transm 109: 891-905.
– reference: McClelland JL,McNaughton BL,O'Reilly RC. 1995. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102: 419-457.
– reference: Zhu XO,McCabe BJ,Aggleton JP,Brown MW. 1997. Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neurosci Lett 229: 141-143.
– reference: Benes FM,Wickramasinghe R,Vincent SL,Khan Y,Todtenkopf M. 1997. Uncoupling of GABA(A) and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain. Brain Res 755: 121-129.
– reference: Pare D,Gaudreau H. 1996. Projection cells and interneurons of the lateral and basolateral amygdala: Distinct firing patterns and differential relation to theta and delta rhythms in conscious cats. J Neurosci 16: 3334-3350.
– reference: Richardson MP,Strange BA,Dolan RJ. 2004. Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci 7: 278-285.
– reference: Cain DP. 1987. Kindling by repeated intraperitoneal or intracerebral injection of picrotoxin transfers to electrical kindling. Exp Neurol 97: 243-254.
– reference: Herrera DG,Robertson HA. 1996. Activation of c-fos in the brain. Prog Neurobiol 50: 83-107.
– reference: Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO. 1993. Induction of c-fos mRNA by kindled seizures; complex relationship with neuronal burst firing. J Neurosci 13: 744-751.
– reference: Breier A,Buchanan RW,Elkashef A,Munson RC,Kirkpatrick B,Gellad F. 1992. Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch Gen Psychiatry 49: 921-926.
– reference: Herringa RJ,Roseboom PH,Kalin NH. 2006. Decreased amygdala CRF-binding protein mRNA in post-mortem tissue from male but not female bipolar and schizophrenic subjects. Neuropsychopharmacology 31: 1822-1831.
– reference: Korpi ER,Kleinman JE,Goodman SI,Wyatt RJ. 1987. Neurotransmitter amino acids in post-mortem brains of chronic schizophrenic patients. Psychiatry Res 22: 291-301.
– reference: Muller RU,Stead M,Pach J. 1996. The hippocampus as a cognitive graph. J Gen Physiol 107: 663-694.
– reference: Frank LM,Stanley GB,Brown EN. 2004. Hippocampal plasticity across multiple days of exposure to novel environments. J Neurosci 24: 7681-7689.
– reference: Jenkins TA,Dias R,Amin E,Aggleton JP. 2002. Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei. Eur J Neurosci 16: 1425-1432.
– reference: Wan H,Aggleton JP,Brown MW. 1999. Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci 19: 1142-1148.
– reference: Weidenhofer J,Bowden NA,Scott RJ,Tooney PA. 2006. Altered gene expression in the amygdala in schizophrenia: Up-regulation of genes located in the cytomatrix active zone. Mol Cell Neurosci 31: 243-250.
– reference: Hughes P,Dragunow M. 1995. Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47: 133-178.
– reference: Reynolds GP,Czudek C,Andrews HB. 1990. Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 27: 1038-1044.
– reference: Vann SD,Brown MW,Erichsen JT,Aggleton JP. 2000. Using fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions. J Neurosci 20: 8144-8152.
– reference: Archer J. 1973. Tests for emotionality in rats and mice: A review. Anim Behav 21: 205-235.
– reference: Weiss AP,Zalesak M,DeWitt I,Goff D,Kunkel L,Heckers S. 2004. Impaired hippocampal function during the detection of novel words in schizophrenia. Biol Psychiatry 55: 668-675.
– reference: Hatfield T,McGaugh JL. 1999. Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task. Neurobiol Learn Mem 71: 232-239.
– reference: Berretta S,Munno DW,Benes FM. 2001. Amygdalar activation alters the hippocampal GABA system: "Partial" modelling for postmortem changes in schizophrenia. J Comp Neurol 431: 129-138.
– reference: Weiss AP,Schacter DL,Goff DC,Rauch SL,Alpert NM,Fischman AJ,Heckers S. 2003. Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol Psychiatry 53: 48-55.
– reference: Pikkarainen M,Ronkko S,Savander V,Insausti R,Pitkanen A. 1999. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403: 229-260.
– reference: Benes FM,Kwok EW,Vincent SL,Todtenkopf MS. 1998. A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44: 88-97.
– reference: Gisabella B,Bolshakov VY,Benes FM. 2005. Regulation of synaptic plasticity in a schizophrenia model. Proc Natl Acad Sci USA 102: 13301-13306.
– reference: Heckers S,Rauch SL,Goff D,Savage CR,Schacter DL,Fischman AJ,Alpert NM. 1998. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1: 318-323.
– reference: Reynolds GP. 1983. Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305: 527-529.
– reference: Weiss AP,Goff D,Schacter DL,Ditman T,Freudenreich O,Henderson D,Heckers S. 2006. Fronto-hippocampal function during temporal context monitoring in schizophrenia. Biol Psychiatry 60: 1268-1277.
– reference: Carletti R,Corsi M,Melotto S,Caberlotto L. 2005. Down-regulation of amygdala preprotachykinin A mRNA but not 3H-SP receptor binding sites in subjects affected by mood disorders and schizophrenia. Eur J Neurosci 21: 1712-1718.
– reference: Shirane R,Sato S,Sato K,Kameyama M,Ogawa A,Yoshimoto T,Hatazawa J,Ito M. 1992. Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Childs Nerv Syst 8: 118-123.
– reference: Berretta S,Pantazopolous H,Benes FM,Lange N. 2006. GABAergic neurotransmission abnormalities in the amygdala of subjects diagnosed with bipolar disorder or schizophrenia, ACNP, Hollywood, Florida.
– reference: Huff NC,Wright-Hardesty KJ,Higgins EA,Matus-Amat P,Rudy JW. 2005. Context pre-exposure obscures amygdala modulation of contextual-fear conditioning. Learn Mem 12: 456-460.
– reference: Best PJ,White AM,Minai A. 2001. Spatial processing in the brain: The activity of hippocampal place cells. Annu Rev Neurosci 24: 459-486.
– reference: Morris RG. 2001. Episodic-like memory in animals: Psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356: 1453-1465.
– reference: O'Keefe JA,Nadel L. 1978. The Hippocampus as a Cognitive Map, New York: Oxford University Press.
– reference: Sagar SM,Sharp FR,Curran T. 1988. Expression of c-fos protein in brain: Metabolic mapping at the cellular level. Science 240: 1328-1331.
– reference: McNaughton N,Morris RG. 1987. Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behav Brain Res 24: 39-46.
– reference: Swanson LW. 1992. Brain maps: structure of the rat brain. Amsterdam: Elsevier.
– reference: Piechaczyk M,Blanchard JM. 1994. c-fos proto-oncogene regulation and function. Crit Rev Oncol Hematol 17: 93-131.
– reference: Van Groen TaWJ. 1990. Extrinsic projections from area ca1 of the rat hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 302: 515-528.
– reference: McDonald AJ,Mascagni F,Guo L. 1996. Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71: 55-75.
– reference: Simon P,Dupuis R,Costentin J. 1994. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61: 59-64.
– reference: Pare D,Dong J,Gaudreau H. 1995. Amygdalo-entorhinal relations and their reflection in the hippocampal formation: Generation of sharp sleep potentials. J Neurosci 15 (3 Pt 2): 2482-2503.
– reference: Benes FM,Todtenkopf MS,Kostoulakos P. 2001. GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus 11: 482-491.
– reference: Chaudhuri A. 1997. Neural activity mapping with inducible transcription factors. Neuroreport 8: v-ix.
– reference: Ongur D,Zalesak M,Weiss AP,Ditman T,Titone D,Heckers S. 2005. Hippocampal activation during processing of previously seen visual stimulus pairs. Psychiatry Res 139: 191-198.
– reference: Zhang ZJ,Reynolds GP. 2002. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55: 1-10.
– reference: Huff NC,Frank M,Wright-Hardesty K,Sprunger D,Matus-Amat P,Higgins E,Rudy JW. 2006. Amygdala regulation of immediate-early gene expression in the hippocampus induced by contextual fear conditioning. J Neurosci 26: 1616-1623.
– reference: Lisman JE,Otmakhova NA. 2001. Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11: 551-568.
– reference: Bogerts B,Meertz E,Schonfeldt-Bausch R. 1985. Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 42: 784-791.
– reference: McNaughton BL,Barnes CA,Gerrard JL,Gothard K,Jung MW,Knierim JJ,Kudrimoti H,Qin Y,Skaggs WE,Suster M,Weaver KL. 1996. Deciphering the hippocampal polyglot: The hippocampus as a path integration system. J Exp Biol 199 (Pt 1): 173-185.
– reference: Holt DJ,Kunkel L,Weiss AP,Goff DC,Wright CI,Shin LM,Rauch SL,Hootnick J,Heckers S. 2006. Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia. Schizophr Res 82: 153-162.
– reference: Passani MB,Cangioli I,Baldi E,Bucherelli C,Mannaioni PF,Blandina P. 2001. Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur J Neurosci 14: 1522-1532.
– reference: Harrison PJ. 2004. The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174: 151-162.
– reference: Lipska BK,Halim ND,Segal PN,Weinberger DR. 2002. Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat. J Neurosci 22: 2835-2842.
– reference: McDonald AJ. 1991. Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44: 1-14.
– reference: Kosaka H,Omori M,Murata T,Iidaka T,Yamada H,Okada T,Takahashi T,Sadato N,Itoh H,Yonekura Y and others. 2002. Differential amygdala response during facial recognition in patients with schizophrenia: An fMRI study. Schizophr Res 57: 87-95.
– reference: Tischmeyer W,Grimm R. 1999. Activation of immediate early genes and memory formation. Cell Mol Life Sci 55: 564-574.
– reference: Dragunow M,Faull R. 1989. The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29: 261-265.
– reference: Hoffman GE,Le WW,Abbud R,Lee WS,Smith MS. 1994. Use of Fos-related antigens (FRAs) as markers of neuronal activity: FRA changes in dopamine neurons during proestrus, pregnancy and lactation. Brain Res 654: 207-215.
– reference: Benes FM,Khan Y,Vincent SL,Wickramasinghe R. 1996. Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22: 338-349.
– reference: Lipska BK,Weinberger DR. 2000. To model a psychiatric disorder in animals: Schizophrenia as a reality test. Neuropsychopharmacology 23: 223-239.
– reference: Grimm R,Schicknick H,Riede I,Gundelfinger ED,Herdegen T,Zuschratter W,Tischmeyer W. 1997. Suppression of c-fos induction in rat brain impairs retention of a brightness discrimination reaction. Learn Mem 3: 402-413.
– reference: Simpson MD,Slater P,Deakin JF,Royston MC,Skan WJ. 1989. Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci Lett 107: 211-215.
– reference: Harrison PJ. 1999. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122 (Pt 4): 593-624.
– reference: Chagnac-Amitai Y, Connors BW. 1989. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 61: 747-758.
– reference: Savander V,Ledoux JE,Pitkanen A. 1997a. Interamygdaloid projections of the basal and accessory basal nuclei of the rat amygdaloid complex. Neuroscience 76: 725-735.
– reference: Savander V,Miettinen R,Ledoux JE,Pitkanen A. 1997b. Lateral nucleus of the rat amygdala is reciprocally connected with basal and accessory basal nuclei: A light and electron microscopic study. Neuroscience 77: 767-781.
– reference: Benes FM,Berretta S. 2001. GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25: 1-27.
– reference: Schneider F,Weiss U,Kessler C,Salloum JB,Posse S,Grodd W,Muller-Gartner HW. 1998. Differential amygdala activation in schizophrenia during sadness. Schizophr Res 34: 133-142.
– reference: Lee I,Hunsaker MR,Kesner RP. 2005. The role of hippocampal subregions in detecting spatial novelty. Behav Neurosci 119: 145-153.
– reference: Roberts GW,Ferrier IN,Lee Y,Crow TJ,Johnstone EC,Owens DG,Bacarese-Hamilton AJ,McGregor G,O'Shaughnessey D,Polak JM, Bloom SR. 1983. Peptides, the limbic lobe and schizophrenia. Brain Res 288: 199-211.
– reference: Hoffman GE,Smith MS,Verbalis JG. 1993. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 14: 173-213.
– reference: Pape HC,Narayanan RT,Smid J,Stork O,Seidenbecher T. 2005. Theta activity in neurons and networks of the amygdala related to long-term fear memory. Hippocampus 15: 874-880.
– reference: Bostock E,Muller RU,Kubie JL. 1991. Experience-dependent modifications of hippocampal place cell firing. Hippocampus 1: 193-205.
– reference: Guzowski JF. 2002. Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus 12: 86-104.
– reference: Montag-Sallaz M,Buonviso N. 2002. Altered odor-induced expression of c-fos and arg 3.1 immediate early genes in the olfactory system after familiarization with an odor. J Neurobiol 52: 61-72.
– reference: Hess US,Lynch G,Gall CM. 1995. Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. J Neurosci 15: 7796-7809.
– reference: Amaral DG,Cowan WM. 1980. Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189: 573-591.
– reference: Matus-Amat P, Higgins EA, Barrientos RM, Rudy JW. 2004. The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations. J Neurosci 24: 2431-2439.
– reference: Barrientos RM, O'Reilly RC, Rudy JW. 2002. Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration. Behav Brain Res 134: 299-306.
– reference: Huff NC,Rudy JW. 2004. The amygdala modulates hippocampus-dependent context memory formation and stores cue-shock associations. Behav Neurosci 118: 53-62.
– reference: Williams LM,Das P,Harris AW,Liddell BB,Brammer MJ,Olivieri G,Skerrett D,Phillips ML,David AS,Peduto A, Gordon E. 2004. Dysregulation of arousal and amygdala-prefrontal systems in paranoid schizophrenia. Am J Psychiatry 161: 480-489.
– reference: Barnett JH,Sahakian BJ,Werners U,Hill KE,Brazil R,Gallagher O,Bullmore ET,Jones PB. 2005. Visuospatial learning and executive function are independently impaired in first-episode psychosis. Psychol Med 35: 1031-1041.
– reference: Lawrie SM,Abukmeil SS. 1998. Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172: 110-120.
– reference: Berretta S,Lange N,Bhattacharyya S,Sebro R,Garces J,Benes FM. 2004. Long-term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons. Hippocampus 14: 876-894.
– reference: Eastwood SL,Harrison PJ. 2000. Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: A study of complexin mRNAs. Mol Psychiatry 5: 425-432.
– reference: Wilson IA,Ikonen S,Gureviciene I,McMahan RW,Gallagher M,Eichenbaum H,Tanila H. 2004. Cognitive aging and the hippocampus: How old rats represent new environments. J Neurosci 24: 3870-3878.
– reference: LaLumiere RT,Buen TV,McGaugh JL. 2003. Post-training intra-basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning. J Neurosci 23: 6754-6758.
– reference: Rudy JW, Barrientos RM, O'Reilly RC. 2002. Hippocampal formation supports conditioning to memory of a context. Behav Neurosci 116: 530-538.
– reference: Benes FM,Berretta S. 2000. Amygdalo-entorhinal inputs to the hippocampal formation in relation to schizophrenia. Ann N Y Acad Sci 911: 293-304.
– reference: Jenkins TA,Amin E,Pearce JM,Brown MW,Aggleton JP. 2004. Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: A c-fos expression study. Neuroscience 124: 43-52.
– reference: Morgan JI,Cohen DR,Hempstead JL,Curran T. 1987. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237: 192-197.
– reference: Treves A,Rolls ET. 1994. Computational analysis of the role of the hippocampus in memory. Hippocampus 4: 374-391.
– reference: Arnold SE. 1997. The medial temporal lobe in schizophrenia. J Neuropsychiatry Clin Neurosci 9: 460-470.
– volume: 22
  start-page: 338
  year: 1996
  end-page: 349
  article-title: Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain
  publication-title: Synapse
– volume: 15
  start-page: 874
  year: 2005
  end-page: 880
  article-title: Theta activity in neurons and networks of the amygdala related to long‐term fear memory
  publication-title: Hippocampus
– volume: 5
  start-page: 425
  year: 2000
  end-page: 432
  article-title: Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: A study of complexin mRNAs
  publication-title: Mol Psychiatry
– volume: 71
  start-page: 55
  year: 1996
  end-page: 75
  article-title: Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat
  publication-title: Neuroscience
– volume: 302
  start-page: 515
  year: 1990
  end-page: 528
  article-title: Extrinsic projections from area ca1 of the rat hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation projections
  publication-title: J Comp Neurol
– volume: 356
  start-page: 288
  year: 1995
  end-page: 310
  article-title: Intrinsic connections of the rat amygdaloid complex: Projections originating in the lateral nucleus
  publication-title: J Comp Neurol
– volume: 35
  start-page: 1031
  year: 2005
  end-page: 1041
  article-title: Visuospatial learning and executive function are independently impaired in first‐episode psychosis
  publication-title: Psychol Med
– volume: 34
  start-page: 171
  year: 1971
  end-page: 175
  article-title: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely‐moving rat
  publication-title: Brain Res
– volume: 15
  start-page: 2482
  issue: 3 Pt 2
  year: 1995
  end-page: 2503
  article-title: Amygdalo‐entorhinal relations and their reflection in the hippocampal formation: Generation of sharp sleep potentials
  publication-title: J Neurosci
– volume: 1
  start-page: 318
  year: 1998
  end-page: 323
  article-title: Impaired recruitment of the hippocampus during conscious recollection in schizophrenia
  publication-title: Nat Neurosci
– volume: 654
  start-page: 207
  year: 1994
  end-page: 215
  article-title: Use of Fos‐related antigens (FRAs) as markers of neuronal activity: FRA changes in dopamine neurons during proestrus, pregnancy and lactation
  publication-title: Brain Res
– volume: 3
  start-page: 402
  year: 1997
  end-page: 413
  article-title: Suppression of c‐fos induction in rat brain impairs retention of a brightness discrimination reaction
  publication-title: Learn Mem
– volume: 31
  start-page: 959
  year: 1988
  end-page: 962
  article-title: Thigmotaxis as a test for anxiolytic activity in rats
  publication-title: Pharmacol Biochem Behav
– volume: 19
  start-page: 1142
  year: 1999
  end-page: 1148
  article-title: Different contributions of the hippocampus and perirhinal cortex to recognition memory
  publication-title: J Neurosci
– volume: 356
  start-page: 1453
  year: 2001
  end-page: 1465
  article-title: Episodic‐like memory in animals: Psychological criteria, neural mechanisms and the value of episodic‐like tasks to investigate animal models of neurodegenerative disease
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 23
  start-page: 6754
  year: 2003
  end-page: 6758
  article-title: Post‐training intra‐basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning
  publication-title: J Neurosci
– volume: 4
  start-page: 374
  year: 1994
  end-page: 391
  article-title: Computational analysis of the role of the hippocampus in memory
  publication-title: Hippocampus
– volume: 305
  start-page: 527
  year: 1983
  end-page: 529
  article-title: Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia
  publication-title: Nature
– volume: 71
  start-page: 232
  year: 1999
  end-page: 239
  article-title: Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task
  publication-title: Neurobiol Learn Mem
– volume: 11
  start-page: 482
  year: 2001
  end-page: 491
  article-title: GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives
  publication-title: Hippocampus
– volume: 23
  start-page: 223
  year: 2000
  end-page: 239
  article-title: To model a psychiatric disorder in animals: Schizophrenia as a reality test
  publication-title: Neuropsychopharmacology
– volume: 199
  start-page: 173
  issue: Pt 1
  year: 1996
  end-page: 185
  article-title: Deciphering the hippocampal polyglot: The hippocampus as a path integration system
  publication-title: J Exp Biol
– volume: 12
  start-page: 456
  year: 2005
  end-page: 460
  article-title: Context pre‐exposure obscures amygdala modulation of contextual‐fear conditioning
  publication-title: Learn Mem
– volume: 240
  start-page: 1328
  year: 1988
  end-page: 1331
  article-title: Expression of c‐fos protein in brain: Metabolic mapping at the cellular level
  publication-title: Science
– volume: 11
  start-page: 520
  year: 2001
  end-page: 528
  article-title: Neuroimaging studies of the hippocampus in schizophrenia
  publication-title: Hippocampus
– volume: 14
  start-page: 173
  year: 1993
  end-page: 213
  article-title: c‐Fos and related immediate early gene products as markers of activity in neuroendocrine systems
  publication-title: Front Neuroendocrinol
– volume: 431
  start-page: 129
  year: 2001
  end-page: 138
  article-title: Amygdalar activation alters the hippocampal GABA system: “Partial” modelling for postmortem changes in schizophrenia
  publication-title: J Comp Neurol
– volume: 229
  start-page: 141
  year: 1997
  end-page: 143
  article-title: Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment
  publication-title: Neurosci Lett
– volume: 61
  start-page: 747
  year: 1989
  end-page: 758
  article-title: Horizontal spread of synchronized activity in neocortex and its control by GABA‐mediated inhibition
  publication-title: J Neurophysiol
– volume: 50
  start-page: 83
  year: 1996
  end-page: 107
  article-title: Activation of c‐fos in the brain
  publication-title: Prog Neurobiol
– volume: 14
  start-page: 1522
  year: 2001
  end-page: 1532
  article-title: Histamine H3 receptor‐mediated impairment of contextual fear conditioning and in‐vivo inhibition of cholinergic transmission in the rat basolateral amygdala
  publication-title: Eur J Neurosci
– volume: 25
  start-page: 51
  year: 1996
  end-page: 57
  article-title: Amygdala‐hippocampus relationships in temporal lobe seizures: A phase‐coherence study
  publication-title: Epilepsy Res
– volume: 24
  start-page: 7681
  year: 2004
  end-page: 7689
  article-title: Hippocampal plasticity across multiple days of exposure to novel environments
  publication-title: J Neurosci
– year: 1992
– volume: 261
  start-page: 1055
  year: 1993
  end-page: 1058
  article-title: Dynamics of the hippocampal ensemble code for space
  publication-title: Science
– volume: 77
  start-page: 283
  year: 2005
  end-page: 298
  article-title: Strange feelings: Do amygdala abnormalities dysregulate the emotional brain in schizophrenia?
  publication-title: Prog Neurobiol
– volume: 24
  start-page: 3870
  year: 2004
  end-page: 3878
  article-title: Cognitive aging and the hippocampus: How old rats represent new environments
  publication-title: J Neurosci
– volume: 16
  start-page: 521
  year: 2002
  end-page: 528
  article-title: Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release
  publication-title: Eur J Neurosci
– volume: 122
  start-page: 593
  issue: Pt 4
  year: 1999
  end-page: 624
  article-title: The neuropathology of schizophrenia. A critical review of the data and their interpretation
  publication-title: Brain
– volume: 31
  start-page: 243
  year: 2006
  end-page: 250
  article-title: Altered gene expression in the amygdala in schizophrenia: Up‐regulation of genes located in the cytomatrix active zone
  publication-title: Mol Cell Neurosci
– volume: 43
  start-page: 12
  year: 1998
  end-page: 19
  article-title: Isotype‐specific G protein abnormalities in the left superior temporal cortex and limbic structures of patients with chronic schizophrenia
  publication-title: Biol Psychiatry
– volume: 20
  start-page: 8144
  year: 2000
  end-page: 8152
  article-title: Using fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions
  publication-title: J Neurosci
– volume: 82
  start-page: 153
  year: 2006
  end-page: 162
  article-title: Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia
  publication-title: Schizophr Res
– volume: 139
  start-page: 191
  year: 2005
  end-page: 198
  article-title: Hippocampal activation during processing of previously seen visual stimulus pairs
  publication-title: Psychiatry Res
– volume: 107
  start-page: 663
  year: 1996
  end-page: 694
  article-title: The hippocampus as a cognitive graph
  publication-title: J Gen Physiol
– volume: 84
  start-page: 147
  year: 1991
  end-page: 153
  article-title: G proteins (Gi, Go) in the medial temporal lobe in schizophrenia: preliminary report of a neurochemical correlate of structural change
  publication-title: J Neural Transm Gen Sect
– volume: 8
  start-page: 118
  year: 1992
  end-page: 123
  article-title: Cerebral blood flow and oxygen metabolism in infants with hydrocephalus
  publication-title: Childs Nerv Syst
– year: 1978
– volume: 17
  start-page: 93
  year: 1994
  end-page: 131
  article-title: c‐fos proto‐oncogene regulation and function
  publication-title: Crit Rev Oncol Hematol
– volume: 13
  start-page: 744
  year: 1993
  end-page: 751
  article-title: Induction of c‐fos mRNA by kindled seizures; complex relationship with neuronal burst firing
  publication-title: J Neurosci
– volume: 21
  start-page: 205
  year: 1973
  end-page: 235
  article-title: Tests for emotionality in rats and mice: A review
  publication-title: Anim Behav
– volume: 25
  start-page: 1
  year: 2001
  end-page: 27
  article-title: GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder
  publication-title: Neuropsychopharmacology
– volume: 24
  start-page: 459
  year: 2001
  end-page: 486
  article-title: Spatial processing in the brain: The activity of hippocampal place cells
  publication-title: Annu Rev Neurosci
– volume: 97
  start-page: 243
  year: 1987
  end-page: 254
  article-title: Kindling by repeated intraperitoneal or intracerebral injection of picrotoxin transfers to electrical kindling
  publication-title: Exp Neurol
– volume: 172
  start-page: 110
  year: 1998
  end-page: 120
  article-title: Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies
  publication-title: Br J Psychiatry
– volume: 49
  start-page: 921
  year: 1992
  end-page: 926
  article-title: Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures
  publication-title: Arch Gen Psychiatry
– volume: 44
  start-page: 1
  year: 1991
  end-page: 14
  article-title: Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat
  publication-title: Neuroscience
– volume: 52
  start-page: 61
  year: 2002
  end-page: 72
  article-title: Altered odor‐induced expression of c‐fos and arg 3.1 immediate early genes in the olfactory system after familiarization with an odor
  publication-title: J Neurobiol
– volume: 22
  start-page: 2835
  year: 2002
  end-page: 2842
  article-title: Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat
  publication-title: J Neurosci
– volume: 76
  start-page: 725
  year: 1997a
  end-page: 735
  article-title: Interamygdaloid projections of the basal and accessory basal nuclei of the rat amygdaloid complex
  publication-title: Neuroscience
– volume: 47
  start-page: 133
  year: 1995
  end-page: 178
  article-title: Induction of immediate‐early genes and the control of neurotransmitter‐regulated gene expression within the nervous system
  publication-title: Pharmacol Rev
– volume: 44
  start-page: 88
  year: 1998
  end-page: 97
  article-title: A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives
  publication-title: Biol Psychiatry
– volume: 14
  start-page: 153
  year: 2004
  end-page: 162
  article-title: Hippocampal activation during transitive inference in humans
  publication-title: Hippocampus
– volume: 55
  start-page: 257
  year: 1998
  end-page: 332
  article-title: Cortical pathways to the mammalian amygdala
  publication-title: Prog Neurobiol
– volume: 118
  start-page: 53
  year: 2004
  end-page: 62
  article-title: The amygdala modulates hippocampus‐dependent context memory formation and stores cue‐shock associations
  publication-title: Behav Neurosci
– volume: 60
  start-page: 1268
  year: 2006
  end-page: 1277
  article-title: Fronto‐hippocampal function during temporal context monitoring in schizophrenia
  publication-title: Biol Psychiatry
– volume: 31
  start-page: 1822
  year: 2006
  end-page: 1831
  article-title: Decreased amygdala CRF‐binding protein mRNA in post‐mortem tissue from male but not female bipolar and schizophrenic subjects
  publication-title: Neuropsychopharmacology
– volume: 24
  start-page: 6489
  year: 2004
  end-page: 6496
  article-title: Differences in hippocampal neuronal population responses to modifications of an environmental context: Evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles
  publication-title: J Neurosci
– volume: 102
  start-page: 13301
  year: 2005
  end-page: 13306
  article-title: Regulation of synaptic plasticity in a schizophrenia model
  publication-title: Proc Natl Acad Sci USA
– volume: 119
  start-page: 145
  year: 2005
  end-page: 153
  article-title: The role of hippocampal subregions in detecting spatial novelty
  publication-title: Behav Neurosci
– volume: 237
  start-page: 192
  year: 1987
  end-page: 197
  article-title: Mapping patterns of c‐fos expression in the central nervous system after seizure
  publication-title: Science
– volume: 755
  start-page: 121
  year: 1997
  end-page: 129
  article-title: Uncoupling of GABA(A) and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain
  publication-title: Brain Res
– volume: 53
  start-page: 48
  year: 2003
  end-page: 55
  article-title: Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia
  publication-title: Biol Psychiatry
– volume: 1
  start-page: 193
  year: 1991
  end-page: 205
  article-title: Experience‐dependent modifications of hippocampal place cell firing
  publication-title: Hippocampus
– volume: 102
  start-page: 10718
  year: 2005
  end-page: 10723
  article-title: Memory‐influencing intra‐basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  start-page: 1712
  year: 2005
  end-page: 1718
  article-title: Down‐regulation of amygdala preprotachykinin A mRNA but not 3H‐SP receptor binding sites in subjects affected by mood disorders and schizophrenia
  publication-title: Eur J Neurosci
– volume: 24
  start-page: 39
  year: 1987
  end-page: 46
  article-title: Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats
  publication-title: Behav Brain Res
– volume: 29
  start-page: 261
  year: 1989
  end-page: 265
  article-title: The use of c‐fos as a metabolic marker in neuronal pathway tracing
  publication-title: J Neurosci Methods
– volume: 8
  start-page: v
  year: 1997
  end-page: ix
  article-title: Neural activity mapping with inducible transcription factors
  publication-title: Neuroreport
– volume: 22
  start-page: 291
  year: 1987
  end-page: 301
  article-title: Neurotransmitter amino acids in post‐mortem brains of chronic schizophrenic patients
  publication-title: Psychiatry Res
– volume: 26
  start-page: 259
  year: 2002
  end-page: 268
  article-title: A role of Fos expression in the CA3 region of the hippocampus in spatial memory formation in rats
  publication-title: Neuropsychopharmacology
– volume: 174
  start-page: 151
  year: 2004
  end-page: 162
  article-title: The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications
  publication-title: Psychopharmacology (Berl)
– volume: 12
  start-page: 86
  year: 2002
  end-page: 104
  article-title: Insights into immediate‐early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches
  publication-title: Hippocampus
– volume: 9
  start-page: 460
  year: 1997
  end-page: 470
  article-title: The medial temporal lobe in schizophrenia
  publication-title: J Neuropsychiatry Clin Neurosci
– volume: 42
  start-page: 784
  year: 1985
  end-page: 791
  article-title: Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage
  publication-title: Arch Gen Psychiatry
– volume: 7
  start-page: 278
  year: 2004
  end-page: 285
  article-title: Encoding of emotional memories depends on amygdala and hippocampus and their interactions
  publication-title: Nat Neurosci
– volume: 290
  start-page: 213
  year: 1989
  end-page: 242
  article-title: Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract‐tracing study with Phaseolus vulgaris leucoagglutinin
  publication-title: J Comp Neurol
– volume: 189
  start-page: 573
  year: 1980
  end-page: 591
  article-title: Subcortical afferents to the hippocampal formation in the monkey
  publication-title: J Comp Neurol
– volume: 27
  start-page: 1038
  year: 1990
  end-page: 1044
  article-title: Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia
  publication-title: Biol Psychiatry
– volume: 102
  start-page: 419
  year: 1995
  end-page: 457
  article-title: Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory
  publication-title: Psychol Rev
– volume: 134
  start-page: 299
  year: 2002
  end-page: 306
  article-title: Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration
  publication-title: Behav Brain Res
– volume: 21
  start-page: 5222
  year: 2001
  end-page: 5228
  article-title: Amygdala is critical for stress‐induced modulation of hippocampal long‐term potentiation and learning
  publication-title: J Neurosci
– volume: 19
  start-page: 10530
  year: 1999
  end-page: 10535
  article-title: Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat
  publication-title: J Neurosci
– volume: 12
  start-page: 1125
  year: 1997
  end-page: 1133
  article-title: Transcription factors in brain injury
  publication-title: Histol Histopathol
– volume: 288
  start-page: 199
  year: 1983
  end-page: 211
  article-title: Peptides, the limbic lobe and schizophrenia
  publication-title: Brain Res
– volume: 78
  start-page: 1087
  year: 1997
  end-page: 1104
  article-title: Elicitation and reduction of fear: Behavioural and neuroendocrine indices and brain induction of the immediate‐early gene c‐fos
  publication-title: Neuroscience
– volume: 124
  start-page: 43
  year: 2004
  end-page: 52
  article-title: Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: A c‐fos expression study
  publication-title: Neuroscience
– volume: 116
  start-page: 530
  year: 2002
  end-page: 538
  article-title: Hippocampal formation supports conditioning to memory of a context
  publication-title: Behav Neurosci
– volume: 1051
  start-page: 57
  year: 2005
  end-page: 65
  article-title: Cholinergic involvement in the cortical and hippocampal Fos expression induced in the rat by placement in a novel environment
  publication-title: Brain Res
– volume: 34
  start-page: 133
  year: 1998
  end-page: 142
  article-title: Differential amygdala activation in schizophrenia during sadness
  publication-title: Schizophr Res
– volume: 14
  start-page: 421
  year: 1991
  end-page: 451
  article-title: Stimulus‐transcription coupling in the nervous system: Involvement of the inducible proto‐oncogenes fos and jun
  publication-title: Annu Rev Neurosci
– volume: 31
  start-page: 251
  year: 2000
  end-page: 269
  article-title: Emerging principles of altered neural circuitry in schizophrenia
  publication-title: Brain Res Brain Res Rev
– volume: 77
  start-page: 767
  year: 1997b
  end-page: 781
  article-title: Lateral nucleus of the rat amygdala is reciprocally connected with basal and accessory basal nuclei: A light and electron microscopic study
  publication-title: Neuroscience
– volume: 55
  start-page: 668
  year: 2004
  end-page: 675
  article-title: Impaired hippocampal function during the detection of novel words in schizophrenia
  publication-title: Biol Psychiatry
– volume: 26
  start-page: 1616
  year: 2006
  end-page: 1623
  article-title: Amygdala regulation of immediate‐early gene expression in the hippocampus induced by contextual fear conditioning
  publication-title: J Neurosci
– volume: 55
  start-page: 564
  year: 1999
  end-page: 574
  article-title: Activation of immediate early genes and memory formation
  publication-title: Cell Mol Life Sci
– volume: 61
  start-page: 59
  year: 1994
  end-page: 64
  article-title: Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions
  publication-title: Behav Brain Res
– volume: 24
  start-page: 2431
  year: 2004
  end-page: 2439
  article-title: The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations
  publication-title: J Neurosci
– volume: 55
  start-page: 1
  year: 2002
  end-page: 10
  article-title: A selective decrease in the relative density of parvalbumin‐immunoreactive neurons in the hippocampus in schizophrenia
  publication-title: Schizophr Res
– volume: 109
  start-page: 891
  year: 2002
  end-page: 905
  article-title: Hippocampal neurons in schizophrenia
  publication-title: J Neural Transm
– year: 2006
– volume: 14
  start-page: 876
  year: 2004
  end-page: 894
  article-title: Long‐term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons
  publication-title: Hippocampus
– volume: 16
  start-page: 3334
  year: 1996
  end-page: 3350
  article-title: Projection cells and interneurons of the lateral and basolateral amygdala: Distinct firing patterns and differential relation to theta and delta rhythms in conscious cats
  publication-title: J Neurosci
– volume: 107
  start-page: 211
  year: 1989
  end-page: 215
  article-title: Reduced GABA uptake sites in the temporal lobe in schizophrenia
  publication-title: Neurosci Lett
– volume: 161
  start-page: 480
  year: 2004
  end-page: 489
  article-title: Dysregulation of arousal and amygdala‐prefrontal systems in paranoid schizophrenia
  publication-title: Am J Psychiatry
– volume: 403
  start-page: 229
  year: 1999
  end-page: 260
  article-title: Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat
  publication-title: J Comp Neurol
– volume: 11
  start-page: 551
  year: 2001
  end-page: 568
  article-title: Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine
  publication-title: Hippocampus
– volume: 57
  start-page: 87
  year: 2002
  end-page: 95
  article-title: Differential amygdala response during facial recognition in patients with schizophrenia: An fMRI study
  publication-title: Schizophr Res
– volume: 16
  start-page: 1425
  year: 2002
  end-page: 1432
  article-title: Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei
  publication-title: Eur J Neurosci
– volume: 911
  start-page: 293
  year: 2000
  end-page: 304
  article-title: Amygdalo‐entorhinal inputs to the hippocampal formation in relation to schizophrenia
  publication-title: Ann N Y Acad Sci
– volume: 15
  start-page: 7796
  year: 1995
  end-page: 7809
  article-title: Regional patterns of c‐fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well‐learned discrimination
  publication-title: J Neurosci
– ident: e_1_2_1_70_1
  doi: 10.1016/0306-4522(95)00417-3
– ident: e_1_2_1_26_1
  doi: 10.1111/j.1460-9568.2005.04002.x
– ident: e_1_2_1_111_1
  doi: 10.1523/JNEUROSCI.19-03-01142.1999
– ident: e_1_2_1_43_1
  doi: 10.1002/hipo.10189
– ident: e_1_2_1_69_1
  doi: 10.1016/S0301-0082(98)00003-3
– ident: e_1_2_1_85_1
  doi: 10.1523/JNEUROSCI.16-10-03334.1996
– ident: e_1_2_1_40_1
  doi: 10.1002/hipo.1068
– ident: e_1_2_1_62_1
  doi: 10.1037/0735-7044.119.1.145
– volume: 15
  start-page: 2482
  issue: 3
  year: 1995
  ident: e_1_2_1_84_1
  article-title: Amygdalo‐entorhinal relations and their reflection in the hippocampal formation: Generation of sharp sleep potentials
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-03-02482.1995
– ident: e_1_2_1_51_1
  doi: 10.1101/lm.6705
– volume: 22
  start-page: 2835
  year: 2002
  ident: e_1_2_1_64_1
  article-title: Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-07-02835.2002
– ident: e_1_2_1_67_1
  doi: 10.1037/0033-295X.102.3.419
– ident: e_1_2_1_5_1
  doi: 10.1016/S0003-3472(73)80065-X
– ident: e_1_2_1_89_1
  doi: 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P
– ident: e_1_2_1_37_1
  doi: 10.1007/s00213-003-1761-y
– ident: e_1_2_1_54_1
  doi: 10.1046/j.1460-9568.2002.02211.x
– ident: e_1_2_1_32_1
  doi: 10.1073/pnas.0506034102
– volume: 47
  start-page: 133
  year: 1995
  ident: e_1_2_1_53_1
  article-title: Induction of immediate‐early genes and the control of neurotransmitter‐regulated gene expression within the nervous system
  publication-title: Pharmacol Rev
– ident: e_1_2_1_11_1
  doi: 10.1016/S0893-133X(01)00225-1
– ident: e_1_2_1_48_1
  doi: 10.1016/0006-8993(94)90481-2
– ident: e_1_2_1_103_1
  doi: 10.1016/0304-3940(89)90819-7
– ident: e_1_2_1_63_1
  doi: 10.1016/S0893-133X(00)00137-8
– ident: e_1_2_1_112_1
  doi: 10.1016/j.mcn.2005.09.013
– volume: 15
  start-page: 7796
  year: 1995
  ident: e_1_2_1_46_1
  article-title: Regional patterns of c‐fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well‐learned discrimination
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-12-07796.1995
– ident: e_1_2_1_7_1
  doi: 10.1016/S0166-4328(02)00045-1
– ident: e_1_2_1_59_1
  doi: 10.1523/JNEUROSCI.13-02-00744.1993
– ident: e_1_2_1_12_1
  doi: 10.1002/(SICI)1098-2396(199604)22:4<338::AID-SYN5>3.0.CO;2-C
– ident: e_1_2_1_94_1
  doi: 10.1016/0006-8993(83)90095-1
– volume: 77
  start-page: 283
  year: 2005
  ident: e_1_2_1_3_1
  article-title: Strange feelings: Do amygdala abnormalities dysregulate the emotional brain in schizophrenia?
  publication-title: Prog Neurobiol
– ident: e_1_2_1_86_1
  doi: 10.1046/j.0953-816x.2001.01780.x
– ident: e_1_2_1_114_1
  doi: 10.1016/j.biopsych.2004.01.004
– ident: e_1_2_1_105_1
  doi: 10.1007/s000180050315
– ident: e_1_2_1_95_1
  doi: 10.1037/0735-7044.116.4.530
– volume: 20
  start-page: 8144
  year: 2000
  ident: e_1_2_1_109_1
  article-title: Using fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-21-08144.2000
– ident: e_1_2_1_75_1
  doi: 10.1146/annurev.ne.14.030191.002225
– ident: e_1_2_1_16_1
  doi: 10.1002/1096-9861(20010305)431:2<129::AID-CNE1060>3.0.CO;2-6
– ident: e_1_2_1_49_1
  doi: 10.1016/j.schres.2005.09.021
– ident: e_1_2_1_119_1
  doi: 10.1016/j.brainres.2005.05.052
– ident: e_1_2_1_88_1
  doi: 10.1016/1040-8428(94)90021-3
– ident: e_1_2_1_110_1
  doi: 10.1523/JNEUROSCI.0350-04.2004
– volume-title: GABAergic neurotransmission abnormalities in the amygdala of subjects diagnosed with bipolar disorder or schizophrenia
  year: 2006
  ident: e_1_2_1_18_1
– ident: e_1_2_1_47_1
  doi: 10.1006/frne.1993.1006
– ident: e_1_2_1_118_1
  doi: 10.1126/science.8351520
– ident: e_1_2_1_17_1
  doi: 10.1002/hipo.20002
– ident: e_1_2_1_77_1
  doi: 10.1098/rstb.2001.0945
– ident: e_1_2_1_10_1
  doi: 10.1111/j.1749-6632.2000.tb06733.x
– ident: e_1_2_1_96_1
  doi: 10.1126/science.3131879
– ident: e_1_2_1_99_1
  doi: 10.1016/S0920-9964(98)00085-1
– ident: e_1_2_1_22_1
  doi: 10.1001/archpsyc.1992.01820120009003
– ident: e_1_2_1_97_1
  doi: 10.1016/S0306-4522(96)00371-5
– volume-title: Brain maps: structure of the rat brain
  year: 1992
  ident: e_1_2_1_104_1
– ident: e_1_2_1_14_1
  doi: 10.1016/S0006-3223(98)00138-3
– ident: e_1_2_1_28_1
  doi: 10.1097/00001756-199709080-00002
– ident: e_1_2_1_21_1
  doi: 10.1002/hipo.450010207
– ident: e_1_2_1_23_1
  doi: 10.1016/0014-4886(87)90086-0
– ident: e_1_2_1_92_1
  doi: 10.1016/0006-3223(90)90039-5
– ident: e_1_2_1_120_1
  doi: 10.1016/S0006-3223(97)80250-8
– ident: e_1_2_1_61_1
  doi: 10.1192/bjp.172.2.110
– ident: e_1_2_1_82_1
  doi: 10.1016/j.pscychresns.2005.05.006
– ident: e_1_2_1_57_1
  doi: 10.1016/0165-1781(87)90108-9
– ident: e_1_2_1_8_1
  doi: 10.1017/S0033291704004301
– ident: e_1_2_1_100_1
  doi: 10.1002/cne.902900205
– ident: e_1_2_1_29_1
  doi: 10.1016/0165-0270(89)90150-7
– ident: e_1_2_1_31_1
  doi: 10.1523/JNEUROSCI.1958-04.2004
– ident: e_1_2_1_38_1
  doi: 10.1006/nlme.1998.3875
– ident: e_1_2_1_33_1
  doi: 10.1016/0920-1211(96)00021-6
– ident: e_1_2_1_19_1
  doi: 10.1146/annurev.neuro.24.1.459
– ident: e_1_2_1_41_1
  doi: 10.1007/s007020200073
– ident: e_1_2_1_121_1
  doi: 10.1016/S0920-9964(01)00188-8
– ident: e_1_2_1_101_1
  doi: 10.1007/BF00298263
– ident: e_1_2_1_30_1
  doi: 10.1038/sj.mp.4000741
– ident: e_1_2_1_90_1
  doi: 10.1002/cne.903560211
– ident: e_1_2_1_9_1
  doi: 10.1016/S0165-0173(99)00041-7
– ident: e_1_2_1_93_1
  doi: 10.1038/nn1190
– ident: e_1_2_1_122_1
  doi: 10.1016/S0304-3940(97)00437-0
– ident: e_1_2_1_20_1
  doi: 10.1001/archpsyc.1985.01790310046006
– ident: e_1_2_1_4_1
  doi: 10.1002/cne.901890402
– ident: e_1_2_1_102_1
  doi: 10.1016/0166-4328(94)90008-6
– ident: e_1_2_1_42_1
  doi: 10.1038/1137
– ident: e_1_2_1_116_1
  doi: 10.1176/appi.ajp.161.3.480
– ident: e_1_2_1_78_1
  doi: 10.1085/jgp.107.6.663
– ident: e_1_2_1_79_1
  doi: 10.1016/0006-8993(71)90358-1
– ident: e_1_2_1_71_1
  doi: 10.1073/pnas.0504436102
– ident: e_1_2_1_27_1
  doi: 10.1152/jn.1989.61.4.747
– ident: e_1_2_1_35_1
  doi: 10.1002/hipo.10010
– ident: e_1_2_1_6_1
  doi: 10.1176/jnp.9.3.460
– ident: e_1_2_1_107_1
  doi: 10.1002/hipo.450040319
– ident: e_1_2_1_83_1
  doi: 10.1002/hipo.20120
– ident: e_1_2_1_115_1
  doi: 10.1016/j.biopsych.2006.06.025
– ident: e_1_2_1_68_1
  doi: 10.1016/0306-4522(91)90247-L
– ident: e_1_2_1_106_1
  doi: 10.1016/0091-3057(88)90413-3
– ident: e_1_2_1_15_1
  doi: 10.1002/hipo.1065
– ident: e_1_2_1_13_1
  doi: 10.1016/S0006-8993(97)00113-3
– volume-title: The Hippocampus as a Cognitive Map
  year: 1978
  ident: e_1_2_1_80_1
– ident: e_1_2_1_58_1
  doi: 10.1016/S0920-9964(01)00324-3
– ident: e_1_2_1_74_1
  doi: 10.1002/neu.10069
– ident: e_1_2_1_117_1
  doi: 10.1523/JNEUROSCI.5205-03.2004
– ident: e_1_2_1_36_1
  doi: 10.1093/brain/122.4.593
– ident: e_1_2_1_25_1
  doi: 10.1046/j.1460-9568.2002.02092.x
– ident: e_1_2_1_39_1
  doi: 10.1016/S0893-133X(01)00332-3
– volume: 19
  start-page: 10530
  year: 1999
  ident: e_1_2_1_2_1
  article-title: Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-23-10530.1999
– ident: e_1_2_1_34_1
  doi: 10.1101/lm.3.5.402
– ident: e_1_2_1_45_1
  doi: 10.1038/sj.npp.1301038
– ident: e_1_2_1_60_1
  doi: 10.1523/JNEUROSCI.23-17-06754.2003
– ident: e_1_2_1_76_1
  doi: 10.1126/science.3037702
– ident: e_1_2_1_55_1
  doi: 10.1016/j.neuroscience.2003.11.024
– ident: e_1_2_1_65_1
  doi: 10.1002/hipo.1071
– volume: 12
  start-page: 1125
  year: 1997
  ident: e_1_2_1_87_1
  article-title: Transcription factors in brain injury
  publication-title: Histol Histopathol
– ident: e_1_2_1_81_1
  doi: 10.1007/BF01249119
– ident: e_1_2_1_98_1
  doi: 10.1016/S0306-4522(96)00513-1
– ident: e_1_2_1_52_1
  doi: 10.1523/JNEUROSCI.4964-05.2006
– ident: e_1_2_1_44_1
  doi: 10.1016/S0301-0082(96)00021-4
– ident: e_1_2_1_50_1
  doi: 10.1037/0735-7044.118.1.53
– ident: e_1_2_1_113_1
  doi: 10.1016/S0006-3223(02)01541-X
– ident: e_1_2_1_91_1
  doi: 10.1038/305527a0
– ident: e_1_2_1_56_1
  doi: 10.1523/JNEUROSCI.21-14-05222.2001
– ident: e_1_2_1_108_1
  doi: 10.1002/cne.903020308
– ident: e_1_2_1_66_1
  doi: 10.1523/JNEUROSCI.1598-03.2004
– ident: e_1_2_1_73_1
  doi: 10.1016/0166-4328(87)90034-9
– ident: e_1_2_1_24_1
  doi: 10.1016/S0306-4522(96)00632-X
– volume: 199
  start-page: 173
  issue: 1
  year: 1996
  ident: e_1_2_1_72_1
  article-title: Deciphering the hippocampal polyglot: The hippocampus as a path integration system
  publication-title: J Exp Biol
  doi: 10.1242/jeb.199.1.173
SSID ssj0011500
Score 2.0638235
Snippet Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 169
SubjectTerms amygdala
Amygdala - cytology
Amygdala - drug effects
Amygdala - physiology
Animals
Convulsants - toxicity
Disease Models, Animal
Environment
Exploratory Behavior - physiology
FOS
hippocampus
Hippocampus - cytology
Hippocampus - physiology
Male
Neural Pathways
Neurons - drug effects
Neurons - pathology
Neurons - physiology
Picrotoxin - toxicity
Proto-Oncogene Proteins c-fos - metabolism
Rats
Rats, Long-Evans
schizophrenia
Schizophrenia - chemically induced
Schizophrenia - pathology
Schizophrenia - physiopathology
Space Perception - physiology
spatial processing
Title The amygdala modulates neuronal activation in the hippocampus in response to spatial novelty
URI https://api.istex.fr/ark:/67375/WNG-DCLK31JQ-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhipo.20380
https://www.ncbi.nlm.nih.gov/pubmed/17960646
https://www.proquest.com/docview/70209038
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1050-9631
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-1063
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011500
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NQ0K88LHxkQHDEmgSSNnifNSJtJdpMMpgYyAm9jBkOY7DprVJ1aQT5a_fnd2mGpqQ4C2KznZi39m_s-9-BngVqrgsSq78rBR0zBhqPy_zwheBSYMo1wjKKXf44LDXP473T5KTJdie58I4fohuw40sw87XZOAqb7YWpKFn5yNK3otScth5lNgz2q8ddxQhHUdFkAQ-ahnvuEnDrUXRa6vRLerYXzdBzevI1S49e_fgx_yjXcTJxeakzTf17z_4HP_3r-7D3RkmZTtOiR7AkqlWYHWnQn98OGUbzEaJ2u33Fbh9MDuMX4VTVDGmhtOfhRooNqwLugnMNMxSZFKFlDPhdnzZecUQaTJsd4SL53A0aejV2AXoGtbWrKHQbixU1Zdm0E4fwvHeu2-7fX92WYOvEYNQOjrOmqJMelkhEHPlIVdBqE0ZFzrhpUYUgkgg1UYZpXTINQIrdM1ylWehjjPTix7BclVX5gkwBDVBWkQ4E8UpahLPNNc6EVpEpQljIzx4PR80qWdM5nShxkA6DuZQUi9K24sevOxkR46_40apDTv2nYgaX1DEm0jk98P38u3up48R3_8ijzx4MVcOiXZIhyuqMvWkkQJxd4Z1efDY6cyiOUFeYtzz4I0d-b98h-x_OPpsn9b-Rfgp3HFhLLQz9AyW2_HEPEes1Obr1iauAIpcD5k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5KAm1feiQ93CuClkALTnyu7MeQNN0ku9u0JDQPBSHLchKyay9rb-n213dGcrykhEL7ZowOW5qRvhnNfAJ4F8ioyAtfumnB6ZgxUG5WZLnLPZ14YaYQlFPu8HDU659Gh2fxWRubQ7kwlh-ic7iRZpj1mhScHNLbS9bQi8spZe-FCVrsq3RAR3q597VjjyKsY8kIYs9FOfM7dtJge1n3xn60SkP78zaweRO7ms1n_6G9YbU2nIUUc3K1NW-yLfXrD0bH__6vR_CghaVsx8rRY7ijyzVY3ynRJJ8s2CYzgaLGA78Gd4ftefw6fEcpY3KyOM_lWLJJldNlYLpmhiWTGqS0Cev0ZZclQ7DJsN8p7p-T6bymVzMbo6tZU7GaoruxUln90ONm8QRO9z-e7Pbd9r4GVyEMoYx0XDh5EffSnCPsygJfeoHSRZSr2C8UAhEEA4nSUkupAl8htkLrLJNZGqgo1b3wKayUVamfA0Nc4yV5iItRlKAw-anylYq54mGhg0hzB95fz5pQLZk53akxFpaGORA0isKMogNvu7JTS-Fxa6lNM_ldETm7oqA3Hotvo09ib3dwFPqHX8SxAxvX0iFQFel8RZa6mteCI_ROsS0HnlmhWXbHyVCMeg58MFP_l-8Q_YPjz-bpxb8U3oB7_ZPhQAwORkcv4b6NaiFH0StYaWZz_RqhU5O9MQryG3TbE7U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED9KC2Vf9mj38F4VbBQ2cOtnZMO-lHZZ-sqysbJ-2BCyLLeliW0SZyz763cnJQ4dZbB9M0YPW7qTfne6-wngdSCjIi986aYFp2PGQLlZkeUu93TihZlCUE65w6f9Tu8sOjqPz1fg3SIXxvJDtA430gyzXpOC13mxuyQNvbyqKXkvTNBgX4s6aF4RJPrckkcR1LFcBLHnopj5LTlpsLuse2M7WqOR_Xkb1rwJXc3e070H3xdfbUNOrnemTbajfv1B6Pi_v3Uf7s5BKduzUvQAVnS5AZt7JRrkoxnbZiZM1PjfN2D9dH4avwnfUMaYHM0ucjmUbFTldBWYnjDDkUkNUtKEdfmyq5Ih1GTYb42756ieTujV2EboatZUbEKx3ViprH7oYTN7CGfd91_2e-78tgZXIQihfHRcNnkRd9KcI-jKAl96gdJFlKvYLxTCEIQCidJSS6kCXyGyQtssk1kaqCjVnfARrJZVqZ8AQ1TjJXmIS1GUoCj5qfKVirniYaGDSHMH3iwmTag5lTndqDEUloQ5EDSKwoyiA6_asrUl8Li11LaZ-7aIHF9TyBuPxdf-B3Gwf3Ic-kefxMCBrYVwCFREOl2Rpa6mE8EReKfYlgOPrcwsu-NkJkYdB96amf_Ld4je4eCjeXr6L4W3YH1w0BUnh_3jZ3DHhrSQl-g5rDbjqX6BuKnJXhr1-A0vTxJk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+amygdala+modulates+neuronal+activation+in+the+hippocampus+in+response+to+spatial+novelty&rft.jtitle=Hippocampus&rft.au=Sheth%2C+Archana&rft.au=Berretta%2C+Sabina&rft.au=Lange%2C+Nicholas&rft.au=Eichenbaum%2C+Howard&rft.date=2008-01-01&rft.issn=1050-9631&rft.eissn=1098-1063&rft.volume=18&rft.issue=2&rft.spage=169&rft.epage=181&rft_id=info:doi/10.1002%2Fhipo.20380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hipo_20380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-9631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-9631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-9631&client=summon