The amygdala modulates neuronal activation in the hippocampus in response to spatial novelty
Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption...
Saved in:
Published in | Hippocampus Vol. 18; no. 2; pp. 169 - 181 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.01.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 1050-9631 1098-1063 1098-1063 |
DOI | 10.1002/hipo.20380 |
Cover
Abstract | Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle‐treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos‐immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses. © 2007 Wiley‐Liss, Inc. |
---|---|
AbstractList | Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle‐treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos‐immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses. © 2007 Wiley‐Liss, Inc. Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle-treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos-immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses.Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle-treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos-immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses. Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with this evidence, and with data indicating amygdala modulation of hippocampal activity, animal model investigations have shown that a disruption of amygdala activity induces neurochemical changes in the hippocampus that are similar to those detected in subjects with schizophrenia. With the present study, we used induction of the immediate early gene Fos, to test the hypothesis that the amygdala may affect neuronal activation of the hippocampus in response to different spatial environments (familiar, modified, and novel). Exploratory and anxiety related behaviors were also assessed. In vehicle-treated rats, exposure to a modified version of the familiar environment was associated with an increase of numerical densities of Fos-immunoreactive nuclei in sectors CA1 and CA2, while exposure to a completely novel environment was associated with an increase in sectors CA1, CA4, and DG, compared with the familiar environment. Pharmacological disruption of amygdala activity resulted in a failure to increase Fos induction in the hippocampus in response to these environments. Exploratory behavior in response to the different environments was not altered by manipulation of amygdala activity. These findings support the idea that the amygdala modulates spatial information processing in the hippocampus and may affect encoding of specific environmental features, while complex behavioral responses to environment may be the result of broader neural circuits. These findings also raise the possibility that amygdala abnormalities may contribute to impairments in cognitive information processing in subjects with major psychoses. |
Author | Eichenbaum, Howard Lange, Nicholas Sheth, Archana Berretta, Sabina |
Author_xml | – sequence: 1 givenname: Archana surname: Sheth fullname: Sheth, Archana organization: Department of Psychology, Boston University, Boston, Massachusetts – sequence: 2 givenname: Sabina surname: Berretta fullname: Berretta, Sabina organization: Laboratory for Translational Neuroscience, McLean Hospital, Belmont, Massachusetts – sequence: 3 givenname: Nicholas surname: Lange fullname: Lange, Nicholas organization: Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts – sequence: 4 givenname: Howard surname: Eichenbaum fullname: Eichenbaum, Howard email: hbe@bu.edu organization: Department of Psychology, Boston University, Boston, Massachusetts |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17960646$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1v1DAQQC1URD_gwg9AOXFASpmxN876iLbQFlb9kFpxQbK8zoQaEjvYTmH_Pdlu2wOqONmy3htr3j7b8cETY68RDhGAv79xQzjkIObwjO0hqHmJIMXO5l5BqaTAXbaf0g8AxArgBdvFWkmQM7nHvl3dUGH69ffGdKboQzN2JlMqPI0xeNMVxmZ3a7ILvnC-yBM9fTcEa_phTJunSGkIPlGRQ5GGiZwkH26py-uX7HlrukSv7s8Ddv3p49XipFyeH58uPixLOxMI5ZwjYt1WUjW1UHzF0QC31M4aW2FrORdS4tySIWMsR4u8UpVcmZXidqZIigP2djt3iOHXSCnr3iVLXWc8hTHpGjioqc8EvrkHx1VPjR6i601c64ceEwBbwMaQUqRWW5fvts_RuE4j6E1yvUmu75JPyrt_lMepT8G4hX-7jtb_IfXJ6cX5g1NuHZcy_Xl0TPypZS3qSn89O9ZHi-UXgZ8v9YX4CxLAoXM |
CitedBy_id | crossref_primary_10_7554_eLife_23040 crossref_primary_10_1016_j_brainres_2013_03_046 crossref_primary_10_3389_fnbeh_2022_852235 crossref_primary_10_1124_jpet_109_159186 crossref_primary_10_1073_pnas_0805284105 crossref_primary_10_1007_s10534_022_00420_6 crossref_primary_10_1002_hipo_22264 crossref_primary_10_1016_j_neuint_2017_01_014 crossref_primary_10_1242_jeb_244190 crossref_primary_10_1038_nn_2228 crossref_primary_10_1038_s41598_020_64224_9 crossref_primary_10_1037_a0017142 crossref_primary_10_1101_lm_1513109 crossref_primary_10_1002_mds_26154 crossref_primary_10_1016_j_neuroscience_2012_01_006 crossref_primary_10_7554_eLife_74758 crossref_primary_10_1515_REVNEURO_2010_21_1_1 crossref_primary_10_1126_science_1193785 crossref_primary_10_21307_ane_2019_029 crossref_primary_10_1016_j_neuroimage_2019_116404 crossref_primary_10_1515_rns_2011_019 crossref_primary_10_1007_s00213_020_05615_8 crossref_primary_10_1007_s00429_015_1015_x crossref_primary_10_1016_j_neuint_2018_07_005 crossref_primary_10_1007_s11571_010_9150_9 crossref_primary_10_1111_j_1460_9568_2010_07485_x crossref_primary_10_1016_j_neuroimage_2021_118563 crossref_primary_10_1002_mds_26460 crossref_primary_10_1016_j_physa_2018_03_098 crossref_primary_10_1016_j_nlm_2008_06_008 |
Cites_doi | 10.1016/0306-4522(95)00417-3 10.1111/j.1460-9568.2005.04002.x 10.1523/JNEUROSCI.19-03-01142.1999 10.1002/hipo.10189 10.1016/S0301-0082(98)00003-3 10.1523/JNEUROSCI.16-10-03334.1996 10.1002/hipo.1068 10.1037/0735-7044.119.1.145 10.1523/JNEUROSCI.15-03-02482.1995 10.1101/lm.6705 10.1523/JNEUROSCI.22-07-02835.2002 10.1037/0033-295X.102.3.419 10.1016/S0003-3472(73)80065-X 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P 10.1007/s00213-003-1761-y 10.1046/j.1460-9568.2002.02211.x 10.1073/pnas.0506034102 10.1016/S0893-133X(01)00225-1 10.1016/0006-8993(94)90481-2 10.1016/0304-3940(89)90819-7 10.1016/S0893-133X(00)00137-8 10.1016/j.mcn.2005.09.013 10.1523/JNEUROSCI.15-12-07796.1995 10.1016/S0166-4328(02)00045-1 10.1523/JNEUROSCI.13-02-00744.1993 10.1002/(SICI)1098-2396(199604)22:4<338::AID-SYN5>3.0.CO;2-C 10.1016/0006-8993(83)90095-1 10.1046/j.0953-816x.2001.01780.x 10.1016/j.biopsych.2004.01.004 10.1007/s000180050315 10.1037/0735-7044.116.4.530 10.1523/JNEUROSCI.20-21-08144.2000 10.1146/annurev.ne.14.030191.002225 10.1002/1096-9861(20010305)431:2<129::AID-CNE1060>3.0.CO;2-6 10.1016/j.schres.2005.09.021 10.1016/j.brainres.2005.05.052 10.1016/1040-8428(94)90021-3 10.1523/JNEUROSCI.0350-04.2004 10.1006/frne.1993.1006 10.1126/science.8351520 10.1002/hipo.20002 10.1098/rstb.2001.0945 10.1111/j.1749-6632.2000.tb06733.x 10.1126/science.3131879 10.1016/S0920-9964(98)00085-1 10.1001/archpsyc.1992.01820120009003 10.1016/S0306-4522(96)00371-5 10.1016/S0006-3223(98)00138-3 10.1097/00001756-199709080-00002 10.1002/hipo.450010207 10.1016/0014-4886(87)90086-0 10.1016/0006-3223(90)90039-5 10.1016/S0006-3223(97)80250-8 10.1192/bjp.172.2.110 10.1016/j.pscychresns.2005.05.006 10.1016/0165-1781(87)90108-9 10.1017/S0033291704004301 10.1002/cne.902900205 10.1016/0165-0270(89)90150-7 10.1523/JNEUROSCI.1958-04.2004 10.1006/nlme.1998.3875 10.1016/0920-1211(96)00021-6 10.1146/annurev.neuro.24.1.459 10.1007/s007020200073 10.1016/S0920-9964(01)00188-8 10.1007/BF00298263 10.1038/sj.mp.4000741 10.1002/cne.903560211 10.1016/S0165-0173(99)00041-7 10.1038/nn1190 10.1016/S0304-3940(97)00437-0 10.1001/archpsyc.1985.01790310046006 10.1002/cne.901890402 10.1016/0166-4328(94)90008-6 10.1038/1137 10.1176/appi.ajp.161.3.480 10.1085/jgp.107.6.663 10.1016/0006-8993(71)90358-1 10.1073/pnas.0504436102 10.1152/jn.1989.61.4.747 10.1002/hipo.10010 10.1176/jnp.9.3.460 10.1002/hipo.450040319 10.1002/hipo.20120 10.1016/j.biopsych.2006.06.025 10.1016/0306-4522(91)90247-L 10.1016/0091-3057(88)90413-3 10.1002/hipo.1065 10.1016/S0006-8993(97)00113-3 10.1016/S0920-9964(01)00324-3 10.1002/neu.10069 10.1523/JNEUROSCI.5205-03.2004 10.1093/brain/122.4.593 10.1046/j.1460-9568.2002.02092.x 10.1016/S0893-133X(01)00332-3 10.1523/JNEUROSCI.19-23-10530.1999 10.1101/lm.3.5.402 10.1038/sj.npp.1301038 10.1523/JNEUROSCI.23-17-06754.2003 10.1126/science.3037702 10.1016/j.neuroscience.2003.11.024 10.1002/hipo.1071 10.1007/BF01249119 10.1016/S0306-4522(96)00513-1 10.1523/JNEUROSCI.4964-05.2006 10.1016/S0301-0082(96)00021-4 10.1037/0735-7044.118.1.53 10.1016/S0006-3223(02)01541-X 10.1038/305527a0 10.1523/JNEUROSCI.21-14-05222.2001 10.1002/cne.903020308 10.1523/JNEUROSCI.1598-03.2004 10.1016/0166-4328(87)90034-9 10.1016/S0306-4522(96)00632-X 10.1242/jeb.199.1.173 |
ContentType | Journal Article |
Copyright | Copyright © 2007 Wiley‐Liss, Inc. (c) 2007 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2007 Wiley‐Liss, Inc. – notice: (c) 2007 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/hipo.20380 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1098-1063 |
EndPage | 181 |
ExternalDocumentID | 17960646 10_1002_hipo_20380 HIPO20380 ark_67375_WNG_DCLK31JQ_P |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH funderid: MH60450 – fundername: NIH funderid: MH066280; MH60450; NS37483 – fundername: NIMH NIH HHS grantid: MH066280 – fundername: NINDS NIH HHS grantid: NS37483 – fundername: NIMH NIH HHS grantid: MH60450 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XJT XPP XSW XV2 ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWD RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4310-821117f569d7392b21a02cef4dc51fc2236618ceaeaac21c125956bab92c49e63 |
IEDL.DBID | DR2 |
ISSN | 1050-9631 1098-1063 |
IngestDate | Fri Jul 11 07:57:04 EDT 2025 Mon Jul 21 05:55:02 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Tue Jul 01 02:05:52 EDT 2025 Wed Jan 22 16:22:00 EST 2025 Sun Sep 21 06:20:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor (c) 2007 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4310-821117f569d7392b21a02cef4dc51fc2236618ceaeaac21c125956bab92c49e63 |
Notes | NIMH - No. MH60450 ark:/67375/WNG-DCLK31JQ-P istex:84E75BD397CD11008D186A96B4BB5E0C90F7159F NIH - No. MH066280; No. MH60450; No. NS37483 ArticleID:HIPO20380 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17960646 |
PQID | 70209038 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_70209038 pubmed_primary_17960646 crossref_citationtrail_10_1002_hipo_20380 crossref_primary_10_1002_hipo_20380 wiley_primary_10_1002_hipo_20380_HIPO20380 istex_primary_ark_67375_WNG_DCLK31JQ_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01-01 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Hippocampus |
PublicationTitleAlternate | Hippocampus |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Chaudhuri A. 1997. Neural activity mapping with inducible transcription factors. Neuroreport 8: v-ix. Heckers S,Rauch SL,Goff D,Savage CR,Schacter DL,Fischman AJ,Alpert NM. 1998. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1: 318-323. Shirane R,Sato S,Sato K,Kameyama M,Ogawa A,Yoshimoto T,Hatazawa J,Ito M. 1992. Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Childs Nerv Syst 8: 118-123. Dragunow M,Faull R. 1989. The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29: 261-265. Hoffman GE,Smith MS,Verbalis JG. 1993. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 14: 173-213. Chagnac-Amitai Y, Connors BW. 1989. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 61: 747-758. Heckers S,Konradi C. 2002. Hippocampal neurons in schizophrenia. J Neural Transm 109: 891-905. Pare D,Dong J,Gaudreau H. 1995. Amygdalo-entorhinal relations and their reflection in the hippocampal formation: Generation of sharp sleep potentials. J Neurosci 15 (3 Pt 2): 2482-2503. Swanson LW. 1992. Brain maps: structure of the rat brain. Amsterdam: Elsevier. Morgan JI,Cohen DR,Hempstead JL,Curran T. 1987. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237: 192-197. McDonald AJ,Mascagni F,Guo L. 1996. Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71: 55-75. Rudy JW, Barrientos RM, O'Reilly RC. 2002. Hippocampal formation supports conditioning to memory of a context. Behav Neurosci 116: 530-538. Harrison PJ. 1999. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122 (Pt 4): 593-624. Campeau S,Falls WA,Cullinan WE,Helmreich DL,Davis M,Watson SJ. 1997. Elicitation and reduction of fear: Behavioural and neuroendocrine indices and brain induction of the immediate-early gene c-fos. Neuroscience 78: 1087-1104. Cangioli I,Baldi E,Mannaioni PF,Bucherelli C,Blandina P,Passani MB. 2002. Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release. Eur J Neurosci 16: 521-528. Pare D,Gaudreau H. 1996. Projection cells and interneurons of the lateral and basolateral amygdala: Distinct firing patterns and differential relation to theta and delta rhythms in conscious cats. J Neurosci 16: 3334-3350. Reynolds GP. 1983. Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305: 527-529. Richardson MP,Strange BA,Dolan RJ. 2004. Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci 7: 278-285. Schneider F,Weiss U,Kessler C,Salloum JB,Posse S,Grodd W,Muller-Gartner HW. 1998. Differential amygdala activation in schizophrenia during sadness. Schizophr Res 34: 133-142. Harrison PJ. 2004. The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174: 151-162. Jenkins TA,Amin E,Pearce JM,Brown MW,Aggleton JP. 2004. Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: A c-fos expression study. Neuroscience 124: 43-52. Benes FM,Berretta S. 2000. Amygdalo-entorhinal inputs to the hippocampal formation in relation to schizophrenia. Ann N Y Acad Sci 911: 293-304. Grimm R,Schicknick H,Riede I,Gundelfinger ED,Herdegen T,Zuschratter W,Tischmeyer W. 1997. Suppression of c-fos induction in rat brain impairs retention of a brightness discrimination reaction. Learn Mem 3: 402-413. Zhang ZJ,Reynolds GP. 2002. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55: 1-10. Pitkanen A,Stefanacci L,Farb CR,Go GG,LeDoux JE,Amaral DG. 1995. Intrinsic connections of the rat amygdaloid complex: Projections originating in the lateral nucleus. J Comp Neurol 356: 288-310. Morris RG. 2001. Episodic-like memory in animals: Psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356: 1453-1465. Pennypacker K. 1997. Transcription factors in brain injury. Histol Histopathol 12: 1125-1133. Vann SD,Brown MW,Erichsen JT,Aggleton JP. 2000. Using fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions. J Neurosci 20: 8144-8152. Zhu XO,McCabe BJ,Aggleton JP,Brown MW. 1997. Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neurosci Lett 229: 141-143. Piechaczyk M,Blanchard JM. 1994. c-fos proto-oncogene regulation and function. Crit Rev Oncol Hematol 17: 93-131. Barnett JH,Sahakian BJ,Werners U,Hill KE,Brazil R,Gallagher O,Bullmore ET,Jones PB. 2005. Visuospatial learning and executive function are independently impaired in first-episode psychosis. Psychol Med 35: 1031-1041. Weiss AP,Goff D,Schacter DL,Ditman T,Freudenreich O,Henderson D,Heckers S. 2006. Fronto-hippocampal function during temporal context monitoring in schizophrenia. Biol Psychiatry 60: 1268-1277. Muller RU,Stead M,Pach J. 1996. The hippocampus as a cognitive graph. J Gen Physiol 107: 663-694. Hatfield T,McGaugh JL. 1999. Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task. Neurobiol Learn Mem 71: 232-239. Weiss AP,Zalesak M,DeWitt I,Goff D,Kunkel L,Heckers S. 2004. Impaired hippocampal function during the detection of novel words in schizophrenia. Biol Psychiatry 55: 668-675. Lipska BK,Weinberger DR. 2000. To model a psychiatric disorder in animals: Schizophrenia as a reality test. Neuropsychopharmacology 23: 223-239. McNaughton BL,Barnes CA,Gerrard JL,Gothard K,Jung MW,Knierim JJ,Kudrimoti H,Qin Y,Skaggs WE,Suster M,Weaver KL. 1996. Deciphering the hippocampal polyglot: The hippocampus as a path integration system. J Exp Biol 199 (Pt 1): 173-185. Kim JJ,Lee HJ,Han JS,Packard MG. 2001. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J Neurosci 21: 5222-5228. Gisabella B,Bolshakov VY,Benes FM. 2005. Regulation of synaptic plasticity in a schizophrenia model. Proc Natl Acad Sci USA 102: 13301-13306. Aleman A,Kahn RS. 2005. Strange feelings: Do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol 77: 283-298. Hess US,Lynch G,Gall CM. 1995. Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. J Neurosci 15: 7796-7809. Benes FM,Khan Y,Vincent SL,Wickramasinghe R. 1996. Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22: 338-349. Hughes P,Dragunow M. 1995. Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47: 133-178. Simon P,Dupuis R,Costentin J. 1994. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61: 59-64. Holt DJ,Kunkel L,Weiss AP,Goff DC,Wright CI,Shin LM,Rauch SL,Hootnick J,Heckers S. 2006. Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia. Schizophr Res 82: 153-162. Weidenhofer J,Bowden NA,Scott RJ,Tooney PA. 2006. Altered gene expression in the amygdala in schizophrenia: Up-regulation of genes located in the cytomatrix active zone. Mol Cell Neurosci 31: 243-250. Frank LM,Stanley GB,Brown EN. 2004. Hippocampal plasticity across multiple days of exposure to novel environments. J Neurosci 24: 7681-7689. Ongur D,Zalesak M,Weiss AP,Ditman T,Titone D,Heckers S. 2005. Hippocampal activation during processing of previously seen visual stimulus pairs. Psychiatry Res 139: 191-198. Simpson MD,Slater P,Deakin JF,Royston MC,Skan WJ. 1989. Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci Lett 107: 211-215. Passani MB,Cangioli I,Baldi E,Bucherelli C,Mannaioni PF,Blandina P. 2001. Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur J Neurosci 14: 1522-1532. Reynolds GP,Czudek C,Andrews HB. 1990. Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 27: 1038-1044. Yang CQ,Kitamura N,Nishino N,Shirakawa O,Nakai H. 1998. Isotype-specific G protein abnormalities in the left superior temporal cortex and limbic structures of patients with chronic schizophrenia. Biol Psychiatry 43: 12-19. Lee I,Hunsaker MR,Kesner RP. 2005. The role of hippocampal subregions in detecting spatial novelty. Behav Neurosci 119: 145-153. McDonald AJ. 1998. Cortical pathways to the mammalian amygdala. Prog Neurobiol 55: 257-332. Treves A,Rolls ET. 1994. Computational analysis of the role of the hippocampus in memory. Hippocampus 4: 374-391. Huff NC,Rudy JW. 2004. The amygdala modulates hippocampus-dependent context memory formation and stores cue-shock associations. Behav Neurosci 118: 53-62. Van Groen TaWJ. 1990. Extrinsic projections from area ca1 of the rat hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 302: 515-528. Okada F,Crow TJ,Roberts GW. 1991. G proteins (Gi, Go) in the medial temporal lobe in schizophrenia: preliminary report of a neurochemical correlate of structural change. J Neural Transm Gen Sect 84: 147-153. McClelland JL,McNaughton BL,O'Reilly RC. 1995. Why there are complementary learning systems in the hippocampus and neocortex 2002; 16 2006; 31 1991; 14 1994; 654 2002; 12 2004; 7 2004; 161 2004; 24 1996; 71 1997; 3 1994; 61 1997b; 77 1997; 9 2003; 53 1978 1997; 8 1992; 8 1989; 107 1987; 237 2005; 102 2004; 174 2006; 26 1991; 84 1999; 55 1992; 49 2005; 77 1983; 305 1989; 61 2000; 911 2002; 134 2005; 119 1992 2001; 24 1996; 16 2001; 25 2001; 21 2004; 55 2001; 431 1973; 21 1990; 27 1995; 47 1971; 34 1996; 199 1998; 1 1994; 17 2005; 15 2005; 12 2003; 23 1997; 755 2004; 124 1990; 302 2002; 52 2000; 5 2002; 57 2005; 139 2002; 55 2005; 21 2002; 116 1999; 122 1988; 31 1999; 403 1998; 43 1998; 44 1996; 107 2006; 60 1997; 229 1999; 19 1991; 44 1997; 12 2002; 109 2001; 11 1996; 25 2001; 14 1980; 189 1998; 55 2005; 35 1996; 22 1991; 1 1987; 97 1995; 15 2000; 23 2000; 20 1996; 50 2006 1993; 261 1995; 356 2005; 1051 1988; 240 1985; 42 1998; 172 1989; 29 1987; 24 1993; 14 2006; 82 1987; 22 1993; 13 2002; 26 1983; 288 2004; 14 2000; 31 1997; 78 2002; 22 1997a; 76 1995; 102 1989; 290 1999; 71 2004; 118 1998; 34 2001; 356 1994; 4 e_1_2_1_119_1 e_1_2_1_111_1 e_1_2_1_81_1 e_1_2_1_115_1 e_1_2_1_20_1 e_1_2_1_66_1 e_1_2_1_89_1 e_1_2_1_24_1 e_1_2_1_62_1 e_1_2_1_43_1 e_1_2_1_85_1 e_1_2_1_28_1 e_1_2_1_47_1 Pare D (e_1_2_1_84_1) 1995; 15 e_1_2_1_92_1 e_1_2_1_103_1 e_1_2_1_122_1 e_1_2_1_107_1 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_77_1 e_1_2_1_8_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_73_1 e_1_2_1_96_1 e_1_2_1_4_1 Aleman A (e_1_2_1_3_1) 2005; 77 e_1_2_1_110_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_58_1 McNaughton BL (e_1_2_1_72_1) 1996; 199 e_1_2_1_82_1 e_1_2_1_114_1 e_1_2_1_118_1 e_1_2_1_40_1 e_1_2_1_67_1 e_1_2_1_121_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 e_1_2_1_86_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_29_1 e_1_2_1_93_1 e_1_2_1_70_1 e_1_2_1_102_1 e_1_2_1_106_1 e_1_2_1_7_1 e_1_2_1_55_1 e_1_2_1_78_1 e_1_2_1_13_1 e_1_2_1_51_1 e_1_2_1_97_1 e_1_2_1_32_1 e_1_2_1_74_1 Vann SD (e_1_2_1_109_1) 2000; 20 Hess US (e_1_2_1_46_1) 1995; 15 e_1_2_1_17_1 e_1_2_1_36_1 e_1_2_1_59_1 e_1_2_1_60_1 e_1_2_1_113_1 e_1_2_1_117_1 e_1_2_1_41_1 e_1_2_1_68_1 e_1_2_1_120_1 e_1_2_1_45_1 e_1_2_1_83_1 e_1_2_1_22_1 e_1_2_1_49_1 e_1_2_1_26_1 Swanson LW (e_1_2_1_104_1) 1992 Berretta S (e_1_2_1_18_1) 2006 e_1_2_1_101_1 e_1_2_1_71_1 e_1_2_1_90_1 Lipska BK (e_1_2_1_64_1) 2002; 22 e_1_2_1_105_1 e_1_2_1_56_1 e_1_2_1_79_1 e_1_2_1_98_1 e_1_2_1_6_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_75_1 e_1_2_1_94_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_112_1 Hughes P (e_1_2_1_53_1) 1995; 47 e_1_2_1_116_1 e_1_2_1_42_1 e_1_2_1_65_1 e_1_2_1_88_1 e_1_2_1_23_1 e_1_2_1_61_1 e_1_2_1_27_1 e_1_2_1_69_1 Akirav I (e_1_2_1_2_1) 1999; 19 e_1_2_1_108_1 Pennypacker K (e_1_2_1_87_1) 1997; 12 e_1_2_1_100_1 e_1_2_1_91_1 e_1_2_1_30_1 e_1_2_1_76_1 e_1_2_1_5_1 e_1_2_1_57_1 O'Keefe JA (e_1_2_1_80_1) 1978 e_1_2_1_99_1 e_1_2_1_34_1 e_1_2_1_11_1 e_1_2_1_95_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – reference: Pitkanen A,Stefanacci L,Farb CR,Go GG,LeDoux JE,Amaral DG. 1995. Intrinsic connections of the rat amygdaloid complex: Projections originating in the lateral nucleus. J Comp Neurol 356: 288-310. – reference: Gotman J,Levtova V. 1996. Amygdala-hippocampus relationships in temporal lobe seizures: A phase-coherence study. Epilepsy Res 25: 51-57. – reference: He J,Yamada K,Nabeshima T. 2002. A role of Fos expression in the CA3 region of the hippocampus in spatial memory formation in rats. Neuropsychopharmacology 26: 259-268. – reference: McIntyre CK,Miyashita T,Setlow B,Marjon KD,Steward O,Guzowski JF,McGaugh JL. 2005. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. Proc Natl Acad Sci USA 102: 10718-10723. – reference: Aleman A,Kahn RS. 2005. Strange feelings: Do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol 77: 283-298. – reference: Cangioli I,Baldi E,Mannaioni PF,Bucherelli C,Blandina P,Passani MB. 2002. Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release. Eur J Neurosci 16: 521-528. – reference: Sesack SR,Deutch AY,Roth RH,Bunney BS. 1989. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213-242. – reference: Heckers S,Zalesak M,Weiss AP,Ditman T,Titone D. 2004. Hippocampal activation during transitive inference in humans. Hippocampus 14: 153-162. – reference: Heckers S. 2001. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11: 520-528. – reference: Pennypacker K. 1997. Transcription factors in brain injury. Histol Histopathol 12: 1125-1133. – reference: McDonald AJ. 1998. Cortical pathways to the mammalian amygdala. Prog Neurobiol 55: 257-332. – reference: Okada F,Crow TJ,Roberts GW. 1991. G proteins (Gi, Go) in the medial temporal lobe in schizophrenia: preliminary report of a neurochemical correlate of structural change. J Neural Transm Gen Sect 84: 147-153. – reference: Campeau S,Falls WA,Cullinan WE,Helmreich DL,Davis M,Watson SJ. 1997. Elicitation and reduction of fear: Behavioural and neuroendocrine indices and brain induction of the immediate-early gene c-fos. Neuroscience 78: 1087-1104. – reference: Vazdarjanova A,Guzowski JF. 2004. Differences in hippocampal neuronal population responses to modifications of an environmental context: Evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci 24: 6489-6496. – reference: Benes FM. 2000. Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 31: 251-269. – reference: Morgan JI,Curran T. 1991. Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14: 421-451. – reference: Treit D,Fundytus M. 1988. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31: 959-962. – reference: O'Keefe J,Dostrovsky J. 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34: 171-175. – reference: Wirtshafter D. 2005. Cholinergic involvement in the cortical and hippocampal Fos expression induced in the rat by placement in a novel environment. Brain Res 1051: 57-65. – reference: Akirav I,Richter-Levin G. 1999. Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat. J Neurosci 19: 10530-10535. – reference: Wilson MA,McNaughton BL. 1993. Dynamics of the hippocampal ensemble code for space. Science 261: 1055-1058. – reference: Yang CQ,Kitamura N,Nishino N,Shirakawa O,Nakai H. 1998. Isotype-specific G protein abnormalities in the left superior temporal cortex and limbic structures of patients with chronic schizophrenia. Biol Psychiatry 43: 12-19. – reference: Kim JJ,Lee HJ,Han JS,Packard MG. 2001. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J Neurosci 21: 5222-5228. – reference: Heckers S,Konradi C. 2002. Hippocampal neurons in schizophrenia. J Neural Transm 109: 891-905. – reference: McClelland JL,McNaughton BL,O'Reilly RC. 1995. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102: 419-457. – reference: Zhu XO,McCabe BJ,Aggleton JP,Brown MW. 1997. Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neurosci Lett 229: 141-143. – reference: Benes FM,Wickramasinghe R,Vincent SL,Khan Y,Todtenkopf M. 1997. Uncoupling of GABA(A) and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain. Brain Res 755: 121-129. – reference: Pare D,Gaudreau H. 1996. Projection cells and interneurons of the lateral and basolateral amygdala: Distinct firing patterns and differential relation to theta and delta rhythms in conscious cats. J Neurosci 16: 3334-3350. – reference: Richardson MP,Strange BA,Dolan RJ. 2004. Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci 7: 278-285. – reference: Cain DP. 1987. Kindling by repeated intraperitoneal or intracerebral injection of picrotoxin transfers to electrical kindling. Exp Neurol 97: 243-254. – reference: Herrera DG,Robertson HA. 1996. Activation of c-fos in the brain. Prog Neurobiol 50: 83-107. – reference: Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO. 1993. Induction of c-fos mRNA by kindled seizures; complex relationship with neuronal burst firing. J Neurosci 13: 744-751. – reference: Breier A,Buchanan RW,Elkashef A,Munson RC,Kirkpatrick B,Gellad F. 1992. Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch Gen Psychiatry 49: 921-926. – reference: Herringa RJ,Roseboom PH,Kalin NH. 2006. Decreased amygdala CRF-binding protein mRNA in post-mortem tissue from male but not female bipolar and schizophrenic subjects. Neuropsychopharmacology 31: 1822-1831. – reference: Korpi ER,Kleinman JE,Goodman SI,Wyatt RJ. 1987. Neurotransmitter amino acids in post-mortem brains of chronic schizophrenic patients. Psychiatry Res 22: 291-301. – reference: Muller RU,Stead M,Pach J. 1996. The hippocampus as a cognitive graph. J Gen Physiol 107: 663-694. – reference: Frank LM,Stanley GB,Brown EN. 2004. Hippocampal plasticity across multiple days of exposure to novel environments. J Neurosci 24: 7681-7689. – reference: Jenkins TA,Dias R,Amin E,Aggleton JP. 2002. Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei. Eur J Neurosci 16: 1425-1432. – reference: Wan H,Aggleton JP,Brown MW. 1999. Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci 19: 1142-1148. – reference: Weidenhofer J,Bowden NA,Scott RJ,Tooney PA. 2006. Altered gene expression in the amygdala in schizophrenia: Up-regulation of genes located in the cytomatrix active zone. Mol Cell Neurosci 31: 243-250. – reference: Hughes P,Dragunow M. 1995. Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47: 133-178. – reference: Reynolds GP,Czudek C,Andrews HB. 1990. Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 27: 1038-1044. – reference: Vann SD,Brown MW,Erichsen JT,Aggleton JP. 2000. Using fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions. J Neurosci 20: 8144-8152. – reference: Archer J. 1973. Tests for emotionality in rats and mice: A review. Anim Behav 21: 205-235. – reference: Weiss AP,Zalesak M,DeWitt I,Goff D,Kunkel L,Heckers S. 2004. Impaired hippocampal function during the detection of novel words in schizophrenia. Biol Psychiatry 55: 668-675. – reference: Hatfield T,McGaugh JL. 1999. Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task. Neurobiol Learn Mem 71: 232-239. – reference: Berretta S,Munno DW,Benes FM. 2001. Amygdalar activation alters the hippocampal GABA system: "Partial" modelling for postmortem changes in schizophrenia. J Comp Neurol 431: 129-138. – reference: Weiss AP,Schacter DL,Goff DC,Rauch SL,Alpert NM,Fischman AJ,Heckers S. 2003. Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol Psychiatry 53: 48-55. – reference: Pikkarainen M,Ronkko S,Savander V,Insausti R,Pitkanen A. 1999. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403: 229-260. – reference: Benes FM,Kwok EW,Vincent SL,Todtenkopf MS. 1998. A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44: 88-97. – reference: Gisabella B,Bolshakov VY,Benes FM. 2005. Regulation of synaptic plasticity in a schizophrenia model. Proc Natl Acad Sci USA 102: 13301-13306. – reference: Heckers S,Rauch SL,Goff D,Savage CR,Schacter DL,Fischman AJ,Alpert NM. 1998. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1: 318-323. – reference: Reynolds GP. 1983. Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305: 527-529. – reference: Weiss AP,Goff D,Schacter DL,Ditman T,Freudenreich O,Henderson D,Heckers S. 2006. Fronto-hippocampal function during temporal context monitoring in schizophrenia. Biol Psychiatry 60: 1268-1277. – reference: Carletti R,Corsi M,Melotto S,Caberlotto L. 2005. Down-regulation of amygdala preprotachykinin A mRNA but not 3H-SP receptor binding sites in subjects affected by mood disorders and schizophrenia. Eur J Neurosci 21: 1712-1718. – reference: Shirane R,Sato S,Sato K,Kameyama M,Ogawa A,Yoshimoto T,Hatazawa J,Ito M. 1992. Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Childs Nerv Syst 8: 118-123. – reference: Berretta S,Pantazopolous H,Benes FM,Lange N. 2006. GABAergic neurotransmission abnormalities in the amygdala of subjects diagnosed with bipolar disorder or schizophrenia, ACNP, Hollywood, Florida. – reference: Huff NC,Wright-Hardesty KJ,Higgins EA,Matus-Amat P,Rudy JW. 2005. Context pre-exposure obscures amygdala modulation of contextual-fear conditioning. Learn Mem 12: 456-460. – reference: Best PJ,White AM,Minai A. 2001. Spatial processing in the brain: The activity of hippocampal place cells. Annu Rev Neurosci 24: 459-486. – reference: Morris RG. 2001. Episodic-like memory in animals: Psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356: 1453-1465. – reference: O'Keefe JA,Nadel L. 1978. The Hippocampus as a Cognitive Map, New York: Oxford University Press. – reference: Sagar SM,Sharp FR,Curran T. 1988. Expression of c-fos protein in brain: Metabolic mapping at the cellular level. Science 240: 1328-1331. – reference: McNaughton N,Morris RG. 1987. Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behav Brain Res 24: 39-46. – reference: Swanson LW. 1992. Brain maps: structure of the rat brain. Amsterdam: Elsevier. – reference: Piechaczyk M,Blanchard JM. 1994. c-fos proto-oncogene regulation and function. Crit Rev Oncol Hematol 17: 93-131. – reference: Van Groen TaWJ. 1990. Extrinsic projections from area ca1 of the rat hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 302: 515-528. – reference: McDonald AJ,Mascagni F,Guo L. 1996. Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71: 55-75. – reference: Simon P,Dupuis R,Costentin J. 1994. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61: 59-64. – reference: Pare D,Dong J,Gaudreau H. 1995. Amygdalo-entorhinal relations and their reflection in the hippocampal formation: Generation of sharp sleep potentials. J Neurosci 15 (3 Pt 2): 2482-2503. – reference: Benes FM,Todtenkopf MS,Kostoulakos P. 2001. GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus 11: 482-491. – reference: Chaudhuri A. 1997. Neural activity mapping with inducible transcription factors. Neuroreport 8: v-ix. – reference: Ongur D,Zalesak M,Weiss AP,Ditman T,Titone D,Heckers S. 2005. Hippocampal activation during processing of previously seen visual stimulus pairs. Psychiatry Res 139: 191-198. – reference: Zhang ZJ,Reynolds GP. 2002. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55: 1-10. – reference: Huff NC,Frank M,Wright-Hardesty K,Sprunger D,Matus-Amat P,Higgins E,Rudy JW. 2006. Amygdala regulation of immediate-early gene expression in the hippocampus induced by contextual fear conditioning. J Neurosci 26: 1616-1623. – reference: Lisman JE,Otmakhova NA. 2001. Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11: 551-568. – reference: Bogerts B,Meertz E,Schonfeldt-Bausch R. 1985. Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 42: 784-791. – reference: McNaughton BL,Barnes CA,Gerrard JL,Gothard K,Jung MW,Knierim JJ,Kudrimoti H,Qin Y,Skaggs WE,Suster M,Weaver KL. 1996. Deciphering the hippocampal polyglot: The hippocampus as a path integration system. J Exp Biol 199 (Pt 1): 173-185. – reference: Holt DJ,Kunkel L,Weiss AP,Goff DC,Wright CI,Shin LM,Rauch SL,Hootnick J,Heckers S. 2006. Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia. Schizophr Res 82: 153-162. – reference: Passani MB,Cangioli I,Baldi E,Bucherelli C,Mannaioni PF,Blandina P. 2001. Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur J Neurosci 14: 1522-1532. – reference: Harrison PJ. 2004. The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174: 151-162. – reference: Lipska BK,Halim ND,Segal PN,Weinberger DR. 2002. Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat. J Neurosci 22: 2835-2842. – reference: McDonald AJ. 1991. Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44: 1-14. – reference: Kosaka H,Omori M,Murata T,Iidaka T,Yamada H,Okada T,Takahashi T,Sadato N,Itoh H,Yonekura Y and others. 2002. Differential amygdala response during facial recognition in patients with schizophrenia: An fMRI study. Schizophr Res 57: 87-95. – reference: Tischmeyer W,Grimm R. 1999. Activation of immediate early genes and memory formation. Cell Mol Life Sci 55: 564-574. – reference: Dragunow M,Faull R. 1989. The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29: 261-265. – reference: Hoffman GE,Le WW,Abbud R,Lee WS,Smith MS. 1994. Use of Fos-related antigens (FRAs) as markers of neuronal activity: FRA changes in dopamine neurons during proestrus, pregnancy and lactation. Brain Res 654: 207-215. – reference: Benes FM,Khan Y,Vincent SL,Wickramasinghe R. 1996. Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22: 338-349. – reference: Lipska BK,Weinberger DR. 2000. To model a psychiatric disorder in animals: Schizophrenia as a reality test. Neuropsychopharmacology 23: 223-239. – reference: Grimm R,Schicknick H,Riede I,Gundelfinger ED,Herdegen T,Zuschratter W,Tischmeyer W. 1997. Suppression of c-fos induction in rat brain impairs retention of a brightness discrimination reaction. Learn Mem 3: 402-413. – reference: Simpson MD,Slater P,Deakin JF,Royston MC,Skan WJ. 1989. Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci Lett 107: 211-215. – reference: Harrison PJ. 1999. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122 (Pt 4): 593-624. – reference: Chagnac-Amitai Y, Connors BW. 1989. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 61: 747-758. – reference: Savander V,Ledoux JE,Pitkanen A. 1997a. Interamygdaloid projections of the basal and accessory basal nuclei of the rat amygdaloid complex. Neuroscience 76: 725-735. – reference: Savander V,Miettinen R,Ledoux JE,Pitkanen A. 1997b. Lateral nucleus of the rat amygdala is reciprocally connected with basal and accessory basal nuclei: A light and electron microscopic study. Neuroscience 77: 767-781. – reference: Benes FM,Berretta S. 2001. GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25: 1-27. – reference: Schneider F,Weiss U,Kessler C,Salloum JB,Posse S,Grodd W,Muller-Gartner HW. 1998. Differential amygdala activation in schizophrenia during sadness. Schizophr Res 34: 133-142. – reference: Lee I,Hunsaker MR,Kesner RP. 2005. The role of hippocampal subregions in detecting spatial novelty. Behav Neurosci 119: 145-153. – reference: Roberts GW,Ferrier IN,Lee Y,Crow TJ,Johnstone EC,Owens DG,Bacarese-Hamilton AJ,McGregor G,O'Shaughnessey D,Polak JM, Bloom SR. 1983. Peptides, the limbic lobe and schizophrenia. Brain Res 288: 199-211. – reference: Hoffman GE,Smith MS,Verbalis JG. 1993. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 14: 173-213. – reference: Pape HC,Narayanan RT,Smid J,Stork O,Seidenbecher T. 2005. Theta activity in neurons and networks of the amygdala related to long-term fear memory. Hippocampus 15: 874-880. – reference: Bostock E,Muller RU,Kubie JL. 1991. Experience-dependent modifications of hippocampal place cell firing. Hippocampus 1: 193-205. – reference: Guzowski JF. 2002. Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus 12: 86-104. – reference: Montag-Sallaz M,Buonviso N. 2002. Altered odor-induced expression of c-fos and arg 3.1 immediate early genes in the olfactory system after familiarization with an odor. J Neurobiol 52: 61-72. – reference: Hess US,Lynch G,Gall CM. 1995. Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. J Neurosci 15: 7796-7809. – reference: Amaral DG,Cowan WM. 1980. Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189: 573-591. – reference: Matus-Amat P, Higgins EA, Barrientos RM, Rudy JW. 2004. The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations. J Neurosci 24: 2431-2439. – reference: Barrientos RM, O'Reilly RC, Rudy JW. 2002. Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration. Behav Brain Res 134: 299-306. – reference: Huff NC,Rudy JW. 2004. The amygdala modulates hippocampus-dependent context memory formation and stores cue-shock associations. Behav Neurosci 118: 53-62. – reference: Williams LM,Das P,Harris AW,Liddell BB,Brammer MJ,Olivieri G,Skerrett D,Phillips ML,David AS,Peduto A, Gordon E. 2004. Dysregulation of arousal and amygdala-prefrontal systems in paranoid schizophrenia. Am J Psychiatry 161: 480-489. – reference: Barnett JH,Sahakian BJ,Werners U,Hill KE,Brazil R,Gallagher O,Bullmore ET,Jones PB. 2005. Visuospatial learning and executive function are independently impaired in first-episode psychosis. Psychol Med 35: 1031-1041. – reference: Lawrie SM,Abukmeil SS. 1998. Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172: 110-120. – reference: Berretta S,Lange N,Bhattacharyya S,Sebro R,Garces J,Benes FM. 2004. Long-term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons. Hippocampus 14: 876-894. – reference: Eastwood SL,Harrison PJ. 2000. Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: A study of complexin mRNAs. Mol Psychiatry 5: 425-432. – reference: Wilson IA,Ikonen S,Gureviciene I,McMahan RW,Gallagher M,Eichenbaum H,Tanila H. 2004. Cognitive aging and the hippocampus: How old rats represent new environments. J Neurosci 24: 3870-3878. – reference: LaLumiere RT,Buen TV,McGaugh JL. 2003. Post-training intra-basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning. J Neurosci 23: 6754-6758. – reference: Rudy JW, Barrientos RM, O'Reilly RC. 2002. Hippocampal formation supports conditioning to memory of a context. Behav Neurosci 116: 530-538. – reference: Benes FM,Berretta S. 2000. Amygdalo-entorhinal inputs to the hippocampal formation in relation to schizophrenia. Ann N Y Acad Sci 911: 293-304. – reference: Jenkins TA,Amin E,Pearce JM,Brown MW,Aggleton JP. 2004. Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: A c-fos expression study. Neuroscience 124: 43-52. – reference: Morgan JI,Cohen DR,Hempstead JL,Curran T. 1987. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237: 192-197. – reference: Treves A,Rolls ET. 1994. Computational analysis of the role of the hippocampus in memory. Hippocampus 4: 374-391. – reference: Arnold SE. 1997. The medial temporal lobe in schizophrenia. J Neuropsychiatry Clin Neurosci 9: 460-470. – volume: 22 start-page: 338 year: 1996 end-page: 349 article-title: Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain publication-title: Synapse – volume: 15 start-page: 874 year: 2005 end-page: 880 article-title: Theta activity in neurons and networks of the amygdala related to long‐term fear memory publication-title: Hippocampus – volume: 5 start-page: 425 year: 2000 end-page: 432 article-title: Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: A study of complexin mRNAs publication-title: Mol Psychiatry – volume: 71 start-page: 55 year: 1996 end-page: 75 article-title: Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat publication-title: Neuroscience – volume: 302 start-page: 515 year: 1990 end-page: 528 article-title: Extrinsic projections from area ca1 of the rat hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation projections publication-title: J Comp Neurol – volume: 356 start-page: 288 year: 1995 end-page: 310 article-title: Intrinsic connections of the rat amygdaloid complex: Projections originating in the lateral nucleus publication-title: J Comp Neurol – volume: 35 start-page: 1031 year: 2005 end-page: 1041 article-title: Visuospatial learning and executive function are independently impaired in first‐episode psychosis publication-title: Psychol Med – volume: 34 start-page: 171 year: 1971 end-page: 175 article-title: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely‐moving rat publication-title: Brain Res – volume: 15 start-page: 2482 issue: 3 Pt 2 year: 1995 end-page: 2503 article-title: Amygdalo‐entorhinal relations and their reflection in the hippocampal formation: Generation of sharp sleep potentials publication-title: J Neurosci – volume: 1 start-page: 318 year: 1998 end-page: 323 article-title: Impaired recruitment of the hippocampus during conscious recollection in schizophrenia publication-title: Nat Neurosci – volume: 654 start-page: 207 year: 1994 end-page: 215 article-title: Use of Fos‐related antigens (FRAs) as markers of neuronal activity: FRA changes in dopamine neurons during proestrus, pregnancy and lactation publication-title: Brain Res – volume: 3 start-page: 402 year: 1997 end-page: 413 article-title: Suppression of c‐fos induction in rat brain impairs retention of a brightness discrimination reaction publication-title: Learn Mem – volume: 31 start-page: 959 year: 1988 end-page: 962 article-title: Thigmotaxis as a test for anxiolytic activity in rats publication-title: Pharmacol Biochem Behav – volume: 19 start-page: 1142 year: 1999 end-page: 1148 article-title: Different contributions of the hippocampus and perirhinal cortex to recognition memory publication-title: J Neurosci – volume: 356 start-page: 1453 year: 2001 end-page: 1465 article-title: Episodic‐like memory in animals: Psychological criteria, neural mechanisms and the value of episodic‐like tasks to investigate animal models of neurodegenerative disease publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 23 start-page: 6754 year: 2003 end-page: 6758 article-title: Post‐training intra‐basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning publication-title: J Neurosci – volume: 4 start-page: 374 year: 1994 end-page: 391 article-title: Computational analysis of the role of the hippocampus in memory publication-title: Hippocampus – volume: 305 start-page: 527 year: 1983 end-page: 529 article-title: Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia publication-title: Nature – volume: 71 start-page: 232 year: 1999 end-page: 239 article-title: Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task publication-title: Neurobiol Learn Mem – volume: 11 start-page: 482 year: 2001 end-page: 491 article-title: GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives publication-title: Hippocampus – volume: 23 start-page: 223 year: 2000 end-page: 239 article-title: To model a psychiatric disorder in animals: Schizophrenia as a reality test publication-title: Neuropsychopharmacology – volume: 199 start-page: 173 issue: Pt 1 year: 1996 end-page: 185 article-title: Deciphering the hippocampal polyglot: The hippocampus as a path integration system publication-title: J Exp Biol – volume: 12 start-page: 456 year: 2005 end-page: 460 article-title: Context pre‐exposure obscures amygdala modulation of contextual‐fear conditioning publication-title: Learn Mem – volume: 240 start-page: 1328 year: 1988 end-page: 1331 article-title: Expression of c‐fos protein in brain: Metabolic mapping at the cellular level publication-title: Science – volume: 11 start-page: 520 year: 2001 end-page: 528 article-title: Neuroimaging studies of the hippocampus in schizophrenia publication-title: Hippocampus – volume: 14 start-page: 173 year: 1993 end-page: 213 article-title: c‐Fos and related immediate early gene products as markers of activity in neuroendocrine systems publication-title: Front Neuroendocrinol – volume: 431 start-page: 129 year: 2001 end-page: 138 article-title: Amygdalar activation alters the hippocampal GABA system: “Partial” modelling for postmortem changes in schizophrenia publication-title: J Comp Neurol – volume: 229 start-page: 141 year: 1997 end-page: 143 article-title: Differential activation of the rat hippocampus and perirhinal cortex by novel visual stimuli and a novel environment publication-title: Neurosci Lett – volume: 61 start-page: 747 year: 1989 end-page: 758 article-title: Horizontal spread of synchronized activity in neocortex and its control by GABA‐mediated inhibition publication-title: J Neurophysiol – volume: 50 start-page: 83 year: 1996 end-page: 107 article-title: Activation of c‐fos in the brain publication-title: Prog Neurobiol – volume: 14 start-page: 1522 year: 2001 end-page: 1532 article-title: Histamine H3 receptor‐mediated impairment of contextual fear conditioning and in‐vivo inhibition of cholinergic transmission in the rat basolateral amygdala publication-title: Eur J Neurosci – volume: 25 start-page: 51 year: 1996 end-page: 57 article-title: Amygdala‐hippocampus relationships in temporal lobe seizures: A phase‐coherence study publication-title: Epilepsy Res – volume: 24 start-page: 7681 year: 2004 end-page: 7689 article-title: Hippocampal plasticity across multiple days of exposure to novel environments publication-title: J Neurosci – year: 1992 – volume: 261 start-page: 1055 year: 1993 end-page: 1058 article-title: Dynamics of the hippocampal ensemble code for space publication-title: Science – volume: 77 start-page: 283 year: 2005 end-page: 298 article-title: Strange feelings: Do amygdala abnormalities dysregulate the emotional brain in schizophrenia? publication-title: Prog Neurobiol – volume: 24 start-page: 3870 year: 2004 end-page: 3878 article-title: Cognitive aging and the hippocampus: How old rats represent new environments publication-title: J Neurosci – volume: 16 start-page: 521 year: 2002 end-page: 528 article-title: Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release publication-title: Eur J Neurosci – volume: 122 start-page: 593 issue: Pt 4 year: 1999 end-page: 624 article-title: The neuropathology of schizophrenia. A critical review of the data and their interpretation publication-title: Brain – volume: 31 start-page: 243 year: 2006 end-page: 250 article-title: Altered gene expression in the amygdala in schizophrenia: Up‐regulation of genes located in the cytomatrix active zone publication-title: Mol Cell Neurosci – volume: 43 start-page: 12 year: 1998 end-page: 19 article-title: Isotype‐specific G protein abnormalities in the left superior temporal cortex and limbic structures of patients with chronic schizophrenia publication-title: Biol Psychiatry – volume: 20 start-page: 8144 year: 2000 end-page: 8152 article-title: Using fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions publication-title: J Neurosci – volume: 82 start-page: 153 year: 2006 end-page: 162 article-title: Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia publication-title: Schizophr Res – volume: 139 start-page: 191 year: 2005 end-page: 198 article-title: Hippocampal activation during processing of previously seen visual stimulus pairs publication-title: Psychiatry Res – volume: 107 start-page: 663 year: 1996 end-page: 694 article-title: The hippocampus as a cognitive graph publication-title: J Gen Physiol – volume: 84 start-page: 147 year: 1991 end-page: 153 article-title: G proteins (Gi, Go) in the medial temporal lobe in schizophrenia: preliminary report of a neurochemical correlate of structural change publication-title: J Neural Transm Gen Sect – volume: 8 start-page: 118 year: 1992 end-page: 123 article-title: Cerebral blood flow and oxygen metabolism in infants with hydrocephalus publication-title: Childs Nerv Syst – year: 1978 – volume: 17 start-page: 93 year: 1994 end-page: 131 article-title: c‐fos proto‐oncogene regulation and function publication-title: Crit Rev Oncol Hematol – volume: 13 start-page: 744 year: 1993 end-page: 751 article-title: Induction of c‐fos mRNA by kindled seizures; complex relationship with neuronal burst firing publication-title: J Neurosci – volume: 21 start-page: 205 year: 1973 end-page: 235 article-title: Tests for emotionality in rats and mice: A review publication-title: Anim Behav – volume: 25 start-page: 1 year: 2001 end-page: 27 article-title: GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder publication-title: Neuropsychopharmacology – volume: 24 start-page: 459 year: 2001 end-page: 486 article-title: Spatial processing in the brain: The activity of hippocampal place cells publication-title: Annu Rev Neurosci – volume: 97 start-page: 243 year: 1987 end-page: 254 article-title: Kindling by repeated intraperitoneal or intracerebral injection of picrotoxin transfers to electrical kindling publication-title: Exp Neurol – volume: 172 start-page: 110 year: 1998 end-page: 120 article-title: Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies publication-title: Br J Psychiatry – volume: 49 start-page: 921 year: 1992 end-page: 926 article-title: Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures publication-title: Arch Gen Psychiatry – volume: 44 start-page: 1 year: 1991 end-page: 14 article-title: Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat publication-title: Neuroscience – volume: 52 start-page: 61 year: 2002 end-page: 72 article-title: Altered odor‐induced expression of c‐fos and arg 3.1 immediate early genes in the olfactory system after familiarization with an odor publication-title: J Neurobiol – volume: 22 start-page: 2835 year: 2002 end-page: 2842 article-title: Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat publication-title: J Neurosci – volume: 76 start-page: 725 year: 1997a end-page: 735 article-title: Interamygdaloid projections of the basal and accessory basal nuclei of the rat amygdaloid complex publication-title: Neuroscience – volume: 47 start-page: 133 year: 1995 end-page: 178 article-title: Induction of immediate‐early genes and the control of neurotransmitter‐regulated gene expression within the nervous system publication-title: Pharmacol Rev – volume: 44 start-page: 88 year: 1998 end-page: 97 article-title: A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives publication-title: Biol Psychiatry – volume: 14 start-page: 153 year: 2004 end-page: 162 article-title: Hippocampal activation during transitive inference in humans publication-title: Hippocampus – volume: 55 start-page: 257 year: 1998 end-page: 332 article-title: Cortical pathways to the mammalian amygdala publication-title: Prog Neurobiol – volume: 118 start-page: 53 year: 2004 end-page: 62 article-title: The amygdala modulates hippocampus‐dependent context memory formation and stores cue‐shock associations publication-title: Behav Neurosci – volume: 60 start-page: 1268 year: 2006 end-page: 1277 article-title: Fronto‐hippocampal function during temporal context monitoring in schizophrenia publication-title: Biol Psychiatry – volume: 31 start-page: 1822 year: 2006 end-page: 1831 article-title: Decreased amygdala CRF‐binding protein mRNA in post‐mortem tissue from male but not female bipolar and schizophrenic subjects publication-title: Neuropsychopharmacology – volume: 24 start-page: 6489 year: 2004 end-page: 6496 article-title: Differences in hippocampal neuronal population responses to modifications of an environmental context: Evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles publication-title: J Neurosci – volume: 102 start-page: 13301 year: 2005 end-page: 13306 article-title: Regulation of synaptic plasticity in a schizophrenia model publication-title: Proc Natl Acad Sci USA – volume: 119 start-page: 145 year: 2005 end-page: 153 article-title: The role of hippocampal subregions in detecting spatial novelty publication-title: Behav Neurosci – volume: 237 start-page: 192 year: 1987 end-page: 197 article-title: Mapping patterns of c‐fos expression in the central nervous system after seizure publication-title: Science – volume: 755 start-page: 121 year: 1997 end-page: 129 article-title: Uncoupling of GABA(A) and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain publication-title: Brain Res – volume: 53 start-page: 48 year: 2003 end-page: 55 article-title: Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia publication-title: Biol Psychiatry – volume: 1 start-page: 193 year: 1991 end-page: 205 article-title: Experience‐dependent modifications of hippocampal place cell firing publication-title: Hippocampus – volume: 102 start-page: 10718 year: 2005 end-page: 10723 article-title: Memory‐influencing intra‐basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 1712 year: 2005 end-page: 1718 article-title: Down‐regulation of amygdala preprotachykinin A mRNA but not 3H‐SP receptor binding sites in subjects affected by mood disorders and schizophrenia publication-title: Eur J Neurosci – volume: 24 start-page: 39 year: 1987 end-page: 46 article-title: Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats publication-title: Behav Brain Res – volume: 29 start-page: 261 year: 1989 end-page: 265 article-title: The use of c‐fos as a metabolic marker in neuronal pathway tracing publication-title: J Neurosci Methods – volume: 8 start-page: v year: 1997 end-page: ix article-title: Neural activity mapping with inducible transcription factors publication-title: Neuroreport – volume: 22 start-page: 291 year: 1987 end-page: 301 article-title: Neurotransmitter amino acids in post‐mortem brains of chronic schizophrenic patients publication-title: Psychiatry Res – volume: 26 start-page: 259 year: 2002 end-page: 268 article-title: A role of Fos expression in the CA3 region of the hippocampus in spatial memory formation in rats publication-title: Neuropsychopharmacology – volume: 174 start-page: 151 year: 2004 end-page: 162 article-title: The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications publication-title: Psychopharmacology (Berl) – volume: 12 start-page: 86 year: 2002 end-page: 104 article-title: Insights into immediate‐early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches publication-title: Hippocampus – volume: 9 start-page: 460 year: 1997 end-page: 470 article-title: The medial temporal lobe in schizophrenia publication-title: J Neuropsychiatry Clin Neurosci – volume: 42 start-page: 784 year: 1985 end-page: 791 article-title: Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage publication-title: Arch Gen Psychiatry – volume: 7 start-page: 278 year: 2004 end-page: 285 article-title: Encoding of emotional memories depends on amygdala and hippocampus and their interactions publication-title: Nat Neurosci – volume: 290 start-page: 213 year: 1989 end-page: 242 article-title: Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract‐tracing study with Phaseolus vulgaris leucoagglutinin publication-title: J Comp Neurol – volume: 189 start-page: 573 year: 1980 end-page: 591 article-title: Subcortical afferents to the hippocampal formation in the monkey publication-title: J Comp Neurol – volume: 27 start-page: 1038 year: 1990 end-page: 1044 article-title: Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia publication-title: Biol Psychiatry – volume: 102 start-page: 419 year: 1995 end-page: 457 article-title: Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory publication-title: Psychol Rev – volume: 134 start-page: 299 year: 2002 end-page: 306 article-title: Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration publication-title: Behav Brain Res – volume: 21 start-page: 5222 year: 2001 end-page: 5228 article-title: Amygdala is critical for stress‐induced modulation of hippocampal long‐term potentiation and learning publication-title: J Neurosci – volume: 19 start-page: 10530 year: 1999 end-page: 10535 article-title: Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat publication-title: J Neurosci – volume: 12 start-page: 1125 year: 1997 end-page: 1133 article-title: Transcription factors in brain injury publication-title: Histol Histopathol – volume: 288 start-page: 199 year: 1983 end-page: 211 article-title: Peptides, the limbic lobe and schizophrenia publication-title: Brain Res – volume: 78 start-page: 1087 year: 1997 end-page: 1104 article-title: Elicitation and reduction of fear: Behavioural and neuroendocrine indices and brain induction of the immediate‐early gene c‐fos publication-title: Neuroscience – volume: 124 start-page: 43 year: 2004 end-page: 52 article-title: Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: A c‐fos expression study publication-title: Neuroscience – volume: 116 start-page: 530 year: 2002 end-page: 538 article-title: Hippocampal formation supports conditioning to memory of a context publication-title: Behav Neurosci – volume: 1051 start-page: 57 year: 2005 end-page: 65 article-title: Cholinergic involvement in the cortical and hippocampal Fos expression induced in the rat by placement in a novel environment publication-title: Brain Res – volume: 34 start-page: 133 year: 1998 end-page: 142 article-title: Differential amygdala activation in schizophrenia during sadness publication-title: Schizophr Res – volume: 14 start-page: 421 year: 1991 end-page: 451 article-title: Stimulus‐transcription coupling in the nervous system: Involvement of the inducible proto‐oncogenes fos and jun publication-title: Annu Rev Neurosci – volume: 31 start-page: 251 year: 2000 end-page: 269 article-title: Emerging principles of altered neural circuitry in schizophrenia publication-title: Brain Res Brain Res Rev – volume: 77 start-page: 767 year: 1997b end-page: 781 article-title: Lateral nucleus of the rat amygdala is reciprocally connected with basal and accessory basal nuclei: A light and electron microscopic study publication-title: Neuroscience – volume: 55 start-page: 668 year: 2004 end-page: 675 article-title: Impaired hippocampal function during the detection of novel words in schizophrenia publication-title: Biol Psychiatry – volume: 26 start-page: 1616 year: 2006 end-page: 1623 article-title: Amygdala regulation of immediate‐early gene expression in the hippocampus induced by contextual fear conditioning publication-title: J Neurosci – volume: 55 start-page: 564 year: 1999 end-page: 574 article-title: Activation of immediate early genes and memory formation publication-title: Cell Mol Life Sci – volume: 61 start-page: 59 year: 1994 end-page: 64 article-title: Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions publication-title: Behav Brain Res – volume: 24 start-page: 2431 year: 2004 end-page: 2439 article-title: The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations publication-title: J Neurosci – volume: 55 start-page: 1 year: 2002 end-page: 10 article-title: A selective decrease in the relative density of parvalbumin‐immunoreactive neurons in the hippocampus in schizophrenia publication-title: Schizophr Res – volume: 109 start-page: 891 year: 2002 end-page: 905 article-title: Hippocampal neurons in schizophrenia publication-title: J Neural Transm – year: 2006 – volume: 14 start-page: 876 year: 2004 end-page: 894 article-title: Long‐term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons publication-title: Hippocampus – volume: 16 start-page: 3334 year: 1996 end-page: 3350 article-title: Projection cells and interneurons of the lateral and basolateral amygdala: Distinct firing patterns and differential relation to theta and delta rhythms in conscious cats publication-title: J Neurosci – volume: 107 start-page: 211 year: 1989 end-page: 215 article-title: Reduced GABA uptake sites in the temporal lobe in schizophrenia publication-title: Neurosci Lett – volume: 161 start-page: 480 year: 2004 end-page: 489 article-title: Dysregulation of arousal and amygdala‐prefrontal systems in paranoid schizophrenia publication-title: Am J Psychiatry – volume: 403 start-page: 229 year: 1999 end-page: 260 article-title: Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat publication-title: J Comp Neurol – volume: 11 start-page: 551 year: 2001 end-page: 568 article-title: Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine publication-title: Hippocampus – volume: 57 start-page: 87 year: 2002 end-page: 95 article-title: Differential amygdala response during facial recognition in patients with schizophrenia: An fMRI study publication-title: Schizophr Res – volume: 16 start-page: 1425 year: 2002 end-page: 1432 article-title: Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei publication-title: Eur J Neurosci – volume: 911 start-page: 293 year: 2000 end-page: 304 article-title: Amygdalo‐entorhinal inputs to the hippocampal formation in relation to schizophrenia publication-title: Ann N Y Acad Sci – volume: 15 start-page: 7796 year: 1995 end-page: 7809 article-title: Regional patterns of c‐fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well‐learned discrimination publication-title: J Neurosci – ident: e_1_2_1_70_1 doi: 10.1016/0306-4522(95)00417-3 – ident: e_1_2_1_26_1 doi: 10.1111/j.1460-9568.2005.04002.x – ident: e_1_2_1_111_1 doi: 10.1523/JNEUROSCI.19-03-01142.1999 – ident: e_1_2_1_43_1 doi: 10.1002/hipo.10189 – ident: e_1_2_1_69_1 doi: 10.1016/S0301-0082(98)00003-3 – ident: e_1_2_1_85_1 doi: 10.1523/JNEUROSCI.16-10-03334.1996 – ident: e_1_2_1_40_1 doi: 10.1002/hipo.1068 – ident: e_1_2_1_62_1 doi: 10.1037/0735-7044.119.1.145 – volume: 15 start-page: 2482 issue: 3 year: 1995 ident: e_1_2_1_84_1 article-title: Amygdalo‐entorhinal relations and their reflection in the hippocampal formation: Generation of sharp sleep potentials publication-title: J Neurosci doi: 10.1523/JNEUROSCI.15-03-02482.1995 – ident: e_1_2_1_51_1 doi: 10.1101/lm.6705 – volume: 22 start-page: 2835 year: 2002 ident: e_1_2_1_64_1 article-title: Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-07-02835.2002 – ident: e_1_2_1_67_1 doi: 10.1037/0033-295X.102.3.419 – ident: e_1_2_1_5_1 doi: 10.1016/S0003-3472(73)80065-X – ident: e_1_2_1_89_1 doi: 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P – ident: e_1_2_1_37_1 doi: 10.1007/s00213-003-1761-y – ident: e_1_2_1_54_1 doi: 10.1046/j.1460-9568.2002.02211.x – ident: e_1_2_1_32_1 doi: 10.1073/pnas.0506034102 – volume: 47 start-page: 133 year: 1995 ident: e_1_2_1_53_1 article-title: Induction of immediate‐early genes and the control of neurotransmitter‐regulated gene expression within the nervous system publication-title: Pharmacol Rev – ident: e_1_2_1_11_1 doi: 10.1016/S0893-133X(01)00225-1 – ident: e_1_2_1_48_1 doi: 10.1016/0006-8993(94)90481-2 – ident: e_1_2_1_103_1 doi: 10.1016/0304-3940(89)90819-7 – ident: e_1_2_1_63_1 doi: 10.1016/S0893-133X(00)00137-8 – ident: e_1_2_1_112_1 doi: 10.1016/j.mcn.2005.09.013 – volume: 15 start-page: 7796 year: 1995 ident: e_1_2_1_46_1 article-title: Regional patterns of c‐fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well‐learned discrimination publication-title: J Neurosci doi: 10.1523/JNEUROSCI.15-12-07796.1995 – ident: e_1_2_1_7_1 doi: 10.1016/S0166-4328(02)00045-1 – ident: e_1_2_1_59_1 doi: 10.1523/JNEUROSCI.13-02-00744.1993 – ident: e_1_2_1_12_1 doi: 10.1002/(SICI)1098-2396(199604)22:4<338::AID-SYN5>3.0.CO;2-C – ident: e_1_2_1_94_1 doi: 10.1016/0006-8993(83)90095-1 – volume: 77 start-page: 283 year: 2005 ident: e_1_2_1_3_1 article-title: Strange feelings: Do amygdala abnormalities dysregulate the emotional brain in schizophrenia? publication-title: Prog Neurobiol – ident: e_1_2_1_86_1 doi: 10.1046/j.0953-816x.2001.01780.x – ident: e_1_2_1_114_1 doi: 10.1016/j.biopsych.2004.01.004 – ident: e_1_2_1_105_1 doi: 10.1007/s000180050315 – ident: e_1_2_1_95_1 doi: 10.1037/0735-7044.116.4.530 – volume: 20 start-page: 8144 year: 2000 ident: e_1_2_1_109_1 article-title: Using fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-21-08144.2000 – ident: e_1_2_1_75_1 doi: 10.1146/annurev.ne.14.030191.002225 – ident: e_1_2_1_16_1 doi: 10.1002/1096-9861(20010305)431:2<129::AID-CNE1060>3.0.CO;2-6 – ident: e_1_2_1_49_1 doi: 10.1016/j.schres.2005.09.021 – ident: e_1_2_1_119_1 doi: 10.1016/j.brainres.2005.05.052 – ident: e_1_2_1_88_1 doi: 10.1016/1040-8428(94)90021-3 – ident: e_1_2_1_110_1 doi: 10.1523/JNEUROSCI.0350-04.2004 – volume-title: GABAergic neurotransmission abnormalities in the amygdala of subjects diagnosed with bipolar disorder or schizophrenia year: 2006 ident: e_1_2_1_18_1 – ident: e_1_2_1_47_1 doi: 10.1006/frne.1993.1006 – ident: e_1_2_1_118_1 doi: 10.1126/science.8351520 – ident: e_1_2_1_17_1 doi: 10.1002/hipo.20002 – ident: e_1_2_1_77_1 doi: 10.1098/rstb.2001.0945 – ident: e_1_2_1_10_1 doi: 10.1111/j.1749-6632.2000.tb06733.x – ident: e_1_2_1_96_1 doi: 10.1126/science.3131879 – ident: e_1_2_1_99_1 doi: 10.1016/S0920-9964(98)00085-1 – ident: e_1_2_1_22_1 doi: 10.1001/archpsyc.1992.01820120009003 – ident: e_1_2_1_97_1 doi: 10.1016/S0306-4522(96)00371-5 – volume-title: Brain maps: structure of the rat brain year: 1992 ident: e_1_2_1_104_1 – ident: e_1_2_1_14_1 doi: 10.1016/S0006-3223(98)00138-3 – ident: e_1_2_1_28_1 doi: 10.1097/00001756-199709080-00002 – ident: e_1_2_1_21_1 doi: 10.1002/hipo.450010207 – ident: e_1_2_1_23_1 doi: 10.1016/0014-4886(87)90086-0 – ident: e_1_2_1_92_1 doi: 10.1016/0006-3223(90)90039-5 – ident: e_1_2_1_120_1 doi: 10.1016/S0006-3223(97)80250-8 – ident: e_1_2_1_61_1 doi: 10.1192/bjp.172.2.110 – ident: e_1_2_1_82_1 doi: 10.1016/j.pscychresns.2005.05.006 – ident: e_1_2_1_57_1 doi: 10.1016/0165-1781(87)90108-9 – ident: e_1_2_1_8_1 doi: 10.1017/S0033291704004301 – ident: e_1_2_1_100_1 doi: 10.1002/cne.902900205 – ident: e_1_2_1_29_1 doi: 10.1016/0165-0270(89)90150-7 – ident: e_1_2_1_31_1 doi: 10.1523/JNEUROSCI.1958-04.2004 – ident: e_1_2_1_38_1 doi: 10.1006/nlme.1998.3875 – ident: e_1_2_1_33_1 doi: 10.1016/0920-1211(96)00021-6 – ident: e_1_2_1_19_1 doi: 10.1146/annurev.neuro.24.1.459 – ident: e_1_2_1_41_1 doi: 10.1007/s007020200073 – ident: e_1_2_1_121_1 doi: 10.1016/S0920-9964(01)00188-8 – ident: e_1_2_1_101_1 doi: 10.1007/BF00298263 – ident: e_1_2_1_30_1 doi: 10.1038/sj.mp.4000741 – ident: e_1_2_1_90_1 doi: 10.1002/cne.903560211 – ident: e_1_2_1_9_1 doi: 10.1016/S0165-0173(99)00041-7 – ident: e_1_2_1_93_1 doi: 10.1038/nn1190 – ident: e_1_2_1_122_1 doi: 10.1016/S0304-3940(97)00437-0 – ident: e_1_2_1_20_1 doi: 10.1001/archpsyc.1985.01790310046006 – ident: e_1_2_1_4_1 doi: 10.1002/cne.901890402 – ident: e_1_2_1_102_1 doi: 10.1016/0166-4328(94)90008-6 – ident: e_1_2_1_42_1 doi: 10.1038/1137 – ident: e_1_2_1_116_1 doi: 10.1176/appi.ajp.161.3.480 – ident: e_1_2_1_78_1 doi: 10.1085/jgp.107.6.663 – ident: e_1_2_1_79_1 doi: 10.1016/0006-8993(71)90358-1 – ident: e_1_2_1_71_1 doi: 10.1073/pnas.0504436102 – ident: e_1_2_1_27_1 doi: 10.1152/jn.1989.61.4.747 – ident: e_1_2_1_35_1 doi: 10.1002/hipo.10010 – ident: e_1_2_1_6_1 doi: 10.1176/jnp.9.3.460 – ident: e_1_2_1_107_1 doi: 10.1002/hipo.450040319 – ident: e_1_2_1_83_1 doi: 10.1002/hipo.20120 – ident: e_1_2_1_115_1 doi: 10.1016/j.biopsych.2006.06.025 – ident: e_1_2_1_68_1 doi: 10.1016/0306-4522(91)90247-L – ident: e_1_2_1_106_1 doi: 10.1016/0091-3057(88)90413-3 – ident: e_1_2_1_15_1 doi: 10.1002/hipo.1065 – ident: e_1_2_1_13_1 doi: 10.1016/S0006-8993(97)00113-3 – volume-title: The Hippocampus as a Cognitive Map year: 1978 ident: e_1_2_1_80_1 – ident: e_1_2_1_58_1 doi: 10.1016/S0920-9964(01)00324-3 – ident: e_1_2_1_74_1 doi: 10.1002/neu.10069 – ident: e_1_2_1_117_1 doi: 10.1523/JNEUROSCI.5205-03.2004 – ident: e_1_2_1_36_1 doi: 10.1093/brain/122.4.593 – ident: e_1_2_1_25_1 doi: 10.1046/j.1460-9568.2002.02092.x – ident: e_1_2_1_39_1 doi: 10.1016/S0893-133X(01)00332-3 – volume: 19 start-page: 10530 year: 1999 ident: e_1_2_1_2_1 article-title: Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-23-10530.1999 – ident: e_1_2_1_34_1 doi: 10.1101/lm.3.5.402 – ident: e_1_2_1_45_1 doi: 10.1038/sj.npp.1301038 – ident: e_1_2_1_60_1 doi: 10.1523/JNEUROSCI.23-17-06754.2003 – ident: e_1_2_1_76_1 doi: 10.1126/science.3037702 – ident: e_1_2_1_55_1 doi: 10.1016/j.neuroscience.2003.11.024 – ident: e_1_2_1_65_1 doi: 10.1002/hipo.1071 – volume: 12 start-page: 1125 year: 1997 ident: e_1_2_1_87_1 article-title: Transcription factors in brain injury publication-title: Histol Histopathol – ident: e_1_2_1_81_1 doi: 10.1007/BF01249119 – ident: e_1_2_1_98_1 doi: 10.1016/S0306-4522(96)00513-1 – ident: e_1_2_1_52_1 doi: 10.1523/JNEUROSCI.4964-05.2006 – ident: e_1_2_1_44_1 doi: 10.1016/S0301-0082(96)00021-4 – ident: e_1_2_1_50_1 doi: 10.1037/0735-7044.118.1.53 – ident: e_1_2_1_113_1 doi: 10.1016/S0006-3223(02)01541-X – ident: e_1_2_1_91_1 doi: 10.1038/305527a0 – ident: e_1_2_1_56_1 doi: 10.1523/JNEUROSCI.21-14-05222.2001 – ident: e_1_2_1_108_1 doi: 10.1002/cne.903020308 – ident: e_1_2_1_66_1 doi: 10.1523/JNEUROSCI.1598-03.2004 – ident: e_1_2_1_73_1 doi: 10.1016/0166-4328(87)90034-9 – ident: e_1_2_1_24_1 doi: 10.1016/S0306-4522(96)00632-X – volume: 199 start-page: 173 issue: 1 year: 1996 ident: e_1_2_1_72_1 article-title: Deciphering the hippocampal polyglot: The hippocampus as a path integration system publication-title: J Exp Biol doi: 10.1242/jeb.199.1.173 |
SSID | ssj0011500 |
Score | 2.0638235 |
Snippet | Emerging evidence indicates that the amygdala and the hippocampus play an important role in the pathophysiology of major psychotic disorders. Consistent with... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 169 |
SubjectTerms | amygdala Amygdala - cytology Amygdala - drug effects Amygdala - physiology Animals Convulsants - toxicity Disease Models, Animal Environment Exploratory Behavior - physiology FOS hippocampus Hippocampus - cytology Hippocampus - physiology Male Neural Pathways Neurons - drug effects Neurons - pathology Neurons - physiology Picrotoxin - toxicity Proto-Oncogene Proteins c-fos - metabolism Rats Rats, Long-Evans schizophrenia Schizophrenia - chemically induced Schizophrenia - pathology Schizophrenia - physiopathology Space Perception - physiology spatial processing |
Title | The amygdala modulates neuronal activation in the hippocampus in response to spatial novelty |
URI | https://api.istex.fr/ark:/67375/WNG-DCLK31JQ-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhipo.20380 https://www.ncbi.nlm.nih.gov/pubmed/17960646 https://www.proquest.com/docview/70209038 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1050-9631 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-1063 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011500 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NQ0K88LHxkQHDEmgSSNnifNSJtJdpMMpgYyAm9jBkOY7DprVJ1aQT5a_fnd2mGpqQ4C2KznZi39m_s-9-BngVqrgsSq78rBR0zBhqPy_zwheBSYMo1wjKKXf44LDXP473T5KTJdie58I4fohuw40sw87XZOAqb7YWpKFn5yNK3otScth5lNgz2q8ddxQhHUdFkAQ-ahnvuEnDrUXRa6vRLerYXzdBzevI1S49e_fgx_yjXcTJxeakzTf17z_4HP_3r-7D3RkmZTtOiR7AkqlWYHWnQn98OGUbzEaJ2u33Fbh9MDuMX4VTVDGmhtOfhRooNqwLugnMNMxSZFKFlDPhdnzZecUQaTJsd4SL53A0aejV2AXoGtbWrKHQbixU1Zdm0E4fwvHeu2-7fX92WYOvEYNQOjrOmqJMelkhEHPlIVdBqE0ZFzrhpUYUgkgg1UYZpXTINQIrdM1ylWehjjPTix7BclVX5gkwBDVBWkQ4E8UpahLPNNc6EVpEpQljIzx4PR80qWdM5nShxkA6DuZQUi9K24sevOxkR46_40apDTv2nYgaX1DEm0jk98P38u3up48R3_8ijzx4MVcOiXZIhyuqMvWkkQJxd4Z1efDY6cyiOUFeYtzz4I0d-b98h-x_OPpsn9b-Rfgp3HFhLLQz9AyW2_HEPEes1Obr1iauAIpcD5k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5KAm1feiQ93CuClkALTnyu7MeQNN0ku9u0JDQPBSHLchKyay9rb-n213dGcrykhEL7ZowOW5qRvhnNfAJ4F8ioyAtfumnB6ZgxUG5WZLnLPZ14YaYQlFPu8HDU659Gh2fxWRubQ7kwlh-ic7iRZpj1mhScHNLbS9bQi8spZe-FCVrsq3RAR3q597VjjyKsY8kIYs9FOfM7dtJge1n3xn60SkP78zaweRO7ms1n_6G9YbU2nIUUc3K1NW-yLfXrD0bH__6vR_CghaVsx8rRY7ijyzVY3ynRJJ8s2CYzgaLGA78Gd4ftefw6fEcpY3KyOM_lWLJJldNlYLpmhiWTGqS0Cev0ZZclQ7DJsN8p7p-T6bymVzMbo6tZU7GaoruxUln90ONm8QRO9z-e7Pbd9r4GVyEMoYx0XDh5EffSnCPsygJfeoHSRZSr2C8UAhEEA4nSUkupAl8htkLrLJNZGqgo1b3wKayUVamfA0Nc4yV5iItRlKAw-anylYq54mGhg0hzB95fz5pQLZk53akxFpaGORA0isKMogNvu7JTS-Fxa6lNM_ldETm7oqA3Hotvo09ib3dwFPqHX8SxAxvX0iFQFel8RZa6mteCI_ROsS0HnlmhWXbHyVCMeg58MFP_l-8Q_YPjz-bpxb8U3oB7_ZPhQAwORkcv4b6NaiFH0StYaWZz_RqhU5O9MQryG3TbE7U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED9KC2Vf9mj38F4VbBQ2cOtnZMO-lHZZ-sqysbJ-2BCyLLeliW0SZyz763cnJQ4dZbB9M0YPW7qTfne6-wngdSCjIi986aYFp2PGQLlZkeUu93TihZlCUE65w6f9Tu8sOjqPz1fg3SIXxvJDtA430gyzXpOC13mxuyQNvbyqKXkvTNBgX4s6aF4RJPrckkcR1LFcBLHnopj5LTlpsLuse2M7WqOR_Xkb1rwJXc3e070H3xdfbUNOrnemTbajfv1B6Pi_v3Uf7s5BKduzUvQAVnS5AZt7JRrkoxnbZiZM1PjfN2D9dH4avwnfUMaYHM0ucjmUbFTldBWYnjDDkUkNUtKEdfmyq5Ih1GTYb42756ieTujV2EboatZUbEKx3ViprH7oYTN7CGfd91_2e-78tgZXIQihfHRcNnkRd9KcI-jKAl96gdJFlKvYLxTCEIQCidJSS6kCXyGyQtssk1kaqCjVnfARrJZVqZ8AQ1TjJXmIS1GUoCj5qfKVirniYaGDSHMH3iwmTag5lTndqDEUloQ5EDSKwoyiA6_asrUl8Li11LaZ-7aIHF9TyBuPxdf-B3Gwf3Ic-kefxMCBrYVwCFREOl2Rpa6mE8EReKfYlgOPrcwsu-NkJkYdB96amf_Ld4je4eCjeXr6L4W3YH1w0BUnh_3jZ3DHhrSQl-g5rDbjqX6BuKnJXhr1-A0vTxJk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+amygdala+modulates+neuronal+activation+in+the+hippocampus+in+response+to+spatial+novelty&rft.jtitle=Hippocampus&rft.au=Sheth%2C+Archana&rft.au=Berretta%2C+Sabina&rft.au=Lange%2C+Nicholas&rft.au=Eichenbaum%2C+Howard&rft.date=2008-01-01&rft.issn=1050-9631&rft.eissn=1098-1063&rft.volume=18&rft.issue=2&rft.spage=169&rft.epage=181&rft_id=info:doi/10.1002%2Fhipo.20380&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hipo_20380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-9631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-9631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-9631&client=summon |