Digital Image-based Identification Method for the Determination of the Particle Size Distribution of Dam Granular Material

The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process of earth-rock dams, as it can affect the filling quality and structural safety. However, the conventional sieving method employed to check the PSD is labor-intensive, time-con...

Full description

Saved in:
Bibliographic Details
Published inKSCE journal of civil engineering Vol. 22; no. 8; pp. 2820 - 2833
Main Authors Zhang, Shi-lin, Wu, Gao-jian, Yang, Xing-guo, Jiang, Wan-hong, Zhou, Jia-wen
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Civil Engineers 01.08.2018
Springer Nature B.V
대한토목학회
Subjects
Online AccessGet full text
ISSN1226-7988
1976-3808
DOI10.1007/s12205-017-0304-8

Cover

Abstract The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process of earth-rock dams, as it can affect the filling quality and structural safety. However, the conventional sieving method employed to check the PSD is labor-intensive, time-consuming and not highly accurate. In this study, a digital image-based identification method is presented for the determination of the PSD of dam granular material, which mainly incorporates image acquisition technology, a large database and a neural network. Digital Image Processing (DIP) technology is used to recognize the geometric size and grading curve of dam granular materials at a small scale, while statistical distribution models are used to determine the characteristic parameters of the grading curve and convert the graphical curve into mathematical variables. Furthermore, a large database and a BP neutral algorithm, which is improved using a genetic algorithm, are introduced as tools to reveal the implicit relationship between the DIP and sieving grading curves to correct the error of identification. A case study for the Changheba Hydropower Station is used to illustrate the implementation details of the presented method. The identification results demonstrate that the presented method can acquire and assess the gradation in spite of a degree of error, which can be decreased when more advanced DIP technologies are explored, the amount of data in the database is increased, and a more optimized network algorithm is adopted.
AbstractList The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process of earth-rock dams, as it can affect the filling quality and structural safety. However, the conventional sieving method employed to check the PSD is labor-intensive, time-consuming and not highly accurate. In this study, a digital image-based identification method is presented for the determination of the PSD of dam granular material, which mainly incorporates image acquisition technology, a large database and a neural network. Digital Image Processing (DIP) technology is used to recognize the geometric size and grading curve of dam granular materials at a small scale, while statistical distribution models are used to determine the characteristic parameters of the grading curve and convert the graphical curve into mathematical variables. Furthermore, a large database and a BP neutral algorithm, which is improved using a genetic algorithm, are introduced as tools to reveal the implicit relationship between the DIP and sieving grading curves to correct the error of identification. A case study for the Changheba Hydropower Station is used to illustrate the implementation details of the presented method. The identification results demonstrate that the presented method can acquire and assess the gradation in spite of a degree of error, which can be decreased when more advanced DIP technologies are explored, the amount of data in the database is increased, and a more optimized network algorithm is adopted.
The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process ofearth-rock dams, as it can affect the filling quality and structural safety. However, the conventional sieving method employed tocheck the PSD is labor-intensive, time-consuming and not highly accurate. In this study, a digital image-based identification methodis presented for the determination of the PSD of dam granular material, which mainly incorporates image acquisition technology, alarge database and a neural network. Digital Image Processing (DIP) technology is used to recognize the geometric size and gradingcurve of dam granular materials at a small scale, while statistical distribution models are used to determine the characteristicparameters of the grading curve and convert the graphical curve into mathematical variables. Furthermore, a large database and a BPneutral algorithm, which is improved using a genetic algorithm, are introduced as tools to reveal the implicit relationship between theDIP and sieving grading curves to correct the error of identification. A case study for the Changheba Hydropower Station is used toillustrate the implementation details of the presented method. The identification results demonstrate that the presented method canacquire and assess the gradation in spite of a degree of error, which can be decreased when more advanced DIP technologies areexplored, the amount of data in the database is increased, and a more optimized network algorithm is adopted. KCI Citation Count: 15
Author Zhang, Shi-lin
Yang, Xing-guo
Zhou, Jia-wen
Wu, Gao-jian
Jiang, Wan-hong
Author_xml – sequence: 1
  givenname: Shi-lin
  surname: Zhang
  fullname: Zhang, Shi-lin
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University
– sequence: 2
  givenname: Gao-jian
  surname: Wu
  fullname: Wu, Gao-jian
  organization: Sinohydro Bureau 5 CO. LTD., Power Construction Corporation of China
– sequence: 3
  givenname: Xing-guo
  surname: Yang
  fullname: Yang, Xing-guo
  organization: College of Water Resource and Hydropower, Sichuan University
– sequence: 4
  givenname: Wan-hong
  surname: Jiang
  fullname: Jiang, Wan-hong
  organization: Sinohydro Bureau 5 CO. LTD., Power Construction Corporation of China
– sequence: 5
  givenname: Jia-wen
  surname: Zhou
  fullname: Zhou, Jia-wen
  email: jwzhou@scu.edu.cn
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002370218$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU1PHDEMQKMKpFLgB3CL1FMPofmameSI2AIrgVq1cI48GWcJzCY0k73w65llWvVWX2zZz5al94kcpJyQkDPBzwXn3ddJSMkbxkXHuOKamQ_kSNiuZcpwczDXUrass8Z8JKfT9MTnULIzqjkir6u4iRVGut7CBlkPEw50PWCqMUQPNeZE77A-5oGGXGh9RLrCimUb0zLM4b35A0qNfkT6K77OSJxqif3uL7GCLb0ukHYjFHoH836E8YQcBhgnPP2Tj8nD1bf7yxt2-_16fXlxy7xWvLJgbIA2tCCt19gPPbTaBquGxvhguegb2wVoJEcNrfeiHxBDH8TAG48SOnVMvix3Uwnu2UeXIb7nTXbPxV38vF871Sop5J79vLAvJf_e4VTdU96VNL_npBVWG93o_1O8E0JrI8VMyYWaXkpMGyz_KMHdXpxbxLlZnNuLc0a9ARwEjZk
CitedBy_id crossref_primary_10_1016_j_tust_2021_104072
crossref_primary_10_1016_j_tust_2025_106555
crossref_primary_10_1016_j_powtec_2024_120059
crossref_primary_10_1016_j_sandf_2024_101526
crossref_primary_10_1186_s13007_020_00642_0
crossref_primary_10_1007_s10064_022_02599_x
crossref_primary_10_1016_j_autcon_2023_104965
crossref_primary_10_1007_s10064_022_02916_4
crossref_primary_10_1016_j_cherd_2023_11_005
crossref_primary_10_1007_s10346_022_01878_8
crossref_primary_10_1016_j_conbuildmat_2020_120216
crossref_primary_10_1016_j_conbuildmat_2023_133263
crossref_primary_10_1155_2021_6660301
crossref_primary_10_1016_j_ces_2020_116251
crossref_primary_10_1016_j_aei_2023_102001
crossref_primary_10_1155_2022_1991138
crossref_primary_10_1016_j_eswa_2023_122046
crossref_primary_10_1016_j_cscm_2022_e01216
Cites_doi 10.1109/TSMC.1979.4310076
10.1016/j.apacoust.2016.11.012
10.1111/j.1365-3091.2008.00977.x
10.1016/j.margeo.2011.06.010
10.1007/s10704-015-0046-x
10.1002/(SICI)1096-9837(199804)23:4<345::AID-ESP850>3.0.CO;2-B
10.1016/j.cma.2014.03.001
10.1016/j.cageo.2017.02.014
10.1016/j.sedgeo.2012.10.005
10.1016/j.engfracmech.2011.10.006
10.1016/j.sedgeo.2007.03.020
10.1016/j.eswa.2013.02.033
10.2475/ajs.287.10.979
10.1016/S0191-8141(00)00014-6
10.1016/j.jhydrol.2013.01.026
10.1007/s11004-005-8745-x
10.1016/j.autcon.2012.11.007
10.1016/0098-3004(88)90008-8
10.1016/S0165-1765(03)00035-1
10.1306/052203740160
10.1016/j.sedgeo.2008.06.007
10.1016/j.cageo.2005.11.010
10.1016/j.jhydrol.2015.08.067
10.1016/j.neucom.2015.04.032
10.1080/17415977.2015.1017485
10.1029/2004WR003868
10.1016/j.autcon.2014.04.016
10.1016/j.jhydrol.2012.03.032
10.1016/j.sedgeo.2015.07.008
ContentType Journal Article
Copyright Korean Society of Civil Engineers 2017
KSCE Journal of Civil Engineering is a copyright of Springer, (2017). All Rights Reserved.
Korean Society of Civil Engineers 2017.
Copyright_xml – notice: Korean Society of Civil Engineers 2017
– notice: KSCE Journal of Civil Engineering is a copyright of Springer, (2017). All Rights Reserved.
– notice: Korean Society of Civil Engineers 2017.
DBID 7QH
7UA
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
KR7
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ACYCR
DOI 10.1007/s12205-017-0304-8
DatabaseName Aqualine
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest One Sustainability (subscription)
ProQuest Central
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database (Proquest)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Korean Citation Index
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3808
EndPage 2833
ExternalDocumentID oai_kci_go_kr_ARTI_3632127
10_1007_s12205_017_0304_8
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADVLN
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LK5
LLZTM
M41
M4Y
M7R
M7S
MA-
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PCBAR
PF0
PT4
PT5
PTHSS
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
ZMTXR
ZY4
ZZE
~A9
7QH
7UA
8FD
AAPKM
AAYWO
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIXLP
AKBMS
AKYEP
ATHPR
C1K
DWQXO
F1W
FR3
H96
KR7
L.G
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ACDTI
ACYCR
ID FETCH-LOGICAL-c430t-f89fa6f6a29c4ebdba649f93d58cf901b597fa520e4a6cc1bdeefbf1d05ce2a73
IEDL.DBID BENPR
ISSN 1226-7988
IngestDate Sun Jan 19 03:36:39 EST 2025
Sat Aug 23 13:12:39 EDT 2025
Sat Aug 23 12:40:25 EDT 2025
Fri Feb 21 02:33:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords digital image processing
large data
neural network algorithm
particle size distribution
parameterize
dam granular material
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-f89fa6f6a29c4ebdba649f93d58cf901b597fa520e4a6cc1bdeefbf1d05ce2a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1007/s12205-017-0304-8
PQID 2071144821
PQPubID 1496355
PageCount 14
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_3632127
proquest_journals_2919484547
proquest_journals_2071144821
springer_journals_10_1007_s12205_017_0304_8
PublicationCentury 2000
PublicationDate 20180800
20180801
2018-08
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 8
  year: 2018
  text: 20180800
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle KSCE journal of civil engineering
PublicationTitleAbbrev KSCE J Civ Eng
PublicationYear 2018
Publisher Korean Society of Civil Engineers
Springer Nature B.V
대한토목학회
Publisher_xml – name: Korean Society of Civil Engineers
– name: Springer Nature B.V
– name: 대한토목학회
References Bayat, Rastgo, Zadeh, Vereecken (CR5) 2015; 529
Sarhan, Zaindin (CR31) 2009; 11
Su, Wen, Wang, Wei, Hu (CR37) 2013; 40
Baptista, Cunha, Gama, Bernardes (CR4) 2012; 282
Heilbronner (CR18) 2000; 22
Graham, Reid, Rice (CR14) 2005; 37
Rice, Church (CR28) 1998; 23
Khishe, Mosavi, Kaveh (CR21) 2017; 118
Sarkar, Gugliani, Deep (CR32) 2017
Liu, Cui, Liu, Zhong (CR22) 2013; 30
Schalkoff (CR34) 1989; 286
Nanthakumar, Lahmer, Rabczuk (CR24) 2014; 275
CR11
Chung, Chang (CR12) 2013; 486
Graham, Rice, Reid (CR15) 2005; 41
Hogan, Rogers, Spray, Boonsue (CR19) 2012; 79
Buscombe, Masselink (CR8) 2009; 56
Hou, Xu, Yang, Lu, Zhou (CR20) 2015; 194
Gallagher, MacMahan, Reniers, Brown, Thornton (CR13) 2011; 287
Shao, Chen, Zhang (CR35) 2008
Cheng, Liu (CR10) 2015; 327
Smith, Beermann (CR36) 2007; 33
Otsu (CR27) 1979; 9
Rubin, Chezar, Harney, Topping, Melis, Sherwood (CR30) 2007; 202
Saxena, Mavko, Hofmann, Srisutthiyakorn (CR33) 2017; 102
Liu, Li, Lian (CR23) 2014; 44
Wang, Wang, Zhang, Guo (CR38) 2011; 38
Bali (CR3) 2003; 79
Guo, Zhang, Xiao, Mao, Liu (CR16) 2015; 167
Bunte, Abt (CR6) 2001
Nanthakumar, Lahmer, Zhuang, Zi, Rabczuk (CR25) 2016; 24
Adams (CR1) 1979; 102
Allard, Sotin (CR2) 1988; 14
Buscombe (CR7) 2008; 210
Gupta, Yan (CR17) 2016
Chang, Chung (CR9) 2012; 440–441
Rubin (CR29) 2004; 74
Ortoleva, Merino, Moore, Chadam (CR26) 1987; 287
References_xml – volume: 9
  start-page: 62
  issue: 1
  year: 1979
  end-page: 66
  ident: CR27
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems Man and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 118
  start-page: 15
  year: 2017
  end-page: 29
  ident: CR21
  article-title: Improved migration models of biogeography-based optimization for sonar dataset classification by using neural network
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2016.11.012
– volume: 56
  start-page: 421
  issue: 2
  year: 2009
  end-page: 438
  ident: CR8
  article-title: Grain-size information from the statistical properties of digital images of sediment
  publication-title: Sedimentology
  doi: 10.1111/j.1365-3091.2008.00977.x
– volume: 287
  start-page: 43
  issue: 1–4
  year: 2011
  end-page: 53
  ident: CR13
  article-title: Grain size variability on a rip-channeled beach
  publication-title: Marine Geology
  doi: 10.1016/j.margeo.2011.06.010
– volume: 194
  start-page: 169
  issue: 2
  year: 2015
  end-page: 185
  ident: CR20
  article-title: Experimental study of the fragmentation characteristics of brittle rocks by the effect of a freefall round hammer
  publication-title: International Journal of Fracture
  doi: 10.1007/s10704-015-0046-x
– volume: 11
  start-page: 123
  issue: 1
  year: 2009
  end-page: 136
  ident: CR31
  article-title: Modified Weibull distribution
  publication-title: Applied Sciences
– volume: 38
  start-page: 14346
  issue: 11
  year: 2011
  end-page: 14355
  ident: CR38
  article-title: Forecasting stock indices with back propagation neural network
  publication-title: Expert Systems with Applications
– volume: 23
  start-page: 345
  issue: 4
  year: 1998
  end-page: 363
  ident: CR28
  article-title: Grain size along two gravel-bed rivers: Statistical variation, spatial pattern and sedimentary links
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/(SICI)1096-9837(199804)23:4<345::AID-ESP850>3.0.CO;2-B
– start-page: 32
  year: 2016
  end-page: 62
  ident: CR17
  article-title: Mineral processing design and operations
  publication-title: Elsevier Science
– volume: 286
  start-page: 34
  year: 1989
  end-page: 75
  ident: CR34
  article-title: Digital image processing and computer vision
  publication-title: New York: Wiley
– start-page: 342
  year: 2008
  end-page: 349
  ident: CR35
  article-title: The application of improved BP neural network algorithm in lithology recognition
  publication-title: International Symposium on Intelligence Computation and Applications
– volume: 275
  start-page: 98
  issue: 12
  year: 2014
  end-page: 112
  ident: CR24
  article-title: Detection of multiple flaws in piezoelectric structures using XFEM and level sets
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2014.03.001
– volume: 102
  start-page: 79
  year: 2017
  end-page: 99
  ident: CR33
  article-title: Estimating permeability from thin sections without reconstruction: Digital rock study of 3D properties from 2D images
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2017.02.014
– volume: 282
  start-page: 294
  year: 2012
  end-page: 306
  ident: CR4
  article-title: A new and practical method to obtain grain size measurements in sandy shores based on digital image acquisition and processing
  publication-title: Sedimentary Geology
  doi: 10.1016/j.sedgeo.2012.10.005
– volume: 79
  start-page: 103
  year: 2012
  end-page: 125
  ident: CR19
  article-title: Dynamic fragmentation of granite for impact energies of 6–28J
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2011.10.006
– volume: 202
  start-page: 402
  issue: 3
  year: 2007
  end-page: 408
  ident: CR30
  article-title: Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size
  publication-title: Sedimentary Geology
  doi: 10.1016/j.sedgeo.2007.03.020
– volume: 40
  start-page: 4922
  issue: 12
  year: 2013
  end-page: 4933
  ident: CR37
  article-title: Multifractal scaling behavior analysis for existing dams
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.02.033
– volume: 287
  start-page: 979
  issue: 10
  year: 1987
  end-page: 1007
  ident: CR26
  article-title: Geochemical self-organization I: reaction-transport feedbacks and modeling approach
  publication-title: American Journal of Science
  doi: 10.2475/ajs.287.10.979
– volume: 22
  start-page: 969
  issue: 7
  year: 2000
  end-page: 981
  ident: CR18
  article-title: Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images
  publication-title: Journal of Structural Geology
  doi: 10.1016/S0191-8141(00)00014-6
– volume: 486
  start-page: 224
  year: 2013
  end-page: 233
  ident: CR12
  article-title: A refined automated grain sizing method for estimating river-bed grain size distribution of digital images
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2013.01.026
– volume: 37
  start-page: 1
  issue: 1
  year: 2005
  end-page: 28
  ident: CR14
  article-title: Automated sizing of coarse-grained sediments: Image-processing procedures
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-005-8745-x
– volume: 30
  start-page: 70
  year: 2013
  end-page: 80
  ident: CR22
  article-title: Automatic control and real-time monitoring system for earth–rock dam material truck watering
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2012.11.007
– volume: 14
  start-page: 261
  issue: 2
  year: 1988
  end-page: 269
  ident: CR2
  article-title: Determination of mineral phase percentages in granular rocks by image analysis on a microcomputer
  publication-title: Computers and Geosciences
  doi: 10.1016/0098-3004(88)90008-8
– volume: 79
  start-page: 423
  issue: 3
  year: 2003
  end-page: 427
  ident: CR3
  article-title: The generalized extreme value distribution
  publication-title: Economics Letters
  doi: 10.1016/S0165-1765(03)00035-1
– ident: CR11
– volume: 74
  start-page: 160
  issue: 1
  year: 2004
  end-page: 165
  ident: CR29
  article-title: A simple autocorrelation algorithm for determining grain size from digital images of sediment
  publication-title: Journal of Sedimentary Research
  doi: 10.1306/052203740160
– volume: 210
  start-page: 1
  issue: 1–2
  year: 2008
  end-page: 10
  ident: CR7
  article-title: Estimation of grain-size distributions and associated parameters from digital images of sediment
  publication-title: Sedimentary Geology
  doi: 10.1016/j.sedgeo.2008.06.007
– volume: 33
  start-page: 335
  issue: 3
  year: 2007
  end-page: 356
  ident: CR36
  article-title: Image analysis of plagioclase crystals in rock thin sections using grey level homogeneity recognition of discrete areas
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2005.11.010
– volume: 529
  start-page: 872
  year: 2015
  end-page: 889
  ident: CR5
  article-title: Particle size distribution models, their characteristics and fitting capability
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2015.08.067
– volume: 167
  start-page: 578
  year: 2015
  end-page: 586
  ident: CR16
  article-title: Common nature of learning between BP-type and Hopfield-type neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.032
– volume: 24
  start-page: 153
  issue: 1
  year: 2016
  end-page: 176
  ident: CR25
  article-title: Detection of material interfaces using a regularized level set method in piezoelectric structures
  publication-title: Inverse Problems in Science and Engineering
  doi: 10.1080/17415977.2015.1017485
– volume: 41
  start-page: 226
  issue: 7
  year: 2005
  end-page: 244
  ident: CR15
  article-title: A transferable method for the automated grain sizing of river gravels
  publication-title: Water Resources Research
  doi: 10.1029/2004WR003868
– volume: 44
  start-page: 234
  issue: 8
  year: 2014
  end-page: 246
  ident: CR23
  article-title: Compaction quality assessment of earth-rock dam materials using roller-integrated compaction monitoring technology
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2014.04.016
– start-page: 85
  year: 2001
  end-page: 90
  ident: CR6
  article-title: Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring
  publication-title: General Technical Report RMRS-GTR-74, United States Department of Agriculture
– start-page: 1
  year: 2017
  end-page: 13
  ident: CR32
  article-title: Weibull model for wind speed data analysis of different locations in India
  publication-title: KSCE Journal of Civil Engineering
– volume: 102
  start-page: 1247
  issue: 10
  year: 1979
  end-page: 1255
  ident: CR1
  article-title: Gravel size analysis from photographs
  publication-title: Journal of the Hydraulics Division
– volume: 440–441
  start-page: 102
  year: 2012
  end-page: 112
  ident: CR9
  article-title: Estimation of riverbed grain-size distribution using image-processing techniques
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2012.03.032
– volume: 327
  start-page: 21
  year: 2015
  end-page: 31
  ident: CR10
  article-title: Digital grain-size analysis based on autocorrelation algorithm
  publication-title: Sedimentary Geology
  doi: 10.1016/j.sedgeo.2015.07.008
SSID ssj0000327835
Score 2.2652698
Snippet The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process of earth-rock dams, as it can...
The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process ofearth-rock dams, as it can...
SourceID nrf
proquest
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 2820
SubjectTerms Algorithms
Case studies
Civil Engineering
Dam safety
Digital imaging
Earth
Engineering
Error correction
Evaluation
Genetic algorithms
Geotechnical Engineering
Geotechnical Engineering & Applied Earth Sciences
Graders
Grading
Granular materials
Hydroelectric power
Hydroelectric power stations
Identification
Identification methods
Image acquisition
Image processing
Industrial Pollution Prevention
Information processing
Labour
Mathematical models
Methods
Neural networks
Particle size
Particle size distribution
Size distribution
Statistical analysis
Structural engineering
Structural safety
Technology
토목공학
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1itEsSbBPaRrNljsdZWqAha6C0km6SU0i2066W_3pntrlXpxdPCJptDZnbmS2bmG0LuBNfglFLDDI_wgCI00z6JmNUOTCaG5izedwxek96Qv4zEqKrjXtbZ7nVIsrTUm2I3rAllaFUxnMfkLtkTyOYFSjyM2t8XK0GMzSMwdRE-SBjycdXRzG2rgE_JF_4XvvwTEi09TfeIHFYQkbbXMj0mOy4_IQc_iANPyaozGWO3D9qfgT1g6IosXdfc-uoSjg7K3tAUQCkFkEc7dd5LOTj35cu3SnHo-2QFU5BEt-p_hTM6ekafwZdhpiod6KJU1jMy7D59PPZY1UWBZTwOCuZl6nXiEx2lGXfGGp3w1KexFTLzgAYMHCm8FlHguE6yLDTWOW98aAOBzcIe4nPSyOe5uyCUi9BKIZ0HFAEHQW5smAkJC6USHL2PmuQW9lJNs4lC1mp8judqulCAzfsqTmKkk2-SVr3VqvpflioCpANHOxmF24fTMOUSucea5L6WzmZ4Q72MwlUgXIXCVfLyX7OvyD7AIblO72uRRrH4dNcAOQpzU6rYF0ixzmY
  priority: 102
  providerName: Springer Nature
Title Digital Image-based Identification Method for the Determination of the Particle Size Distribution of Dam Granular Material
URI https://link.springer.com/article/10.1007/s12205-017-0304-8
https://www.proquest.com/docview/2071144821
https://www.proquest.com/docview/2919484547
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002370218
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KSCE Journal of Civil Engineering, 2018, 22(8), , pp.2820-2833
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: AFBBN
  dateStart: 19971201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1976-3808
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: BENPR
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: 8FG
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1976-3808
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000327835
  issn: 1226-7988
  databaseCode: U2A
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB1BcqGHqh-gptDIqnqrLLJee_EeqippPqBVIgREgpNlr20UIRII6SW_vjOb3dBWVU8rrVc-eLzjN56Z9wA-KWnxUModd1JQgKIstzET3NuALpNSc57uO8aT7HQqv1-r6x2Y1L0wVFZZ-8TSUftFQXfkxyLHcFsT_dTXh0dOqlGUXa0lNGwlreC_lBRju9AUxIzVgGZvMDm_2N66dFJSlqC6xgRxByeyrjrVWfbTUdspJ8dNGUNOPSvzZfwDfP6VLy2PoeEreFnhR9bdGPw17IT5G3jxG6vgW1j3Z7ckBcLO7tFZcDqnPNs05Mbqho6NS-FohoiVIQJk_boophxcxPLlebWr2OVsjZ8Qw24ljkVf9O09G-FBR2WsbGxX5U7eh-lwcPXtlFcSC7yQaWfFo86jzWJmRV7I4Lyzmcxjnnqli4hQwWG8Ea0SnSBtVhSJ8yFEFxPfUaQkdpIeQGO-mId3wKRKvFY6RIQYGCVK55NCaZwo14gComjBR1xLc1fMDFFa0_N2Ye6WBoH7mUmzlLjmW3BUL7WpfqYnIxAGYdynRfLv4e3OaMHn2jrPw8-8zGRcg8Y1ZFyj3_9_skPYQ3CkN8V-R9BYLX-GDwhAVq4Nu3o4akOzO-z1JvQc3fwYtKu9hqNT0f0F7C7dcQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFH5BOKgHAqhxFbQxcDKNO5126ByIURfcBXZDFBJutZ22ZEPYxWUJgT_Ov833ZjsgxnjjNMm06aHvte97fT8-gHUlLRql0nEnBTkoynIbC8G9DXhlUmjO03tHf1B0j-TusTqeg19NLQylVTZ3Yn1R-3FFb-QfRInutqb2Ux_Pf3JijaLoakOhYRO1gt-qW4ylwo69cH2FLtzFVq-D8t4QYmf78EuXJ5YBXsm8PeVRl9EWsbCirGRw3tlClrHMvdJVRGvpEHJHq0Q7SFtUVeZ8CNHFzLcVkWlt5rjuI1iQuSzR-Vv4vD04-Hb7ytPOicmC8igzxDmcmoM1odW6fo_KXDkZCopQcqqRGU3iPbD7V3y2Nns7S7CY8Cr7NFOwZZgLoxV4-kcXw2dw0xmeEPUI653h5cTJLno2KwCO6UWQ9WuiaoYImSHiZJ0mCaceHMf650HSYvZ9eINTqKNvIuOiGR17xr6iYaW0Wda30_rkPIejB9nsFzA_Go_CS2BSZV4rHSJCGvRKpfNZpTQuVGpEHVG04B3upTmthoZaaNP3ZGxOJwYdhZ7Ji5x627dgtdlqkw7vhREIu9DP1CL79_CtJrbgfSOdu-G7PtAkXIPCNSRco1_9f7G38Lh72N83-73B3mt4gsBMzxINV2F-OrkMawh-pu5N0jAGPx5aqX8DGcgYyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54SAgOiKcYzwhxQxFrm5T0ODEGAzZNgkncoqRJpmlah0a57Ndjdy0DxIVTpSbNIXbjz7H9mZALwTUYpcQww0N0UIRm2schs9rBkYmhOYv3HZ1ufN_nD6_itexz-l5lu1chyXlNA7I0ZfnVm_VXi8I3rA9leMJiaI_JZbLKkScBFLofNr4uWeoRNpLANEb4IGbIzVVFNv9aBexLNvU_sOav8GhhdVpbZLOEi7Qxl-82WXLZDtn4RiK4S2bN4QA7f9D2GM4GhmbJ0nn9rS8v5Gin6BNNAaBSAHy0WeXAFIMTX7zslUpEn4czmIKEumUvLJzR1GN6B3YNs1ZpR-eF4u6Rfuv25eaelR0VWMqjes68TLyOfazDJOXOWKNjnvgkskKmHpCBAffCaxHWHddxmgbGOueND2xdYOOw62ifrGSTzB0QykVgpZDOA6IAp5AbG6RCwkKJBKPvwxo5h71Uo3SokMEan4OJGk0V4PS2iuIIqeVr5LjaalX-O-8qBNQDbp4Mg7-HkyDhEnnIauSyks5ieEHDjMJVIFyFwlXy8F-zz8har9lST-3u4xFZB5Qk51l_x2Qln364E0AiuTkttO0TS6rVjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Image-based+Identification+Method+for+the+Determination+of+the+Particle+Size+Distribution+of+Dam+Granular+Material&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Shi-lin+Zhang&rft.au=Gao-jian+Wu&rft.au=Xingguo+Yang&rft.au=Wan-hong+Jiang&rft.date=2018-08-01&rft.pub=%EB%8C%80%ED%95%9C%ED%86%A0%EB%AA%A9%ED%95%99%ED%9A%8C&rft.issn=1226-7988&rft.eissn=1976-3808&rft.spage=2820&rft.epage=2833&rft_id=info:doi/10.1007%2Fs12205-017-0304-8&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_3632127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon