Digital Image-based Identification Method for the Determination of the Particle Size Distribution of Dam Granular Material
The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process of earth-rock dams, as it can affect the filling quality and structural safety. However, the conventional sieving method employed to check the PSD is labor-intensive, time-con...
Saved in:
| Published in | KSCE journal of civil engineering Vol. 22; no. 8; pp. 2820 - 2833 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Seoul
Korean Society of Civil Engineers
01.08.2018
Springer Nature B.V 대한토목학회 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1226-7988 1976-3808 |
| DOI | 10.1007/s12205-017-0304-8 |
Cover
| Abstract | The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process of earth-rock dams, as it can affect the filling quality and structural safety. However, the conventional sieving method employed to check the PSD is labor-intensive, time-consuming and not highly accurate. In this study, a digital image-based identification method is presented for the determination of the PSD of dam granular material, which mainly incorporates image acquisition technology, a large database and a neural network. Digital Image Processing (DIP) technology is used to recognize the geometric size and grading curve of dam granular materials at a small scale, while statistical distribution models are used to determine the characteristic parameters of the grading curve and convert the graphical curve into mathematical variables. Furthermore, a large database and a BP neutral algorithm, which is improved using a genetic algorithm, are introduced as tools to reveal the implicit relationship between the DIP and sieving grading curves to correct the error of identification. A case study for the Changheba Hydropower Station is used to illustrate the implementation details of the presented method. The identification results demonstrate that the presented method can acquire and assess the gradation in spite of a degree of error, which can be decreased when more advanced DIP technologies are explored, the amount of data in the database is increased, and a more optimized network algorithm is adopted. |
|---|---|
| AbstractList | The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process of earth-rock dams, as it can affect the filling quality and structural safety. However, the conventional sieving method employed to check the PSD is labor-intensive, time-consuming and not highly accurate. In this study, a digital image-based identification method is presented for the determination of the PSD of dam granular material, which mainly incorporates image acquisition technology, a large database and a neural network. Digital Image Processing (DIP) technology is used to recognize the geometric size and grading curve of dam granular materials at a small scale, while statistical distribution models are used to determine the characteristic parameters of the grading curve and convert the graphical curve into mathematical variables. Furthermore, a large database and a BP neutral algorithm, which is improved using a genetic algorithm, are introduced as tools to reveal the implicit relationship between the DIP and sieving grading curves to correct the error of identification. A case study for the Changheba Hydropower Station is used to illustrate the implementation details of the presented method. The identification results demonstrate that the presented method can acquire and assess the gradation in spite of a degree of error, which can be decreased when more advanced DIP technologies are explored, the amount of data in the database is increased, and a more optimized network algorithm is adopted. The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process ofearth-rock dams, as it can affect the filling quality and structural safety. However, the conventional sieving method employed tocheck the PSD is labor-intensive, time-consuming and not highly accurate. In this study, a digital image-based identification methodis presented for the determination of the PSD of dam granular material, which mainly incorporates image acquisition technology, alarge database and a neural network. Digital Image Processing (DIP) technology is used to recognize the geometric size and gradingcurve of dam granular materials at a small scale, while statistical distribution models are used to determine the characteristicparameters of the grading curve and convert the graphical curve into mathematical variables. Furthermore, a large database and a BPneutral algorithm, which is improved using a genetic algorithm, are introduced as tools to reveal the implicit relationship between theDIP and sieving grading curves to correct the error of identification. A case study for the Changheba Hydropower Station is used toillustrate the implementation details of the presented method. The identification results demonstrate that the presented method canacquire and assess the gradation in spite of a degree of error, which can be decreased when more advanced DIP technologies areexplored, the amount of data in the database is increased, and a more optimized network algorithm is adopted. KCI Citation Count: 15 |
| Author | Zhang, Shi-lin Yang, Xing-guo Zhou, Jia-wen Wu, Gao-jian Jiang, Wan-hong |
| Author_xml | – sequence: 1 givenname: Shi-lin surname: Zhang fullname: Zhang, Shi-lin organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University – sequence: 2 givenname: Gao-jian surname: Wu fullname: Wu, Gao-jian organization: Sinohydro Bureau 5 CO. LTD., Power Construction Corporation of China – sequence: 3 givenname: Xing-guo surname: Yang fullname: Yang, Xing-guo organization: College of Water Resource and Hydropower, Sichuan University – sequence: 4 givenname: Wan-hong surname: Jiang fullname: Jiang, Wan-hong organization: Sinohydro Bureau 5 CO. LTD., Power Construction Corporation of China – sequence: 5 givenname: Jia-wen surname: Zhou fullname: Zhou, Jia-wen email: jwzhou@scu.edu.cn organization: State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002370218$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kU1PHDEMQKMKpFLgB3CL1FMPofmameSI2AIrgVq1cI48GWcJzCY0k73w65llWvVWX2zZz5al94kcpJyQkDPBzwXn3ddJSMkbxkXHuOKamQ_kSNiuZcpwczDXUrass8Z8JKfT9MTnULIzqjkir6u4iRVGut7CBlkPEw50PWCqMUQPNeZE77A-5oGGXGh9RLrCimUb0zLM4b35A0qNfkT6K77OSJxqif3uL7GCLb0ukHYjFHoH836E8YQcBhgnPP2Tj8nD1bf7yxt2-_16fXlxy7xWvLJgbIA2tCCt19gPPbTaBquGxvhguegb2wVoJEcNrfeiHxBDH8TAG48SOnVMvix3Uwnu2UeXIb7nTXbPxV38vF871Sop5J79vLAvJf_e4VTdU96VNL_npBVWG93o_1O8E0JrI8VMyYWaXkpMGyz_KMHdXpxbxLlZnNuLc0a9ARwEjZk |
| CitedBy_id | crossref_primary_10_1016_j_tust_2021_104072 crossref_primary_10_1016_j_tust_2025_106555 crossref_primary_10_1016_j_powtec_2024_120059 crossref_primary_10_1016_j_sandf_2024_101526 crossref_primary_10_1186_s13007_020_00642_0 crossref_primary_10_1007_s10064_022_02599_x crossref_primary_10_1016_j_autcon_2023_104965 crossref_primary_10_1007_s10064_022_02916_4 crossref_primary_10_1016_j_cherd_2023_11_005 crossref_primary_10_1007_s10346_022_01878_8 crossref_primary_10_1016_j_conbuildmat_2020_120216 crossref_primary_10_1016_j_conbuildmat_2023_133263 crossref_primary_10_1155_2021_6660301 crossref_primary_10_1016_j_ces_2020_116251 crossref_primary_10_1016_j_aei_2023_102001 crossref_primary_10_1155_2022_1991138 crossref_primary_10_1016_j_eswa_2023_122046 crossref_primary_10_1016_j_cscm_2022_e01216 |
| Cites_doi | 10.1109/TSMC.1979.4310076 10.1016/j.apacoust.2016.11.012 10.1111/j.1365-3091.2008.00977.x 10.1016/j.margeo.2011.06.010 10.1007/s10704-015-0046-x 10.1002/(SICI)1096-9837(199804)23:4<345::AID-ESP850>3.0.CO;2-B 10.1016/j.cma.2014.03.001 10.1016/j.cageo.2017.02.014 10.1016/j.sedgeo.2012.10.005 10.1016/j.engfracmech.2011.10.006 10.1016/j.sedgeo.2007.03.020 10.1016/j.eswa.2013.02.033 10.2475/ajs.287.10.979 10.1016/S0191-8141(00)00014-6 10.1016/j.jhydrol.2013.01.026 10.1007/s11004-005-8745-x 10.1016/j.autcon.2012.11.007 10.1016/0098-3004(88)90008-8 10.1016/S0165-1765(03)00035-1 10.1306/052203740160 10.1016/j.sedgeo.2008.06.007 10.1016/j.cageo.2005.11.010 10.1016/j.jhydrol.2015.08.067 10.1016/j.neucom.2015.04.032 10.1080/17415977.2015.1017485 10.1029/2004WR003868 10.1016/j.autcon.2014.04.016 10.1016/j.jhydrol.2012.03.032 10.1016/j.sedgeo.2015.07.008 |
| ContentType | Journal Article |
| Copyright | Korean Society of Civil Engineers 2017 KSCE Journal of Civil Engineering is a copyright of Springer, (2017). All Rights Reserved. Korean Society of Civil Engineers 2017. |
| Copyright_xml | – notice: Korean Society of Civil Engineers 2017 – notice: KSCE Journal of Civil Engineering is a copyright of Springer, (2017). All Rights Reserved. – notice: Korean Society of Civil Engineers 2017. |
| DBID | 7QH 7UA 8FD 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ KR7 L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ACYCR |
| DOI | 10.1007/s12205-017-0304-8 |
| DatabaseName | Aqualine Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest One Sustainability (subscription) ProQuest Central ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database (Proquest) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Korean Citation Index |
| DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1976-3808 |
| EndPage | 2833 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_3632127 10_1007_s12205_017_0304_8 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADVLN ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LK5 LLZTM M41 M4Y M7R M7S MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9P PCBAR PF0 PT4 PT5 PTHSS QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 ZMTXR ZY4 ZZE ~A9 7QH 7UA 8FD AAPKM AAYWO ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIXLP AKBMS AKYEP ATHPR C1K DWQXO F1W FR3 H96 KR7 L.G PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO ACDTI ACYCR |
| ID | FETCH-LOGICAL-c430t-f89fa6f6a29c4ebdba649f93d58cf901b597fa520e4a6cc1bdeefbf1d05ce2a73 |
| IEDL.DBID | BENPR |
| ISSN | 1226-7988 |
| IngestDate | Sun Jan 19 03:36:39 EST 2025 Sat Aug 23 13:12:39 EDT 2025 Sat Aug 23 12:40:25 EDT 2025 Fri Feb 21 02:33:45 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | digital image processing large data neural network algorithm particle size distribution parameterize dam granular material |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c430t-f89fa6f6a29c4ebdba649f93d58cf901b597fa520e4a6cc1bdeefbf1d05ce2a73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://dx.doi.org/10.1007/s12205-017-0304-8 |
| PQID | 2071144821 |
| PQPubID | 1496355 |
| PageCount | 14 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3632127 proquest_journals_2919484547 proquest_journals_2071144821 springer_journals_10_1007_s12205_017_0304_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20180800 20180801 2018-08 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 8 year: 2018 text: 20180800 |
| PublicationDecade | 2010 |
| PublicationPlace | Seoul |
| PublicationPlace_xml | – name: Seoul |
| PublicationTitle | KSCE journal of civil engineering |
| PublicationTitleAbbrev | KSCE J Civ Eng |
| PublicationYear | 2018 |
| Publisher | Korean Society of Civil Engineers Springer Nature B.V 대한토목학회 |
| Publisher_xml | – name: Korean Society of Civil Engineers – name: Springer Nature B.V – name: 대한토목학회 |
| References | Bayat, Rastgo, Zadeh, Vereecken (CR5) 2015; 529 Sarhan, Zaindin (CR31) 2009; 11 Su, Wen, Wang, Wei, Hu (CR37) 2013; 40 Baptista, Cunha, Gama, Bernardes (CR4) 2012; 282 Heilbronner (CR18) 2000; 22 Graham, Reid, Rice (CR14) 2005; 37 Rice, Church (CR28) 1998; 23 Khishe, Mosavi, Kaveh (CR21) 2017; 118 Sarkar, Gugliani, Deep (CR32) 2017 Liu, Cui, Liu, Zhong (CR22) 2013; 30 Schalkoff (CR34) 1989; 286 Nanthakumar, Lahmer, Rabczuk (CR24) 2014; 275 CR11 Chung, Chang (CR12) 2013; 486 Graham, Rice, Reid (CR15) 2005; 41 Hogan, Rogers, Spray, Boonsue (CR19) 2012; 79 Buscombe, Masselink (CR8) 2009; 56 Hou, Xu, Yang, Lu, Zhou (CR20) 2015; 194 Gallagher, MacMahan, Reniers, Brown, Thornton (CR13) 2011; 287 Shao, Chen, Zhang (CR35) 2008 Cheng, Liu (CR10) 2015; 327 Smith, Beermann (CR36) 2007; 33 Otsu (CR27) 1979; 9 Rubin, Chezar, Harney, Topping, Melis, Sherwood (CR30) 2007; 202 Saxena, Mavko, Hofmann, Srisutthiyakorn (CR33) 2017; 102 Liu, Li, Lian (CR23) 2014; 44 Wang, Wang, Zhang, Guo (CR38) 2011; 38 Bali (CR3) 2003; 79 Guo, Zhang, Xiao, Mao, Liu (CR16) 2015; 167 Bunte, Abt (CR6) 2001 Nanthakumar, Lahmer, Zhuang, Zi, Rabczuk (CR25) 2016; 24 Adams (CR1) 1979; 102 Allard, Sotin (CR2) 1988; 14 Buscombe (CR7) 2008; 210 Gupta, Yan (CR17) 2016 Chang, Chung (CR9) 2012; 440–441 Rubin (CR29) 2004; 74 Ortoleva, Merino, Moore, Chadam (CR26) 1987; 287 |
| References_xml | – volume: 9 start-page: 62 issue: 1 year: 1979 end-page: 66 ident: CR27 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems Man and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 118 start-page: 15 year: 2017 end-page: 29 ident: CR21 article-title: Improved migration models of biogeography-based optimization for sonar dataset classification by using neural network publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2016.11.012 – volume: 56 start-page: 421 issue: 2 year: 2009 end-page: 438 ident: CR8 article-title: Grain-size information from the statistical properties of digital images of sediment publication-title: Sedimentology doi: 10.1111/j.1365-3091.2008.00977.x – volume: 287 start-page: 43 issue: 1–4 year: 2011 end-page: 53 ident: CR13 article-title: Grain size variability on a rip-channeled beach publication-title: Marine Geology doi: 10.1016/j.margeo.2011.06.010 – volume: 194 start-page: 169 issue: 2 year: 2015 end-page: 185 ident: CR20 article-title: Experimental study of the fragmentation characteristics of brittle rocks by the effect of a freefall round hammer publication-title: International Journal of Fracture doi: 10.1007/s10704-015-0046-x – volume: 11 start-page: 123 issue: 1 year: 2009 end-page: 136 ident: CR31 article-title: Modified Weibull distribution publication-title: Applied Sciences – volume: 38 start-page: 14346 issue: 11 year: 2011 end-page: 14355 ident: CR38 article-title: Forecasting stock indices with back propagation neural network publication-title: Expert Systems with Applications – volume: 23 start-page: 345 issue: 4 year: 1998 end-page: 363 ident: CR28 article-title: Grain size along two gravel-bed rivers: Statistical variation, spatial pattern and sedimentary links publication-title: Earth Surface Processes and Landforms doi: 10.1002/(SICI)1096-9837(199804)23:4<345::AID-ESP850>3.0.CO;2-B – start-page: 32 year: 2016 end-page: 62 ident: CR17 article-title: Mineral processing design and operations publication-title: Elsevier Science – volume: 286 start-page: 34 year: 1989 end-page: 75 ident: CR34 article-title: Digital image processing and computer vision publication-title: New York: Wiley – start-page: 342 year: 2008 end-page: 349 ident: CR35 article-title: The application of improved BP neural network algorithm in lithology recognition publication-title: International Symposium on Intelligence Computation and Applications – volume: 275 start-page: 98 issue: 12 year: 2014 end-page: 112 ident: CR24 article-title: Detection of multiple flaws in piezoelectric structures using XFEM and level sets publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2014.03.001 – volume: 102 start-page: 79 year: 2017 end-page: 99 ident: CR33 article-title: Estimating permeability from thin sections without reconstruction: Digital rock study of 3D properties from 2D images publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2017.02.014 – volume: 282 start-page: 294 year: 2012 end-page: 306 ident: CR4 article-title: A new and practical method to obtain grain size measurements in sandy shores based on digital image acquisition and processing publication-title: Sedimentary Geology doi: 10.1016/j.sedgeo.2012.10.005 – volume: 79 start-page: 103 year: 2012 end-page: 125 ident: CR19 article-title: Dynamic fragmentation of granite for impact energies of 6–28J publication-title: Engineering Fracture Mechanics doi: 10.1016/j.engfracmech.2011.10.006 – volume: 202 start-page: 402 issue: 3 year: 2007 end-page: 408 ident: CR30 article-title: Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size publication-title: Sedimentary Geology doi: 10.1016/j.sedgeo.2007.03.020 – volume: 40 start-page: 4922 issue: 12 year: 2013 end-page: 4933 ident: CR37 article-title: Multifractal scaling behavior analysis for existing dams publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.02.033 – volume: 287 start-page: 979 issue: 10 year: 1987 end-page: 1007 ident: CR26 article-title: Geochemical self-organization I: reaction-transport feedbacks and modeling approach publication-title: American Journal of Science doi: 10.2475/ajs.287.10.979 – volume: 22 start-page: 969 issue: 7 year: 2000 end-page: 981 ident: CR18 article-title: Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images publication-title: Journal of Structural Geology doi: 10.1016/S0191-8141(00)00014-6 – volume: 486 start-page: 224 year: 2013 end-page: 233 ident: CR12 article-title: A refined automated grain sizing method for estimating river-bed grain size distribution of digital images publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2013.01.026 – volume: 37 start-page: 1 issue: 1 year: 2005 end-page: 28 ident: CR14 article-title: Automated sizing of coarse-grained sediments: Image-processing procedures publication-title: Mathematical Geology doi: 10.1007/s11004-005-8745-x – volume: 30 start-page: 70 year: 2013 end-page: 80 ident: CR22 article-title: Automatic control and real-time monitoring system for earth–rock dam material truck watering publication-title: Automation in Construction doi: 10.1016/j.autcon.2012.11.007 – volume: 14 start-page: 261 issue: 2 year: 1988 end-page: 269 ident: CR2 article-title: Determination of mineral phase percentages in granular rocks by image analysis on a microcomputer publication-title: Computers and Geosciences doi: 10.1016/0098-3004(88)90008-8 – volume: 79 start-page: 423 issue: 3 year: 2003 end-page: 427 ident: CR3 article-title: The generalized extreme value distribution publication-title: Economics Letters doi: 10.1016/S0165-1765(03)00035-1 – ident: CR11 – volume: 74 start-page: 160 issue: 1 year: 2004 end-page: 165 ident: CR29 article-title: A simple autocorrelation algorithm for determining grain size from digital images of sediment publication-title: Journal of Sedimentary Research doi: 10.1306/052203740160 – volume: 210 start-page: 1 issue: 1–2 year: 2008 end-page: 10 ident: CR7 article-title: Estimation of grain-size distributions and associated parameters from digital images of sediment publication-title: Sedimentary Geology doi: 10.1016/j.sedgeo.2008.06.007 – volume: 33 start-page: 335 issue: 3 year: 2007 end-page: 356 ident: CR36 article-title: Image analysis of plagioclase crystals in rock thin sections using grey level homogeneity recognition of discrete areas publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2005.11.010 – volume: 529 start-page: 872 year: 2015 end-page: 889 ident: CR5 article-title: Particle size distribution models, their characteristics and fitting capability publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2015.08.067 – volume: 167 start-page: 578 year: 2015 end-page: 586 ident: CR16 article-title: Common nature of learning between BP-type and Hopfield-type neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.032 – volume: 24 start-page: 153 issue: 1 year: 2016 end-page: 176 ident: CR25 article-title: Detection of material interfaces using a regularized level set method in piezoelectric structures publication-title: Inverse Problems in Science and Engineering doi: 10.1080/17415977.2015.1017485 – volume: 41 start-page: 226 issue: 7 year: 2005 end-page: 244 ident: CR15 article-title: A transferable method for the automated grain sizing of river gravels publication-title: Water Resources Research doi: 10.1029/2004WR003868 – volume: 44 start-page: 234 issue: 8 year: 2014 end-page: 246 ident: CR23 article-title: Compaction quality assessment of earth-rock dam materials using roller-integrated compaction monitoring technology publication-title: Automation in Construction doi: 10.1016/j.autcon.2014.04.016 – start-page: 85 year: 2001 end-page: 90 ident: CR6 article-title: Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring publication-title: General Technical Report RMRS-GTR-74, United States Department of Agriculture – start-page: 1 year: 2017 end-page: 13 ident: CR32 article-title: Weibull model for wind speed data analysis of different locations in India publication-title: KSCE Journal of Civil Engineering – volume: 102 start-page: 1247 issue: 10 year: 1979 end-page: 1255 ident: CR1 article-title: Gravel size analysis from photographs publication-title: Journal of the Hydraulics Division – volume: 440–441 start-page: 102 year: 2012 end-page: 112 ident: CR9 article-title: Estimation of riverbed grain-size distribution using image-processing techniques publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2012.03.032 – volume: 327 start-page: 21 year: 2015 end-page: 31 ident: CR10 article-title: Digital grain-size analysis based on autocorrelation algorithm publication-title: Sedimentary Geology doi: 10.1016/j.sedgeo.2015.07.008 |
| SSID | ssj0000327835 |
| Score | 2.2652698 |
| Snippet | The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process of earth-rock dams, as it can... The Particle Size Distribution (PSD) properties of dam granular material plays an important role in the construction process ofearth-rock dams, as it can... |
| SourceID | nrf proquest springer |
| SourceType | Open Website Aggregation Database Publisher |
| StartPage | 2820 |
| SubjectTerms | Algorithms Case studies Civil Engineering Dam safety Digital imaging Earth Engineering Error correction Evaluation Genetic algorithms Geotechnical Engineering Geotechnical Engineering & Applied Earth Sciences Graders Grading Granular materials Hydroelectric power Hydroelectric power stations Identification Identification methods Image acquisition Image processing Industrial Pollution Prevention Information processing Labour Mathematical models Methods Neural networks Particle size Particle size distribution Size distribution Statistical analysis Structural engineering Structural safety Technology 토목공학 |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn1itEsSbBPaRrNljsdZWqAha6C0km6SU0i2066W_3pntrlXpxdPCJptDZnbmS2bmG0LuBNfglFLDDI_wgCI00z6JmNUOTCaG5izedwxek96Qv4zEqKrjXtbZ7nVIsrTUm2I3rAllaFUxnMfkLtkTyOYFSjyM2t8XK0GMzSMwdRE-SBjycdXRzG2rgE_JF_4XvvwTEi09TfeIHFYQkbbXMj0mOy4_IQc_iANPyaozGWO3D9qfgT1g6IosXdfc-uoSjg7K3tAUQCkFkEc7dd5LOTj35cu3SnHo-2QFU5BEt-p_hTM6ekafwZdhpiod6KJU1jMy7D59PPZY1UWBZTwOCuZl6nXiEx2lGXfGGp3w1KexFTLzgAYMHCm8FlHguE6yLDTWOW98aAOBzcIe4nPSyOe5uyCUi9BKIZ0HFAEHQW5smAkJC6USHL2PmuQW9lJNs4lC1mp8judqulCAzfsqTmKkk2-SVr3VqvpflioCpANHOxmF24fTMOUSucea5L6WzmZ4Q72MwlUgXIXCVfLyX7OvyD7AIblO72uRRrH4dNcAOQpzU6rYF0ixzmY priority: 102 providerName: Springer Nature |
| Title | Digital Image-based Identification Method for the Determination of the Particle Size Distribution of Dam Granular Material |
| URI | https://link.springer.com/article/10.1007/s12205-017-0304-8 https://www.proquest.com/docview/2071144821 https://www.proquest.com/docview/2919484547 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002370218 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | KSCE Journal of Civil Engineering, 2018, 22(8), , pp.2820-2833 |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1976-3808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: AFBBN dateStart: 19971201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1976-3808 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: BENPR dateStart: 19971201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1976-3808 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: 8FG dateStart: 19971201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1976-3808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1976-3808 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000327835 issn: 1226-7988 databaseCode: U2A dateStart: 19971201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB1BcqGHqh-gptDIqnqrLLJee_EeqippPqBVIgREgpNlr20UIRII6SW_vjOb3dBWVU8rrVc-eLzjN56Z9wA-KWnxUModd1JQgKIstzET3NuALpNSc57uO8aT7HQqv1-r6x2Y1L0wVFZZ-8TSUftFQXfkxyLHcFsT_dTXh0dOqlGUXa0lNGwlreC_lBRju9AUxIzVgGZvMDm_2N66dFJSlqC6xgRxByeyrjrVWfbTUdspJ8dNGUNOPSvzZfwDfP6VLy2PoeEreFnhR9bdGPw17IT5G3jxG6vgW1j3Z7ckBcLO7tFZcDqnPNs05Mbqho6NS-FohoiVIQJk_boophxcxPLlebWr2OVsjZ8Qw24ljkVf9O09G-FBR2WsbGxX5U7eh-lwcPXtlFcSC7yQaWfFo86jzWJmRV7I4Lyzmcxjnnqli4hQwWG8Ea0SnSBtVhSJ8yFEFxPfUaQkdpIeQGO-mId3wKRKvFY6RIQYGCVK55NCaZwo14gComjBR1xLc1fMDFFa0_N2Ye6WBoH7mUmzlLjmW3BUL7WpfqYnIxAGYdynRfLv4e3OaMHn2jrPw8-8zGRcg8Y1ZFyj3_9_skPYQ3CkN8V-R9BYLX-GDwhAVq4Nu3o4akOzO-z1JvQc3fwYtKu9hqNT0f0F7C7dcQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFH5BOKgHAqhxFbQxcDKNO5126ByIURfcBXZDFBJutZ22ZEPYxWUJgT_Ov833ZjsgxnjjNMm06aHvte97fT8-gHUlLRql0nEnBTkoynIbC8G9DXhlUmjO03tHf1B0j-TusTqeg19NLQylVTZ3Yn1R-3FFb-QfRInutqb2Ux_Pf3JijaLoakOhYRO1gt-qW4ylwo69cH2FLtzFVq-D8t4QYmf78EuXJ5YBXsm8PeVRl9EWsbCirGRw3tlClrHMvdJVRGvpEHJHq0Q7SFtUVeZ8CNHFzLcVkWlt5rjuI1iQuSzR-Vv4vD04-Hb7ytPOicmC8igzxDmcmoM1odW6fo_KXDkZCopQcqqRGU3iPbD7V3y2Nns7S7CY8Cr7NFOwZZgLoxV4-kcXw2dw0xmeEPUI653h5cTJLno2KwCO6UWQ9WuiaoYImSHiZJ0mCaceHMf650HSYvZ9eINTqKNvIuOiGR17xr6iYaW0Wda30_rkPIejB9nsFzA_Go_CS2BSZV4rHSJCGvRKpfNZpTQuVGpEHVG04B3upTmthoZaaNP3ZGxOJwYdhZ7Ji5x627dgtdlqkw7vhREIu9DP1CL79_CtJrbgfSOdu-G7PtAkXIPCNSRco1_9f7G38Lh72N83-73B3mt4gsBMzxINV2F-OrkMawh-pu5N0jAGPx5aqX8DGcgYyw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54SAgOiKcYzwhxQxFrm5T0ODEGAzZNgkncoqRJpmlah0a57Ndjdy0DxIVTpSbNIXbjz7H9mZALwTUYpcQww0N0UIRm2schs9rBkYmhOYv3HZ1ufN_nD6_itexz-l5lu1chyXlNA7I0ZfnVm_VXi8I3rA9leMJiaI_JZbLKkScBFLofNr4uWeoRNpLANEb4IGbIzVVFNv9aBexLNvU_sOav8GhhdVpbZLOEi7Qxl-82WXLZDtn4RiK4S2bN4QA7f9D2GM4GhmbJ0nn9rS8v5Gin6BNNAaBSAHy0WeXAFIMTX7zslUpEn4czmIKEumUvLJzR1GN6B3YNs1ZpR-eF4u6Rfuv25eaelR0VWMqjes68TLyOfazDJOXOWKNjnvgkskKmHpCBAffCaxHWHddxmgbGOueND2xdYOOw62ifrGSTzB0QykVgpZDOA6IAp5AbG6RCwkKJBKPvwxo5h71Uo3SokMEan4OJGk0V4PS2iuIIqeVr5LjaalX-O-8qBNQDbp4Mg7-HkyDhEnnIauSyks5ieEHDjMJVIFyFwlXy8F-zz8har9lST-3u4xFZB5Qk51l_x2Qln364E0AiuTkttO0TS6rVjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Image-based+Identification+Method+for+the+Determination+of+the+Particle+Size+Distribution+of+Dam+Granular+Material&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Shi-lin+Zhang&rft.au=Gao-jian+Wu&rft.au=Xingguo+Yang&rft.au=Wan-hong+Jiang&rft.date=2018-08-01&rft.pub=%EB%8C%80%ED%95%9C%ED%86%A0%EB%AA%A9%ED%95%99%ED%9A%8C&rft.issn=1226-7988&rft.eissn=1976-3808&rft.spage=2820&rft.epage=2833&rft_id=info:doi/10.1007%2Fs12205-017-0304-8&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_3632127 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon |