Sleep Posture Detection via Embedded Machine Learning on a Reduced Set of Pressure Sensors
Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep pos...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 2; p. 458 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
14.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25020458 |
Cover
Abstract | Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality. However, wearable solutions can be intrusive and affect sleep, while non-wearable systems, such as camera-based approaches and pressure sensor arrays, often face challenges related to privacy, cost, and computational complexity. The system in this paper proposes a microcontroller-based approach exploiting the execution of an embedded machine learning (ML) model for posture classification. By locally processing data from a minimal set of pressure sensors, the system avoids the need to transmit raw data to remote units, making it lightweight and suitable for real-time applications. Our results demonstrate that this approach maintains high classification accuracy (i.e., 0.90 and 0.96 for the configurations with 6 and 15 sensors, respectively) while reducing both hardware and computational requirements. |
---|---|
AbstractList | Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality. However, wearable solutions can be intrusive and affect sleep, while non-wearable systems, such as camera-based approaches and pressure sensor arrays, often face challenges related to privacy, cost, and computational complexity. The system in this paper proposes a microcontroller-based approach exploiting the execution of an embedded machine learning (ML) model for posture classification. By locally processing data from a minimal set of pressure sensors, the system avoids the need to transmit raw data to remote units, making it lightweight and suitable for real-time applications. Our results demonstrate that this approach maintains high classification accuracy (i.e., 0.90 and 0.96 for the configurations with 6 and 15 sensors, respectively) while reducing both hardware and computational requirements. Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality. However, wearable solutions can be intrusive and affect sleep, while non-wearable systems, such as camera-based approaches and pressure sensor arrays, often face challenges related to privacy, cost, and computational complexity. The system in this paper proposes a microcontroller-based approach exploiting the execution of an embedded machine learning (ML) model for posture classification. By locally processing data from a minimal set of pressure sensors, the system avoids the need to transmit raw data to remote units, making it lightweight and suitable for real-time applications. Our results demonstrate that this approach maintains high classification accuracy (i.e., 0.90 and 0.96 for the configurations with 6 and 15 sensors, respectively) while reducing both hardware and computational requirements.Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality. However, wearable solutions can be intrusive and affect sleep, while non-wearable systems, such as camera-based approaches and pressure sensor arrays, often face challenges related to privacy, cost, and computational complexity. The system in this paper proposes a microcontroller-based approach exploiting the execution of an embedded machine learning (ML) model for posture classification. By locally processing data from a minimal set of pressure sensors, the system avoids the need to transmit raw data to remote units, making it lightweight and suitable for real-time applications. Our results demonstrate that this approach maintains high classification accuracy (i.e., 0.90 and 0.96 for the configurations with 6 and 15 sensors, respectively) while reducing both hardware and computational requirements. |
Author | Galli, Alessandra Pozzebon, Alessandro Giorgi, Giada Peruzzi, Giacomo |
AuthorAffiliation | 2 Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands 1 Department of Information Engineering, University of Padova, 35122 Padova, Italy; giacomo.peruzzi@unipd.it (G.P.); giada.giorgi@unipd.it (G.G.); alessandro.pozzebon@unipd.it (A.P.) |
AuthorAffiliation_xml | – name: 1 Department of Information Engineering, University of Padova, 35122 Padova, Italy; giacomo.peruzzi@unipd.it (G.P.); giada.giorgi@unipd.it (G.G.); alessandro.pozzebon@unipd.it (A.P.) – name: 2 Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands |
Author_xml | – sequence: 1 givenname: Giacomo orcidid: 0000-0002-6311-7332 surname: Peruzzi fullname: Peruzzi, Giacomo – sequence: 2 givenname: Alessandra orcidid: 0000-0003-2416-0220 surname: Galli fullname: Galli, Alessandra – sequence: 3 givenname: Giada orcidid: 0000-0001-9498-4722 surname: Giorgi fullname: Giorgi, Giada – sequence: 4 givenname: Alessandro orcidid: 0000-0003-3991-8858 surname: Pozzebon fullname: Pozzebon, Alessandro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39860827$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvEzEQgC1URB9w4A8gS1zKIeDn2ntCVSm0UhAVgQsXy-sdp442dmrvVuLf4zRt1HLyyPPNpxl7jtFBTBEQekvJR85b8qkwSRgRUr9AR1QwMdOMkYMn8SE6LmVFCOOc61fokLe6IZqpI_RnMQBs8HUq45QBf4ER3BhSxHfB4ot1B30PPf5u3U2IgOdgcwxxiStg8U_oJ1ezCxhx8vg6QylbyQJiSbm8Ri-9HQq8eThP0O-vF7_OL2fzH9-uzs_mMyc4GWetJ6r1XtJOsgaIbzgjSvdMK2WpBgGOUUslbVVjawFoRzorGDSSWCkU5Sfoauftk12ZTQ5rm_-aZIO5v0h5aWwegxvAUO87orWSEpzoW6WtVC0H8Io1gjVb1-edazN1a-gdxDHb4Zn0eSaGG7NMd4ZS1bR1gGo4fTDkdDtBGc06FAfDYCOkqRhOZasJk0JW9P1_6CpNOda3uqeaOjInlXr3tKV9L49_WIEPO8DlVEoGv0coMdv9MPv94P8AS-epqw |
Cites_doi | 10.1145/3130969 10.3390/s21165553 10.3390/iot2010007 10.1109/JBHI.2019.2899070 10.1109/TELFOR59449.2023.10372623 10.1109/BHI.2017.7897206 10.1109/MN55117.2022.9887782 10.1109/JSEN.2024.3452940 10.1007/s11325-019-01897-1 10.1080/01616412.2017.1315864 10.1111/j.1365-2869.2008.00703.x 10.1109/JSEN.2020.3013435 10.1109/ATC55345.2022.9942964 10.1109/SMC.2019.8914459 10.3390/s23052430 10.1109/MAPR53640.2021.9585289 10.1109/NICS54270.2021.9701531 10.1109/TNSRE.2020.3048121 10.3390/app11114752 10.1109/HealthCom.2017.8210806 10.1016/j.sleep.2018.04.017 10.1109/MI-STA52233.2021.9464360 10.1016/j.sleh.2020.02.016 10.1001/archinte.165.1.25 10.1016/j.pmcj.2013.10.008 10.1038/nature04286 10.1109/ACCESS.2020.2994593 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25020458 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_1ffb088755ec4d978a5793eef7264261 PMC11769526 39860827 10_3390_s25020458 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Commission grantid: 101063008 – fundername: European Union’s Horizon Europe research and innovation programme grantid: 101063008 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c430t-9f079ff51b526e0f632078d2877a18e4ec21a151976a430e8c0ba42e650a54713 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:51 EDT 2025 Thu Aug 21 18:40:35 EDT 2025 Fri Sep 05 05:45:44 EDT 2025 Fri Jul 25 22:24:58 EDT 2025 Tue May 06 01:31:52 EDT 2025 Tue Jul 01 02:10:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | obstructive sleep apnea sensor selection support vector machine internet of things embedded machine learning pressure sensors artificial intelligence sleep posture recognition |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-9f079ff51b526e0f632078d2877a18e4ec21a151976a430e8c0ba42e650a54713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6311-7332 0000-0001-9498-4722 0000-0003-3991-8858 0000-0003-2416-0220 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25020458 |
PMID | 39860827 |
PQID | 3159619730 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1ffb088755ec4d978a5793eef7264261 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11769526 proquest_miscellaneous_3159802545 proquest_journals_3159619730 pubmed_primary_39860827 crossref_primary_10_3390_s25020458 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250114 |
PublicationDateYYYYMMDD | 2025-01-14 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250114 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Li (ref_15) 2024; 24 Xie (ref_3) 2017; 39 Tang (ref_12) 2021; 2 ref_11 Kalsi (ref_4) 2018; 51 ref_19 ref_18 ref_17 Li (ref_13) 2020; 21 Ishibashi (ref_5) 2020; 6 Liu (ref_14) 2014; 10 ref_25 ref_24 ref_23 Lee (ref_6) 2009; 18 ref_22 ref_20 Zhao (ref_21) 2020; 8 Vorona (ref_2) 2005; 165 ref_27 ref_26 Oksenberg (ref_7) 2020; 24 ref_9 Sun (ref_8) 2017; 1 Stickgold (ref_1) 2005; 437 Mohammadi (ref_10) 2020; 29 Matar (ref_16) 2019; 24 |
References_xml | – volume: 1 start-page: 104 year: 2017 ident: ref_8 article-title: Sleepmonitor: Monitoring respiratory rate and body position during sleep using smartwatch publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3130969 – ident: ref_11 doi: 10.3390/s21165553 – volume: 2 start-page: 119 year: 2021 ident: ref_12 article-title: CNN-based smart sleep posture recognition system publication-title: IoT doi: 10.3390/iot2010007 – volume: 24 start-page: 101 year: 2019 ident: ref_16 article-title: Artificial neural network for in-bed posture classification using bed-sheet pressure sensors publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2899070 – ident: ref_18 doi: 10.1109/TELFOR59449.2023.10372623 – ident: ref_17 doi: 10.1109/BHI.2017.7897206 – ident: ref_27 doi: 10.1109/MN55117.2022.9887782 – volume: 24 start-page: 33217 year: 2024 ident: ref_15 article-title: Sleep State Monitoring System Based on Flexible Pressure sensor Arrays for Evaluating Sleep Quality publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2024.3452940 – volume: 24 start-page: 551 year: 2020 ident: ref_7 article-title: Prevalence and characteristics of positional obstructive sleep apnea (POSA) in patients with severe OSA publication-title: Sleep Breath. doi: 10.1007/s11325-019-01897-1 – volume: 39 start-page: 559 year: 2017 ident: ref_3 article-title: A review of sleep disorders and melatonin publication-title: Neurol. Res. doi: 10.1080/01616412.2017.1315864 – volume: 18 start-page: 26 year: 2009 ident: ref_6 article-title: Determining optimal sleep position in patients with positional sleep-disordered breathing using response surface analysis publication-title: J. Sleep Res. doi: 10.1111/j.1365-2869.2008.00703.x – volume: 21 start-page: 14466 year: 2020 ident: ref_13 article-title: Smart sleep monitoring system via passively sensing human vibration signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3013435 – ident: ref_23 doi: 10.1109/ATC55345.2022.9942964 – ident: ref_19 doi: 10.1109/SMC.2019.8914459 – ident: ref_20 doi: 10.3390/s23052430 – ident: ref_24 doi: 10.1109/MAPR53640.2021.9585289 – ident: ref_25 doi: 10.1109/NICS54270.2021.9701531 – volume: 29 start-page: 290 year: 2020 ident: ref_10 article-title: Transfer learning for clinical sleep pose detection using a single 2D IR camera publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3048121 – ident: ref_26 doi: 10.3390/app11114752 – ident: ref_9 doi: 10.1109/HealthCom.2017.8210806 – volume: 51 start-page: 148 year: 2018 ident: ref_4 article-title: Sleep versus non- sleep-related fatal road accidents publication-title: Sleep Med. doi: 10.1016/j.sleep.2018.04.017 – ident: ref_22 doi: 10.1109/MI-STA52233.2021.9464360 – volume: 6 start-page: 270 year: 2020 ident: ref_5 article-title: Association between work productivity and sleep health: A cross-sectional study in Japan publication-title: Sleep Health doi: 10.1016/j.sleh.2020.02.016 – volume: 165 start-page: 25 year: 2005 ident: ref_2 article-title: Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index publication-title: Arch. Intern. Med. doi: 10.1001/archinte.165.1.25 – volume: 10 start-page: 34 year: 2014 ident: ref_14 article-title: Sleep posture analysis using a dense pressure sensitive bedsheet publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2013.10.008 – volume: 437 start-page: 1272 year: 2005 ident: ref_1 article-title: Sleep-dependent memory consolidation publication-title: Nature doi: 10.1038/nature04286 – volume: 8 start-page: 93907 year: 2020 ident: ref_21 article-title: Self-supervised learning from multi-sensor data for sleep recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994593 |
SSID | ssj0023338 |
Score | 2.479613 |
Snippet | Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 458 |
SubjectTerms | Algorithms artificial intelligence Cameras embedded machine learning Embedded systems Energy consumption Humans internet of things Machine Learning Neural networks Posture - physiology Pressure pressure sensors sensor selection Sensors Sleep - physiology Sleep apnea Sleep Apnea, Obstructive - physiopathology support vector machine Support vector machines Textiles Wearable computers Wearable Electronic Devices |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnOgBFUohfMlFvUbEdhwnx5YPoUpwYIuEeolsZwxIJbvazfb3dxxnV7sIiUuvsRM5M7bfPHn8BuBbTpOWO-VSKyqT5kLb1DpbpI1rKlNayUVfpvPmtri-z38-qIeVUl8hJyzKA0fDnXHvbVgJSqHLG-I8RtGUQvSaoFxE4pNV2YJMDVRLEvOKOkKSSP3ZjIA-6K6Xa-jTi_S_FVm-TpBcQZyrT7A1hIrsexziNnzAdgc-rggIfobfoz-IExYq7s6nyC6w6zOrWvb32bDLF4u0rTTspk-YRDZoqT4y6mDYXRBtpdYRdmzsWbwnSB8ZEbEdT2e7cH91-ev8Oh2qJaQul1mXVj7TlfeKWyUKzHwhBcF_Q4xIG15ijk5ww8M91cLQC1i6zJpcIIVoRhFEyS-w0Y5b3AdmdIVkdK8wqBMRo9CaoNRmErkTXvMEThdWrCdRFKMmMhFMXS9NncCPYN9lh6Bj3T8g79aDd-v3vJvA0cI79bC4ZrWkEIx4H-1NCXxdNtOyCGcdpsXxPPYpw01_lcBedOZyJLIqC4p8dALlmpvXhrre0j4_9dLbnOuiIvse_I-fO4RNEaoJZzzl-RFsdNM5HlOI09mTfjb_A9s6-MA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QUOFW8CBRnE1Wocx3FyQIjCVhVSV6hLpYpLZDvjUgmS7W6W3884L7oIcY2dyJoZz8wXj78BeJuS0QqnHLdJYXiaaMutsxmvXFWY3EqRdG06zxbZ6UX6-VJd7sFivAsTyipHn9g56qpx4R_5kaS4S8k-GeT71Q0PXaPC6erYQsMMrRWqdx3F2B3YJ5es4hnsH88XX84nCCYJkfX8QpLA_tGG5gQ-9nwnKnXk_f_KOP8unLwViU7uw8GQQrIPvc4fwB7WD-HeLWLBR_Bt-QNxxUIn3u0a2Sdsu4qrmv26Nmz-0yK5m4qddYWUyAaO1StGEww7D2SuNLrEljWe9fcH6SNLArzNevMYLk7mXz-e8qGLAnepjFte-FgX3ithVZJh7DOZUFpQEVLSRuSYokuEEeH-amboBcxdbE2aIKVuRlHokk9gVjc1PgNmdIE2zr3CwFpESENrCrE2lihc4rWI4M0oxXLVk2WUBDKCqMtJ1BEcB_lOEwK_dfegWV-Vw3Yphfc2-D-l0KUVIV2jyJEgek0JHIG-CA5H7ZTDptuUf0wkgtfTMG2XcAZiamy2_Zw8MACoCJ72ypxWIos8o4xIR5DvqHlnqbsj9fX3jpJbCJ0VJN_n_1_XC7ibhP7BseAiPYRZu97iS0pqWvtqsNTfYUP3Qw priority: 102 providerName: ProQuest |
Title | Sleep Posture Detection via Embedded Machine Learning on a Reduced Set of Pressure Sensors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39860827 https://www.proquest.com/docview/3159619730 https://www.proquest.com/docview/3159802545 https://pubmed.ncbi.nlm.nih.gov/PMC11769526 https://doaj.org/article/1ffb088755ec4d978a5793eef7264261 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaFyQLwJlJVBXAOxE8fJASEKu1RIrVCXlVZcIjsZl0olKdksgn_POC81qCcuOcTjyBrbM_PF428AXkW0aHkuc9-IVPuRUMY3uYn9Ii9SnZiQi7ZM58lpfLyKPq_legeGGpu9Ajc3QjtXT2pVX77-_fPPO9rwbx3iJMj-ZkNu3LGqJ7uw3x4TuQy-aDxMECHBsI5UaCp-ALfCNInJCaqJV2rJ-2-KOP9NnLzmiRZ34U4fQrL33Zzfgx0s78Pta8SCD-Db8hLxirlKvNsa2Uds2oyrkv260Gz-wyCZm4KdtImUyHqO1XNGApqdOTJXal1iwyrLuvuD9JElAd6q3jyE1WL-9cOx31dR8PMoDBo_tYFKrZXcSBFjYONQUFhQEFJSmicYYS645u7-aqypAyZ5YHQkkEI3Lcl1hY9gr6xKfAJMqxRNkFiJjrWIkIZS5GJNECLPhVXcg5eDFrOrjiwjI5DhtJ6NWvfgyOl3FHD81u2Lqj7P-u2ScWuNs39SYh4VhHS1JEOCaBUFcAT6PDgcZicb1kwWUmhGeJBslgcvxmbaLu4MRJdYbTuZxDEASA8ed5M5jmRYDB4kk2meDHXaUl58bym5OVdxSvp9-v9dn8GBcLWFA-7z6BD2mnqLzyngacwMdtVa0TNZfJrB_tH89MvZrP15MGsX-l_O5wQS |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IN4EChgEx6ixE-dxqBClW21pd4W6rVRxCbYzLpUgWXazIP4cv41xkg1dhLj1GjuWNR7PzGePvwF4FZHSciONr0Wm_Egk2tdGx35hikylOuSiKdM5nsSj0-j9mTzbgF-rtzAurXJlExtDXVTGnZFvh-R3KdgnhXwz--a7qlHudnVVQkN1pRWKnYZirHvYcYg_fxCEW-wc7NF6vxZif3jybuR3VQZ8E4VB7Wc2SDJrJddSxBjYOBTkNgtCEoniKUZoBFfcve-MFf2AqQm0igRSaKMkmfaQxr0Gm5E7QBnA5u5w8uG4h3whIcCWzygMs2B7QQGH439P17xgUyzgXxHu34malzzf_m241YWs7G2rY3dgA8u7cPMSkeE9-Dj9gjhjrvLvco5sD-smw6tk3y8UG37VSOatYOMmcRNZx-l6zqiDYseOPJZap1izyrL2vSINMiWAXc0X9-H0SuT5AAZlVeIjYCrJUAeplehYkgjZJAm5dB2EyI2wCffg5UqK-awl58gJ1DhR572oPdh18u07OD7t5kM1P8-77Zlza7Wzt1KiiQpC1kqS4UK0CQWMBDI92FqtTt5t8kX-RyU9eNE30_Z0dy6qxGrZ9kkd44D04GG7mP1MwiyNKQJLPEjXlnltqust5cXnhgKc8yTOSL6P_z-v53B9dDI-yo8OJodP4IZwtYsD7vNoCwb1fIlPKaCq9bNOaxl8uuqN8hvAYDIN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJwQLwJFDAIjtHGdhInhwpRdlctpauqS6WKS2on41IJkmU3C-Iv8qsYJ9nQRYhbr7ETWeN5ffH4G4BXISktz6PcNyLVfiiU8U1uYr_Ii1QnRnLRtOk8nMR7J-H70-h0A36t7sK4ssqVT2wcdVHl7h_5QFLcpWSfFHJgu7KIo-H4zeyb7zpIuZPWVTsN3bVZKHYaurHukscB_vxBcG6xsz-kvX8txHj08d2e33Uc8PNQBrWf2kCl1kbcRCLGwMZSUAgtCFUozRMMMRdcc3fXM9b0AiZ5YHQokNIcHZGbl_Tda7ClKOoTENzaHU2Ojnv4JwkNttxGUqbBYEHJh-OCT9YiYtM44F_Z7t9Fm5ei4Pg23OrSV_a21bc7sIHlXbh5idTwHnyafkGcMdcFeDlHNsS6qfYq2fcLzUZfDZKrK9hhU8SJrON3PWc0QbNjRyRLo1OsWWVZe3eRPjIlsF3NF_fh5Erk-QA2y6rER8C0StEEiY3QMSYRylGKwrsJJPJcWMU9eLmSYjZriToyAjhO1Fkvag92nXz7CY5bu3lQzc-zzlQzbq1xvjeKMA8LQtk6IieGaBUljwQ4Pdhe7U7WGfwi-6OeHrzoh8lU3fmLLrFatnMSxz4QefCw3cx-JTJNYsrGlAfJ2javLXV9pLz43NCBc67ilOT7-P_reg7XyWCyD_uTgydwQ7g2xgH3ebgNm_V8iU8pt6rNs05pGZxdtZ38BiU5NlE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+Posture+Detection+via+Embedded+Machine+Learning+on+a+Reduced+Set+of+Pressure+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Peruzzi%2C+Giacomo&rft.au=Galli%2C+Alessandra&rft.au=Giorgi%2C+Giada&rft.au=Pozzebon%2C+Alessandro&rft.date=2025-01-14&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft_id=info:doi/10.3390%2Fs25020458&rft_id=info%3Apmid%2F39860827&rft.externalDocID=PMC11769526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |