Sleep Posture Detection via Embedded Machine Learning on a Reduced Set of Pressure Sensors

Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep pos...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 2; p. 458
Main Authors Peruzzi, Giacomo, Galli, Alessandra, Giorgi, Giada, Pozzebon, Alessandro
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.01.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25020458

Cover

Abstract Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality. However, wearable solutions can be intrusive and affect sleep, while non-wearable systems, such as camera-based approaches and pressure sensor arrays, often face challenges related to privacy, cost, and computational complexity. The system in this paper proposes a microcontroller-based approach exploiting the execution of an embedded machine learning (ML) model for posture classification. By locally processing data from a minimal set of pressure sensors, the system avoids the need to transmit raw data to remote units, making it lightweight and suitable for real-time applications. Our results demonstrate that this approach maintains high classification accuracy (i.e., 0.90 and 0.96 for the configurations with 6 and 15 sensors, respectively) while reducing both hardware and computational requirements.
AbstractList Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality. However, wearable solutions can be intrusive and affect sleep, while non-wearable systems, such as camera-based approaches and pressure sensor arrays, often face challenges related to privacy, cost, and computational complexity. The system in this paper proposes a microcontroller-based approach exploiting the execution of an embedded machine learning (ML) model for posture classification. By locally processing data from a minimal set of pressure sensors, the system avoids the need to transmit raw data to remote units, making it lightweight and suitable for real-time applications. Our results demonstrate that this approach maintains high classification accuracy (i.e., 0.90 and 0.96 for the configurations with 6 and 15 sensors, respectively) while reducing both hardware and computational requirements.
Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality. However, wearable solutions can be intrusive and affect sleep, while non-wearable systems, such as camera-based approaches and pressure sensor arrays, often face challenges related to privacy, cost, and computational complexity. The system in this paper proposes a microcontroller-based approach exploiting the execution of an embedded machine learning (ML) model for posture classification. By locally processing data from a minimal set of pressure sensors, the system avoids the need to transmit raw data to remote units, making it lightweight and suitable for real-time applications. Our results demonstrate that this approach maintains high classification accuracy (i.e., 0.90 and 0.96 for the configurations with 6 and 15 sensors, respectively) while reducing both hardware and computational requirements.Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality. However, wearable solutions can be intrusive and affect sleep, while non-wearable systems, such as camera-based approaches and pressure sensor arrays, often face challenges related to privacy, cost, and computational complexity. The system in this paper proposes a microcontroller-based approach exploiting the execution of an embedded machine learning (ML) model for posture classification. By locally processing data from a minimal set of pressure sensors, the system avoids the need to transmit raw data to remote units, making it lightweight and suitable for real-time applications. Our results demonstrate that this approach maintains high classification accuracy (i.e., 0.90 and 0.96 for the configurations with 6 and 15 sensors, respectively) while reducing both hardware and computational requirements.
Author Galli, Alessandra
Pozzebon, Alessandro
Giorgi, Giada
Peruzzi, Giacomo
AuthorAffiliation 2 Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
1 Department of Information Engineering, University of Padova, 35122 Padova, Italy; giacomo.peruzzi@unipd.it (G.P.); giada.giorgi@unipd.it (G.G.); alessandro.pozzebon@unipd.it (A.P.)
AuthorAffiliation_xml – name: 1 Department of Information Engineering, University of Padova, 35122 Padova, Italy; giacomo.peruzzi@unipd.it (G.P.); giada.giorgi@unipd.it (G.G.); alessandro.pozzebon@unipd.it (A.P.)
– name: 2 Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
Author_xml – sequence: 1
  givenname: Giacomo
  orcidid: 0000-0002-6311-7332
  surname: Peruzzi
  fullname: Peruzzi, Giacomo
– sequence: 2
  givenname: Alessandra
  orcidid: 0000-0003-2416-0220
  surname: Galli
  fullname: Galli, Alessandra
– sequence: 3
  givenname: Giada
  orcidid: 0000-0001-9498-4722
  surname: Giorgi
  fullname: Giorgi, Giada
– sequence: 4
  givenname: Alessandro
  orcidid: 0000-0003-3991-8858
  surname: Pozzebon
  fullname: Pozzebon, Alessandro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39860827$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvEzEQgC1URB9w4A8gS1zKIeDn2ntCVSm0UhAVgQsXy-sdp442dmrvVuLf4zRt1HLyyPPNpxl7jtFBTBEQekvJR85b8qkwSRgRUr9AR1QwMdOMkYMn8SE6LmVFCOOc61fokLe6IZqpI_RnMQBs8HUq45QBf4ER3BhSxHfB4ot1B30PPf5u3U2IgOdgcwxxiStg8U_oJ1ezCxhx8vg6QylbyQJiSbm8Ri-9HQq8eThP0O-vF7_OL2fzH9-uzs_mMyc4GWetJ6r1XtJOsgaIbzgjSvdMK2WpBgGOUUslbVVjawFoRzorGDSSWCkU5Sfoauftk12ZTQ5rm_-aZIO5v0h5aWwegxvAUO87orWSEpzoW6WtVC0H8Io1gjVb1-edazN1a-gdxDHb4Zn0eSaGG7NMd4ZS1bR1gGo4fTDkdDtBGc06FAfDYCOkqRhOZasJk0JW9P1_6CpNOda3uqeaOjInlXr3tKV9L49_WIEPO8DlVEoGv0coMdv9MPv94P8AS-epqw
Cites_doi 10.1145/3130969
10.3390/s21165553
10.3390/iot2010007
10.1109/JBHI.2019.2899070
10.1109/TELFOR59449.2023.10372623
10.1109/BHI.2017.7897206
10.1109/MN55117.2022.9887782
10.1109/JSEN.2024.3452940
10.1007/s11325-019-01897-1
10.1080/01616412.2017.1315864
10.1111/j.1365-2869.2008.00703.x
10.1109/JSEN.2020.3013435
10.1109/ATC55345.2022.9942964
10.1109/SMC.2019.8914459
10.3390/s23052430
10.1109/MAPR53640.2021.9585289
10.1109/NICS54270.2021.9701531
10.1109/TNSRE.2020.3048121
10.3390/app11114752
10.1109/HealthCom.2017.8210806
10.1016/j.sleep.2018.04.017
10.1109/MI-STA52233.2021.9464360
10.1016/j.sleh.2020.02.016
10.1001/archinte.165.1.25
10.1016/j.pmcj.2013.10.008
10.1038/nature04286
10.1109/ACCESS.2020.2994593
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25020458
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1ffb088755ec4d978a5793eef7264261
PMC11769526
39860827
10_3390_s25020458
Genre Journal Article
GrantInformation_xml – fundername: European Commission
  grantid: 101063008
– fundername: European Union’s Horizon Europe research and innovation programme
  grantid: 101063008
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c430t-9f079ff51b526e0f632078d2877a18e4ec21a151976a430e8c0ba42e650a54713
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:51 EDT 2025
Thu Aug 21 18:40:35 EDT 2025
Fri Sep 05 05:45:44 EDT 2025
Fri Jul 25 22:24:58 EDT 2025
Tue May 06 01:31:52 EDT 2025
Tue Jul 01 02:10:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords obstructive sleep apnea
sensor selection
support vector machine
internet of things
embedded machine learning
pressure sensors
artificial intelligence
sleep posture recognition
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-9f079ff51b526e0f632078d2877a18e4ec21a151976a430e8c0ba42e650a54713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6311-7332
0000-0001-9498-4722
0000-0003-3991-8858
0000-0003-2416-0220
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25020458
PMID 39860827
PQID 3159619730
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1ffb088755ec4d978a5793eef7264261
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11769526
proquest_miscellaneous_3159802545
proquest_journals_3159619730
pubmed_primary_39860827
crossref_primary_10_3390_s25020458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250114
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 1
  year: 2025
  text: 20250114
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Li (ref_15) 2024; 24
Xie (ref_3) 2017; 39
Tang (ref_12) 2021; 2
ref_11
Kalsi (ref_4) 2018; 51
ref_19
ref_18
ref_17
Li (ref_13) 2020; 21
Ishibashi (ref_5) 2020; 6
Liu (ref_14) 2014; 10
ref_25
ref_24
ref_23
Lee (ref_6) 2009; 18
ref_22
ref_20
Zhao (ref_21) 2020; 8
Vorona (ref_2) 2005; 165
ref_27
ref_26
Oksenberg (ref_7) 2020; 24
ref_9
Sun (ref_8) 2017; 1
Stickgold (ref_1) 2005; 437
Mohammadi (ref_10) 2020; 29
Matar (ref_16) 2019; 24
References_xml – volume: 1
  start-page: 104
  year: 2017
  ident: ref_8
  article-title: Sleepmonitor: Monitoring respiratory rate and body position during sleep using smartwatch
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3130969
– ident: ref_11
  doi: 10.3390/s21165553
– volume: 2
  start-page: 119
  year: 2021
  ident: ref_12
  article-title: CNN-based smart sleep posture recognition system
  publication-title: IoT
  doi: 10.3390/iot2010007
– volume: 24
  start-page: 101
  year: 2019
  ident: ref_16
  article-title: Artificial neural network for in-bed posture classification using bed-sheet pressure sensors
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2899070
– ident: ref_18
  doi: 10.1109/TELFOR59449.2023.10372623
– ident: ref_17
  doi: 10.1109/BHI.2017.7897206
– ident: ref_27
  doi: 10.1109/MN55117.2022.9887782
– volume: 24
  start-page: 33217
  year: 2024
  ident: ref_15
  article-title: Sleep State Monitoring System Based on Flexible Pressure sensor Arrays for Evaluating Sleep Quality
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3452940
– volume: 24
  start-page: 551
  year: 2020
  ident: ref_7
  article-title: Prevalence and characteristics of positional obstructive sleep apnea (POSA) in patients with severe OSA
  publication-title: Sleep Breath.
  doi: 10.1007/s11325-019-01897-1
– volume: 39
  start-page: 559
  year: 2017
  ident: ref_3
  article-title: A review of sleep disorders and melatonin
  publication-title: Neurol. Res.
  doi: 10.1080/01616412.2017.1315864
– volume: 18
  start-page: 26
  year: 2009
  ident: ref_6
  article-title: Determining optimal sleep position in patients with positional sleep-disordered breathing using response surface analysis
  publication-title: J. Sleep Res.
  doi: 10.1111/j.1365-2869.2008.00703.x
– volume: 21
  start-page: 14466
  year: 2020
  ident: ref_13
  article-title: Smart sleep monitoring system via passively sensing human vibration signals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3013435
– ident: ref_23
  doi: 10.1109/ATC55345.2022.9942964
– ident: ref_19
  doi: 10.1109/SMC.2019.8914459
– ident: ref_20
  doi: 10.3390/s23052430
– ident: ref_24
  doi: 10.1109/MAPR53640.2021.9585289
– ident: ref_25
  doi: 10.1109/NICS54270.2021.9701531
– volume: 29
  start-page: 290
  year: 2020
  ident: ref_10
  article-title: Transfer learning for clinical sleep pose detection using a single 2D IR camera
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3048121
– ident: ref_26
  doi: 10.3390/app11114752
– ident: ref_9
  doi: 10.1109/HealthCom.2017.8210806
– volume: 51
  start-page: 148
  year: 2018
  ident: ref_4
  article-title: Sleep versus non- sleep-related fatal road accidents
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2018.04.017
– ident: ref_22
  doi: 10.1109/MI-STA52233.2021.9464360
– volume: 6
  start-page: 270
  year: 2020
  ident: ref_5
  article-title: Association between work productivity and sleep health: A cross-sectional study in Japan
  publication-title: Sleep Health
  doi: 10.1016/j.sleh.2020.02.016
– volume: 165
  start-page: 25
  year: 2005
  ident: ref_2
  article-title: Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinte.165.1.25
– volume: 10
  start-page: 34
  year: 2014
  ident: ref_14
  article-title: Sleep posture analysis using a dense pressure sensitive bedsheet
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2013.10.008
– volume: 437
  start-page: 1272
  year: 2005
  ident: ref_1
  article-title: Sleep-dependent memory consolidation
  publication-title: Nature
  doi: 10.1038/nature04286
– volume: 8
  start-page: 93907
  year: 2020
  ident: ref_21
  article-title: Self-supervised learning from multi-sensor data for sleep recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994593
SSID ssj0023338
Score 2.479613
Snippet Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 458
SubjectTerms Algorithms
artificial intelligence
Cameras
embedded machine learning
Embedded systems
Energy consumption
Humans
internet of things
Machine Learning
Neural networks
Posture - physiology
Pressure
pressure sensors
sensor selection
Sensors
Sleep - physiology
Sleep apnea
Sleep Apnea, Obstructive - physiopathology
support vector machine
Support vector machines
Textiles
Wearable computers
Wearable Electronic Devices
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnOgBFUohfMlFvUbEdhwnx5YPoUpwYIuEeolsZwxIJbvazfb3dxxnV7sIiUuvsRM5M7bfPHn8BuBbTpOWO-VSKyqT5kLb1DpbpI1rKlNayUVfpvPmtri-z38-qIeVUl8hJyzKA0fDnXHvbVgJSqHLG-I8RtGUQvSaoFxE4pNV2YJMDVRLEvOKOkKSSP3ZjIA-6K6Xa-jTi_S_FVm-TpBcQZyrT7A1hIrsexziNnzAdgc-rggIfobfoz-IExYq7s6nyC6w6zOrWvb32bDLF4u0rTTspk-YRDZoqT4y6mDYXRBtpdYRdmzsWbwnSB8ZEbEdT2e7cH91-ev8Oh2qJaQul1mXVj7TlfeKWyUKzHwhBcF_Q4xIG15ijk5ww8M91cLQC1i6zJpcIIVoRhFEyS-w0Y5b3AdmdIVkdK8wqBMRo9CaoNRmErkTXvMEThdWrCdRFKMmMhFMXS9NncCPYN9lh6Bj3T8g79aDd-v3vJvA0cI79bC4ZrWkEIx4H-1NCXxdNtOyCGcdpsXxPPYpw01_lcBedOZyJLIqC4p8dALlmpvXhrre0j4_9dLbnOuiIvse_I-fO4RNEaoJZzzl-RFsdNM5HlOI09mTfjb_A9s6-MA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QUOFW8CBRnE1Wocx3FyQIjCVhVSV6hLpYpLZDvjUgmS7W6W3884L7oIcY2dyJoZz8wXj78BeJuS0QqnHLdJYXiaaMutsxmvXFWY3EqRdG06zxbZ6UX6-VJd7sFivAsTyipHn9g56qpx4R_5kaS4S8k-GeT71Q0PXaPC6erYQsMMrRWqdx3F2B3YJ5es4hnsH88XX84nCCYJkfX8QpLA_tGG5gQ-9nwnKnXk_f_KOP8unLwViU7uw8GQQrIPvc4fwB7WD-HeLWLBR_Bt-QNxxUIn3u0a2Sdsu4qrmv26Nmz-0yK5m4qddYWUyAaO1StGEww7D2SuNLrEljWe9fcH6SNLArzNevMYLk7mXz-e8qGLAnepjFte-FgX3ithVZJh7DOZUFpQEVLSRuSYokuEEeH-amboBcxdbE2aIKVuRlHokk9gVjc1PgNmdIE2zr3CwFpESENrCrE2lihc4rWI4M0oxXLVk2WUBDKCqMtJ1BEcB_lOEwK_dfegWV-Vw3Yphfc2-D-l0KUVIV2jyJEgek0JHIG-CA5H7ZTDptuUf0wkgtfTMG2XcAZiamy2_Zw8MACoCJ72ypxWIos8o4xIR5DvqHlnqbsj9fX3jpJbCJ0VJN_n_1_XC7ibhP7BseAiPYRZu97iS0pqWvtqsNTfYUP3Qw
  priority: 102
  providerName: ProQuest
Title Sleep Posture Detection via Embedded Machine Learning on a Reduced Set of Pressure Sensors
URI https://www.ncbi.nlm.nih.gov/pubmed/39860827
https://www.proquest.com/docview/3159619730
https://www.proquest.com/docview/3159802545
https://pubmed.ncbi.nlm.nih.gov/PMC11769526
https://doaj.org/article/1ffb088755ec4d978a5793eef7264261
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaFyQLwJlJVBXAOxE8fJASEKu1RIrVCXlVZcIjsZl0olKdksgn_POC81qCcuOcTjyBrbM_PF428AXkW0aHkuc9-IVPuRUMY3uYn9Ii9SnZiQi7ZM58lpfLyKPq_legeGGpu9Ajc3QjtXT2pVX77-_fPPO9rwbx3iJMj-ZkNu3LGqJ7uw3x4TuQy-aDxMECHBsI5UaCp-ALfCNInJCaqJV2rJ-2-KOP9NnLzmiRZ34U4fQrL33Zzfgx0s78Pta8SCD-Db8hLxirlKvNsa2Uds2oyrkv260Gz-wyCZm4KdtImUyHqO1XNGApqdOTJXal1iwyrLuvuD9JElAd6q3jyE1WL-9cOx31dR8PMoDBo_tYFKrZXcSBFjYONQUFhQEFJSmicYYS645u7-aqypAyZ5YHQkkEI3Lcl1hY9gr6xKfAJMqxRNkFiJjrWIkIZS5GJNECLPhVXcg5eDFrOrjiwjI5DhtJ6NWvfgyOl3FHD81u2Lqj7P-u2ScWuNs39SYh4VhHS1JEOCaBUFcAT6PDgcZicb1kwWUmhGeJBslgcvxmbaLu4MRJdYbTuZxDEASA8ed5M5jmRYDB4kk2meDHXaUl58bym5OVdxSvp9-v9dn8GBcLWFA-7z6BD2mnqLzyngacwMdtVa0TNZfJrB_tH89MvZrP15MGsX-l_O5wQS
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IN4EChgEx6ixE-dxqBClW21pd4W6rVRxCbYzLpUgWXazIP4cv41xkg1dhLj1GjuWNR7PzGePvwF4FZHSciONr0Wm_Egk2tdGx35hikylOuSiKdM5nsSj0-j9mTzbgF-rtzAurXJlExtDXVTGnZFvh-R3KdgnhXwz--a7qlHudnVVQkN1pRWKnYZirHvYcYg_fxCEW-wc7NF6vxZif3jybuR3VQZ8E4VB7Wc2SDJrJddSxBjYOBTkNgtCEoniKUZoBFfcve-MFf2AqQm0igRSaKMkmfaQxr0Gm5E7QBnA5u5w8uG4h3whIcCWzygMs2B7QQGH439P17xgUyzgXxHu34malzzf_m241YWs7G2rY3dgA8u7cPMSkeE9-Dj9gjhjrvLvco5sD-smw6tk3y8UG37VSOatYOMmcRNZx-l6zqiDYseOPJZap1izyrL2vSINMiWAXc0X9-H0SuT5AAZlVeIjYCrJUAeplehYkgjZJAm5dB2EyI2wCffg5UqK-awl58gJ1DhR572oPdh18u07OD7t5kM1P8-77Zlza7Wzt1KiiQpC1kqS4UK0CQWMBDI92FqtTt5t8kX-RyU9eNE30_Z0dy6qxGrZ9kkd44D04GG7mP1MwiyNKQJLPEjXlnltqust5cXnhgKc8yTOSL6P_z-v53B9dDI-yo8OJodP4IZwtYsD7vNoCwb1fIlPKaCq9bNOaxl8uuqN8hvAYDIN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJwQLwJFDAIjtHGdhInhwpRdlctpauqS6WKS2on41IJkmU3C-Iv8qsYJ9nQRYhbr7ETWeN5ffH4G4BXISktz6PcNyLVfiiU8U1uYr_Ii1QnRnLRtOk8nMR7J-H70-h0A36t7sK4ssqVT2wcdVHl7h_5QFLcpWSfFHJgu7KIo-H4zeyb7zpIuZPWVTsN3bVZKHYaurHukscB_vxBcG6xsz-kvX8txHj08d2e33Uc8PNQBrWf2kCl1kbcRCLGwMZSUAgtCFUozRMMMRdcc3fXM9b0AiZ5YHQokNIcHZGbl_Tda7ClKOoTENzaHU2Ojnv4JwkNttxGUqbBYEHJh-OCT9YiYtM44F_Z7t9Fm5ei4Pg23OrSV_a21bc7sIHlXbh5idTwHnyafkGcMdcFeDlHNsS6qfYq2fcLzUZfDZKrK9hhU8SJrON3PWc0QbNjRyRLo1OsWWVZe3eRPjIlsF3NF_fh5Erk-QA2y6rER8C0StEEiY3QMSYRylGKwrsJJPJcWMU9eLmSYjZriToyAjhO1Fkvag92nXz7CY5bu3lQzc-zzlQzbq1xvjeKMA8LQtk6IieGaBUljwQ4Pdhe7U7WGfwi-6OeHrzoh8lU3fmLLrFatnMSxz4QefCw3cx-JTJNYsrGlAfJ2javLXV9pLz43NCBc67ilOT7-P_reg7XyWCyD_uTgydwQ7g2xgH3ebgNm_V8iU8pt6rNs05pGZxdtZ38BiU5NlE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+Posture+Detection+via+Embedded+Machine+Learning+on+a+Reduced+Set+of+Pressure+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Peruzzi%2C+Giacomo&rft.au=Galli%2C+Alessandra&rft.au=Giorgi%2C+Giada&rft.au=Pozzebon%2C+Alessandro&rft.date=2025-01-14&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=2&rft_id=info:doi/10.3390%2Fs25020458&rft_id=info%3Apmid%2F39860827&rft.externalDocID=PMC11769526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon