PM2.5 Prediction Model Based on Combinational Hammerstein Recurrent Neural Networks
Airborne particulate matter 2.5 (PM2.5) can have a profound effect on the health of the population. Many researchers have been reporting highly accurate numerical predictions based on raw PM2.5 data imported directly into deep learning models; however, there is still considerable room for improvemen...
Saved in:
Published in | Mathematics (Basel) Vol. 8; no. 12; p. 2178 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math8122178 |
Cover
Abstract | Airborne particulate matter 2.5 (PM2.5) can have a profound effect on the health of the population. Many researchers have been reporting highly accurate numerical predictions based on raw PM2.5 data imported directly into deep learning models; however, there is still considerable room for improvement in terms of implementation costs due to heavy computational overhead. From the perspective of environmental science, PM2.5 values in a given location can be attributed to local sources as well as external sources. Local sources tend to have a dramatic short-term impact on PM2.5 values, whereas external sources tend to have more subtle but longer-lasting effects. In the presence of PM2.5 from both sources at the same time, this combination of effects can undermine the predictive accuracy of the model. This paper presents a novel combinational Hammerstein recurrent neural network (CHRNN) to enhance predictive accuracy and overcome the heavy computational and monetary burden imposed by deep learning models. The CHRNN comprises a based-neural network tasked with learning gradual (long-term) fluctuations in conjunction with add-on neural networks to deal with dramatic (short-term) fluctuations. The CHRNN can be coupled with a random forest model to determine the degree to which short-term effects influence long-term outcomes. We also developed novel feature selection and normalization methods to enhance prediction accuracy. Using real-world measurement data of air quality and PM2.5 datasets from Taiwan, the precision of the proposed system in the numerical prediction of PM2.5 levels was comparable to that of state-of-the-art deep learning models, such as deep recurrent neural networks and long short-term memory, despite far lower implementation costs and computational overhead. |
---|---|
AbstractList | Airborne particulate matter 2.5 (PM2.5) can have a profound effect on the health of the population. Many researchers have been reporting highly accurate numerical predictions based on raw PM2.5 data imported directly into deep learning models; however, there is still considerable room for improvement in terms of implementation costs due to heavy computational overhead. From the perspective of environmental science, PM2.5 values in a given location can be attributed to local sources as well as external sources. Local sources tend to have a dramatic short-term impact on PM2.5 values, whereas external sources tend to have more subtle but longer-lasting effects. In the presence of PM2.5 from both sources at the same time, this combination of effects can undermine the predictive accuracy of the model. This paper presents a novel combinational Hammerstein recurrent neural network (CHRNN) to enhance predictive accuracy and overcome the heavy computational and monetary burden imposed by deep learning models. The CHRNN comprises a based-neural network tasked with learning gradual (long-term) fluctuations in conjunction with add-on neural networks to deal with dramatic (short-term) fluctuations. The CHRNN can be coupled with a random forest model to determine the degree to which short-term effects influence long-term outcomes. We also developed novel feature selection and normalization methods to enhance prediction accuracy. Using real-world measurement data of air quality and PM2.5 datasets from Taiwan, the precision of the proposed system in the numerical prediction of PM2.5 levels was comparable to that of state-of-the-art deep learning models, such as deep recurrent neural networks and long short-term memory, despite far lower implementation costs and computational overhead. |
Author | Lei, Tsu-Chiang Yao, Shun Chen, Yi-Chung Wang, Hsin-Ping |
Author_xml | – sequence: 1 givenname: Yi-Chung orcidid: 0000-0003-0353-7340 surname: Chen fullname: Chen, Yi-Chung – sequence: 2 givenname: Tsu-Chiang surname: Lei fullname: Lei, Tsu-Chiang – sequence: 3 givenname: Shun surname: Yao fullname: Yao, Shun – sequence: 4 givenname: Hsin-Ping surname: Wang fullname: Wang, Hsin-Ping |
BookMark | eNptUdtKAzEQDaJgrX3yBxZ8lGouu032UYtaoa3Fy3PIJrOaurupSYr496atgogDw2RmzpzM5Qjtd64DhE4IPmesxBetiq-CUEq42EM9Sikf8hTf__U-RIMQljhJSZjIyx56XMzoeZEtPBiro3VdNnMGmuxKBTBZcseurWynNinVZBPVtuBDBNtlD6DX3kMXszmsfUrOIX44_xaO0UGtmgCDb9tHzzfXT-PJcHp_eze-nA51znAc8kKDAV7VijFRGIUNNkSbsgatKRZVwSvAVW1wpYRhI8ZNlRcbpSyBBGF9dLfjNU4t5crbVvlP6ZSV24DzL1L5aHUDMje6JJhhxWGUp0-FrkXNRc5VVWthTOI63XGtvHtfQ4hy6dY-jRwkzUdCsNRRnlBkh9LeheChltrG7W6iV7aRBMvNKeSvU6Sasz81P53-h_4CrDyNQQ |
CitedBy_id | crossref_primary_10_3390_computers13090238 crossref_primary_10_3390_rs13050930 crossref_primary_10_1108_F_05_2021_0046 crossref_primary_10_1016_j_scs_2023_104486 crossref_primary_10_1007_s00500_021_06128_y crossref_primary_10_1007_s11042_023_16291_z crossref_primary_10_3390_w14020155 crossref_primary_10_1016_j_measurement_2022_111601 crossref_primary_10_3390_math12101457 crossref_primary_10_1016_j_eti_2024_103930 crossref_primary_10_3390_atmos15121469 crossref_primary_10_3390_ijerph18031024 crossref_primary_10_3390_rs13163131 crossref_primary_10_1109_LRA_2022_3191850 crossref_primary_10_3390_atmos16010048 crossref_primary_10_3390_electronics10151808 crossref_primary_10_1016_j_jenvman_2024_120561 crossref_primary_10_3389_fenvs_2024_1469816 crossref_primary_10_3390_w14050761 |
Cites_doi | 10.3390/app10010014 10.1007/s11869-020-00878-8 10.3390/ijerph16010045 10.1016/j.envpol.2018.07.016 10.1016/j.apr.2016.12.014 10.1021/acs.est.0c02549 10.1007/s10489-020-02031-5 10.1080/10962247.2018.1459956 10.1114/1.1385806 10.1016/j.scitotenv.2019.07.367 10.1109/WOCN.2015.8064521 10.1016/j.atmosenv.2004.05.028 10.1097/01.ede.0000181630.15826.7d 10.1016/j.scs.2020.102237 10.1016/j.atmosenv.2020.117451 10.1016/j.envint.2019.01.016 10.1007/978-3-319-61030-6_23 10.1016/S0098-1354(97)00204-4 10.1007/s00521-020-04962-z 10.1016/j.envint.2020.106143 10.1016/B978-0-08-024288-0.50014-6 10.1016/j.apr.2019.11.019 10.3390/s18072220 10.24191/jcrinn.v5i3.149 10.3390/ijgi8020099 10.1007/BF00058655 10.1016/j.neucom.2010.03.011 10.1007/978-981-10-1741-4_4 10.1016/j.scitotenv.2012.10.070 10.1007/s11869-020-00936-1 10.1016/j.atmosenv.2010.06.055 10.1109/TFUZZ.2008.2005929 10.1109/ACCESS.2019.2921578 10.1109/IHMSC49165.2020.00022 10.1007/978-981-10-6487-6_2 10.1111/exsy.12511 10.1097/MD.0000000000002464 10.1016/j.envpol.2017.12.070 10.1109/TCSI.2006.875186 10.1016/j.atmosenv.2011.02.001 10.1016/j.patrec.2008.05.007 10.3390/ijerph14020114 10.1021/acs.est.7b01210 10.1145/3167132.3167234 10.1109/TBME.2003.820384 10.3182/20080706-5-KR-1001.01086 10.4209/aaqr.2013.07.0259 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/math8122178 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_4dc91030a7e64de78cf8f7847abfc8dd 10_3390_math8122178 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c430t-75cede7bfa3385da0d0d1cd9fecc208b57be0bfd0ba8d3637db45db4523d9f813 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 00:47:20 EDT 2025 Fri Jul 25 12:03:15 EDT 2025 Tue Jul 01 02:57:57 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-75cede7bfa3385da0d0d1cd9fecc208b57be0bfd0ba8d3637db45db4523d9f813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0353-7340 |
OpenAccessLink | https://www.proquest.com/docview/2468832084?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2468832084 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4dc91030a7e64de78cf8f7847abfc8dd proquest_journals_2468832084 crossref_citationtrail_10_3390_math8122178 crossref_primary_10_3390_math8122178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Westwick (ref_41) 2001; 29 Li (ref_22) 2020; 145 Dempsey (ref_42) 2004; 51 Wang (ref_47) 2009; 30 Breiman (ref_48) 1996; 26 Saide (ref_33) 2011; 45 Tao (ref_17) 2019; 7 Wang (ref_29) 2006; 53 Rhodes (ref_46) 1997; 21 Hu (ref_11) 2020; 51 Liu (ref_19) 2019; 37 ref_13 ref_34 Lee (ref_30) 2017; 579 ref_10 LaGesse (ref_12) 2020; 54 Zheng (ref_23) 2020; 230 Tarajia (ref_35) 2016; 95 Sayegh (ref_3) 2014; 14 ref_16 Wang (ref_45) 2008; 16 Kumar (ref_31) 2010; 44 Sun (ref_5) 2013; 443 Pak (ref_18) 2020; 699 Shahriar (ref_28) 2020; 13 Freeman (ref_15) 2018; 68 ref_25 ref_24 ref_44 ref_20 Jerrett (ref_36) 2005; 16 Sigurdson (ref_27) 1980; 28 ref_1 Ma (ref_21) 2020; 60 Baur (ref_2) 2004; 38 Huang (ref_37) 2018; 242 Biancofiore (ref_6) 2017; 8 Gan (ref_43) 2008; 41 Liu (ref_38) 2018; 235 Liu (ref_14) 2020; 11 ref_26 ref_9 ref_8 ref_4 Konovalov (ref_32) 2009; 43 Stafoggia (ref_39) 2019; 124 Wang (ref_40) 2010; 74 ref_7 |
References_xml | – ident: ref_20 doi: 10.3390/app10010014 – volume: 13 start-page: 1247 year: 2020 ident: ref_28 article-title: Applicability of machine learning in modeling of atmospheric particle pollution in Bangladesh publication-title: Air Qual. Atmos. Health doi: 10.1007/s11869-020-00878-8 – ident: ref_34 doi: 10.3390/ijerph16010045 – volume: 242 start-page: 675 year: 2018 ident: ref_37 article-title: Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.07.016 – volume: 8 start-page: 652 year: 2017 ident: ref_6 article-title: Recursive neural network model for analysis and forecast of PM10 and PM2.5 publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2016.12.014 – volume: 54 start-page: 15320 year: 2020 ident: ref_12 article-title: Predicting PM2.5 in Well-Mixed Indoor Air for a Large Office Building Using Regression and Artificial Neural Network Models publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02549 – ident: ref_24 doi: 10.1007/s10489-020-02031-5 – volume: 68 start-page: 866 year: 2018 ident: ref_15 article-title: Forecasting air quality time series using deep learning publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10962247.2018.1459956 – volume: 43 start-page: 6425 year: 2009 ident: ref_32 article-title: Combining deterministic and statistical approaches for PM10 forecasting in Europe publication-title: Atmos. Health – volume: 29 start-page: 707 year: 2001 ident: ref_41 article-title: Separable least squares identification of nonlinear Hammerstein models: Application to stretch reflex dynamics publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1385806 – volume: 699 start-page: 133561 year: 2020 ident: ref_18 article-title: Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.367 – ident: ref_1 doi: 10.1109/WOCN.2015.8064521 – volume: 38 start-page: 4689 year: 2004 ident: ref_2 article-title: Modelling the effects of meteorological variables on ozone concentration—A quantile regression approach publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2004.05.028 – volume: 16 start-page: 727 year: 2005 ident: ref_36 article-title: Spatial Analysis of Air Pollution; Mortality in Los Angeles publication-title: Epidemiology doi: 10.1097/01.ede.0000181630.15826.7d – volume: 60 start-page: 102237 year: 2020 ident: ref_21 article-title: A Lag-FLSTM deep learning network based on Bayesian Optimization for multi-sequential-variant PM2.5 prediction publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102237 – volume: 230 start-page: 117451 year: 2020 ident: ref_23 article-title: Estimating ground-level PM2.5 using micro-satellite images by a convolutional neural network and random forest approach publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2020.117451 – volume: 124 start-page: 170 year: 2019 ident: ref_39 article-title: Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model publication-title: Environ. Int. doi: 10.1016/j.envint.2019.01.016 – ident: ref_26 doi: 10.1007/978-3-319-61030-6_23 – volume: 21 start-page: S1149 year: 1997 ident: ref_46 article-title: The false nearest neighbors algorithm: An overview publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(97)00204-4 – ident: ref_13 doi: 10.1007/s00521-020-04962-z – volume: 145 start-page: 106143 year: 2020 ident: ref_22 article-title: Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke publication-title: Environ. Int. doi: 10.1016/j.envint.2020.106143 – volume: 28 start-page: 112 year: 1980 ident: ref_27 article-title: Environmental Protection and Natural Resources publication-title: Technol. Sci. People’s Repub. China doi: 10.1016/B978-0-08-024288-0.50014-6 – volume: 11 start-page: 469 year: 2020 ident: ref_14 article-title: Prediction of outdoor PM2.5 concentrations based on a three-stage hybrid neural network model publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2019.11.019 – ident: ref_16 doi: 10.3390/s18072220 – ident: ref_10 doi: 10.24191/jcrinn.v5i3.149 – ident: ref_4 doi: 10.3390/ijgi8020099 – volume: 26 start-page: 123 year: 1996 ident: ref_48 article-title: Bagging Predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 74 start-page: 315 year: 2010 ident: ref_40 article-title: An MDL-based Hammerstein recurrent neural network for control applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.03.011 – ident: ref_44 doi: 10.1007/978-981-10-1741-4_4 – volume: 443 start-page: 93 year: 2013 ident: ref_5 article-title: Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.10.070 – ident: ref_9 doi: 10.1007/s11869-020-00936-1 – volume: 44 start-page: 4252 year: 2010 ident: ref_31 article-title: GARCH modelling in association with FFT–ARIMA to forecast ozone episodes publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.06.055 – volume: 16 start-page: 1597 year: 2008 ident: ref_45 article-title: A Hammerstein Recurrent Neurofuzzy Network with an Online Minimal Realization Learning Algorithm publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2008.2005929 – volume: 7 start-page: 76690 year: 2019 ident: ref_17 article-title: Air Pollution Forecasting Using a Deep Learning Model Based on 1D Convnets and Bidirectional GRU publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921578 – ident: ref_8 doi: 10.1109/IHMSC49165.2020.00022 – volume: 579 start-page: 12 year: 2017 ident: ref_30 article-title: Freeway Travel Time Prediction by Using the GA-Based Hammerstein Recurrent Neural Network publication-title: Adv. Intell. Syst. Comput. doi: 10.1007/978-981-10-6487-6_2 – volume: 37 start-page: 12511 year: 2019 ident: ref_19 article-title: Air pollution forecasting based on attention-based LSTM neural network and ensemble learning publication-title: Expert Syst. doi: 10.1111/exsy.12511 – volume: 95 start-page: e2464 year: 2016 ident: ref_35 article-title: Assessment of the Possible Association of Air Pollutants PM10, O3, NO2 with an Increase in Cardiovascular, Respiratory, and Diabetes Mortality in Panama City: A 2003 to 2013 Data Analysis publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000002464 – volume: 235 start-page: 272 year: 2018 ident: ref_38 article-title: Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.12.070 – volume: 53 start-page: 1363 year: 2006 ident: ref_29 article-title: A fully automated recurrent neural network for unknown dynamic system identification and control publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2006.875186 – volume: 45 start-page: 2769 year: 2011 ident: ref_33 article-title: Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF–Chem CO tracer model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.02.001 – volume: 30 start-page: 812 year: 2009 ident: ref_47 article-title: Minimal model dimension/order determination algorithms for recurrent neural networks publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.05.007 – ident: ref_7 doi: 10.3390/ijerph14020114 – volume: 51 start-page: 6936 year: 2020 ident: ref_11 article-title: Estimating PM2.5 concentrations in the conterminous United States using the random forest approach publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01210 – ident: ref_25 doi: 10.1145/3167132.3167234 – volume: 51 start-page: 237 year: 2004 ident: ref_42 article-title: Identification of Hammerstein Models with Cubic Spline Nonlinearities publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.820384 – volume: 41 start-page: 6440 year: 2008 ident: ref_43 article-title: Identification of Hammerstein and Wiener Models Using Spectral Magnitude Matching publication-title: IFAC Proc. Vol. doi: 10.3182/20080706-5-KR-1001.01086 – volume: 14 start-page: 653 year: 2014 ident: ref_3 article-title: Comparing the Performance of Statistical Models for Predicting PM10 Concentrations publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2013.07.0259 |
SSID | ssj0000913849 |
Score | 2.2881749 |
Snippet | Airborne particulate matter 2.5 (PM2.5) can have a profound effect on the health of the population. Many researchers have been reporting highly accurate... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2178 |
SubjectTerms | Accuracy Air pollution Air quality Artificial intelligence Costs Data transfer (computers) Deep learning feature selection Food science Mathematical models Model accuracy Neural networks Numerical prediction Particulate emissions PM2.5 predictions Pollutants Prediction models Recurrent neural networks Statistical analysis Support vector machines Time series time series prediction Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7EnzidksNOQl3WJE16dOIYwsZQB7uVJi_Fw5iy1f_f99puTBS8eOih7YOW7zXvvS9Jv8dYV5lgEx9MhKW8jZTyNsq1jiMIoI0DaaFq3zaeJKOZeprr-U6rL9oTVssD18D1FPiUWmHlJiQKgrG-sIXBmJq7wlsAir6YxnbIVBWD0760Kq1_yJPI63tY_71hMsMK3H5LQZVS_49AXGWX4RE7bMpCfl-_zjHbC8sTdjDeaqquT9nLdBzfaT5d0dIKwcmpj9mCDzAPAcdTHNpIc5vJPd5MSVMzS_5Mk-okw8RJiwNvTurN3-szNhs-vj6MoqYlQuSVFGVktA8IgitypJYacgEC-h7SAj2BMDjENwhXgHA5opxIA05pOmKJRrYvz1lr-b4MF4xj5SKSYI1EQqPQwAlVYPWYGycljnLfZrcblDLf6IVT24pFhryBIM12IG2z7tb4o5bJ-N1sQHBvTUjburqAHs8aj2d_ebzNOhtnZc2AW2exSiwGJ2HV5X8844rtx0Ssq30rHdYqV5_hGquP0t1UH9oXUzTZ3A priority: 102 providerName: Directory of Open Access Journals |
Title | PM2.5 Prediction Model Based on Combinational Hammerstein Recurrent Neural Networks |
URI | https://www.proquest.com/docview/2468832084 https://doaj.org/article/4dc91030a7e64de78cf8f7847abfc8dd |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BWWBAPEV5VB6YkAIhdmJ3QIgiCkJqVfGQ2KLY58CAWmjL_-cudQoIxJAh8S35_LiH7e8DOFTam8x5HVEobyKlnImKNE0i9Jhqi9JgJd_W62c3j-r2KX1agH59F4aPVdZrYrVQ48hxjfwkUZmh0Rcbdf72HrFqFO-u1hIaRZBWwLOKYmwRlhJWVW7AUueqP7ibV12YBdOo9uyinqR8_4TiwhdychSZmx-uqWLw_7VAV16nuwarIVwUF7P-XYcFP9yAld6ca3WyCfeDXnKcisGYt1wYZsH6Zq-iQ_4JBb3SlKf0NxT9RChVs8iluONiO9MzCebooMb-7FD4ZAseu1cPlzdRkEqInJLxNNKp8-i1LQtKOVMsYozx1GG7pB4izCzh7mNbYmwLQj-TGq1K-UkkGZlTuQ2N4Wjod0BQRBNn3mhJiY4iAxurkqLKQlspafa7JhzVKOUu8IiznMVrTvkEQ5p_g7QJh3Pjtxl9xt9mHYZ7bsKc19WH0fg5D1MoV-jaLIpWaJ8p-lnjSlNq8q6FLZ1BbMJ-3Vl5mIiT_GvY7P7fvAfLCafS1UmVfWhMxx_-gOKNqW3Boulet8JQalVZ-ycLTth1 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BPQAHVKAV4VF8oBekLY7tXTsHhKAlDY9EqAWJ27J-LBxQAkkQ4k_xG5nZRwpq1RuHPex6ZK3H43nZng9gS-lgEhd0hK68iZRyJsriWEQ--FhbL40v4Nu6vaRzoY4v48speK7vwtCxylonForaDxzlyHeESgxKHzdq7-4-ItQo2l2tITRKsTgJT48Yso12j37g_H4Von14_r0TVagCkVOSjyMdu-CDtnmG0VnsM-65bzrfynEw2L3FXwzc5p7bDH80kdpbFdMjJBKZpsR-p-GDklJSrX7T_jnJ6VCNTaNa5TVAKVt8B73OGzSh6PebN4avwAf4S_0XNq39ERYqZ5Ttl9KzCFOhvwTz3Ukl19Ey_D7rim8xOxvShg5NIiP0tFt2gNbPM3xFhYLBdZVSZFUinCA02S9K5VPxJ0YVQLCxVx45H32Ci3dh2WeY6Q_6YQUY-ks8CUZLDKMUEliucvRZM22Rn0K4BmzXXEpdVaWcwDJuU4xWiKXpK5Y2YGtCfFcW5_g32QGxe0JCFbWLD4PhdVot0FR51yLItUyHROFgjctNrtF2ZzZ3xvsGrNeTlVbLfJT-EcrV_zdvwmznvHuanh71TtZgTqBnVORxxDrMjIcPYQM9m7H9UogTg6v3lt8XkxcPnQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FIiE4VEBbkbbAHsIFyc3Wu_auD6hqCSEhJIpoI-Xmeh-GQ5W0SRDir_HrmPGLoiJuPfhg78jenZ3deex4PoCOVF7H1qsATXkdSGl1kEVRGDjvImWc0K6AbxtP4sFMfppH8xb8qv-FobTKek8sNmq3tBQj74Yy1ih9XMtuXqVFTHv9k-ubgBCk6KS1htMoRWTkf_5A9239btjDuX4Thv0PF-8HQYUwEFgp-CZQkfXOK5Nn6KlFLuOOu2PrkhwHhp8y2F3PTe64ybDTsVDOyIiuUCCRPhb43gfwkKBeaEXp_scmvkP1NrVMyl8ChUh4Fy3Qb6hO0QfQfynBAivgjioo9Fv_KWxXhik7LSXpGbT84jk8GTdVXdc7cD4dh0cRm67ocIcmlBGS2hU7Q03oGN7i5oKOdhVeZFVQnOA02RcK61MhKEbVQLBxUqafr3dhdi8s24OtxXLhXwBD24nHXiuBLpVEAsNljvZrpowQuM_YNrytuZTaqmI5AWdcpei5EEvTWyxtQ6chvi4Ldfyb7IzY3ZBQde3iwXL1Na0WayqdTQh-LVM-ljhYbXOdK9Tjmcmtdq4Nh_VkpdWSX6d_BHT__82v4RFKbvp5OBkdwOOQ_PciPeYQtjar7_4lGjkb86qQJgaX9y2-vwHUIhPW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PM2.5+Prediction+Model+Based+on+Combinational+Hammerstein+Recurrent+Neural+Networks&rft.jtitle=Mathematics+%28Basel%29&rft.au=Chen%2C+Yi-Chung&rft.au=Lei%2C+Tsu-Chiang&rft.au=Yao%2C+Shun&rft.au=Wang%2C+Hsin-Ping&rft.date=2020-12-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=8&rft.issue=12&rft.spage=2178&rft_id=info:doi/10.3390%2Fmath8122178&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math8122178 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |