PM2.5 Prediction Model Based on Combinational Hammerstein Recurrent Neural Networks

Airborne particulate matter 2.5 (PM2.5) can have a profound effect on the health of the population. Many researchers have been reporting highly accurate numerical predictions based on raw PM2.5 data imported directly into deep learning models; however, there is still considerable room for improvemen...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 8; no. 12; p. 2178
Main Authors Chen, Yi-Chung, Lei, Tsu-Chiang, Yao, Shun, Wang, Hsin-Ping
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2020
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math8122178

Cover

Abstract Airborne particulate matter 2.5 (PM2.5) can have a profound effect on the health of the population. Many researchers have been reporting highly accurate numerical predictions based on raw PM2.5 data imported directly into deep learning models; however, there is still considerable room for improvement in terms of implementation costs due to heavy computational overhead. From the perspective of environmental science, PM2.5 values in a given location can be attributed to local sources as well as external sources. Local sources tend to have a dramatic short-term impact on PM2.5 values, whereas external sources tend to have more subtle but longer-lasting effects. In the presence of PM2.5 from both sources at the same time, this combination of effects can undermine the predictive accuracy of the model. This paper presents a novel combinational Hammerstein recurrent neural network (CHRNN) to enhance predictive accuracy and overcome the heavy computational and monetary burden imposed by deep learning models. The CHRNN comprises a based-neural network tasked with learning gradual (long-term) fluctuations in conjunction with add-on neural networks to deal with dramatic (short-term) fluctuations. The CHRNN can be coupled with a random forest model to determine the degree to which short-term effects influence long-term outcomes. We also developed novel feature selection and normalization methods to enhance prediction accuracy. Using real-world measurement data of air quality and PM2.5 datasets from Taiwan, the precision of the proposed system in the numerical prediction of PM2.5 levels was comparable to that of state-of-the-art deep learning models, such as deep recurrent neural networks and long short-term memory, despite far lower implementation costs and computational overhead.
AbstractList Airborne particulate matter 2.5 (PM2.5) can have a profound effect on the health of the population. Many researchers have been reporting highly accurate numerical predictions based on raw PM2.5 data imported directly into deep learning models; however, there is still considerable room for improvement in terms of implementation costs due to heavy computational overhead. From the perspective of environmental science, PM2.5 values in a given location can be attributed to local sources as well as external sources. Local sources tend to have a dramatic short-term impact on PM2.5 values, whereas external sources tend to have more subtle but longer-lasting effects. In the presence of PM2.5 from both sources at the same time, this combination of effects can undermine the predictive accuracy of the model. This paper presents a novel combinational Hammerstein recurrent neural network (CHRNN) to enhance predictive accuracy and overcome the heavy computational and monetary burden imposed by deep learning models. The CHRNN comprises a based-neural network tasked with learning gradual (long-term) fluctuations in conjunction with add-on neural networks to deal with dramatic (short-term) fluctuations. The CHRNN can be coupled with a random forest model to determine the degree to which short-term effects influence long-term outcomes. We also developed novel feature selection and normalization methods to enhance prediction accuracy. Using real-world measurement data of air quality and PM2.5 datasets from Taiwan, the precision of the proposed system in the numerical prediction of PM2.5 levels was comparable to that of state-of-the-art deep learning models, such as deep recurrent neural networks and long short-term memory, despite far lower implementation costs and computational overhead.
Author Lei, Tsu-Chiang
Yao, Shun
Chen, Yi-Chung
Wang, Hsin-Ping
Author_xml – sequence: 1
  givenname: Yi-Chung
  orcidid: 0000-0003-0353-7340
  surname: Chen
  fullname: Chen, Yi-Chung
– sequence: 2
  givenname: Tsu-Chiang
  surname: Lei
  fullname: Lei, Tsu-Chiang
– sequence: 3
  givenname: Shun
  surname: Yao
  fullname: Yao, Shun
– sequence: 4
  givenname: Hsin-Ping
  surname: Wang
  fullname: Wang, Hsin-Ping
BookMark eNptUdtKAzEQDaJgrX3yBxZ8lGouu032UYtaoa3Fy3PIJrOaurupSYr496atgogDw2RmzpzM5Qjtd64DhE4IPmesxBetiq-CUEq42EM9Sikf8hTf__U-RIMQljhJSZjIyx56XMzoeZEtPBiro3VdNnMGmuxKBTBZcseurWynNinVZBPVtuBDBNtlD6DX3kMXszmsfUrOIX44_xaO0UGtmgCDb9tHzzfXT-PJcHp_eze-nA51znAc8kKDAV7VijFRGIUNNkSbsgatKRZVwSvAVW1wpYRhI8ZNlRcbpSyBBGF9dLfjNU4t5crbVvlP6ZSV24DzL1L5aHUDMje6JJhhxWGUp0-FrkXNRc5VVWthTOI63XGtvHtfQ4hy6dY-jRwkzUdCsNRRnlBkh9LeheChltrG7W6iV7aRBMvNKeSvU6Sasz81P53-h_4CrDyNQQ
CitedBy_id crossref_primary_10_3390_computers13090238
crossref_primary_10_3390_rs13050930
crossref_primary_10_1108_F_05_2021_0046
crossref_primary_10_1016_j_scs_2023_104486
crossref_primary_10_1007_s00500_021_06128_y
crossref_primary_10_1007_s11042_023_16291_z
crossref_primary_10_3390_w14020155
crossref_primary_10_1016_j_measurement_2022_111601
crossref_primary_10_3390_math12101457
crossref_primary_10_1016_j_eti_2024_103930
crossref_primary_10_3390_atmos15121469
crossref_primary_10_3390_ijerph18031024
crossref_primary_10_3390_rs13163131
crossref_primary_10_1109_LRA_2022_3191850
crossref_primary_10_3390_atmos16010048
crossref_primary_10_3390_electronics10151808
crossref_primary_10_1016_j_jenvman_2024_120561
crossref_primary_10_3389_fenvs_2024_1469816
crossref_primary_10_3390_w14050761
Cites_doi 10.3390/app10010014
10.1007/s11869-020-00878-8
10.3390/ijerph16010045
10.1016/j.envpol.2018.07.016
10.1016/j.apr.2016.12.014
10.1021/acs.est.0c02549
10.1007/s10489-020-02031-5
10.1080/10962247.2018.1459956
10.1114/1.1385806
10.1016/j.scitotenv.2019.07.367
10.1109/WOCN.2015.8064521
10.1016/j.atmosenv.2004.05.028
10.1097/01.ede.0000181630.15826.7d
10.1016/j.scs.2020.102237
10.1016/j.atmosenv.2020.117451
10.1016/j.envint.2019.01.016
10.1007/978-3-319-61030-6_23
10.1016/S0098-1354(97)00204-4
10.1007/s00521-020-04962-z
10.1016/j.envint.2020.106143
10.1016/B978-0-08-024288-0.50014-6
10.1016/j.apr.2019.11.019
10.3390/s18072220
10.24191/jcrinn.v5i3.149
10.3390/ijgi8020099
10.1007/BF00058655
10.1016/j.neucom.2010.03.011
10.1007/978-981-10-1741-4_4
10.1016/j.scitotenv.2012.10.070
10.1007/s11869-020-00936-1
10.1016/j.atmosenv.2010.06.055
10.1109/TFUZZ.2008.2005929
10.1109/ACCESS.2019.2921578
10.1109/IHMSC49165.2020.00022
10.1007/978-981-10-6487-6_2
10.1111/exsy.12511
10.1097/MD.0000000000002464
10.1016/j.envpol.2017.12.070
10.1109/TCSI.2006.875186
10.1016/j.atmosenv.2011.02.001
10.1016/j.patrec.2008.05.007
10.3390/ijerph14020114
10.1021/acs.est.7b01210
10.1145/3167132.3167234
10.1109/TBME.2003.820384
10.3182/20080706-5-KR-1001.01086
10.4209/aaqr.2013.07.0259
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/math8122178
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_4dc91030a7e64de78cf8f7847abfc8dd
10_3390_math8122178
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c430t-75cede7bfa3385da0d0d1cd9fecc208b57be0bfd0ba8d3637db45db4523d9f813
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Wed Aug 27 00:47:20 EDT 2025
Fri Jul 25 12:03:15 EDT 2025
Tue Jul 01 02:57:57 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-75cede7bfa3385da0d0d1cd9fecc208b57be0bfd0ba8d3637db45db4523d9f813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0353-7340
OpenAccessLink https://www.proquest.com/docview/2468832084?pq-origsite=%requestingapplication%&accountid=15518
PQID 2468832084
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_4dc91030a7e64de78cf8f7847abfc8dd
proquest_journals_2468832084
crossref_citationtrail_10_3390_math8122178
crossref_primary_10_3390_math8122178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Westwick (ref_41) 2001; 29
Li (ref_22) 2020; 145
Dempsey (ref_42) 2004; 51
Wang (ref_47) 2009; 30
Breiman (ref_48) 1996; 26
Saide (ref_33) 2011; 45
Tao (ref_17) 2019; 7
Wang (ref_29) 2006; 53
Rhodes (ref_46) 1997; 21
Hu (ref_11) 2020; 51
Liu (ref_19) 2019; 37
ref_13
ref_34
Lee (ref_30) 2017; 579
ref_10
LaGesse (ref_12) 2020; 54
Zheng (ref_23) 2020; 230
Tarajia (ref_35) 2016; 95
Sayegh (ref_3) 2014; 14
ref_16
Wang (ref_45) 2008; 16
Kumar (ref_31) 2010; 44
Sun (ref_5) 2013; 443
Pak (ref_18) 2020; 699
Shahriar (ref_28) 2020; 13
Freeman (ref_15) 2018; 68
ref_25
ref_24
ref_44
ref_20
Jerrett (ref_36) 2005; 16
Sigurdson (ref_27) 1980; 28
ref_1
Ma (ref_21) 2020; 60
Baur (ref_2) 2004; 38
Huang (ref_37) 2018; 242
Biancofiore (ref_6) 2017; 8
Gan (ref_43) 2008; 41
Liu (ref_38) 2018; 235
Liu (ref_14) 2020; 11
ref_26
ref_9
ref_8
ref_4
Konovalov (ref_32) 2009; 43
Stafoggia (ref_39) 2019; 124
Wang (ref_40) 2010; 74
ref_7
References_xml – ident: ref_20
  doi: 10.3390/app10010014
– volume: 13
  start-page: 1247
  year: 2020
  ident: ref_28
  article-title: Applicability of machine learning in modeling of atmospheric particle pollution in Bangladesh
  publication-title: Air Qual. Atmos. Health
  doi: 10.1007/s11869-020-00878-8
– ident: ref_34
  doi: 10.3390/ijerph16010045
– volume: 242
  start-page: 675
  year: 2018
  ident: ref_37
  article-title: Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.07.016
– volume: 8
  start-page: 652
  year: 2017
  ident: ref_6
  article-title: Recursive neural network model for analysis and forecast of PM10 and PM2.5
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2016.12.014
– volume: 54
  start-page: 15320
  year: 2020
  ident: ref_12
  article-title: Predicting PM2.5 in Well-Mixed Indoor Air for a Large Office Building Using Regression and Artificial Neural Network Models
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c02549
– ident: ref_24
  doi: 10.1007/s10489-020-02031-5
– volume: 68
  start-page: 866
  year: 2018
  ident: ref_15
  article-title: Forecasting air quality time series using deep learning
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10962247.2018.1459956
– volume: 43
  start-page: 6425
  year: 2009
  ident: ref_32
  article-title: Combining deterministic and statistical approaches for PM10 forecasting in Europe
  publication-title: Atmos. Health
– volume: 29
  start-page: 707
  year: 2001
  ident: ref_41
  article-title: Separable least squares identification of nonlinear Hammerstein models: Application to stretch reflex dynamics
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1385806
– volume: 699
  start-page: 133561
  year: 2020
  ident: ref_18
  article-title: Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.367
– ident: ref_1
  doi: 10.1109/WOCN.2015.8064521
– volume: 38
  start-page: 4689
  year: 2004
  ident: ref_2
  article-title: Modelling the effects of meteorological variables on ozone concentration—A quantile regression approach
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.05.028
– volume: 16
  start-page: 727
  year: 2005
  ident: ref_36
  article-title: Spatial Analysis of Air Pollution; Mortality in Los Angeles
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000181630.15826.7d
– volume: 60
  start-page: 102237
  year: 2020
  ident: ref_21
  article-title: A Lag-FLSTM deep learning network based on Bayesian Optimization for multi-sequential-variant PM2.5 prediction
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102237
– volume: 230
  start-page: 117451
  year: 2020
  ident: ref_23
  article-title: Estimating ground-level PM2.5 using micro-satellite images by a convolutional neural network and random forest approach
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2020.117451
– volume: 124
  start-page: 170
  year: 2019
  ident: ref_39
  article-title: Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.01.016
– ident: ref_26
  doi: 10.1007/978-3-319-61030-6_23
– volume: 21
  start-page: S1149
  year: 1997
  ident: ref_46
  article-title: The false nearest neighbors algorithm: An overview
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(97)00204-4
– ident: ref_13
  doi: 10.1007/s00521-020-04962-z
– volume: 145
  start-page: 106143
  year: 2020
  ident: ref_22
  article-title: Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.106143
– volume: 28
  start-page: 112
  year: 1980
  ident: ref_27
  article-title: Environmental Protection and Natural Resources
  publication-title: Technol. Sci. People’s Repub. China
  doi: 10.1016/B978-0-08-024288-0.50014-6
– volume: 11
  start-page: 469
  year: 2020
  ident: ref_14
  article-title: Prediction of outdoor PM2.5 concentrations based on a three-stage hybrid neural network model
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.11.019
– ident: ref_16
  doi: 10.3390/s18072220
– ident: ref_10
  doi: 10.24191/jcrinn.v5i3.149
– ident: ref_4
  doi: 10.3390/ijgi8020099
– volume: 26
  start-page: 123
  year: 1996
  ident: ref_48
  article-title: Bagging Predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 74
  start-page: 315
  year: 2010
  ident: ref_40
  article-title: An MDL-based Hammerstein recurrent neural network for control applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.03.011
– ident: ref_44
  doi: 10.1007/978-981-10-1741-4_4
– volume: 443
  start-page: 93
  year: 2013
  ident: ref_5
  article-title: Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.10.070
– ident: ref_9
  doi: 10.1007/s11869-020-00936-1
– volume: 44
  start-page: 4252
  year: 2010
  ident: ref_31
  article-title: GARCH modelling in association with FFT–ARIMA to forecast ozone episodes
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.06.055
– volume: 16
  start-page: 1597
  year: 2008
  ident: ref_45
  article-title: A Hammerstein Recurrent Neurofuzzy Network with an Online Minimal Realization Learning Algorithm
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2008.2005929
– volume: 7
  start-page: 76690
  year: 2019
  ident: ref_17
  article-title: Air Pollution Forecasting Using a Deep Learning Model Based on 1D Convnets and Bidirectional GRU
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921578
– ident: ref_8
  doi: 10.1109/IHMSC49165.2020.00022
– volume: 579
  start-page: 12
  year: 2017
  ident: ref_30
  article-title: Freeway Travel Time Prediction by Using the GA-Based Hammerstein Recurrent Neural Network
  publication-title: Adv. Intell. Syst. Comput.
  doi: 10.1007/978-981-10-6487-6_2
– volume: 37
  start-page: 12511
  year: 2019
  ident: ref_19
  article-title: Air pollution forecasting based on attention-based LSTM neural network and ensemble learning
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12511
– volume: 95
  start-page: e2464
  year: 2016
  ident: ref_35
  article-title: Assessment of the Possible Association of Air Pollutants PM10, O3, NO2 with an Increase in Cardiovascular, Respiratory, and Diabetes Mortality in Panama City: A 2003 to 2013 Data Analysis
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000002464
– volume: 235
  start-page: 272
  year: 2018
  ident: ref_38
  article-title: Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.12.070
– volume: 53
  start-page: 1363
  year: 2006
  ident: ref_29
  article-title: A fully automated recurrent neural network for unknown dynamic system identification and control
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2006.875186
– volume: 45
  start-page: 2769
  year: 2011
  ident: ref_33
  article-title: Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF–Chem CO tracer model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.02.001
– volume: 30
  start-page: 812
  year: 2009
  ident: ref_47
  article-title: Minimal model dimension/order determination algorithms for recurrent neural networks
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.05.007
– ident: ref_7
  doi: 10.3390/ijerph14020114
– volume: 51
  start-page: 6936
  year: 2020
  ident: ref_11
  article-title: Estimating PM2.5 concentrations in the conterminous United States using the random forest approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01210
– ident: ref_25
  doi: 10.1145/3167132.3167234
– volume: 51
  start-page: 237
  year: 2004
  ident: ref_42
  article-title: Identification of Hammerstein Models with Cubic Spline Nonlinearities
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.820384
– volume: 41
  start-page: 6440
  year: 2008
  ident: ref_43
  article-title: Identification of Hammerstein and Wiener Models Using Spectral Magnitude Matching
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20080706-5-KR-1001.01086
– volume: 14
  start-page: 653
  year: 2014
  ident: ref_3
  article-title: Comparing the Performance of Statistical Models for Predicting PM10 Concentrations
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2013.07.0259
SSID ssj0000913849
Score 2.2881749
Snippet Airborne particulate matter 2.5 (PM2.5) can have a profound effect on the health of the population. Many researchers have been reporting highly accurate...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2178
SubjectTerms Accuracy
Air pollution
Air quality
Artificial intelligence
Costs
Data transfer (computers)
Deep learning
feature selection
Food science
Mathematical models
Model accuracy
Neural networks
Numerical prediction
Particulate emissions
PM2.5 predictions
Pollutants
Prediction models
Recurrent neural networks
Statistical analysis
Support vector machines
Time series
time series prediction
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7EnzidksNOQl3WJE16dOIYwsZQB7uVJi_Fw5iy1f_f99puTBS8eOih7YOW7zXvvS9Jv8dYV5lgEx9MhKW8jZTyNsq1jiMIoI0DaaFq3zaeJKOZeprr-U6rL9oTVssD18D1FPiUWmHlJiQKgrG-sIXBmJq7wlsAir6YxnbIVBWD0760Kq1_yJPI63tY_71hMsMK3H5LQZVS_49AXGWX4RE7bMpCfl-_zjHbC8sTdjDeaqquT9nLdBzfaT5d0dIKwcmpj9mCDzAPAcdTHNpIc5vJPd5MSVMzS_5Mk-okw8RJiwNvTurN3-szNhs-vj6MoqYlQuSVFGVktA8IgitypJYacgEC-h7SAj2BMDjENwhXgHA5opxIA05pOmKJRrYvz1lr-b4MF4xj5SKSYI1EQqPQwAlVYPWYGycljnLfZrcblDLf6IVT24pFhryBIM12IG2z7tb4o5bJ-N1sQHBvTUjburqAHs8aj2d_ebzNOhtnZc2AW2exSiwGJ2HV5X8844rtx0Ssq30rHdYqV5_hGquP0t1UH9oXUzTZ3A
  priority: 102
  providerName: Directory of Open Access Journals
Title PM2.5 Prediction Model Based on Combinational Hammerstein Recurrent Neural Networks
URI https://www.proquest.com/docview/2468832084
https://doaj.org/article/4dc91030a7e64de78cf8f7847abfc8dd
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BWWBAPEV5VB6YkAIhdmJ3QIgiCkJqVfGQ2KLY58CAWmjL_-cudQoIxJAh8S35_LiH7e8DOFTam8x5HVEobyKlnImKNE0i9Jhqi9JgJd_W62c3j-r2KX1agH59F4aPVdZrYrVQ48hxjfwkUZmh0Rcbdf72HrFqFO-u1hIaRZBWwLOKYmwRlhJWVW7AUueqP7ibV12YBdOo9uyinqR8_4TiwhdychSZmx-uqWLw_7VAV16nuwarIVwUF7P-XYcFP9yAld6ca3WyCfeDXnKcisGYt1wYZsH6Zq-iQ_4JBb3SlKf0NxT9RChVs8iluONiO9MzCebooMb-7FD4ZAseu1cPlzdRkEqInJLxNNKp8-i1LQtKOVMsYozx1GG7pB4izCzh7mNbYmwLQj-TGq1K-UkkGZlTuQ2N4Wjod0BQRBNn3mhJiY4iAxurkqLKQlspafa7JhzVKOUu8IiznMVrTvkEQ5p_g7QJh3Pjtxl9xt9mHYZ7bsKc19WH0fg5D1MoV-jaLIpWaJ8p-lnjSlNq8q6FLZ1BbMJ-3Vl5mIiT_GvY7P7fvAfLCafS1UmVfWhMxx_-gOKNqW3Boulet8JQalVZ-ycLTth1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BPQAHVKAV4VF8oBekLY7tXTsHhKAlDY9EqAWJ27J-LBxQAkkQ4k_xG5nZRwpq1RuHPex6ZK3H43nZng9gS-lgEhd0hK68iZRyJsriWEQ--FhbL40v4Nu6vaRzoY4v48speK7vwtCxylonForaDxzlyHeESgxKHzdq7-4-ItQo2l2tITRKsTgJT48Yso12j37g_H4Von14_r0TVagCkVOSjyMdu-CDtnmG0VnsM-65bzrfynEw2L3FXwzc5p7bDH80kdpbFdMjJBKZpsR-p-GDklJSrX7T_jnJ6VCNTaNa5TVAKVt8B73OGzSh6PebN4avwAf4S_0XNq39ERYqZ5Ttl9KzCFOhvwTz3Ukl19Ey_D7rim8xOxvShg5NIiP0tFt2gNbPM3xFhYLBdZVSZFUinCA02S9K5VPxJ0YVQLCxVx45H32Ci3dh2WeY6Q_6YQUY-ks8CUZLDKMUEliucvRZM22Rn0K4BmzXXEpdVaWcwDJuU4xWiKXpK5Y2YGtCfFcW5_g32QGxe0JCFbWLD4PhdVot0FR51yLItUyHROFgjctNrtF2ZzZ3xvsGrNeTlVbLfJT-EcrV_zdvwmznvHuanh71TtZgTqBnVORxxDrMjIcPYQM9m7H9UogTg6v3lt8XkxcPnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FIiE4VEBbkbbAHsIFyc3Wu_auD6hqCSEhJIpoI-Xmeh-GQ5W0SRDir_HrmPGLoiJuPfhg78jenZ3deex4PoCOVF7H1qsATXkdSGl1kEVRGDjvImWc0K6AbxtP4sFMfppH8xb8qv-FobTKek8sNmq3tBQj74Yy1ih9XMtuXqVFTHv9k-ubgBCk6KS1htMoRWTkf_5A9239btjDuX4Thv0PF-8HQYUwEFgp-CZQkfXOK5Nn6KlFLuOOu2PrkhwHhp8y2F3PTe64ybDTsVDOyIiuUCCRPhb43gfwkKBeaEXp_scmvkP1NrVMyl8ChUh4Fy3Qb6hO0QfQfynBAivgjioo9Fv_KWxXhik7LSXpGbT84jk8GTdVXdc7cD4dh0cRm67ocIcmlBGS2hU7Q03oGN7i5oKOdhVeZFVQnOA02RcK61MhKEbVQLBxUqafr3dhdi8s24OtxXLhXwBD24nHXiuBLpVEAsNljvZrpowQuM_YNrytuZTaqmI5AWdcpei5EEvTWyxtQ6chvi4Ldfyb7IzY3ZBQde3iwXL1Na0WayqdTQh-LVM-ljhYbXOdK9Tjmcmtdq4Nh_VkpdWSX6d_BHT__82v4RFKbvp5OBkdwOOQ_PciPeYQtjar7_4lGjkb86qQJgaX9y2-vwHUIhPW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PM2.5+Prediction+Model+Based+on+Combinational+Hammerstein+Recurrent+Neural+Networks&rft.jtitle=Mathematics+%28Basel%29&rft.au=Chen%2C+Yi-Chung&rft.au=Lei%2C+Tsu-Chiang&rft.au=Yao%2C+Shun&rft.au=Wang%2C+Hsin-Ping&rft.date=2020-12-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=8&rft.issue=12&rft.spage=2178&rft_id=info:doi/10.3390%2Fmath8122178&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math8122178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon