Highly sensitive determination of poly(hexamethylene guanidine) by Rayleigh scattering using aggregation of silver nanoparticles

We have found that low concentrations of the polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induce the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, we have worked out a method to the determination of PHMG. Th...

Full description

Saved in:
Bibliographic Details
Published inMikrochimica acta (1966) Vol. 182; no. 5-6; pp. 965 - 973
Main Authors Artemyeva, Anastasia A., Samarina, Tatyana O., Sharov, Andrei V., Abramchuk, Sergei S., Ovcharenko, Еlena О., Dityuk, Alexander I., Efimov, Konstantin M., Beklemishev, Mikhail K.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.04.2015
Springer
Subjects
Online AccessGet full text
ISSN0026-3672
1436-5073
DOI10.1007/s00604-014-1411-6

Cover

Abstract We have found that low concentrations of the polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induce the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, we have worked out a method to the determination of PHMG. The protocol includes the steps of (a) centrifuging the water sample, (b) addition of an aliquot of the colloidal solution of the AgNPs, and (c) measurement of the intensity of scattered light. The method is surprisingly selective in that comparable concentrations of surfactants, humic acids and protein do not interfere. Besides, an up to 50 mM concentration NaCl, and up to 5 mM of Mg(II) or Ca(II) are tolerated. Other cationic polyelectrolytes, polyethyleneimine and poly(dimethyldiallyammonium chloride), also cause aggregation of AgNPs but to a lesser extent. The determination of PHMG was  performed in spiked samples (run-off, tap and swimming pool waters) with detection limits of 2·10 −8 , 4·10 −7 , and 6·10 −6  M (by monomer unit), respectively. The linear ranges are wider and the detection limits are lower than those of known spectrophotometric methods. It is necessary, however, to correct the calibration plot for background scattering by the sample and to establish a calibration plot for each kind of water sample. Notwithstanding this, the approach is attractive because it is sensitive, rapid, and simple. Graphical Abstract The polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induces the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, a method for the determination of ppb concentrations of PHMG by Rayleigh scattering method has been developed.
AbstractList We have found that low concentrations of the polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induce the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, we have worked out a method to the determination of PHMG. The protocol includes the steps of (a) centrifuging the water sample, (b) addition of an aliquot of the colloidal solution of the AgNPs, and (c) measurement of the intensity of scattered light. The method is surprisingly selective in that comparable concentrations of surfactants, humic acids and protein do not interfere. Besides, an up to 50 mM concentration NaCl, and up to 5 mM of Mg(II) or Ca(II) are tolerated. Other cationic polyelectrolytes, polyethyleneimine and poly(dimethyldiallyammonium chloride), also cause aggregation of AgNPs but to a lesser extent. The determination of PHMG was  performed in spiked samples (run-off, tap and swimming pool waters) with detection limits of 2·10 −8 , 4·10 −7 , and 6·10 −6  M (by monomer unit), respectively. The linear ranges are wider and the detection limits are lower than those of known spectrophotometric methods. It is necessary, however, to correct the calibration plot for background scattering by the sample and to establish a calibration plot for each kind of water sample. Notwithstanding this, the approach is attractive because it is sensitive, rapid, and simple. Graphical Abstract The polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induces the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, a method for the determination of ppb concentrations of PHMG by Rayleigh scattering method has been developed.
We have found that low concentrations of the polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induce the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, we have worked out a method to the determination of PHMG. The protocol includes the steps of (a) centrifuging the water sample, (b) addition of an aliquot of the colloidal solution of the AgNPs, and (c) measurement of the intensity of scattered light. The method is surprisingly selective in that comparable concentrations of surfactants, humic acids and protein do not interfere. Besides, an up to 50 mM concentration NaCl, and up to 5 mM of Mg(II) or Ca(II) are tolerated. Other cationic polyelectrolytes, polyethyleneimine and poly(dimethyldiallyammonium chloride), also cause aggregation of AgNPs but to a lesser extent. The determination of PHMG was performed in spiked samples (run-off, tap and swimming pool waters) with detection limits of 2·10.sup.-8, 4·10.sup.-7, and 6·10.sup.-6 M (by monomer unit), respectively. The linear ranges are wider and the detection limits are lower than those of known spectrophotometric methods. It is necessary, however, to correct the calibration plot for background scattering by the sample and to establish a calibration plot for each kind of water sample. Notwithstanding this, the approach is attractive because it is sensitive, rapid, and simple.
We have found that low concentrations of the polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induce the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, we have worked out a method to the determination of PHMG. The protocol includes the steps of (a) centrifuging the water sample, (b) addition of an aliquot of the colloidal solution of the AgNPs, and (c) measurement of the intensity of scattered light. The method is surprisingly selective in that comparable concentrations of surfactants, humic acids and protein do not interfere. Besides, an up to 50 mM concentration NaCl, and up to 5 mM of Mg(II) or Ca(II) are tolerated. Other cationic polyelectrolytes, polyethyleneimine and poly(dimethyldiallyammonium chloride), also cause aggregation of AgNPs but to a lesser extent. The determination of PHMG was performed in spiked samples (run-off, tap and swimming pool waters) with detection limits of 2.10 super(-8), 4.10 super(-7), and 6.10 super(-6) M (by monomer unit), respectively. The linear ranges are wider and the detection limits are lower than those of known spectrophotometric methods. It is necessary, however, to correct the calibration plot for background scattering by the sample and to establish a calibration plot for each kind of water sample. Notwithstanding this, the approach is attractive because it is sensitive, rapid, and simple. Graphical Abstract The polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induces the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, a method for the determination of ppb concentrations of PHMG by Rayleigh scattering method has been developed.
Audience Academic
Author Beklemishev, Mikhail K.
Efimov, Konstantin M.
Samarina, Tatyana O.
Abramchuk, Sergei S.
Ovcharenko, Еlena О.
Sharov, Andrei V.
Artemyeva, Anastasia A.
Dityuk, Alexander I.
Author_xml – sequence: 1
  givenname: Anastasia A.
  surname: Artemyeva
  fullname: Artemyeva, Anastasia A.
  organization: Department of Chemistry, Lomonosov Moscow State University
– sequence: 2
  givenname: Tatyana O.
  surname: Samarina
  fullname: Samarina, Tatyana O.
  organization: Department of Chemistry, Lomonosov Moscow State University, Agilent Technologies Authorized Partner Lab, Analytical Center of Lomonosov Moscow State University
– sequence: 3
  givenname: Andrei V.
  surname: Sharov
  fullname: Sharov, Andrei V.
  organization: Department of Chemistry, Lomonosov Moscow State University
– sequence: 4
  givenname: Sergei S.
  surname: Abramchuk
  fullname: Abramchuk, Sergei S.
  organization: Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences
– sequence: 5
  givenname: Еlena О.
  surname: Ovcharenko
  fullname: Ovcharenko, Еlena О.
  organization: Institute of Ecotechnologies
– sequence: 6
  givenname: Alexander I.
  surname: Dityuk
  fullname: Dityuk, Alexander I.
  organization: Institute of Ecotechnologies
– sequence: 7
  givenname: Konstantin M.
  surname: Efimov
  fullname: Efimov, Konstantin M.
  organization: Institute of Ecotechnologies
– sequence: 8
  givenname: Mikhail K.
  surname: Beklemishev
  fullname: Beklemishev, Mikhail K.
  email: mkb@analyt.chem.msu.ru
  organization: Department of Chemistry, Lomonosov Moscow State University
BookMark eNp9kUFrHCEYhqWk0M22P6A3j-lhkk_H0d1jCG1TCARKexbX-WbW4OhUndC99afX7ZQeegiCH3z4vMLzXpKLEAMS8p7BNQNQNxlAgmiAiYYJxhr5imyYaGXTgWovyAaAy6aVir8hlzk_ATAludiQX_duPPoTzRiyK-4ZaY8F0-SCKS4GGgc6R3-6OuJPM2E5njwGpONigutdwA_0cKJfTd3WGJqtKRV2YaRLPt9mHBOO_5Ky88-YaDAhziYVZz3mt-T1YHzGd3_nlnz_9PHb3X3z8Pj5y93tQ2NFC6WRhreHroNOdEa0auhhtxs4M9B3Cuq0vUXZ7_mg-AGV4rzvhdwL2AEXMKhDuyVXa-6c4o8Fc9GTyxa9NwHjkjWTSu05k1XallyvT0fjUbswxJKMrafHydnqfXB1f6tYV53vGVSArYBNMeeEg56Tm0w6aQb6XI9e69G1Hn2uR8vKqP8Y68ofU_Uz518k-Urm-awak36KSwpV3gvQbyn2qBk
CitedBy_id crossref_primary_10_3103_S0027131417040022
crossref_primary_10_1134_S1061934819010052
crossref_primary_10_1007_s00604_015_1720_4
crossref_primary_10_1134_S1061934816110095
crossref_primary_10_3103_S0027131417010060
Cites_doi 10.1002/jrs.4331
10.1134/S1061934814020063
10.1021/ac00275a041
10.1016/S0039-9140(03)00406-5
10.1016/S0039-9140(02)00581-7
10.1021/ac990580m
10.1016/j.tiv.2009.04.006
10.1134/S1061934808070162
10.1016/j.elecom.2013.07.036
10.1002/anie.200903958
10.1016/j.talanta.2006.04.035
10.1039/a702595e
10.1134/S1061934806100091
10.1016/j.jim.2009.07.015
10.1021/ac960660f
10.1039/b100521i
10.1134/S1061934808060130
10.1016/j.ab.2006.02.005
10.1186/1556-276X-7-564
10.1081/AL-100108417
10.1021/ac00137a015
10.1021/ac801879t
10.1016/j.saa.2009.04.026
10.1007/s11094-009-0248-5
10.1039/a607359j
10.1099/jmm.0.047514-0
10.1002/elps.200800248
10.1007/s00216-003-1877-2
ContentType Journal Article
Copyright Springer-Verlag Wien 2014
COPYRIGHT 2015 Springer
Copyright_xml – notice: Springer-Verlag Wien 2014
– notice: COPYRIGHT 2015 Springer
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1007/s00604-014-1411-6
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1436-5073
EndPage 973
ExternalDocumentID A715060910
10_1007_s00604_014_1411_6
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7X7
88E
8FE
8FG
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAS
LLZTM
M1P
M4Y
MA-
ML-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9N
PDBOC
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
Y6R
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z85
Z86
Z87
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8W
Z8Z
Z91
Z92
ZMTXR
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
7SR
7U5
8BQ
8FD
ABRTQ
ESTFP
JG9
L7M
ID FETCH-LOGICAL-c430t-6a23b550545a437fd088f21a0d57021acdce6d92f72be7722dd4694080240f7b3
IEDL.DBID U2A
ISSN 0026-3672
IngestDate Fri Sep 05 05:27:46 EDT 2025
Tue Jun 10 20:12:06 EDT 2025
Tue Jul 01 01:13:41 EDT 2025
Thu Apr 24 22:48:45 EDT 2025
Fri Feb 21 02:33:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Poly(hexamethylene guanidine)
Rayleigh scattering
Silver nanoparticles
Determination of polyelectrolytes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-6a23b550545a437fd088f21a0d57021acdce6d92f72be7722dd4694080240f7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1677921614
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1677921614
gale_infotracacademiconefile_A715060910
crossref_primary_10_1007_s00604_014_1411_6
crossref_citationtrail_10_1007_s00604_014_1411_6
springer_journals_10_1007_s00604_014_1411_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
PublicationSubtitle Analytical Sciences Based on Micro- and Nanomaterials
PublicationTitle Mikrochimica acta (1966)
PublicationTitleAbbrev Microchim Acta
PublicationYear 2015
Publisher Springer Vienna
Springer
Publisher_xml – name: Springer Vienna
– name: Springer
References Jana, Gearheart, Murphy (CR32) 2001; 7
Majam, Thompson (CR6) 2006; 32
Liu, Huo (CR20) 2009; 349
Alvarez-Roa, Prieto, Martin (CR10) 1984; 56
Parazak, Burkhardt, McCarthy (CR33) 1987; 59
Liao, Li, Huang (CR30) 2007; 71
CR18
CR17
CR16
CR38
CR15
CR14
Kozel, Skosyrskaya, Beklemishev (CR4) 2008; 63
Ding, Chen, Xia, Wang, Cosnier (CR9) 2013; 34
Zhang, Fei, Jia (CR21) 2012; 7
Wang, Buchanan, Meyerhoff (CR3) 2008; 80
Kong, Liu, Liu (CR23) 2014; 69
Vidal, Palomeque, Lista, Fernández (CR25) 2003; 376
Masadome (CR1) 2001; 34
Garrido, Aguayo, Clavijo, Gómez-Jeria, Campos-Vallette (CR34) 2013; 44
Chmilenko, Korobova, Mikulenko (CR37) 2008; 63
Masadome (CR11) 2003; 59
CR2
Li, Dong, Wang, Hu, Chen (CR27) 2006; 354
Spriestersbach, Frank, Pasch (CR7) 2008; 29
CR5
Kato, Suzuki, Fujita, Horie, Endoh, Yoshida, Iwahashi, Takahashi, Nakamura, Kinugasa (CR19) 2009; 23
Oulé, Quinn, Dickman, Bernier, Rondeau, De Moissac, Boisvert, Diop (CR12) 2012; 61
CR29
Gadzekpo, Xiao, Aoki (CR8) 1999; 71
Kalluri, Arbneshi, Khan, Neely, Candice, Varisli, Washington, McAfee, Robinson, Banerjee, Singh, Senapati, Ray (CR22) 2009; 48
Beklemishev, Stoyan, Dolmanova (CR35) 1997; 122
Rudnev, Dzherayan (CR36) 2006; 61
Huang, Li, Tong (CR28) 1997; 69
Ma, Li, Tong (CR24) 1997; 122
Liu, Liu, Wang, Peng, He (CR31) 2009; 74
Antonik, Barkova, Khabibulina, Lopyrev (CR13) 2009; 43
Zhong, Li, Zhao, Li (CR26) 2004; 62
C Garrido (1411_CR34) 2013; 44
T Masadome (1411_CR11) 2003; 59
FA Chmilenko (1411_CR37) 2008; 63
Y Zhang (1411_CR21) 2012; 7
S Majam (1411_CR6) 2006; 32
1411_CR18
1411_CR17
1411_CR16
1411_CR38
1411_CR15
1411_CR14
SV Kozel (1411_CR4) 2008; 63
X Liu (1411_CR20) 2009; 349
CQ Ma (1411_CR24) 1997; 122
E Vidal (1411_CR25) 2003; 376
QG Liao (1411_CR30) 2007; 71
K-H Spriestersbach (1411_CR7) 2008; 29
Z Liu (1411_CR31) 2009; 74
ER Alvarez-Roa (1411_CR10) 1984; 56
Y Li (1411_CR27) 2006; 354
CZ Huang (1411_CR28) 1997; 69
LM Antonik (1411_CR13) 2009; 43
JR Kalluri (1411_CR22) 2009; 48
AV Rudnev (1411_CR36) 2006; 61
1411_CR29
VPY Gadzekpo (1411_CR8) 1999; 71
T Masadome (1411_CR1) 2001; 34
L Wang (1411_CR3) 2008; 80
L Kong (1411_CR23) 2014; 69
1411_CR5
NR Jana (1411_CR32) 2001; 7
H Zhong (1411_CR26) 2004; 62
DP Parazak (1411_CR33) 1987; 59
MK Beklemishev (1411_CR35) 1997; 122
MK Oulé (1411_CR12) 2012; 61
H Kato (1411_CR19) 2009; 23
1411_CR2
SN Ding (1411_CR9) 2013; 34
References_xml – volume: 44
  start-page: 1105
  year: 2013
  end-page: 1110
  ident: CR34
  article-title: The effect of the pH on the interaction of -arginine with colloidal silver nanoparticles. A Raman and SERS study
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.4331
– ident: CR18
– volume: 69
  start-page: 149
  year: 2014
  end-page: 156
  ident: CR23
  article-title: Resonance Rayleigh scattering method for direct determination of polyacrylamide in water samples using basic phenothiazine dyes
  publication-title: J Anal Chem
  doi: 10.1134/S1061934814020063
– volume: 56
  start-page: 1939
  year: 1984
  end-page: 1944
  ident: CR10
  article-title: Luminescence titrations of polyelectrolytes
  publication-title: Anal Chem
  doi: 10.1021/ac00275a041
– volume: 62
  start-page: 37
  year: 2004
  end-page: 42
  ident: CR26
  article-title: Determination of proteins with Alizarin Red S by Rayleigh light scattering technique
  publication-title: Talanta
  doi: 10.1016/S0039-9140(03)00406-5
– volume: 59
  start-page: 659
  year: 2003
  end-page: 666
  ident: CR11
  article-title: Determination of cationic polyelectrolytes using a photometric titration with crystal violet as a color indicator
  publication-title: Talanta
  doi: 10.1016/S0039-9140(02)00581-7
– volume: 71
  start-page: 5109
  year: 1999
  end-page: 5115
  ident: CR8
  article-title: Voltammetric detection of the polycation protamine by the use of electrodes modified with self-assembled monolayers of thioctic acid
  publication-title: Anal Chem
  doi: 10.1021/ac990580m
– ident: CR14
– ident: CR2
– ident: CR16
– volume: 23
  start-page: 927
  year: 2009
  end-page: 934
  ident: CR19
  article-title: Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment
  publication-title: Toxicol in Vitro
  doi: 10.1016/j.tiv.2009.04.006
– volume: 63
  start-page: 693
  year: 2008
  end-page: 699
  ident: CR4
  article-title: Kinetic methods for determining water-soluble polymers
  publication-title: J Anal Chem
  doi: 10.1134/S1061934808070162
– volume: 34
  start-page: 339
  year: 2013
  end-page: 343
  ident: CR9
  article-title: Voltammetric detection of heparin based on anion exchange at electropolymeric film of pyrrole-alkylammonium cationic surfactant and MWCNTs composite
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2013.07.036
– volume: 48
  start-page: 9668
  year: 2009
  end-page: 9671
  ident: CR22
  article-title: Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.200903958
– volume: 71
  start-page: 567
  year: 2007
  end-page: 572
  ident: CR30
  article-title: A light scattering and fluorescence emission coupled ratiometry using the interaction of functional CdS quantum dots with aminoglycoside antibiotics as a model system
  publication-title: Talanta
  doi: 10.1016/j.talanta.2006.04.035
– ident: CR29
– volume: 122
  start-page: 1161
  year: 1997
  end-page: 1165
  ident: CR35
  article-title: Sorption–catalytic determination of manganese directly on a paper-based chelating sorbent
  publication-title: Analyst
  doi: 10.1039/a702595e
– volume: 61
  start-page: 1002
  year: 2006
  end-page: 1005
  ident: CR36
  article-title: Determination of polyhexamethyleneguanidine by capillary electrophoresis
  publication-title: J Anal Chem
  doi: 10.1134/S1061934806100091
– volume: 349
  start-page: 38
  year: 2009
  end-page: 44
  ident: CR20
  article-title: A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering
  publication-title: J Immunol Methods
  doi: 10.1016/j.jim.2009.07.015
– volume: 69
  start-page: 514
  year: 1997
  end-page: 520
  ident: CR28
  article-title: Determination of nanograms of nucleic acids by their enhancement effect on the resonance light scattering of the cobalt(II)/4-[(5-chloro-2-pyridyl)azo]-1,3-diaminobenzene complex
  publication-title: Anal Chem
  doi: 10.1021/ac960660f
– volume: 7
  start-page: 617
  year: 2001
  end-page: 618
  ident: CR32
  article-title: Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio
  publication-title: Chem Commun
  doi: 10.1039/b100521i
– volume: 63
  start-page: 590
  year: 2008
  end-page: 595
  ident: CR37
  article-title: Potentiometric sensors for the determination of water-soluble polyelectrolytes
  publication-title: J Anal Chem
  doi: 10.1134/S1061934808060130
– volume: 32
  start-page: 705
  year: 2006
  end-page: 707
  ident: CR6
  article-title: Polyelectrolyte determination in drinking water
  publication-title: Water SA
– volume: 354
  start-page: 64
  year: 2006
  end-page: 69
  ident: CR27
  article-title: Flow injection analysis—Rayleigh light scattering detection for online determination of protein in human serum sample
  publication-title: Analyt Biochem
  doi: 10.1016/j.ab.2006.02.005
– volume: 7
  start-page: 564
  year: 2012
  end-page: 568
  ident: CR21
  article-title: A facile method for the detection of DNA by using GNPs probes coupled with dynamic light scattering
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-7-564
– volume: 34
  start-page: 2711
  year: 2001
  end-page: 2719
  ident: CR1
  article-title: Flow injection spectrophotometric determination of anionic polyelectrolytes using the cationic dyes
  publication-title: Anal Lett
  doi: 10.1081/AL-100108417
– volume: 376
  start-page: 38
  year: 2003
  end-page: 41
  ident: CR25
  article-title: Band Flow injection analysis: Rayleigh light scattering technique for total protein determination
  publication-title: Anal Bioanal Chem
– volume: 59
  start-page: 1444
  year: 1987
  end-page: 1445
  ident: CR33
  article-title: Determination of low levels of cationic polyelectrolytes in water
  publication-title: Anal Chem
  doi: 10.1021/ac00137a015
– volume: 80
  start-page: 9845
  year: 2008
  end-page: 9847
  ident: CR3
  article-title: Rapid detection of high charge density polyanion contaminants in biomedical heparin preparations using potentiometric polyanion sensors
  publication-title: Anal Chem
  doi: 10.1021/ac801879t
– ident: CR15
– ident: CR38
– ident: CR17
– volume: 74
  start-page: 36
  year: 2009
  end-page: 41
  ident: CR31
  article-title: Resonance Rayleigh scattering and resonance non-linear scattering method for the determination of aminoglycoside antibiotics with water solubility CdS quantum dots as probe
  publication-title: Spectrochim Acta A
  doi: 10.1016/j.saa.2009.04.026
– volume: 43
  start-page: 84
  year: 2009
  end-page: 86
  ident: CR13
  article-title: Synthesis and antiseptic and antidote activity of polyhexamethyleneguanidine hydroxyethylidenediphosphonate salt
  publication-title: Pharm Chem J
  doi: 10.1007/s11094-009-0248-5
– volume: 122
  start-page: 361
  year: 1997
  end-page: 364
  ident: CR24
  article-title: Enhancement of Rayleigh light scattering of acid chrome blue K by proteins and protein assay by the scattering technique
  publication-title: Analyst
  doi: 10.1039/a607359j
– ident: CR5
– volume: 61
  start-page: 1421
  year: 2012
  end-page: 1427
  ident: CR12
  article-title: Akwaton, polyhexamethylene-guanidine hydrochloride-based sporicidal disinfectant: a novel tool to fight bacterial spores and nosocomial infections
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.047514-0
– volume: 29
  start-page: 4407
  year: 2008
  end-page: 4411
  ident: CR7
  article-title: Separation of non-UV-absorbing synthetic polyelectrolytes by CE with contactless conductivity detection
  publication-title: Electrophoresis
  doi: 10.1002/elps.200800248
– volume: 61
  start-page: 1421
  year: 2012
  ident: 1411_CR12
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.047514-0
– volume: 23
  start-page: 927
  year: 2009
  ident: 1411_CR19
  publication-title: Toxicol in Vitro
  doi: 10.1016/j.tiv.2009.04.006
– volume: 376
  start-page: 38
  year: 2003
  ident: 1411_CR25
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-003-1877-2
– volume: 48
  start-page: 9668
  year: 2009
  ident: 1411_CR22
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.200903958
– ident: 1411_CR16
– volume: 69
  start-page: 149
  year: 2014
  ident: 1411_CR23
  publication-title: J Anal Chem
  doi: 10.1134/S1061934814020063
– volume: 74
  start-page: 36
  year: 2009
  ident: 1411_CR31
  publication-title: Spectrochim Acta A
  doi: 10.1016/j.saa.2009.04.026
– ident: 1411_CR5
– ident: 1411_CR14
– volume: 122
  start-page: 1161
  year: 1997
  ident: 1411_CR35
  publication-title: Analyst
  doi: 10.1039/a702595e
– volume: 59
  start-page: 659
  year: 2003
  ident: 1411_CR11
  publication-title: Talanta
  doi: 10.1016/S0039-9140(02)00581-7
– ident: 1411_CR18
– volume: 34
  start-page: 2711
  year: 2001
  ident: 1411_CR1
  publication-title: Anal Lett
  doi: 10.1081/AL-100108417
– volume: 71
  start-page: 5109
  year: 1999
  ident: 1411_CR8
  publication-title: Anal Chem
  doi: 10.1021/ac990580m
– volume: 59
  start-page: 1444
  year: 1987
  ident: 1411_CR33
  publication-title: Anal Chem
  doi: 10.1021/ac00137a015
– volume: 122
  start-page: 361
  year: 1997
  ident: 1411_CR24
  publication-title: Analyst
  doi: 10.1039/a607359j
– volume: 43
  start-page: 84
  year: 2009
  ident: 1411_CR13
  publication-title: Pharm Chem J
  doi: 10.1007/s11094-009-0248-5
– volume: 32
  start-page: 705
  year: 2006
  ident: 1411_CR6
  publication-title: Water SA
– volume: 61
  start-page: 1002
  year: 2006
  ident: 1411_CR36
  publication-title: J Anal Chem
  doi: 10.1134/S1061934806100091
– volume: 80
  start-page: 9845
  year: 2008
  ident: 1411_CR3
  publication-title: Anal Chem
  doi: 10.1021/ac801879t
– volume: 29
  start-page: 4407
  year: 2008
  ident: 1411_CR7
  publication-title: Electrophoresis
  doi: 10.1002/elps.200800248
– ident: 1411_CR17
– volume: 349
  start-page: 38
  year: 2009
  ident: 1411_CR20
  publication-title: J Immunol Methods
  doi: 10.1016/j.jim.2009.07.015
– volume: 69
  start-page: 514
  year: 1997
  ident: 1411_CR28
  publication-title: Anal Chem
  doi: 10.1021/ac960660f
– ident: 1411_CR2
– ident: 1411_CR38
– ident: 1411_CR15
– ident: 1411_CR29
  doi: 10.1186/1556-276X-7-564
– volume: 63
  start-page: 693
  year: 2008
  ident: 1411_CR4
  publication-title: J Anal Chem
  doi: 10.1134/S1061934808070162
– volume: 63
  start-page: 590
  year: 2008
  ident: 1411_CR37
  publication-title: J Anal Chem
  doi: 10.1134/S1061934808060130
– volume: 7
  start-page: 617
  year: 2001
  ident: 1411_CR32
  publication-title: Chem Commun
  doi: 10.1039/b100521i
– volume: 62
  start-page: 37
  year: 2004
  ident: 1411_CR26
  publication-title: Talanta
  doi: 10.1016/S0039-9140(03)00406-5
– volume: 354
  start-page: 64
  year: 2006
  ident: 1411_CR27
  publication-title: Analyt Biochem
  doi: 10.1016/j.ab.2006.02.005
– volume: 44
  start-page: 1105
  year: 2013
  ident: 1411_CR34
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.4331
– volume: 56
  start-page: 1939
  year: 1984
  ident: 1411_CR10
  publication-title: Anal Chem
  doi: 10.1021/ac00275a041
– volume: 71
  start-page: 567
  year: 2007
  ident: 1411_CR30
  publication-title: Talanta
  doi: 10.1016/j.talanta.2006.04.035
– volume: 34
  start-page: 339
  year: 2013
  ident: 1411_CR9
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2013.07.036
– volume: 7
  start-page: 564
  year: 2012
  ident: 1411_CR21
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-7-564
SSID ssj0017624
Score 2.0935216
Snippet We have found that low concentrations of the polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induce the aggregation of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 965
SubjectTerms Agglomeration
Analytical Chemistry
Aqueous solutions
Calibration
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Guanidines
Humic acid
Hydrochlorides
Microengineering
Nanochemistry
Nanoparticles
Nanotechnology
Original Paper
Polyelectrolytes
Rayleigh scattering
Silver
Title Highly sensitive determination of poly(hexamethylene guanidine) by Rayleigh scattering using aggregation of silver nanoparticles
URI https://link.springer.com/article/10.1007/s00604-014-1411-6
https://www.proquest.com/docview/1677921614
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB6a5JBcSh8JcdKGLQT6CAvWah_x0Unjhob2UGpIT8u-5BiMHCob4lt_emdkSdCkDfSky2q17OzOQ_PNNwDHRkVfSK95pozk0ivH_SB5HoqghA8-kzXFxpev-nIsP1-r66aOu2rR7m1KstbUXbEbUYcQYkLyTGYZ1xuwpYhOCg_xWAy71AHe7oZ6WfNcG9GmMv82xR_G6L5KfpAbrU3O6Bk8bXxFNlwL9zk8SeUL2D5vW7S9hF-E0pitWEUodNJbLLboFtpvNi_Y7Xy2eneT7hy1il6hiUlssnTlFE1Wes_8in3DkJ1-j7Iq1FSbuBJGYPgJcxOMxSfdTNWUQNSsdCXG2Q2cbhfGo4vv55e8aanAg8z7C66dyD0FJVI5mZsiopIpROb6URm09i7EkHQciMIIn9DxFjFi_CypIFf2C-PzPdgs52XaB5Z0SLlMA-Wjk1qfnjpVmBCSSXnKnVc96Ld7a0PDN05tL2a2Y0quxWFRHJbEYXUPPnSv3K7JNh4b_JYEZuki4rzBNfUEuDqitLJDU5MnojvUgzetTC0KiDIirkzzZWUzbcxAoNMre3DSCts2t7j697cP_mv0Ieygm6XWeJ9XsLn4uUyv0ZVZ-CPYGp59PBvR89OPq4uj-ij_Bk1q778
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9tAFH406SG5lDZtiJu2mUKhSxiwRrPERxMSnPVQYshtmE1OwMghsiG-9af3PVkSdEkg99FomE_zFr1vvgfwxajoC-k1z5SRXHrluB8kz0MRlPDBZ7KW2Li41KOxPL1W18097qplu7clydpSd5fdSDqEGBOSZzLLuF6Dl1RlpIxrLIZd6QBPdyO9rHmujWhLmf-b4g9n9LdJ_qc2Wruc49fwqokV2XAF7ht4kcot2DhsW7S9hV_E0pguWUUsdLJbLLbsFtpvNivY3Wy6_HaTHhy1il6ii0lssnDlLbqs9J35JfuJKTv9HmVVqKU2cSWMyPAT5iaYi0-6mapbIlGz0pWYZzd0uncwPj66OhzxpqUCDzLvz7l2IveUlEjlZG6KiEamEJnrR2XQ27sQQ9JxIAojfMLAW8SI-bOkC7myXxifb8N6OSvTDrCkQ8plGigfndT64MCpwoSQTMpT7rzqQb_dWxsavXFqezG1nVJyDYdFOCzBYXUPfnSP3K3ENp4a_JUAs3QQcd7gmvsEuDqStLJDU4snYjjUg88tphYBooqIK9NsUdlMGzMQGPTKHuy3YNvmFFePv_v9s0bvwcbo6uLcnp9cnu3CJoZcasX9-QDr8_tF-ohhzdx_qj_j348T75w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7BVgJeKKdYaIuRkLjkdpP46D6uSpdCoUKISuXJ-Mq26iq7IlmJ8MRPx5PEkSiHhHh3HMcez5H55huAx5I7kzMjaMIlo8xwTc3YG2pzy1NjTcIaio13R-LgmL054Sddn9Myot1jSrKtaUCWpqLaWbp8py98QxoRRE8wmrAkoeIyrDFsITGAtcmrT4f7fSIh3PWOiFnQTMg0JjZ_N8lPpumigv4lU9oYoOk6fI5Lb3En59urymzbbxdYHf_j227A9c45JZNWmm7CJV_cgqt7sSfcbfiOsJB5TUqEvaOiJC7CafCAySIny8W8fnrqv2rsTV0Hm-bJbKWLs2Aj_TNiavJB183_WFLahtszrJMg-n5G9CwE_7N-pvIMUduk0EUI7Dv83h04nu5_3DugXQ8Halk2qqjQaWYwCmJcs0zmLmi1PE30yHEZ3AttnfXCjdNcpsYHTz91LgTsDCuA2SiXJrsLg2JR-HtAvLA-Y37MjdNMiN1dzXNprZc-85k2fAijeHzKdgTn2Gdjrnpq5mZrVdhahVurxBCe948sW3aPvw1-gjKh8OaHea3uChjC6pBDS01kw9YY_K8hPIpio8IBYQpGF36xKlUipBynwctmQ3gRRUF1aqP887vv_9Poh3Dl_cupevv66PABXAsuHm-xRhswqL6s_GZwoyqz1V2VH1-qFUI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+determination+of+poly%28hexamethylene+guanidine%29+by+Rayleigh+scattering+using+aggregation+of+silver+nanoparticles&rft.jtitle=Mikrochimica+acta+%281966%29&rft.au=Artemyeva%2C+Anastasia+A.&rft.au=Samarina%2C+Tatyana+O.&rft.au=Sharov%2C+Andrei+V.&rft.au=Abramchuk%2C+Sergei+S.&rft.date=2015-04-01&rft.pub=Springer+Vienna&rft.issn=0026-3672&rft.eissn=1436-5073&rft.volume=182&rft.issue=5-6&rft.spage=965&rft.epage=973&rft_id=info:doi/10.1007%2Fs00604-014-1411-6&rft.externalDocID=10_1007_s00604_014_1411_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-3672&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-3672&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-3672&client=summon