Autocorrelation analysis for cryo-EM with sparsity constraints: Improved sample complexity and projection-based algorithms

SignificanceCryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important applications in basic science and drug design. A large number of images is needed for accurate reconstruction due to low signal-to-noise ratio and...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 120; no. 18; p. e2216507120
Main Authors Bendory, Tamir, Khoo, Yuehaw, Kileel, Joe, Mickelin, Oscar, Singer, Amit
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.05.2023
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2216507120

Cover

Abstract SignificanceCryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important applications in basic science and drug design. A large number of images is needed for accurate reconstruction due to low signal-to-noise ratio and unknown image orientations. We prove that asymptotically fewer images are required for reconstruction if the structure admits a sparse representation. This may reduce the experimental cost and allow reconstruction from limited datasets. This might also help in the related technology of X-ray free-electron lasers, where throughput is a bottleneck. We introduce sparse representations to the computational pipeline and build projection-based algorithms for low-resolution ab initio modeling that would be used to initialize existing iterative refinement procedures and for model validation. The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.
AbstractList The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.
SignificanceCryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important applications in basic science and drug design. A large number of images is needed for accurate reconstruction due to low signal-to-noise ratio and unknown image orientations. We prove that asymptotically fewer images are required for reconstruction if the structure admits a sparse representation. This may reduce the experimental cost and allow reconstruction from limited datasets. This might also help in the related technology of X-ray free-electron lasers, where throughput is a bottleneck. We introduce sparse representations to the computational pipeline and build projection-based algorithms for low-resolution ab initio modeling that would be used to initialize existing iterative refinement procedures and for model validation. The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.
The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.
Cryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important applications in basic science and drug design. A large number of images is needed for accurate reconstruction due to low signal-to-noise ratio and unknown image orientations. We prove that asymptotically fewer images are required for reconstruction if the structure admits a sparse representation. This may reduce the experimental cost and allow reconstruction from limited datasets. This might also help in the related technology of X-ray free-electron lasers, where throughput is a bottleneck. We introduce sparse representations to the computational pipeline and build projection-based algorithms for low-resolution ab initio modeling that would be used to initialize existing iterative refinement procedures and for model validation. The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.
ArticleNumber e2216507120
Author Mickelin, Oscar
Khoo, Yuehaw
Bendory, Tamir
Singer, Amit
Kileel, Joe
Author_xml – sequence: 1
  givenname: Tamir
  orcidid: 0000-0003-2373-9388
  surname: Bendory
  fullname: Bendory, Tamir
  organization: Tel Aviv University
– sequence: 2
  givenname: Yuehaw
  orcidid: 0000-0002-8472-8984
  surname: Khoo
  fullname: Khoo, Yuehaw
  organization: University of Chicago
– sequence: 3
  givenname: Joe
  surname: Kileel
  fullname: Kileel, Joe
  organization: University of Texas at Austin
– sequence: 4
  givenname: Oscar
  orcidid: 0000-0003-0167-1992
  surname: Mickelin
  fullname: Mickelin, Oscar
  email: hm6655@princeton.edu
  organization: Princeton University
– sequence: 5
  givenname: Amit
  orcidid: 0000-0002-6975-7955
  surname: Singer
  fullname: Singer, Amit
  organization: Princeton University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37094135$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVAR3X6cuaEckVDasZ3EGy6oqlqoVNQLnKOJ47SuHDvYTtvw6-uwCwUO7Wkkv4_xm7dHdqyzipC3FI4oCH48WgxHjNGqBEEZvCIrCjXNq6KGHbICYCJfF6zYJXsh3AJAXa7hDdnlAuqC8nJFfp5M0UnnvTIYtbMZWjRz0CHrnc-kn11-9jW71_EmCyP6oOOcSWdD9KhtDB-zi2H07k51WcBhNCqBy3hYeGi7LIG3Si7OeYsh0dBcO5_shnBAXvdogjrczn3y_fzs2-mX_PLq88XpyWUuCw4xL2jH-55J0au-4i3yTomqU0hrWtaCVVSJTtGWVnUvoBQttmXBy_TE1ooWVPB9AhvfyY4436Mxzej1gH5uKDTLGZvljM3TGZPk00YyTu2gOqlsyvskc6ibfxGrb5prd5fcaLU0kBzebx28-zGpEJtBB6mMQavclJatoQJRMsYT9d3fy_5s-V1SIpQbgvQuBK_6Rur4q62lBfNMiuP_dC_n_rD9ygK8xH4EXizHdA
CitedBy_id crossref_primary_10_1137_23M155685X
crossref_primary_10_1016_j_acha_2024_101723
crossref_primary_10_1107_S2052252523009831
crossref_primary_10_1017_S2633903X24000023
Cites_doi 10.1038/s41467-019-08991-8
10.1137/090767777
10.1109/TIT.2005.862083
10.1038/d41586-020-00341-9
10.1137/18M1170364
10.1090/S0002-9939-1959-0105008-8
10.1137/18M1214317
10.1214/11-AOAS479
10.1021/ed500343x
10.1109/TIT.2006.871582
10.1109/MSP.2014.2352673
10.1017/9781009003919
10.1038/s41597-022-01266-w
10.1109/TSP.2020.2975943
10.1109/JSTSP.2016.2543462
10.1007/s10208-022-09584-6
10.1038/nmeth.4169
10.1107/S2052252517005760
10.1111/j.2517-6161.1996.tb02080.x
10.1109/34.192463
10.1007/978-3-319-69802-1_2
10.1088/1361-6420/ab6139
10.1364/AO.21.002758
10.1090/noti2540
10.1109/TIT.2017.2754485
10.1017/S2633903X23000028
10.1016/j.bpj.2014.12.054
10.1137/22M1498218
10.1007/BF02289451
10.1073/pnas.0606359104
10.1142/9789813272880_0209
10.1364/OE.19.017318
10.1109/ICASSP40776.2020.9053170
10.1038/s41592-021-01220-5
10.1017/CBO9780511794308
10.1109/TIT.2019.2940657
10.1109/ISBI.2011.5872791
10.1117/3.270709
10.1109/TNS.1974.6499235
10.1088/0266-5611/21/1/004
10.1109/ISIT.2018.8437646
10.1006/jsbi.1998.4014
10.1107/S2052252520014384
10.1016/B978-012466606-1/50008-8
10.1093/acprof:oso/9780195182187.003.0002
10.1088/1367-2630/15/1/013059
10.1137/120872516
10.1016/j.jsb.2018.03.002
10.1007/978-1-4419-7011-4
10.1103/PhysRevLett.119.158102
10.1364/JOSAA.20.000040
10.1109/ICASSP43922.2022.9746298
10.1017/S0033583516000068
10.1016/j.jsb.2012.09.006
10.1137/1.9781611970104
10.1016/j.laa.2006.02.037
10.1109/TSP.2017.2656844
10.1109/JSTSP.2015.2489186
10.1214/08-AOS673
10.1214/16-AOS1443
10.1109/MSP.2019.2957822
10.1109/CDC.2013.6760842
10.1002/jcc.20084
10.1016/j.cmpb.2022.106830
10.1101/2022.03.21.484361
10.3934/ipi.2022046
10.1093/nar/gkv1126
10.1109/ISBI.2015.7164051
10.1016/j.jsb.2017.09.007
10.1017/S0962492920000021
10.1016/j.tibs.2014.10.005
10.1109/ISBI.2018.8363873
10.1016/0022-5193(80)90088-0
10.1126/science.1251652
10.1137/20M132136X
10.1073/pnas.1513738112
10.1101/431080
ContentType Journal Article
Copyright Copyright © 2023 the Author(s). Published by PNAS.
Copyright © 2023 the Author(s). Published by PNAS. 2023
Copyright_xml – notice: Copyright © 2023 the Author(s). Published by PNAS.
– notice: Copyright © 2023 the Author(s). Published by PNAS. 2023
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.2216507120
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID oai:uchicago.tind.io:5794
PMC10161091
37094135
10_1073_pnas_2216507120
10.1073/pnas.2216507120
Genre Research Article
Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: DMS-2009753
  funderid: 100000001
– fundername: NSF - BSF
  grantid: 2019752
– fundername: Simons Foundation Math+X Investigator Award
  grantid: N/A
– fundername: Israel Science Foundation (ISF)
  grantid: 1924/21
  funderid: 501100003977
– fundername: NIH/NIGMS
  grantid: 1R01GM136780-01
– fundername: US | USAF | AMC | Air Force Office of Scientific Research (AFOSR)
  grantid: FA9550-20-1-0266
  funderid: 100000181
– fundername: Start-up grants from the College of Natural Sciences and Oden Institute for Computational Engineering and Sciences at UT Austin
  grantid: N/A
– fundername: United States - Israel Binational Science Foundation (BSF)
  grantid: 2020159
  funderid: 100006221
– fundername: NSF BIGDATA
  grantid: IIS-1837992
– fundername: NIGMS NIH HHS
  grantid: R01 GM136780
– fundername: ;
  grantid: DMS-2009753
– fundername: ;
  grantid: 2019752
– fundername: ;
  grantid: N/A
– fundername: ;
  grantid: 1R01GM136780-01
– fundername: ;
  grantid: FA9550-20-1-0266
– fundername: ;
  grantid: 1924/21
– fundername: ;
  grantid: 2020159
– fundername: ;
  grantid: IIS-1837992
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
AFOSN
NPM
RHF
VQA
YIF
YIN
7X8
5PM
.GJ
2AX
3O-
692
6TJ
79B
AAYJJ
ABBHK
ABXSQ
ACHIC
ACKIV
ADQXQ
ADTOC
ADULT
ADXHL
AEUPB
AEXZC
AFHIN
AFQQW
AQVQM
AS~
DCCCD
EJD
HGD
HQ3
HTVGU
IPSME
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JPM
JST
MVM
NEJ
NHB
P-O
SA0
UNPAY
VOH
WHG
ZCG
ID FETCH-LOGICAL-c430t-41d3ff2c7fef63ba3de76dea191597261e7de1b169f7057bab5435de128e14173
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Sun Oct 26 02:02:34 EDT 2025
Tue Sep 30 17:11:48 EDT 2025
Thu Sep 04 15:45:57 EDT 2025
Wed Feb 19 02:08:38 EST 2025
Thu Apr 24 22:55:12 EDT 2025
Wed Oct 01 01:47:33 EDT 2025
Thu Oct 09 22:07:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords method of moments
sparsity
projection-based algorithm
crystallographic phase retrieval
single-particle cryoelectron microscopy
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-41d3ff2c7fef63ba3de76dea191597261e7de1b169f7057bab5435de128e14173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Jeffrey Donatelli, E O Lawrence Berkeley National Laboratory, Berkeley, CA; received September 27, 2022; accepted March 24, 2023 by Editorial Board Member James A. Sethian
ORCID 0000-0002-8472-8984
0000-0002-6975-7955
0000-0003-0167-1992
0000-0003-2373-9388
OpenAccessLink https://proxy.k.utb.cz/login?url=http://knowledge.uchicago.edu/record/5794
PMID 37094135
PQID 2806075223
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1073_pnas_2216507120
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10161091
proquest_miscellaneous_2806075223
pubmed_primary_37094135
crossref_citationtrail_10_1073_pnas_2216507120
crossref_primary_10_1073_pnas_2216507120
pnas_primary_10_1073_pnas_2216507120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-02
PublicationDateYYYYMMDD 2023-05-02
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAbbrev Proc Natl Acad Sci USA
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2023
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Donoho 2006; 52
Vinothkumar, Henderson 2016; 49
Fienup 1982; 21
Eldar, Kutyniok 2012
Elser, Lan, Bendory 2018; 11
Bendory, Edidin 2020; 2
Bhamre, Zhang, Singer
Herzik, Wu, Lander 2019; 10
Jonić, Sorzano 2015; 10
Mallat 1989; 11
Punjani, Rubinstein, Fleet, Brubaker 2017; 14
Elser 2017; 64
Panaretos 2009; 37
Zhang, Kuo, Wright 2019; 66
Kimanius 2021; 8
Spence 2017; 4
Sigworth 1998; 122
Elser, Rankenburg, Thibault 2007; 104
Cai, Li, Ma 2016; 44
Kurta 2017; 119
Schönemann 1966; 31
Donatelli, Zwart, Sethian 2015; 112
Galli 2014; 91
Callaway 2020; 578
Kurta, Dronyak, Altarelli, Weckert, Vartanyants 2013; 15
Shechtman 2015; 32
Pettersen 2004; 25
Oseledets, Tyrtyshnikov 2006; 418
Singer 2021; 77
Bendory, Lan, Marshall, Rukshin, Singer 2023; 17
Lawson 2016; 44
Chi 2016; 10
Singer, Shkolnisky 2011; 4
Lan, Bendory, Boumal, Singer 2020; 68
Bai, McMullan, Scheres 2015; 40
Perry, Weed, Bandeira, Rigollet, Singer 2019; 1
Kühlbrandt 2014; 343
Kam 1980; 82
Candès, Romberg, Tao 2006; 52
Chen, Ludtke 2021; 18
Elser 2003; 20
Greenberg, Shkolnisky 2017; 200
Saunderson, Chandrasekaran, Parrilo, Willsky 2012; 33
Saldin, Poon, Schwander, Uddin, Schmidt 2011; 19
Kawabata 2018; 203
Bendory, Bartesaghi, Singer 2020; 37
Tibshirani 1996; 58
Kirkwood 2022; 9
Gilles, Singer 2022; 221
Joubert, Habeck 2015; 108
Sharon, Kileel, Khoo, Landa, Singer 2020; 36
Jaganathan, Oymak, Hassibi 2017; 65
Luke 2004; 21
Scheres 2012; 180
Martinsson, Tropp 2020; 29
Shepp, Logan 1974; 21
Cheney, Goldstein 1959; 10
e_1_3_4_3_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
Tibshirani R. (e_1_3_4_1_2) 1996; 58
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
Singer A. (e_1_3_4_80_2) 2021; 77
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
Bendory T. (e_1_3_4_85_2) 2023; 17
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – volume: 21
  start-page: 2758
  year: 1982
  end-page: 2769
  article-title: Phase retrieval algorithms: A comparison
  publication-title: Appl. Opt.
– volume: 343
  start-page: 1443
  year: 2014
  end-page: 1444
  article-title: The resolution revolution
  publication-title: Science
– volume: 66
  start-page: 419
  year: 2019
  end-page: 452
  article-title: Structured local optima in sparse blind deconvolution
  publication-title: IEEE Trans. Inf. Theory
– volume: 119
  year: 2017
  article-title: Correlations in scattered X-ray laser pulses reveal nanoscale structural features of viruses
  publication-title: Phys. Rev. Lett.
– year: 2012
  publication-title: Compressed Sensing: Theory and Applications
– volume: 112
  start-page: 10286
  year: 2015
  end-page: 10291
  article-title: Iterative phasing for fluctuation X-ray scattering
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 40
  start-page: 49
  year: 2015
  end-page: 57
  article-title: How cryo-EM is revolutionizing structural biology
  publication-title: Trends Biochem. Sci.
– volume: 15
  year: 2013
  article-title: Solution of the phase problem for coherent scattering from a disordered system of identical particles
  publication-title: New J. phys.
– volume: 37
  start-page: 58
  year: 2020
  end-page: 76
  article-title: Single-particle cryo-electron microscopy: Mathematical theory, computational challenges, and opportunities
  publication-title: IEEE Signal Process. Mag.
– volume: 18
  start-page: 930
  year: 2021
  end-page: 936
  article-title: Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM
  publication-title: Nat. Methods
– volume: 122
  start-page: 328
  year: 1998
  end-page: 339
  article-title: A maximum-likelihood approach to single-particle image refinement
  publication-title: J. Struct. Biol.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  article-title: High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM
  publication-title: Nat. Commun.
– volume: 49
  year: 2016
  article-title: Single particle electron cryomicroscopy: Trends, issues and future perspective
  publication-title: Q. Rev. Biophys.
– volume: 20
  start-page: 40
  year: 2003
  end-page: 55
  article-title: Phase retrieval by iterated projections
  publication-title: J. Opt. Soc. Am. A
– volume: 578
  start-page: 201
  year: 2020
  end-page: 202
  article-title: Revolutionary cryo-EM is taking over structural biology
  publication-title: Nature
– volume: 108
  start-page: 1165
  year: 2015
  end-page: 1175
  article-title: Bayesian inference of initial models in cryo-electron microscopy using pseudo-atoms
  publication-title: Biophys. J.
– volume: 1
  start-page: 497
  year: 2019
  end-page: 517
  article-title: The sample complexity of multireference alignment
  publication-title: SIAM J. Math. Data Sci.
– volume: 52
  start-page: 489
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.: Ser. B (Methodol.)
– volume: 180
  start-page: 519
  year: 2012
  end-page: 530
  article-title: RELION: Implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J. Struct. Biol.
– volume: 104
  start-page: 418
  year: 2007
  end-page: 423
  article-title: Searching with iterated maps
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 21
  start-page: 37
  year: 2004
  article-title: Relaxed averaged alternating reflections for diffraction imaging
  publication-title: Inverse Probl.
– volume: 44
  start-page: 2221
  year: 2016
  end-page: 2251
  article-title: Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow
  publication-title: Ann. Stat.
– volume: 11
  start-page: 2429
  year: 2018
  end-page: 2455
  article-title: Benchmark problems for phase retrieval
  publication-title: SIAM J. Imag. Sci.
– volume: 9
  start-page: 1
  year: 2022
  end-page: 7
  article-title: A multi-million image Serial Femtosecond Crystallography dataset collected at the European XFEL
  publication-title: Sci. Data
– volume: 17
  start-page: 362
  year: 2023
  end-page: 380
  article-title: Multi-target detection with rotations
  publication-title: Inverse Probl. Imag.
– volume: 19
  start-page: 17318
  year: 2011
  end-page: 17335
  article-title: Reconstructing an icosahedral virus from single-particle diffraction experiments
  publication-title: Opt. Exp.
– volume: 37
  start-page: 3272
  year: 2009
  end-page: 3306
  article-title: On random tomography with unobservable projection angles
  publication-title: Ann. Stat.
– volume: 31
  start-page: 1
  year: 1966
  end-page: 10
  article-title: A generalized solution of the orthogonal procrustes problem
  publication-title: Psychometrika
– volume: 10
  start-page: 448
  year: 1959
  end-page: 450
  article-title: Proximity maps for convex sets
  publication-title: Proc. Am. Math. Soc.
– volume: 91
  start-page: 2009
  year: 2014
  end-page: 2012
  article-title: X-ray crystallography: One century of Nobel Prizes
  publication-title: J. Chem. Educ.
– volume: 44
  start-page: D396
  year: 2016
  end-page: D403
  article-title: EMDataBank unified data resource for 3DEM
  publication-title: Nucleic Acids Res.
– volume: 4
  start-page: 322
  year: 2017
  end-page: 339
  article-title: XFELs for structure and dynamics in biology
  publication-title: IUCrJ
– volume: 82
  start-page: 15
  year: 1980
  end-page: 39
  article-title: The reconstruction of structure from electron micrographs of randomly oriented particles
  publication-title: J. Theor. Biol.
– volume: 200
  start-page: 106
  year: 2017
  end-page: 117
  article-title: Common lines modeling for reference free ab-initio reconstruction in cryo-EM
  publication-title: J. Struct. Biol.
– volume: 32
  start-page: 87
  year: 2015
  end-page: 109
  article-title: Phase retrieval with application to optical imaging: A contemporary overview
  publication-title: IEEE Signal Process. Mag.
– volume: 33
  start-page: 1395
  year: 2012
  end-page: 1416
  article-title: Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 10
  start-page: 161
  year: 2015
  end-page: 173
  article-title: Coarse-graining of volumes for modeling of structure and dynamics in electron microscopy: Algorithm to automatically control accuracy of approximation
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 77
  year: 2021
  article-title: Wilson statistics: Derivation, generalization and applications to electron cryomicroscopy
  publication-title: Acta Crystall. Sec. A: Found. Adv.
– volume: 418
  start-page: 435
  year: 2006
  end-page: 449
  article-title: A unifying approach to the construction of circulant preconditioners
  publication-title: Linear Algebra Appl.
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  article-title: A theory for multiresolution signal decomposition: The wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 21
  start-page: 21
  year: 1974
  end-page: 43
  article-title: The Fourier reconstruction of a head section
  publication-title: IEEE Trans. Nuclear Sci.
– volume: 8
  start-page: 60
  year: 2021
  end-page: 75
  article-title: Exploiting prior knowledge about biological macromolecules in cryo-EM structure determination
  publication-title: IUCrJ
– volume: 4
  start-page: 543
  year: 2011
  end-page: 572
  article-title: Three-dimensional structure determination from common lines in cryo-EM by eigenvectors and semidefinite programming
  publication-title: SIAM J. Imag. Sci.
– volume: 36
  year: 2020
  article-title: Method of moments for 3D single particle ab initio modeling with non-uniform distribution of viewing angles
  publication-title: Inverse Probl.
– volume: 2
  start-page: 809
  year: 2020
  end-page: 839
  article-title: Toward a mathematical theory of the crystallographic phase retrieval problem
  publication-title: SIAM J. Math. Data Sci.
– volume: 203
  start-page: 1
  year: 2018
  end-page: 16
  article-title: Gaussian-input Gaussian mixture model for representing density maps and atomic models
  publication-title: J. Struct. Biol.
– volume: 65
  start-page: 2402
  year: 2017
  end-page: 2410
  article-title: Sparse phase retrieval: Uniqueness guarantees and recovery algorithms
  publication-title: IEEE Trans. Signal Process.
– volume: 29
  start-page: 403
  year: 2020
  end-page: 572
  article-title: Randomized numerical linear algebra: Foundations and algorithms
  publication-title: Acta Numer.
– volume: 10
  start-page: 782
  year: 2016
  end-page: 794
  article-title: Guaranteed blind sparse spikes deconvolution via lifting and convex optimization
  publication-title: IEEE J. Sel. Top. Sig. Process.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  article-title: UCSF Chimera-a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 68
  start-page: 1589
  year: 2020
  end-page: 1601
  article-title: Multi-target detection with an arbitrary spacing distribution
  publication-title: IEEE Trans. Signal Process.
– volume: 64
  start-page: 412
  year: 2017
  end-page: 428
  article-title: The complexity of bit retrieval
  publication-title: IEEE Trans. Inf. Theory
– volume: 221
  year: 2022
  article-title: A molecular prior distribution for Bayesian inference based on Wilson statistics
  publication-title: Comput. Methods Prog. Biomed.
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  article-title: cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
– ident: e_1_3_4_65_2
– ident: e_1_3_4_73_2
  doi: 10.1038/s41467-019-08991-8
– ident: e_1_3_4_47_2
  doi: 10.1137/090767777
– ident: e_1_3_4_4_2
  doi: 10.1109/TIT.2005.862083
– ident: e_1_3_4_13_2
  doi: 10.1038/d41586-020-00341-9
– ident: e_1_3_4_9_2
  doi: 10.1137/18M1170364
– ident: e_1_3_4_71_2
  doi: 10.1090/S0002-9939-1959-0105008-8
– ident: e_1_3_4_17_2
  doi: 10.1137/18M1214317
– volume: 77
  year: 2021
  ident: e_1_3_4_80_2
  article-title: Wilson statistics: Derivation, generalization and applications to electron cryomicroscopy
  publication-title: Acta Crystall. Sec. A: Found. Adv.
– ident: e_1_3_4_42_2
  doi: 10.1214/11-AOAS479
– ident: e_1_3_4_51_2
  doi: 10.1021/ed500343x
– ident: e_1_3_4_60_2
– ident: e_1_3_4_3_2
  doi: 10.1109/TIT.2006.871582
– ident: e_1_3_4_52_2
  doi: 10.1109/MSP.2014.2352673
– ident: e_1_3_4_54_2
  doi: 10.1017/9781009003919
– ident: e_1_3_4_79_2
  doi: 10.1038/s41597-022-01266-w
– ident: e_1_3_4_84_2
  doi: 10.1109/TSP.2020.2975943
– ident: e_1_3_4_8_2
  doi: 10.1109/JSTSP.2016.2543462
– ident: e_1_3_4_56_2
  doi: 10.1007/s10208-022-09584-6
– ident: e_1_3_4_26_2
  doi: 10.1038/nmeth.4169
– ident: e_1_3_4_78_2
  doi: 10.1107/S2052252517005760
– volume: 58
  start-page: 267
  year: 1996
  ident: e_1_3_4_1_2
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.: Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_3_4_68_2
  doi: 10.1109/34.192463
– ident: e_1_3_4_53_2
  doi: 10.1007/978-3-319-69802-1_2
– ident: e_1_3_4_27_2
  doi: 10.1088/1361-6420/ab6139
– ident: e_1_3_4_43_2
  doi: 10.1364/AO.21.002758
– ident: e_1_3_4_69_2
  doi: 10.1090/noti2540
– ident: e_1_3_4_76_2
  doi: 10.1109/TIT.2017.2754485
– ident: e_1_3_4_39_2
– ident: e_1_3_4_86_2
  doi: 10.1017/S2633903X23000028
– ident: e_1_3_4_58_2
– ident: e_1_3_4_34_2
  doi: 10.1016/j.bpj.2014.12.054
– ident: e_1_3_4_24_2
  doi: 10.1137/22M1498218
– ident: e_1_3_4_70_2
  doi: 10.1007/BF02289451
– ident: e_1_3_4_46_2
  doi: 10.1073/pnas.0606359104
– ident: e_1_3_4_15_2
  doi: 10.1142/9789813272880_0209
– ident: e_1_3_4_28_2
  doi: 10.1364/OE.19.017318
– ident: e_1_3_4_33_2
  doi: 10.1109/ICASSP40776.2020.9053170
– ident: e_1_3_4_38_2
  doi: 10.1038/s41592-021-01220-5
– ident: e_1_3_4_5_2
  doi: 10.1017/CBO9780511794308
– ident: e_1_3_4_10_2
  doi: 10.1109/TIT.2019.2940657
– ident: e_1_3_4_2_2
– ident: e_1_3_4_40_2
  doi: 10.1109/ISBI.2011.5872791
– ident: e_1_3_4_37_2
– ident: e_1_3_4_50_2
  doi: 10.1117/3.270709
– ident: e_1_3_4_75_2
  doi: 10.1109/TNS.1974.6499235
– ident: e_1_3_4_45_2
  doi: 10.1088/0266-5611/21/1/004
– ident: e_1_3_4_18_2
  doi: 10.1109/ISIT.2018.8437646
– ident: e_1_3_4_20_2
  doi: 10.1006/jsbi.1998.4014
– ident: e_1_3_4_82_2
  doi: 10.1107/S2052252520014384
– ident: e_1_3_4_67_2
  doi: 10.1016/B978-012466606-1/50008-8
– ident: e_1_3_4_14_2
  doi: 10.1093/acprof:oso/9780195182187.003.0002
– ident: e_1_3_4_29_2
  doi: 10.1088/1367-2630/15/1/013059
– ident: e_1_3_4_62_2
  doi: 10.1137/120872516
– ident: e_1_3_4_36_2
  doi: 10.1016/j.jsb.2018.03.002
– ident: e_1_3_4_6_2
  doi: 10.1007/978-1-4419-7011-4
– ident: e_1_3_4_31_2
  doi: 10.1103/PhysRevLett.119.158102
– ident: e_1_3_4_59_2
– ident: e_1_3_4_44_2
  doi: 10.1364/JOSAA.20.000040
– ident: e_1_3_4_57_2
  doi: 10.1109/ICASSP43922.2022.9746298
– ident: e_1_3_4_87_2
  doi: 10.1017/S0033583516000068
– ident: e_1_3_4_25_2
  doi: 10.1016/j.jsb.2012.09.006
– ident: e_1_3_4_19_2
– ident: e_1_3_4_66_2
  doi: 10.1137/1.9781611970104
– ident: e_1_3_4_61_2
  doi: 10.1016/j.laa.2006.02.037
– ident: e_1_3_4_32_2
  doi: 10.1109/TSP.2017.2656844
– ident: e_1_3_4_35_2
  doi: 10.1109/JSTSP.2015.2489186
– ident: e_1_3_4_41_2
  doi: 10.1214/08-AOS673
– ident: e_1_3_4_7_2
  doi: 10.1214/16-AOS1443
– ident: e_1_3_4_16_2
  doi: 10.1109/MSP.2019.2957822
– ident: e_1_3_4_63_2
  doi: 10.1109/CDC.2013.6760842
– ident: e_1_3_4_77_2
  doi: 10.1002/jcc.20084
– ident: e_1_3_4_81_2
  doi: 10.1016/j.cmpb.2022.106830
– ident: e_1_3_4_74_2
  doi: 10.1101/2022.03.21.484361
– volume: 17
  start-page: 362
  year: 2023
  ident: e_1_3_4_85_2
  article-title: Multi-target detection with rotations
  publication-title: Inverse Probl. Imag.
  doi: 10.3934/ipi.2022046
– ident: e_1_3_4_72_2
  doi: 10.1093/nar/gkv1126
– ident: e_1_3_4_22_2
  doi: 10.1109/ISBI.2015.7164051
– ident: e_1_3_4_48_2
  doi: 10.1016/j.jsb.2017.09.007
– ident: e_1_3_4_64_2
  doi: 10.1017/S0962492920000021
– ident: e_1_3_4_12_2
  doi: 10.1016/j.tibs.2014.10.005
– ident: e_1_3_4_23_2
  doi: 10.1109/ISBI.2018.8363873
– ident: e_1_3_4_21_2
  doi: 10.1016/0022-5193(80)90088-0
– ident: e_1_3_4_49_2
– ident: e_1_3_4_11_2
  doi: 10.1126/science.1251652
– ident: e_1_3_4_55_2
  doi: 10.1137/20M132136X
– ident: e_1_3_4_30_2
  doi: 10.1073/pnas.1513738112
– ident: e_1_3_4_83_2
  doi: 10.1101/431080
SSID ssj0009580
Score 2.5094488
Snippet SignificanceCryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important...
The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of...
Cryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important applications in...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2216507120
SubjectTerms Applied Mathematics
Physical Sciences
Title Autocorrelation analysis for cryo-EM with sparsity constraints: Improved sample complexity and projection-based algorithms
URI https://www.pnas.org/doi/10.1073/pnas.2216507120
https://www.ncbi.nlm.nih.gov/pubmed/37094135
https://www.proquest.com/docview/2806075223
https://pubmed.ncbi.nlm.nih.gov/PMC10161091
http://knowledge.uchicago.edu/record/5794
UnpaywallVersion submittedVersion
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250501
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals Online
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250501
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB3R9ACXQvmq-agWqYf24GB717sJtwi1VEitOBApnKJZewyIYEexLWh_PbO247QqKOJqj1e2dtbzZvbtG4CjICQTESk_zoLEV0jWR6ncQWAM3IE9yppizsWlPp-qj7N4thGL3hSS1q1AejLNKuXkfax2YFfHDLsHsDu9_DT50lI4-E-r2ga2HP98rcbBWsbHyLfLHMthFIXaYR_X2PtGBBq4m39Dl3dJkvfrfIlXv3CxuBGBzh623K2yES50xJMfw7qyw-T6rqzj9o97BHsdDhWT1nH24R7lj2G_W-mlOO7kqE-ewPWkrorENfFoaXMCOx0TwXhXJKurwj-9EK6eK_jv1HA8ROJQp2s-UZXvRFu3oFSU6KSIRcNip9_ODvNUdLUgHtl3ITUVuPharHi4n-VTmJ6dfn5_7ncdG_xEyaDyVZjKLIsSk1GmpUWZktEpISeFnLhwskYmpdCGepwZBooWbcxwjS9FIwpVaOQzGORFTgcgpMmsplgqNEopQ5hRjMkosAZRj5X1YLiexXnSyZm7D1vMm211I-duZuebaffguH9g2Sp5_Nv0qLmy1ezN2m3mvCjdTgvmVNRsMwo0YzGGXh48b92oH0wazqhDGXswuuVgvYET_L59J__-rRH-dpUW5-AenPS-uO0lX_yH7Ut4EDGGa_ic0SsYVKuaXjPmquwh7HyYhYfdmvsDl1ct7A
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVge4BLoXw1fMlIPbSHLEns2LvcVqhVhdSKAyuVUzROJhSxJKtNImh_PTNJNtuqoBXXZGIl8jjzZvz8RoiDIEQbIWo_zoPU14DOB6X5IDAEfGAP87aYc3ZuTuf600V8sRGL3hSS1q1ABjLNKqPkfarvix0TE-weiZ35-efZ147CQX9a3TWwpfjnGz0N1jI-Vr1fFlCNoyg0jH24sfeNCDTim39Dl3dJkg-aYglXv2CxuBGBTh513K2qFS5k4smPcVO7cXp9V9Zx-8c9Frs9DpWzznH2xD0snoi9fqVX8rCXoz56Kq5nTV2m3MSjo81J6HVMJOFdma6uSv_4THI9V9LfqeV4yJRRJzefqKsPsqtbYCYrYCli2bLY8TfbQZHJvhZEI_scUjMJi2_liob7WT0T85PjLx9P_b5jg59qFdS-DjOV51Fqc8yNcqAytCZDoKSQEhdK1tBmGLrQTHNLQNGBiwmu0aVogqEOrXouRkVZ4L6QyubOYKw0WK21RcgxhnQSOAtgptp5YryexSTt5cz5wxZJu61uVcIzm2ym3ROHwwPLTsnj36YH7ZWtZu_WbpPQouSdFiiwbMhmEhjCYgS9PPGic6NhMGUpow5V7InJLQcbDFjw-_ad4vtlK_zNlRZ2cE8cDb647SVf_oftK_EwIgzX8jmj12JUrxp8Q5irdm_71fYHiYgs-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autocorrelation+analysis+for+cryo-EM+with+sparsity+constraints%3A+Improved+sample+complexity+and+projection-based+algorithms&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bendory%2C+Tamir&rft.au=Khoo%2C+Yuehaw&rft.au=Kileel%2C+Joe&rft.au=Mickelin%2C+Oscar&rft.date=2023-05-02&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=18&rft_id=info:doi/10.1073%2Fpnas.2216507120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2216507120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon