Autocorrelation analysis for cryo-EM with sparsity constraints: Improved sample complexity and projection-based algorithms
SignificanceCryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important applications in basic science and drug design. A large number of images is needed for accurate reconstruction due to low signal-to-noise ratio and...
Saved in:
| Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 120; no. 18; p. e2216507120 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
National Academy of Sciences
02.05.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0027-8424 1091-6490 1091-6490 |
| DOI | 10.1073/pnas.2216507120 |
Cover
| Abstract | SignificanceCryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important applications in basic science and drug design. A large number of images is needed for accurate reconstruction due to low signal-to-noise ratio and unknown image orientations. We prove that asymptotically fewer images are required for reconstruction if the structure admits a sparse representation. This may reduce the experimental cost and allow reconstruction from limited datasets. This might also help in the related technology of X-ray free-electron lasers, where throughput is a bottleneck. We introduce sparse representations to the computational pipeline and build projection-based algorithms for low-resolution ab initio modeling that would be used to initialize existing iterative refinement procedures and for model validation.
The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography. |
|---|---|
| AbstractList | The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography. SignificanceCryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important applications in basic science and drug design. A large number of images is needed for accurate reconstruction due to low signal-to-noise ratio and unknown image orientations. We prove that asymptotically fewer images are required for reconstruction if the structure admits a sparse representation. This may reduce the experimental cost and allow reconstruction from limited datasets. This might also help in the related technology of X-ray free-electron lasers, where throughput is a bottleneck. We introduce sparse representations to the computational pipeline and build projection-based algorithms for low-resolution ab initio modeling that would be used to initialize existing iterative refinement procedures and for model validation. The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography. The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography. Cryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important applications in basic science and drug design. A large number of images is needed for accurate reconstruction due to low signal-to-noise ratio and unknown image orientations. We prove that asymptotically fewer images are required for reconstruction if the structure admits a sparse representation. This may reduce the experimental cost and allow reconstruction from limited datasets. This might also help in the related technology of X-ray free-electron lasers, where throughput is a bottleneck. We introduce sparse representations to the computational pipeline and build projection-based algorithms for low-resolution ab initio modeling that would be used to initialize existing iterative refinement procedures and for model validation. The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography. |
| ArticleNumber | e2216507120 |
| Author | Mickelin, Oscar Khoo, Yuehaw Bendory, Tamir Singer, Amit Kileel, Joe |
| Author_xml | – sequence: 1 givenname: Tamir orcidid: 0000-0003-2373-9388 surname: Bendory fullname: Bendory, Tamir organization: Tel Aviv University – sequence: 2 givenname: Yuehaw orcidid: 0000-0002-8472-8984 surname: Khoo fullname: Khoo, Yuehaw organization: University of Chicago – sequence: 3 givenname: Joe surname: Kileel fullname: Kileel, Joe organization: University of Texas at Austin – sequence: 4 givenname: Oscar orcidid: 0000-0003-0167-1992 surname: Mickelin fullname: Mickelin, Oscar email: hm6655@princeton.edu organization: Princeton University – sequence: 5 givenname: Amit orcidid: 0000-0002-6975-7955 surname: Singer fullname: Singer, Amit organization: Princeton University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37094135$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1v1DAQtVAR3X6cuaEckVDasZ3EGy6oqlqoVNQLnKOJ47SuHDvYTtvw6-uwCwUO7Wkkv4_xm7dHdqyzipC3FI4oCH48WgxHjNGqBEEZvCIrCjXNq6KGHbICYCJfF6zYJXsh3AJAXa7hDdnlAuqC8nJFfp5M0UnnvTIYtbMZWjRz0CHrnc-kn11-9jW71_EmCyP6oOOcSWdD9KhtDB-zi2H07k51WcBhNCqBy3hYeGi7LIG3Si7OeYsh0dBcO5_shnBAXvdogjrczn3y_fzs2-mX_PLq88XpyWUuCw4xL2jH-55J0au-4i3yTomqU0hrWtaCVVSJTtGWVnUvoBQttmXBy_TE1ooWVPB9AhvfyY4436Mxzej1gH5uKDTLGZvljM3TGZPk00YyTu2gOqlsyvskc6ibfxGrb5prd5fcaLU0kBzebx28-zGpEJtBB6mMQavclJatoQJRMsYT9d3fy_5s-V1SIpQbgvQuBK_6Rur4q62lBfNMiuP_dC_n_rD9ygK8xH4EXizHdA |
| CitedBy_id | crossref_primary_10_1137_23M155685X crossref_primary_10_1016_j_acha_2024_101723 crossref_primary_10_1107_S2052252523009831 crossref_primary_10_1017_S2633903X24000023 |
| Cites_doi | 10.1038/s41467-019-08991-8 10.1137/090767777 10.1109/TIT.2005.862083 10.1038/d41586-020-00341-9 10.1137/18M1170364 10.1090/S0002-9939-1959-0105008-8 10.1137/18M1214317 10.1214/11-AOAS479 10.1021/ed500343x 10.1109/TIT.2006.871582 10.1109/MSP.2014.2352673 10.1017/9781009003919 10.1038/s41597-022-01266-w 10.1109/TSP.2020.2975943 10.1109/JSTSP.2016.2543462 10.1007/s10208-022-09584-6 10.1038/nmeth.4169 10.1107/S2052252517005760 10.1111/j.2517-6161.1996.tb02080.x 10.1109/34.192463 10.1007/978-3-319-69802-1_2 10.1088/1361-6420/ab6139 10.1364/AO.21.002758 10.1090/noti2540 10.1109/TIT.2017.2754485 10.1017/S2633903X23000028 10.1016/j.bpj.2014.12.054 10.1137/22M1498218 10.1007/BF02289451 10.1073/pnas.0606359104 10.1142/9789813272880_0209 10.1364/OE.19.017318 10.1109/ICASSP40776.2020.9053170 10.1038/s41592-021-01220-5 10.1017/CBO9780511794308 10.1109/TIT.2019.2940657 10.1109/ISBI.2011.5872791 10.1117/3.270709 10.1109/TNS.1974.6499235 10.1088/0266-5611/21/1/004 10.1109/ISIT.2018.8437646 10.1006/jsbi.1998.4014 10.1107/S2052252520014384 10.1016/B978-012466606-1/50008-8 10.1093/acprof:oso/9780195182187.003.0002 10.1088/1367-2630/15/1/013059 10.1137/120872516 10.1016/j.jsb.2018.03.002 10.1007/978-1-4419-7011-4 10.1103/PhysRevLett.119.158102 10.1364/JOSAA.20.000040 10.1109/ICASSP43922.2022.9746298 10.1017/S0033583516000068 10.1016/j.jsb.2012.09.006 10.1137/1.9781611970104 10.1016/j.laa.2006.02.037 10.1109/TSP.2017.2656844 10.1109/JSTSP.2015.2489186 10.1214/08-AOS673 10.1214/16-AOS1443 10.1109/MSP.2019.2957822 10.1109/CDC.2013.6760842 10.1002/jcc.20084 10.1016/j.cmpb.2022.106830 10.1101/2022.03.21.484361 10.3934/ipi.2022046 10.1093/nar/gkv1126 10.1109/ISBI.2015.7164051 10.1016/j.jsb.2017.09.007 10.1017/S0962492920000021 10.1016/j.tibs.2014.10.005 10.1109/ISBI.2018.8363873 10.1016/0022-5193(80)90088-0 10.1126/science.1251652 10.1137/20M132136X 10.1073/pnas.1513738112 10.1101/431080 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 the Author(s). Published by PNAS. Copyright © 2023 the Author(s). Published by PNAS. 2023 |
| Copyright_xml | – notice: Copyright © 2023 the Author(s). Published by PNAS. – notice: Copyright © 2023 the Author(s). Published by PNAS. 2023 |
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1073/pnas.2216507120 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | oai:uchicago.tind.io:5794 PMC10161091 37094135 10_1073_pnas_2216507120 10.1073/pnas.2216507120 |
| Genre | Research Article Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: DMS-2009753 funderid: 100000001 – fundername: NSF - BSF grantid: 2019752 – fundername: Simons Foundation Math+X Investigator Award grantid: N/A – fundername: Israel Science Foundation (ISF) grantid: 1924/21 funderid: 501100003977 – fundername: NIH/NIGMS grantid: 1R01GM136780-01 – fundername: US | USAF | AMC | Air Force Office of Scientific Research (AFOSR) grantid: FA9550-20-1-0266 funderid: 100000181 – fundername: Start-up grants from the College of Natural Sciences and Oden Institute for Computational Engineering and Sciences at UT Austin grantid: N/A – fundername: United States - Israel Binational Science Foundation (BSF) grantid: 2020159 funderid: 100006221 – fundername: NSF BIGDATA grantid: IIS-1837992 – fundername: NIGMS NIH HHS grantid: R01 GM136780 – fundername: ; grantid: DMS-2009753 – fundername: ; grantid: 2019752 – fundername: ; grantid: N/A – fundername: ; grantid: 1R01GM136780-01 – fundername: ; grantid: FA9550-20-1-0266 – fundername: ; grantid: 1924/21 – fundername: ; grantid: 2020159 – fundername: ; grantid: IIS-1837992 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION AFOSN NPM RHF VQA YIF YIN 7X8 5PM .GJ 2AX 3O- 692 6TJ 79B AAYJJ ABBHK ABXSQ ACHIC ACKIV ADQXQ ADTOC ADULT ADXHL AEUPB AEXZC AFHIN AFQQW AQVQM AS~ DCCCD EJD HGD HQ3 HTVGU IPSME JAAYA JBMMH JHFFW JKQEH JLXEF JPM JST MVM NEJ NHB P-O SA0 UNPAY VOH WHG ZCG |
| ID | FETCH-LOGICAL-c430t-41d3ff2c7fef63ba3de76dea191597261e7de1b169f7057bab5435de128e14173 |
| IEDL.DBID | UNPAY |
| ISSN | 0027-8424 1091-6490 |
| IngestDate | Sun Oct 26 02:02:34 EDT 2025 Tue Sep 30 17:11:48 EDT 2025 Thu Sep 04 15:45:57 EDT 2025 Wed Feb 19 02:08:38 EST 2025 Thu Apr 24 22:55:12 EDT 2025 Wed Oct 01 01:47:33 EDT 2025 Thu Oct 09 22:07:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | method of moments sparsity projection-based algorithm crystallographic phase retrieval single-particle cryoelectron microscopy |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c430t-41d3ff2c7fef63ba3de76dea191597261e7de1b169f7057bab5435de128e14173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Jeffrey Donatelli, E O Lawrence Berkeley National Laboratory, Berkeley, CA; received September 27, 2022; accepted March 24, 2023 by Editorial Board Member James A. Sethian |
| ORCID | 0000-0002-8472-8984 0000-0002-6975-7955 0000-0003-0167-1992 0000-0003-2373-9388 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://knowledge.uchicago.edu/record/5794 |
| PMID | 37094135 |
| PQID | 2806075223 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1073_pnas_2216507120 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10161091 proquest_miscellaneous_2806075223 pubmed_primary_37094135 crossref_citationtrail_10_1073_pnas_2216507120 crossref_primary_10_1073_pnas_2216507120 pnas_primary_10_1073_pnas_2216507120 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-02 |
| PublicationDateYYYYMMDD | 2023-05-02 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAbbrev | Proc Natl Acad Sci USA |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2023 |
| Publisher | National Academy of Sciences |
| Publisher_xml | – name: National Academy of Sciences |
| References | Donoho 2006; 52 Vinothkumar, Henderson 2016; 49 Fienup 1982; 21 Eldar, Kutyniok 2012 Elser, Lan, Bendory 2018; 11 Bendory, Edidin 2020; 2 Bhamre, Zhang, Singer Herzik, Wu, Lander 2019; 10 Jonić, Sorzano 2015; 10 Mallat 1989; 11 Punjani, Rubinstein, Fleet, Brubaker 2017; 14 Elser 2017; 64 Panaretos 2009; 37 Zhang, Kuo, Wright 2019; 66 Kimanius 2021; 8 Spence 2017; 4 Sigworth 1998; 122 Elser, Rankenburg, Thibault 2007; 104 Cai, Li, Ma 2016; 44 Kurta 2017; 119 Schönemann 1966; 31 Donatelli, Zwart, Sethian 2015; 112 Galli 2014; 91 Callaway 2020; 578 Kurta, Dronyak, Altarelli, Weckert, Vartanyants 2013; 15 Shechtman 2015; 32 Pettersen 2004; 25 Oseledets, Tyrtyshnikov 2006; 418 Singer 2021; 77 Bendory, Lan, Marshall, Rukshin, Singer 2023; 17 Lawson 2016; 44 Chi 2016; 10 Singer, Shkolnisky 2011; 4 Lan, Bendory, Boumal, Singer 2020; 68 Bai, McMullan, Scheres 2015; 40 Perry, Weed, Bandeira, Rigollet, Singer 2019; 1 Kühlbrandt 2014; 343 Kam 1980; 82 Candès, Romberg, Tao 2006; 52 Chen, Ludtke 2021; 18 Elser 2003; 20 Greenberg, Shkolnisky 2017; 200 Saunderson, Chandrasekaran, Parrilo, Willsky 2012; 33 Saldin, Poon, Schwander, Uddin, Schmidt 2011; 19 Kawabata 2018; 203 Bendory, Bartesaghi, Singer 2020; 37 Tibshirani 1996; 58 Kirkwood 2022; 9 Gilles, Singer 2022; 221 Joubert, Habeck 2015; 108 Sharon, Kileel, Khoo, Landa, Singer 2020; 36 Jaganathan, Oymak, Hassibi 2017; 65 Luke 2004; 21 Scheres 2012; 180 Martinsson, Tropp 2020; 29 Shepp, Logan 1974; 21 Cheney, Goldstein 1959; 10 e_1_3_4_3_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 Tibshirani R. (e_1_3_4_1_2) 1996; 58 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 Singer A. (e_1_3_4_80_2) 2021; 77 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 Bendory T. (e_1_3_4_85_2) 2023; 17 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
| References_xml | – volume: 21 start-page: 2758 year: 1982 end-page: 2769 article-title: Phase retrieval algorithms: A comparison publication-title: Appl. Opt. – volume: 343 start-page: 1443 year: 2014 end-page: 1444 article-title: The resolution revolution publication-title: Science – volume: 66 start-page: 419 year: 2019 end-page: 452 article-title: Structured local optima in sparse blind deconvolution publication-title: IEEE Trans. Inf. Theory – volume: 119 year: 2017 article-title: Correlations in scattered X-ray laser pulses reveal nanoscale structural features of viruses publication-title: Phys. Rev. Lett. – year: 2012 publication-title: Compressed Sensing: Theory and Applications – volume: 112 start-page: 10286 year: 2015 end-page: 10291 article-title: Iterative phasing for fluctuation X-ray scattering publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 40 start-page: 49 year: 2015 end-page: 57 article-title: How cryo-EM is revolutionizing structural biology publication-title: Trends Biochem. Sci. – volume: 15 year: 2013 article-title: Solution of the phase problem for coherent scattering from a disordered system of identical particles publication-title: New J. phys. – volume: 37 start-page: 58 year: 2020 end-page: 76 article-title: Single-particle cryo-electron microscopy: Mathematical theory, computational challenges, and opportunities publication-title: IEEE Signal Process. Mag. – volume: 18 start-page: 930 year: 2021 end-page: 936 article-title: Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM publication-title: Nat. Methods – volume: 122 start-page: 328 year: 1998 end-page: 339 article-title: A maximum-likelihood approach to single-particle image refinement publication-title: J. Struct. Biol. – volume: 10 start-page: 1 year: 2019 end-page: 9 article-title: High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM publication-title: Nat. Commun. – volume: 49 year: 2016 article-title: Single particle electron cryomicroscopy: Trends, issues and future perspective publication-title: Q. Rev. Biophys. – volume: 20 start-page: 40 year: 2003 end-page: 55 article-title: Phase retrieval by iterated projections publication-title: J. Opt. Soc. Am. A – volume: 578 start-page: 201 year: 2020 end-page: 202 article-title: Revolutionary cryo-EM is taking over structural biology publication-title: Nature – volume: 108 start-page: 1165 year: 2015 end-page: 1175 article-title: Bayesian inference of initial models in cryo-electron microscopy using pseudo-atoms publication-title: Biophys. J. – volume: 1 start-page: 497 year: 2019 end-page: 517 article-title: The sample complexity of multireference alignment publication-title: SIAM J. Math. Data Sci. – volume: 52 start-page: 489 year: 2006 end-page: 509 article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc.: Ser. B (Methodol.) – volume: 180 start-page: 519 year: 2012 end-page: 530 article-title: RELION: Implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. – volume: 104 start-page: 418 year: 2007 end-page: 423 article-title: Searching with iterated maps publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 21 start-page: 37 year: 2004 article-title: Relaxed averaged alternating reflections for diffraction imaging publication-title: Inverse Probl. – volume: 44 start-page: 2221 year: 2016 end-page: 2251 article-title: Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow publication-title: Ann. Stat. – volume: 11 start-page: 2429 year: 2018 end-page: 2455 article-title: Benchmark problems for phase retrieval publication-title: SIAM J. Imag. Sci. – volume: 9 start-page: 1 year: 2022 end-page: 7 article-title: A multi-million image Serial Femtosecond Crystallography dataset collected at the European XFEL publication-title: Sci. Data – volume: 17 start-page: 362 year: 2023 end-page: 380 article-title: Multi-target detection with rotations publication-title: Inverse Probl. Imag. – volume: 19 start-page: 17318 year: 2011 end-page: 17335 article-title: Reconstructing an icosahedral virus from single-particle diffraction experiments publication-title: Opt. Exp. – volume: 37 start-page: 3272 year: 2009 end-page: 3306 article-title: On random tomography with unobservable projection angles publication-title: Ann. Stat. – volume: 31 start-page: 1 year: 1966 end-page: 10 article-title: A generalized solution of the orthogonal procrustes problem publication-title: Psychometrika – volume: 10 start-page: 448 year: 1959 end-page: 450 article-title: Proximity maps for convex sets publication-title: Proc. Am. Math. Soc. – volume: 91 start-page: 2009 year: 2014 end-page: 2012 article-title: X-ray crystallography: One century of Nobel Prizes publication-title: J. Chem. Educ. – volume: 44 start-page: D396 year: 2016 end-page: D403 article-title: EMDataBank unified data resource for 3DEM publication-title: Nucleic Acids Res. – volume: 4 start-page: 322 year: 2017 end-page: 339 article-title: XFELs for structure and dynamics in biology publication-title: IUCrJ – volume: 82 start-page: 15 year: 1980 end-page: 39 article-title: The reconstruction of structure from electron micrographs of randomly oriented particles publication-title: J. Theor. Biol. – volume: 200 start-page: 106 year: 2017 end-page: 117 article-title: Common lines modeling for reference free ab-initio reconstruction in cryo-EM publication-title: J. Struct. Biol. – volume: 32 start-page: 87 year: 2015 end-page: 109 article-title: Phase retrieval with application to optical imaging: A contemporary overview publication-title: IEEE Signal Process. Mag. – volume: 33 start-page: 1395 year: 2012 end-page: 1416 article-title: Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting publication-title: SIAM J. Matrix Anal. Appl. – volume: 10 start-page: 161 year: 2015 end-page: 173 article-title: Coarse-graining of volumes for modeling of structure and dynamics in electron microscopy: Algorithm to automatically control accuracy of approximation publication-title: IEEE J. Sel. Top. Signal Process. – volume: 77 year: 2021 article-title: Wilson statistics: Derivation, generalization and applications to electron cryomicroscopy publication-title: Acta Crystall. Sec. A: Found. Adv. – volume: 418 start-page: 435 year: 2006 end-page: 449 article-title: A unifying approach to the construction of circulant preconditioners publication-title: Linear Algebra Appl. – volume: 11 start-page: 674 year: 1989 end-page: 693 article-title: A theory for multiresolution signal decomposition: The wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 21 start-page: 21 year: 1974 end-page: 43 article-title: The Fourier reconstruction of a head section publication-title: IEEE Trans. Nuclear Sci. – volume: 8 start-page: 60 year: 2021 end-page: 75 article-title: Exploiting prior knowledge about biological macromolecules in cryo-EM structure determination publication-title: IUCrJ – volume: 4 start-page: 543 year: 2011 end-page: 572 article-title: Three-dimensional structure determination from common lines in cryo-EM by eigenvectors and semidefinite programming publication-title: SIAM J. Imag. Sci. – volume: 36 year: 2020 article-title: Method of moments for 3D single particle ab initio modeling with non-uniform distribution of viewing angles publication-title: Inverse Probl. – volume: 2 start-page: 809 year: 2020 end-page: 839 article-title: Toward a mathematical theory of the crystallographic phase retrieval problem publication-title: SIAM J. Math. Data Sci. – volume: 203 start-page: 1 year: 2018 end-page: 16 article-title: Gaussian-input Gaussian mixture model for representing density maps and atomic models publication-title: J. Struct. Biol. – volume: 65 start-page: 2402 year: 2017 end-page: 2410 article-title: Sparse phase retrieval: Uniqueness guarantees and recovery algorithms publication-title: IEEE Trans. Signal Process. – volume: 29 start-page: 403 year: 2020 end-page: 572 article-title: Randomized numerical linear algebra: Foundations and algorithms publication-title: Acta Numer. – volume: 10 start-page: 782 year: 2016 end-page: 794 article-title: Guaranteed blind sparse spikes deconvolution via lifting and convex optimization publication-title: IEEE J. Sel. Top. Sig. Process. – volume: 52 start-page: 1289 year: 2006 end-page: 1306 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory – volume: 25 start-page: 1605 year: 2004 end-page: 1612 article-title: UCSF Chimera-a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 68 start-page: 1589 year: 2020 end-page: 1601 article-title: Multi-target detection with an arbitrary spacing distribution publication-title: IEEE Trans. Signal Process. – volume: 64 start-page: 412 year: 2017 end-page: 428 article-title: The complexity of bit retrieval publication-title: IEEE Trans. Inf. Theory – volume: 221 year: 2022 article-title: A molecular prior distribution for Bayesian inference based on Wilson statistics publication-title: Comput. Methods Prog. Biomed. – volume: 14 start-page: 290 year: 2017 end-page: 296 article-title: cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – ident: e_1_3_4_65_2 – ident: e_1_3_4_73_2 doi: 10.1038/s41467-019-08991-8 – ident: e_1_3_4_47_2 doi: 10.1137/090767777 – ident: e_1_3_4_4_2 doi: 10.1109/TIT.2005.862083 – ident: e_1_3_4_13_2 doi: 10.1038/d41586-020-00341-9 – ident: e_1_3_4_9_2 doi: 10.1137/18M1170364 – ident: e_1_3_4_71_2 doi: 10.1090/S0002-9939-1959-0105008-8 – ident: e_1_3_4_17_2 doi: 10.1137/18M1214317 – volume: 77 year: 2021 ident: e_1_3_4_80_2 article-title: Wilson statistics: Derivation, generalization and applications to electron cryomicroscopy publication-title: Acta Crystall. Sec. A: Found. Adv. – ident: e_1_3_4_42_2 doi: 10.1214/11-AOAS479 – ident: e_1_3_4_51_2 doi: 10.1021/ed500343x – ident: e_1_3_4_60_2 – ident: e_1_3_4_3_2 doi: 10.1109/TIT.2006.871582 – ident: e_1_3_4_52_2 doi: 10.1109/MSP.2014.2352673 – ident: e_1_3_4_54_2 doi: 10.1017/9781009003919 – ident: e_1_3_4_79_2 doi: 10.1038/s41597-022-01266-w – ident: e_1_3_4_84_2 doi: 10.1109/TSP.2020.2975943 – ident: e_1_3_4_8_2 doi: 10.1109/JSTSP.2016.2543462 – ident: e_1_3_4_56_2 doi: 10.1007/s10208-022-09584-6 – ident: e_1_3_4_26_2 doi: 10.1038/nmeth.4169 – ident: e_1_3_4_78_2 doi: 10.1107/S2052252517005760 – volume: 58 start-page: 267 year: 1996 ident: e_1_3_4_1_2 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc.: Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_3_4_68_2 doi: 10.1109/34.192463 – ident: e_1_3_4_53_2 doi: 10.1007/978-3-319-69802-1_2 – ident: e_1_3_4_27_2 doi: 10.1088/1361-6420/ab6139 – ident: e_1_3_4_43_2 doi: 10.1364/AO.21.002758 – ident: e_1_3_4_69_2 doi: 10.1090/noti2540 – ident: e_1_3_4_76_2 doi: 10.1109/TIT.2017.2754485 – ident: e_1_3_4_39_2 – ident: e_1_3_4_86_2 doi: 10.1017/S2633903X23000028 – ident: e_1_3_4_58_2 – ident: e_1_3_4_34_2 doi: 10.1016/j.bpj.2014.12.054 – ident: e_1_3_4_24_2 doi: 10.1137/22M1498218 – ident: e_1_3_4_70_2 doi: 10.1007/BF02289451 – ident: e_1_3_4_46_2 doi: 10.1073/pnas.0606359104 – ident: e_1_3_4_15_2 doi: 10.1142/9789813272880_0209 – ident: e_1_3_4_28_2 doi: 10.1364/OE.19.017318 – ident: e_1_3_4_33_2 doi: 10.1109/ICASSP40776.2020.9053170 – ident: e_1_3_4_38_2 doi: 10.1038/s41592-021-01220-5 – ident: e_1_3_4_5_2 doi: 10.1017/CBO9780511794308 – ident: e_1_3_4_10_2 doi: 10.1109/TIT.2019.2940657 – ident: e_1_3_4_2_2 – ident: e_1_3_4_40_2 doi: 10.1109/ISBI.2011.5872791 – ident: e_1_3_4_37_2 – ident: e_1_3_4_50_2 doi: 10.1117/3.270709 – ident: e_1_3_4_75_2 doi: 10.1109/TNS.1974.6499235 – ident: e_1_3_4_45_2 doi: 10.1088/0266-5611/21/1/004 – ident: e_1_3_4_18_2 doi: 10.1109/ISIT.2018.8437646 – ident: e_1_3_4_20_2 doi: 10.1006/jsbi.1998.4014 – ident: e_1_3_4_82_2 doi: 10.1107/S2052252520014384 – ident: e_1_3_4_67_2 doi: 10.1016/B978-012466606-1/50008-8 – ident: e_1_3_4_14_2 doi: 10.1093/acprof:oso/9780195182187.003.0002 – ident: e_1_3_4_29_2 doi: 10.1088/1367-2630/15/1/013059 – ident: e_1_3_4_62_2 doi: 10.1137/120872516 – ident: e_1_3_4_36_2 doi: 10.1016/j.jsb.2018.03.002 – ident: e_1_3_4_6_2 doi: 10.1007/978-1-4419-7011-4 – ident: e_1_3_4_31_2 doi: 10.1103/PhysRevLett.119.158102 – ident: e_1_3_4_59_2 – ident: e_1_3_4_44_2 doi: 10.1364/JOSAA.20.000040 – ident: e_1_3_4_57_2 doi: 10.1109/ICASSP43922.2022.9746298 – ident: e_1_3_4_87_2 doi: 10.1017/S0033583516000068 – ident: e_1_3_4_25_2 doi: 10.1016/j.jsb.2012.09.006 – ident: e_1_3_4_19_2 – ident: e_1_3_4_66_2 doi: 10.1137/1.9781611970104 – ident: e_1_3_4_61_2 doi: 10.1016/j.laa.2006.02.037 – ident: e_1_3_4_32_2 doi: 10.1109/TSP.2017.2656844 – ident: e_1_3_4_35_2 doi: 10.1109/JSTSP.2015.2489186 – ident: e_1_3_4_41_2 doi: 10.1214/08-AOS673 – ident: e_1_3_4_7_2 doi: 10.1214/16-AOS1443 – ident: e_1_3_4_16_2 doi: 10.1109/MSP.2019.2957822 – ident: e_1_3_4_63_2 doi: 10.1109/CDC.2013.6760842 – ident: e_1_3_4_77_2 doi: 10.1002/jcc.20084 – ident: e_1_3_4_81_2 doi: 10.1016/j.cmpb.2022.106830 – ident: e_1_3_4_74_2 doi: 10.1101/2022.03.21.484361 – volume: 17 start-page: 362 year: 2023 ident: e_1_3_4_85_2 article-title: Multi-target detection with rotations publication-title: Inverse Probl. Imag. doi: 10.3934/ipi.2022046 – ident: e_1_3_4_72_2 doi: 10.1093/nar/gkv1126 – ident: e_1_3_4_22_2 doi: 10.1109/ISBI.2015.7164051 – ident: e_1_3_4_48_2 doi: 10.1016/j.jsb.2017.09.007 – ident: e_1_3_4_64_2 doi: 10.1017/S0962492920000021 – ident: e_1_3_4_12_2 doi: 10.1016/j.tibs.2014.10.005 – ident: e_1_3_4_23_2 doi: 10.1109/ISBI.2018.8363873 – ident: e_1_3_4_21_2 doi: 10.1016/0022-5193(80)90088-0 – ident: e_1_3_4_49_2 – ident: e_1_3_4_11_2 doi: 10.1126/science.1251652 – ident: e_1_3_4_55_2 doi: 10.1137/20M132136X – ident: e_1_3_4_30_2 doi: 10.1073/pnas.1513738112 – ident: e_1_3_4_83_2 doi: 10.1101/431080 |
| SSID | ssj0009580 |
| Score | 2.5094488 |
| Snippet | SignificanceCryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important... The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of... Cryoelectron microscopy is an imaging technique for determining molecular structures from randomly oriented projection images, with important applications in... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref pnas |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2216507120 |
| SubjectTerms | Applied Mathematics Physical Sciences |
| Title | Autocorrelation analysis for cryo-EM with sparsity constraints: Improved sample complexity and projection-based algorithms |
| URI | https://www.pnas.org/doi/10.1073/pnas.2216507120 https://www.ncbi.nlm.nih.gov/pubmed/37094135 https://www.proquest.com/docview/2806075223 https://pubmed.ncbi.nlm.nih.gov/PMC10161091 http://knowledge.uchicago.edu/record/5794 |
| UnpaywallVersion | submittedVersion |
| Volume | 120 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250501 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals Online customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250501 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB3R9ACXQvmq-agWqYf24GB717sJtwi1VEitOBApnKJZewyIYEexLWh_PbO247QqKOJqj1e2dtbzZvbtG4CjICQTESk_zoLEV0jWR6ncQWAM3IE9yppizsWlPp-qj7N4thGL3hSS1q1AejLNKuXkfax2YFfHDLsHsDu9_DT50lI4-E-r2ga2HP98rcbBWsbHyLfLHMthFIXaYR_X2PtGBBq4m39Dl3dJkvfrfIlXv3CxuBGBzh623K2yES50xJMfw7qyw-T6rqzj9o97BHsdDhWT1nH24R7lj2G_W-mlOO7kqE-ewPWkrorENfFoaXMCOx0TwXhXJKurwj-9EK6eK_jv1HA8ROJQp2s-UZXvRFu3oFSU6KSIRcNip9_ODvNUdLUgHtl3ITUVuPharHi4n-VTmJ6dfn5_7ncdG_xEyaDyVZjKLIsSk1GmpUWZktEpISeFnLhwskYmpdCGepwZBooWbcxwjS9FIwpVaOQzGORFTgcgpMmsplgqNEopQ5hRjMkosAZRj5X1YLiexXnSyZm7D1vMm211I-duZuebaffguH9g2Sp5_Nv0qLmy1ezN2m3mvCjdTgvmVNRsMwo0YzGGXh48b92oH0wazqhDGXswuuVgvYET_L59J__-rRH-dpUW5-AenPS-uO0lX_yH7Ut4EDGGa_ic0SsYVKuaXjPmquwh7HyYhYfdmvsDl1ct7A |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVge4BLoXw1fMlIPbSHLEns2LvcVqhVhdSKAyuVUzROJhSxJKtNImh_PTNJNtuqoBXXZGIl8jjzZvz8RoiDIEQbIWo_zoPU14DOB6X5IDAEfGAP87aYc3ZuTuf600V8sRGL3hSS1q1ABjLNKqPkfarvix0TE-weiZ35-efZ147CQX9a3TWwpfjnGz0N1jI-Vr1fFlCNoyg0jH24sfeNCDTim39Dl3dJkg-aYglXv2CxuBGBTh513K2qFS5k4smPcVO7cXp9V9Zx-8c9Frs9DpWzznH2xD0snoi9fqVX8rCXoz56Kq5nTV2m3MSjo81J6HVMJOFdma6uSv_4THI9V9LfqeV4yJRRJzefqKsPsqtbYCYrYCli2bLY8TfbQZHJvhZEI_scUjMJi2_liob7WT0T85PjLx9P_b5jg59qFdS-DjOV51Fqc8yNcqAytCZDoKSQEhdK1tBmGLrQTHNLQNGBiwmu0aVogqEOrXouRkVZ4L6QyubOYKw0WK21RcgxhnQSOAtgptp5YryexSTt5cz5wxZJu61uVcIzm2ym3ROHwwPLTsnj36YH7ZWtZu_WbpPQouSdFiiwbMhmEhjCYgS9PPGic6NhMGUpow5V7InJLQcbDFjw-_ad4vtlK_zNlRZ2cE8cDb647SVf_oftK_EwIgzX8jmj12JUrxp8Q5irdm_71fYHiYgs-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autocorrelation+analysis+for+cryo-EM+with+sparsity+constraints%3A+Improved+sample+complexity+and+projection-based+algorithms&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bendory%2C+Tamir&rft.au=Khoo%2C+Yuehaw&rft.au=Kileel%2C+Joe&rft.au=Mickelin%2C+Oscar&rft.date=2023-05-02&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=18&rft_id=info:doi/10.1073%2Fpnas.2216507120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2216507120 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |