A Magneto-Electric Device for Fluid Pipelines with Vibration Damping and Vibration Energy Harvesting

This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 16; p. 5334
Main Authors Wang, Yi-Ren, Huang, Po-Chuan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.08.2024
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24165334

Cover

Abstract This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate the vibrations induced by fluid flow while simultaneously harvesting energy through magnetic dipole–dipole interactions in a vibration energy harvester (VEH). The theoretical models, based on Hamilton’s Principle and the Biot–Savart Law, were validated through comprehensive experiments. The results indicate the superior performance of the small-magnet system over the large-magnet system in both damping and power generation. The study analyzed the frequency response and energy conversion efficiency across different parameters, including the DVA mass, spring constant, and placement location. The experimental findings demonstrated significant vibration reduction and increased voltage output, validating the theoretical model. This research offers new avenues for energy harvesting systems in pipeline infrastructures, potentially enhancing energy efficiency and structural integrity.
AbstractList This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate the vibrations induced by fluid flow while simultaneously harvesting energy through magnetic dipole-dipole interactions in a vibration energy harvester (VEH). The theoretical models, based on Hamilton's Principle and the Biot-Savart Law, were validated through comprehensive experiments. The results indicate the superior performance of the small-magnet system over the large-magnet system in both damping and power generation. The study analyzed the frequency response and energy conversion efficiency across different parameters, including the DVA mass, spring constant, and placement location. The experimental findings demonstrated significant vibration reduction and increased voltage output, validating the theoretical model. This research offers new avenues for energy harvesting systems in pipeline infrastructures, potentially enhancing energy efficiency and structural integrity.This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate the vibrations induced by fluid flow while simultaneously harvesting energy through magnetic dipole-dipole interactions in a vibration energy harvester (VEH). The theoretical models, based on Hamilton's Principle and the Biot-Savart Law, were validated through comprehensive experiments. The results indicate the superior performance of the small-magnet system over the large-magnet system in both damping and power generation. The study analyzed the frequency response and energy conversion efficiency across different parameters, including the DVA mass, spring constant, and placement location. The experimental findings demonstrated significant vibration reduction and increased voltage output, validating the theoretical model. This research offers new avenues for energy harvesting systems in pipeline infrastructures, potentially enhancing energy efficiency and structural integrity.
This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate the vibrations induced by fluid flow while simultaneously harvesting energy through magnetic dipole–dipole interactions in a vibration energy harvester (VEH). The theoretical models, based on Hamilton’s Principle and the Biot–Savart Law, were validated through comprehensive experiments. The results indicate the superior performance of the small-magnet system over the large-magnet system in both damping and power generation. The study analyzed the frequency response and energy conversion efficiency across different parameters, including the DVA mass, spring constant, and placement location. The experimental findings demonstrated significant vibration reduction and increased voltage output, validating the theoretical model. This research offers new avenues for energy harvesting systems in pipeline infrastructures, potentially enhancing energy efficiency and structural integrity.
Author Wang, Yi-Ren
Huang, Po-Chuan
AuthorAffiliation Department of Aerospace Engineering, Tamkang University, Tamsui District, NewTaipei City 25137, Taiwan; 612430032@o365.tku.edu.tw
AuthorAffiliation_xml – name: Department of Aerospace Engineering, Tamkang University, Tamsui District, NewTaipei City 25137, Taiwan; 612430032@o365.tku.edu.tw
Author_xml – sequence: 1
  givenname: Yi-Ren
  orcidid: 0000-0001-5641-2491
  surname: Wang
  fullname: Wang, Yi-Ren
– sequence: 2
  givenname: Po-Chuan
  orcidid: 0009-0003-8162-5976
  surname: Huang
  fullname: Huang, Po-Chuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39205028$$D View this record in MEDLINE/PubMed
BookMark eNpdkktv1DAQxy1URB9w4AsgS1zgEPArTnxCVbt9SEVwAK6WY49Tr7L2YieL-u3Jdstqy2lGM3_95nmKjmKKgNBbSj5xrsjnwgSVNefiBTqhgomqZYwcHfjH6LSUJSGMc96-QsdcMVIT1p4gd46_mj7CmKrFAHbMweJL2AQL2KeMr4YpOPw9rGEIEQr-E8Z7_Ct02YwhRXxpVusQe2yiO4guIuT-Ad-YvIEyzvnX6KU3Q4E3T_YM_bxa_Li4qe6-Xd9enN9VVnAyVoKyRkpXg7LSea4a1TleWyd9I7m1XVubBmovqGKi9hxoS2spfcu8p7QFxc_Q7Y7rklnqdQ4rkx90MkE_BlLutcljsAPoDojgRjZKWiW8MAoUFXNhS4BY4sTM-rJjraduBc5CHLMZnkGfZ2K4133aaEp53SohZ8KHJ0JOv6d5E3oVioVhMBHSVDQnah5R1u222Pv_pMs05TjvaquaL0iF2gLfHba07-XfNWfBx53A5lRKBr-XUKK3n6L3n8L_AvYDrvo
Cites_doi 10.1016/j.jsv.2021.116054
10.1007/s11071-024-09562-3
10.1016/j.ymssp.2024.111625
10.1088/1361-665X/abd962
10.1142/S0219455422500626
10.1016/j.apacoust.2020.107487
10.3390/s21217364
10.1016/j.jsv.2021.116246
10.1007/s11071-015-2120-3
10.3390/vibration3040032
10.1063/1.4907763
10.1002/9783527617586
10.1016/j.ijmecsci.2021.106838
10.1016/j.jsv.2023.118087
10.1016/j.ijmecsci.2020.106197
10.1016/j.jsv.2018.08.026
10.1063/5.0051432
10.1016/j.jsv.2021.116508
10.1007/s11071-020-06100-9
10.1007/s00707-019-02533-5
10.1002/9783527617562
10.1007/s11071-023-08732-z
10.1016/j.enconman.2022.115307
10.1177/1045389X20905989
10.1007/s11071-020-05633-3
10.1007/s10483-024-3095-9
10.1016/j.apm.2022.02.027
10.1140/epjp/s13360-020-00353-4
10.1016/j.energy.2021.122376
10.2514/6.1990-1229
10.1016/j.cnsns.2020.105479
10.3390/jmse8090714
10.1016/j.ijmecsci.2021.106618
10.1016/j.ymssp.2023.110998
10.1016/j.enconman.2021.114505
10.1016/j.jsv.2020.115534
10.1016/j.apm.2021.09.044
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24165334
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_be043a6796c94f4a9e914e9cc0e0c0d4
PMC11358946
39205028
10_3390_s24165334
Genre Journal Article
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: NSTC 113-2221-E-032-011
– fundername: Taiwan Space Agency
  grantid: NSPO-P-111021
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c430t-412766d5e9c6df3979bd35cd6f763ccb85a7e5f419245f3e181566f82ff118e93
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:43 EDT 2025
Thu Aug 21 18:31:53 EDT 2025
Fri Sep 05 11:54:06 EDT 2025
Fri Jul 25 21:09:00 EDT 2025
Wed Feb 19 02:04:41 EST 2025
Tue Jul 01 03:51:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords method of multiple scales
piezoelectric energy conversion
fluid–structure interaction
magnetic dipole–dipole interactions (MDDIs)
vibration energy harvesting system
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-412766d5e9c6df3979bd35cd6f763ccb85a7e5f419245f3e181566f82ff118e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5641-2491
0009-0003-8162-5976
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24165334
PMID 39205028
PQID 3098221496
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_be043a6796c94f4a9e914e9cc0e0c0d4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11358946
proquest_miscellaneous_3099796584
proquest_journals_3098221496
pubmed_primary_39205028
crossref_primary_10_3390_s24165334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240817
PublicationDateYYYYMMDD 2024-08-17
PublicationDate_xml – month: 8
  year: 2024
  text: 20240817
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Fan (ref_36) 2021; 244
Bastien (ref_4) 2022; 518
Zang (ref_20) 2020; 484
Mei (ref_35) 2024; 208
ref_12
Gupta (ref_7) 2021; 103
ref_11
Jia (ref_1) 2020; 31
ref_32
Forsat (ref_8) 2019; 231
Qian (ref_28) 2021; 509
Rezaei (ref_31) 2021; 102
Rezaei (ref_26) 2021; 207
Rezaei (ref_23) 2022; 239
Guo (ref_24) 2023; 111
Kecik (ref_21) 2021; 92
ref_39
ref_16
Yang (ref_3) 2021; 53
Pennisi (ref_18) 2018; 437
Wang (ref_14) 2020; 135
Wang (ref_37) 2022; 22
Syuhri (ref_15) 2020; 3
Chen (ref_22) 2024; 45
Rezaei (ref_25) 2024; 112
Fan (ref_34) 2024; 220
Rajora (ref_40) 2017; 22
Parseh (ref_5) 2015; 81
Jiang (ref_10) 2022; 8
Liao (ref_29) 2022; 255
Wang (ref_19) 2020; 100
Jin (ref_6) 2020; 169
Lu (ref_30) 2022; 107
Fang (ref_33) 2021; 212
Liu (ref_9) 2021; 194
Yang (ref_27) 2021; 8
(ref_13) 2021; 501
Lan (ref_2) 2021; 30
Wang (ref_17) 2024; 569
Leng (ref_38) 2015; 17
References_xml – volume: 501
  start-page: 116054
  year: 2021
  ident: ref_13
  article-title: Nonlinear vibrations of planar curved pipes conveying fluid
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2021.116054
– volume: 112
  start-page: 10871
  year: 2024
  ident: ref_25
  article-title: A comparative study on vibration suppression and energy harvesting via mono-, bi-, and tri-stable piezoelectric nonlinear energy sinks
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-024-09562-3
– volume: 220
  start-page: 111625
  year: 2024
  ident: ref_34
  article-title: Nonlinear vibration energy harvesting via parametric excitation: Snap-through with time-varying potential wells
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.111625
– volume: 30
  start-page: 02LT02
  year: 2021
  ident: ref_2
  article-title: A wind-induced negative damping method to achieve high-energy orbit of a nonlinear vibration energy harvester
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/abd962
– volume: 22
  start-page: 2250062
  year: 2022
  ident: ref_37
  article-title: Dynamic and energetic characteristics comparison of tri-stable vibration absorber and energy harvester using different permanent magnet arrays
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455422500626
– volume: 169
  start-page: 107487
  year: 2020
  ident: ref_6
  article-title: Development of tuned particle impact damper for reduction of transient railway vibrations
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107487
– ident: ref_39
  doi: 10.3390/s21217364
– volume: 8
  start-page: 1299
  year: 2022
  ident: ref_10
  article-title: An analysis of nonlinear beam vibrations with the extended Rayleigh-Ritz Method
  publication-title: J. Appl. Comput. Mech.
– volume: 509
  start-page: 116246
  year: 2021
  ident: ref_28
  article-title: Tuned nonlinear spring-inerter-damper vibration absorber for beam vibration reduction based on the exact nonlinear dynamics model
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2021.116246
– volume: 81
  start-page: 1981
  year: 2015
  ident: ref_5
  article-title: Performance comparison of nonlinear energy sink and linear tuned mass damper in steady-state dynamics of a linear beam
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2120-3
– volume: 3
  start-page: 521
  year: 2020
  ident: ref_15
  article-title: Investigating the Influence of Fluid-Structure Interactions on Nonlinear System Identification
  publication-title: Vibration
  doi: 10.3390/vibration3040032
– volume: 17
  start-page: 64901
  year: 2015
  ident: ref_38
  article-title: An elastic-support model for enhanced bistable piezoelectric en-ergy harvesting from random vibrations
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4907763
– volume: 22
  start-page: 186
  year: 2017
  ident: ref_40
  article-title: Energy harvesting estimation from the vibration of a simply supported beam
  publication-title: Int. J. Acoust. Vib.
– ident: ref_12
  doi: 10.1002/9783527617586
– volume: 212
  start-page: 106838
  year: 2021
  ident: ref_33
  article-title: Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and energy harvesting
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2021.106838
– volume: 569
  start-page: 118087
  year: 2024
  ident: ref_17
  article-title: Energy harvesting analysis of the magneto-electric and fluid-structure interaction parametric excited system
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2023.118087
– volume: 194
  start-page: 106197
  year: 2021
  ident: ref_9
  article-title: Nonlinear dynamic responses of beamlike truss based on the equivalent nonlinear beam model
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.106197
– volume: 437
  start-page: 340
  year: 2018
  ident: ref_18
  article-title: Design and experimental study of a Nonlinear Energy Sink coupled to an electromagnetic energy harvester
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.08.026
– volume: 8
  start-page: 031317
  year: 2021
  ident: ref_27
  article-title: Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0051432
– volume: 518
  start-page: 116508
  year: 2022
  ident: ref_4
  article-title: Damping adjustment of a nonlinear vibration absorber using an electro-magneto mechanical coupling
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2021.116508
– volume: 103
  start-page: 27
  year: 2021
  ident: ref_7
  article-title: Nonlinear vibration analysis of vortex-induced vibrations in overhead power lines with nonlinear vibration absorbers
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06100-9
– volume: 231
  start-page: 125
  year: 2019
  ident: ref_8
  article-title: Investigating nonlinear vibrations of higher-order hyper-elastic beams using the Hamiltonian method
  publication-title: Acta Mech.
  doi: 10.1007/s00707-019-02533-5
– ident: ref_11
  doi: 10.1002/9783527617562
– volume: 111
  start-page: 16729
  year: 2023
  ident: ref_24
  article-title: A comparative study on transient vibration suppression of magnetic nonlinear vibration absorbers with different arrangements
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08732-z
– volume: 255
  start-page: 115307
  year: 2022
  ident: ref_29
  article-title: Theoretical and experimental investigation of a bi-stable piezoelectric energy harvester incorporating fluid-induced vibration
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115307
– volume: 31
  start-page: 921
  year: 2020
  ident: ref_1
  article-title: Review of nonlinear vibration energy harvesting: Duffing, bistability, parametric, stochastic and others
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X20905989
– volume: 100
  start-page: 1963
  year: 2020
  ident: ref_19
  article-title: Dynamics of the double-beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping-based vibration
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05633-3
– volume: 45
  start-page: 389
  year: 2024
  ident: ref_22
  article-title: Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-024-3095-9
– volume: 107
  start-page: 165
  year: 2022
  ident: ref_30
  article-title: Energy harvesting of a fluid-conveying piezoelectric pipe
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.02.027
– volume: 135
  start-page: 1
  year: 2020
  ident: ref_14
  article-title: Internal resonance analysis of a fluid-conveying tube resting on a nonlinear elastic foundation
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00353-4
– volume: 239
  start-page: 122376
  year: 2022
  ident: ref_23
  article-title: Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122376
– ident: ref_32
  doi: 10.2514/6.1990-1229
– volume: 92
  start-page: 105479
  year: 2021
  ident: ref_21
  article-title: Simultaneous vibration mitigation and energy harvesting from a pendulum-type absorber
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2020.105479
– ident: ref_16
  doi: 10.3390/jmse8090714
– volume: 207
  start-page: 106618
  year: 2021
  ident: ref_26
  article-title: Exploiting bi-stable magneto-piezoelastic absorber for simultaneous energy harvesting and vibration mitigation
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2021.106618
– volume: 53
  start-page: 550
  year: 2021
  ident: ref_3
  article-title: Some advancews in nonlinear vibration energy harvesting technology
  publication-title: Chin. J. Theor. Appl. Mech.
– volume: 208
  start-page: 110998
  year: 2024
  ident: ref_35
  article-title: Magnetic-linkage nonlinear piezoelectric energy harvester with time-varying potential wells: Theoretical and experimental investigations
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110998
– volume: 244
  start-page: 114505
  year: 2021
  ident: ref_36
  article-title: A broadband magnetically coupled bistable energy harvester via parametric excitation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114505
– volume: 484
  start-page: 115534
  year: 2020
  ident: ref_20
  article-title: A vibratory energy harvesting absorber using integration of a lever-enhanced nonlinear energy sink and a levitation magnetoelectric energy harvester
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115534
– volume: 102
  start-page: 661
  year: 2021
  ident: ref_31
  article-title: Investigating the performance of tri-stable magneto-piezoelastic absorber in simultaneous energy harvesting and vibration isolation
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.09.044
SSID ssj0023338
Score 2.4417095
Snippet This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 5334
SubjectTerms Alternative energy
Behavior
Deformation
Efficiency
Energy conversion
Flow velocity
fluid–structure interaction
magnetic dipole–dipole interactions (MDDIs)
method of multiple scales
Partial differential equations
piezoelectric energy conversion
Vibration analysis
vibration energy harvesting system
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_i2_VFFK-LyebR5uijRQTFg4q3JZuHFnQrtv3_zmS3pRXBi9ckLNlvNpv5MplvCDkrgHJJ15G5iZHl0iuWm0JVua28iLyKhU_hgrt7ffMkb1_Uy1ypL7wT1sgDN8CdV4FJYfG0wxkZpTXBcBmMcywwx3xSAmWGTclUS7UEMK9GR0gAqT8fwT6lMel0YfdJIv2_eZY_L0jO7Tj9dbLWuor0opniBlkK9SZZnRMQ3CL-gt7Z1zqMh3kv1bMZOHodcPFTcEZp_30y8PRh8IlJ52FE8dCVPiNBRnPQa_uB2VLU1n6utZeyASkWDUIFjvp1mzz1e49XN3lbNyF3UrBxLnnR0dorQEn7iIE7AF45ryP8TJyrusp2gooY_5UqisBRMUbHbhEj0I1gxA5Zrod12CMUHogXQZ3zMF5bTLcsuLWGhYKDkXVGTqd4lp-NPEYJtAJBL2egZ-QSkZ4NQEXr1AB2Lls7l3_ZOSOHUzuV7TIblYKh_CCQPJjIyawbFghGPWwdhpM0BhBARysju41ZZzMB55Ap8LAy0l0w-MJUF3vqwVsS4eZcqC4gsP8fL3dAVgpwlvCsmncOyfL4axKOwNkZV8fpu_4GiRD-UQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gUeEOMzYyCDeI1mJ7bbPCC0sVYT0qoJMbS3yPFHVwmSbm3_f-7cJLTTtNfYspw7-_w7n-93AF8ydLmkHcq0CIGn0imeFpmqUlO5PIgqZC6GCy6m-vxK_rhW13sw7XJh6FllZxOjoXaNpTvy45wT0xzief1tcZtS1SiKrnYlNExbWsF9jRRjT2AfTbLiA9g_HU8vf_YuWI4e2YZfKEdn_3iJ55emZNSdUymS9z-EOO8_nNw6iSYv4HkLIdnJRucHsOfrl_Bsi1jwFbgTdmFmtV816TjWuZlbdubJKDAEqWzyZz137HK-oGR0v2R0Gct-k-NMamJn5i9lUTFTu62v45glyKiYEDFz1LPXcDUZ__p-nrb1FFIrc75KpciGWjvlC6tdoIAeKkRZpwMaGWurkTJDrwLFhaUKuRfEJKPDKAsB3RBf5G9gUDe1fwcMB6QHotY67K8NpWFmwpiC-0yg8nUCnzt5losNbUaJ7gYJveyFnsApSbrvQEzX8UNzNyvbjVNWnsvc0G2XLWSQpvCFkPgHlntuucNBjjo9le32W5b_F0sCn_pm3DgUDTG1b9axD0qAAFgCbzdq7WeCoJErRF4JjHYUvjPV3ZZ6fhPJuYXI1QglcPj4vN7D0wzhEd1Oi-ERDFZ3a_8B4c2q-tiu2X9i6Pvi
  priority: 102
  providerName: ProQuest
Title A Magneto-Electric Device for Fluid Pipelines with Vibration Damping and Vibration Energy Harvesting
URI https://www.ncbi.nlm.nih.gov/pubmed/39205028
https://www.proquest.com/docview/3098221496
https://www.proquest.com/docview/3099796584
https://pubmed.ncbi.nlm.nih.gov/PMC11358946
https://doaj.org/article/be043a6796c94f4a9e914e9cc0e0c0d4
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4s2WsjKIq8FJbCc5INTSXSqkVhVi0d4ix4_tSiVb9iGVf8-MdzfaoB645GA7jjPjxzw83wC8T1HlkjaXvAxBcOmU4GWqam5ql4WkDqmL7oKLS30-kt_GarwH2xybGwIu7lXtKJ_UaH7z4e73n8-44D-Rxokq-8cFnkKaQkr34TC6iegGn2ydCWmWxYTWFNPF8TwUa4Ch7qudYymi998ncv57c3LnKBo-hkcbGZKdrJn-BPZ88xQe7iALPgN3wi7MpPHLGR_ERDdTy8487QoMpVQ2vFlNHbua3lI0ul8wssayn6Q5E5_YmflFYVTMNG6ndBDDBBllEyJojmbyHEbDwY8v53yTUIFbmYkll0maa-2UL612gTx6yBFlnQ64y1hbF8rkXgVyDEsVMp8QlIwORRoC6iG-zF7AQTNr_Ctg2CHdELXWYXttKA4zTYwphU8T5L7uwbstPavbNW5GhfoGEb1qid6DU6J024CgrmPBbD6pNiunqr2QmSFzly1lkKb0ZSLxD6zwwgqHnRxv-VRtp0-VCcIlRO0PB_K2rcaVQ-4Q0_jZKrZBCpAE1oOXa7a2I0GpUSgUvXpQdBjeGWq3ppleR3TuJMlUgRQ4-o8Pv4YHKQpJZKNO8mM4WM5X_g0KOcu6D_v5OMdnMfzah8PTweXV9340GPTj5P4LQ_H_AQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QE4IN41FFgQHK2u17tOfKhQSxKltIkq1KLezHofIRLYoUmE-HP8NmYc2yQIcevVXlnr2Zndb2Z2vgF4I9DlkqYrw9R7HkqreJgKlYc6t7GPci9slS4YT5LRpfxwpa524FdTC0PXKps9sdqobWkoRn4Qc2KaQzyfvJt_D6lrFGVXmxYaum6tYA8rirG6sOPU_fyBLtzi8KSP6_1WiOHg4v0orLsMhEbGfBnKSHSTxCqXmsR6SnPhNJWxiUfTMybvKd11ylO2VCofu4j4VRLfE94jOHdExoRHwK6kAEoHdo8Hk_OPrcsXowe45jOK45QfLPC8TKj4desUrJoF_Avh_n1Rc-PkG96DuzVkZUdrHbsPO654AHc2iAwfgj1iYz0t3LIMB1VfnZlhfUebEENQzIZfVzPLzmdzKn53C0bBX_aJHHVSC9bX36hqi-nCbjwdVFWJjJoXERNIMX0Elzci2cfQKcrC7QHDD9KFVGMsjk80lX2KSOuUOxGhsiUBvG7kmc3XNB0Zujck9KwVegDHJOl2ADFrVw_K62lWG2qWOy5jTdE1k0ovderSSOIfGO644RY_st-sU1ab-yL7o5wBvGpfo6FS9kUXrlxVY1ACBPgCeLJe1nYmCFK5QqQXQG9rwbemuv2mmH2pyMCjKFY9lMDT_8_rJdwaXYzPsrOTyekzuC0QmlFkPOruQ2d5vXLPEVot8xe1_jL4fNMm8xuR9jg0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrYTggHjXUGBBcLSy3pfjQ4VakqilNIoQRb2Z9T5CJLBDkwjxF_lVzDi2SRDi1qu9stazMzvf7Ox8Q8grDiGXtKmMsxBYLJ1iccZVEZvCiZAUgbs6XXA-1icX8t2lutwhv9paGLxW2e6J9UbtKotn5D3BkGkO8LzuheZaxGQwejP_HmMHKcy0tu00TNNmwR3WdGNNkceZ__kDwrnF4ekA1v4156Phx7cncdNxILZSsGUsE55q7ZTPrHYBU14wZWWdDmCG1hZ9ZVKvAmZOpQrCJ8i1okOfhwBA3SMxE7iDvRS8PgSCe8fD8eRDF_4JiAbX3EZCZKy3AN-psRB2yyPWjQP-hXb_vrS54QVHd8jtBr7So7W-3SU7vrxHbm2QGt4n7oiem2npl1U8rHvszCwdeNyQKABkOvq6mjk6mc2xEN4vKB4E008YtKOK0IH5hhVc1JRu4-mwrlCk2MgIWUHK6QNycS2SfUh2y6r0-4TCB_FyqrUOxmuDJaA8MSZjniegeDoiL1t55vM1ZUcOoQ4KPe-EHpFjlHQ3AFm26wfV1TRvjDYvPJPC4EmbzWSQJvNZIuEPLPPMMgcfOWjXKW9Mf5H_UdSIvOheg9FiJsaUvlrVY0ACCP4i8mi9rN1MALAyBagvIv2tBd-a6vabcvalJgZPEqH6IIHH_5_Xc3IDTCd_fzo-e0JuckBpeEiepAdkd3m18k8BZS2LZ436UvL5ui3mNx5NPHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Magneto-Electric+Device+for+Fluid+Pipelines+with+Vibration+Damping+and+Vibration+Energy+Harvesting&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yi-Ren&rft.au=Huang%2C+Po-Chuan&rft.date=2024-08-17&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=16&rft_id=info:doi/10.3390%2Fs24165334&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon