A Magneto-Electric Device for Fluid Pipelines with Vibration Damping and Vibration Energy Harvesting
This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 16; p. 5334 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.08.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s24165334 |
Cover
Abstract | This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate the vibrations induced by fluid flow while simultaneously harvesting energy through magnetic dipole–dipole interactions in a vibration energy harvester (VEH). The theoretical models, based on Hamilton’s Principle and the Biot–Savart Law, were validated through comprehensive experiments. The results indicate the superior performance of the small-magnet system over the large-magnet system in both damping and power generation. The study analyzed the frequency response and energy conversion efficiency across different parameters, including the DVA mass, spring constant, and placement location. The experimental findings demonstrated significant vibration reduction and increased voltage output, validating the theoretical model. This research offers new avenues for energy harvesting systems in pipeline infrastructures, potentially enhancing energy efficiency and structural integrity. |
---|---|
AbstractList | This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate the vibrations induced by fluid flow while simultaneously harvesting energy through magnetic dipole-dipole interactions in a vibration energy harvester (VEH). The theoretical models, based on Hamilton's Principle and the Biot-Savart Law, were validated through comprehensive experiments. The results indicate the superior performance of the small-magnet system over the large-magnet system in both damping and power generation. The study analyzed the frequency response and energy conversion efficiency across different parameters, including the DVA mass, spring constant, and placement location. The experimental findings demonstrated significant vibration reduction and increased voltage output, validating the theoretical model. This research offers new avenues for energy harvesting systems in pipeline infrastructures, potentially enhancing energy efficiency and structural integrity.This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate the vibrations induced by fluid flow while simultaneously harvesting energy through magnetic dipole-dipole interactions in a vibration energy harvester (VEH). The theoretical models, based on Hamilton's Principle and the Biot-Savart Law, were validated through comprehensive experiments. The results indicate the superior performance of the small-magnet system over the large-magnet system in both damping and power generation. The study analyzed the frequency response and energy conversion efficiency across different parameters, including the DVA mass, spring constant, and placement location. The experimental findings demonstrated significant vibration reduction and increased voltage output, validating the theoretical model. This research offers new avenues for energy harvesting systems in pipeline infrastructures, potentially enhancing energy efficiency and structural integrity. This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate the vibrations induced by fluid flow while simultaneously harvesting energy through magnetic dipole–dipole interactions in a vibration energy harvester (VEH). The theoretical models, based on Hamilton’s Principle and the Biot–Savart Law, were validated through comprehensive experiments. The results indicate the superior performance of the small-magnet system over the large-magnet system in both damping and power generation. The study analyzed the frequency response and energy conversion efficiency across different parameters, including the DVA mass, spring constant, and placement location. The experimental findings demonstrated significant vibration reduction and increased voltage output, validating the theoretical model. This research offers new avenues for energy harvesting systems in pipeline infrastructures, potentially enhancing energy efficiency and structural integrity. |
Author | Wang, Yi-Ren Huang, Po-Chuan |
AuthorAffiliation | Department of Aerospace Engineering, Tamkang University, Tamsui District, NewTaipei City 25137, Taiwan; 612430032@o365.tku.edu.tw |
AuthorAffiliation_xml | – name: Department of Aerospace Engineering, Tamkang University, Tamsui District, NewTaipei City 25137, Taiwan; 612430032@o365.tku.edu.tw |
Author_xml | – sequence: 1 givenname: Yi-Ren orcidid: 0000-0001-5641-2491 surname: Wang fullname: Wang, Yi-Ren – sequence: 2 givenname: Po-Chuan orcidid: 0009-0003-8162-5976 surname: Huang fullname: Huang, Po-Chuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39205028$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktv1DAQxy1URB9w4AsgS1zgEPArTnxCVbt9SEVwAK6WY49Tr7L2YieL-u3Jdstqy2lGM3_95nmKjmKKgNBbSj5xrsjnwgSVNefiBTqhgomqZYwcHfjH6LSUJSGMc96-QsdcMVIT1p4gd46_mj7CmKrFAHbMweJL2AQL2KeMr4YpOPw9rGEIEQr-E8Z7_Ct02YwhRXxpVusQe2yiO4guIuT-Ad-YvIEyzvnX6KU3Q4E3T_YM_bxa_Li4qe6-Xd9enN9VVnAyVoKyRkpXg7LSea4a1TleWyd9I7m1XVubBmovqGKi9hxoS2spfcu8p7QFxc_Q7Y7rklnqdQ4rkx90MkE_BlLutcljsAPoDojgRjZKWiW8MAoUFXNhS4BY4sTM-rJjraduBc5CHLMZnkGfZ2K4133aaEp53SohZ8KHJ0JOv6d5E3oVioVhMBHSVDQnah5R1u222Pv_pMs05TjvaquaL0iF2gLfHba07-XfNWfBx53A5lRKBr-XUKK3n6L3n8L_AvYDrvo |
Cites_doi | 10.1016/j.jsv.2021.116054 10.1007/s11071-024-09562-3 10.1016/j.ymssp.2024.111625 10.1088/1361-665X/abd962 10.1142/S0219455422500626 10.1016/j.apacoust.2020.107487 10.3390/s21217364 10.1016/j.jsv.2021.116246 10.1007/s11071-015-2120-3 10.3390/vibration3040032 10.1063/1.4907763 10.1002/9783527617586 10.1016/j.ijmecsci.2021.106838 10.1016/j.jsv.2023.118087 10.1016/j.ijmecsci.2020.106197 10.1016/j.jsv.2018.08.026 10.1063/5.0051432 10.1016/j.jsv.2021.116508 10.1007/s11071-020-06100-9 10.1007/s00707-019-02533-5 10.1002/9783527617562 10.1007/s11071-023-08732-z 10.1016/j.enconman.2022.115307 10.1177/1045389X20905989 10.1007/s11071-020-05633-3 10.1007/s10483-024-3095-9 10.1016/j.apm.2022.02.027 10.1140/epjp/s13360-020-00353-4 10.1016/j.energy.2021.122376 10.2514/6.1990-1229 10.1016/j.cnsns.2020.105479 10.3390/jmse8090714 10.1016/j.ijmecsci.2021.106618 10.1016/j.ymssp.2023.110998 10.1016/j.enconman.2021.114505 10.1016/j.jsv.2020.115534 10.1016/j.apm.2021.09.044 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24165334 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_be043a6796c94f4a9e914e9cc0e0c0d4 PMC11358946 39205028 10_3390_s24165334 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan grantid: NSTC 113-2221-E-032-011 – fundername: Taiwan Space Agency grantid: NSPO-P-111021 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c430t-412766d5e9c6df3979bd35cd6f763ccb85a7e5f419245f3e181566f82ff118e93 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:43 EDT 2025 Thu Aug 21 18:31:53 EDT 2025 Fri Sep 05 11:54:06 EDT 2025 Fri Jul 25 21:09:00 EDT 2025 Wed Feb 19 02:04:41 EST 2025 Tue Jul 01 03:51:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | method of multiple scales piezoelectric energy conversion fluid–structure interaction magnetic dipole–dipole interactions (MDDIs) vibration energy harvesting system |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-412766d5e9c6df3979bd35cd6f763ccb85a7e5f419245f3e181566f82ff118e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5641-2491 0009-0003-8162-5976 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24165334 |
PMID | 39205028 |
PQID | 3098221496 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_be043a6796c94f4a9e914e9cc0e0c0d4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11358946 proquest_miscellaneous_3099796584 proquest_journals_3098221496 pubmed_primary_39205028 crossref_primary_10_3390_s24165334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240817 |
PublicationDateYYYYMMDD | 2024-08-17 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240817 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Fan (ref_36) 2021; 244 Bastien (ref_4) 2022; 518 Zang (ref_20) 2020; 484 Mei (ref_35) 2024; 208 ref_12 Gupta (ref_7) 2021; 103 ref_11 Jia (ref_1) 2020; 31 ref_32 Forsat (ref_8) 2019; 231 Qian (ref_28) 2021; 509 Rezaei (ref_31) 2021; 102 Rezaei (ref_26) 2021; 207 Rezaei (ref_23) 2022; 239 Guo (ref_24) 2023; 111 Kecik (ref_21) 2021; 92 ref_39 ref_16 Yang (ref_3) 2021; 53 Pennisi (ref_18) 2018; 437 Wang (ref_14) 2020; 135 Wang (ref_37) 2022; 22 Syuhri (ref_15) 2020; 3 Chen (ref_22) 2024; 45 Rezaei (ref_25) 2024; 112 Fan (ref_34) 2024; 220 Rajora (ref_40) 2017; 22 Parseh (ref_5) 2015; 81 Jiang (ref_10) 2022; 8 Liao (ref_29) 2022; 255 Wang (ref_19) 2020; 100 Jin (ref_6) 2020; 169 Lu (ref_30) 2022; 107 Fang (ref_33) 2021; 212 Liu (ref_9) 2021; 194 Yang (ref_27) 2021; 8 (ref_13) 2021; 501 Lan (ref_2) 2021; 30 Wang (ref_17) 2024; 569 Leng (ref_38) 2015; 17 |
References_xml | – volume: 501 start-page: 116054 year: 2021 ident: ref_13 article-title: Nonlinear vibrations of planar curved pipes conveying fluid publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2021.116054 – volume: 112 start-page: 10871 year: 2024 ident: ref_25 article-title: A comparative study on vibration suppression and energy harvesting via mono-, bi-, and tri-stable piezoelectric nonlinear energy sinks publication-title: Nonlinear Dyn. doi: 10.1007/s11071-024-09562-3 – volume: 220 start-page: 111625 year: 2024 ident: ref_34 article-title: Nonlinear vibration energy harvesting via parametric excitation: Snap-through with time-varying potential wells publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2024.111625 – volume: 30 start-page: 02LT02 year: 2021 ident: ref_2 article-title: A wind-induced negative damping method to achieve high-energy orbit of a nonlinear vibration energy harvester publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/abd962 – volume: 22 start-page: 2250062 year: 2022 ident: ref_37 article-title: Dynamic and energetic characteristics comparison of tri-stable vibration absorber and energy harvester using different permanent magnet arrays publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455422500626 – volume: 169 start-page: 107487 year: 2020 ident: ref_6 article-title: Development of tuned particle impact damper for reduction of transient railway vibrations publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107487 – ident: ref_39 doi: 10.3390/s21217364 – volume: 8 start-page: 1299 year: 2022 ident: ref_10 article-title: An analysis of nonlinear beam vibrations with the extended Rayleigh-Ritz Method publication-title: J. Appl. Comput. Mech. – volume: 509 start-page: 116246 year: 2021 ident: ref_28 article-title: Tuned nonlinear spring-inerter-damper vibration absorber for beam vibration reduction based on the exact nonlinear dynamics model publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2021.116246 – volume: 81 start-page: 1981 year: 2015 ident: ref_5 article-title: Performance comparison of nonlinear energy sink and linear tuned mass damper in steady-state dynamics of a linear beam publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2120-3 – volume: 3 start-page: 521 year: 2020 ident: ref_15 article-title: Investigating the Influence of Fluid-Structure Interactions on Nonlinear System Identification publication-title: Vibration doi: 10.3390/vibration3040032 – volume: 17 start-page: 64901 year: 2015 ident: ref_38 article-title: An elastic-support model for enhanced bistable piezoelectric en-ergy harvesting from random vibrations publication-title: J. Appl. Phys. doi: 10.1063/1.4907763 – volume: 22 start-page: 186 year: 2017 ident: ref_40 article-title: Energy harvesting estimation from the vibration of a simply supported beam publication-title: Int. J. Acoust. Vib. – ident: ref_12 doi: 10.1002/9783527617586 – volume: 212 start-page: 106838 year: 2021 ident: ref_33 article-title: Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and energy harvesting publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2021.106838 – volume: 569 start-page: 118087 year: 2024 ident: ref_17 article-title: Energy harvesting analysis of the magneto-electric and fluid-structure interaction parametric excited system publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2023.118087 – volume: 194 start-page: 106197 year: 2021 ident: ref_9 article-title: Nonlinear dynamic responses of beamlike truss based on the equivalent nonlinear beam model publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.106197 – volume: 437 start-page: 340 year: 2018 ident: ref_18 article-title: Design and experimental study of a Nonlinear Energy Sink coupled to an electromagnetic energy harvester publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.08.026 – volume: 8 start-page: 031317 year: 2021 ident: ref_27 article-title: Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications publication-title: Appl. Phys. Rev. doi: 10.1063/5.0051432 – volume: 518 start-page: 116508 year: 2022 ident: ref_4 article-title: Damping adjustment of a nonlinear vibration absorber using an electro-magneto mechanical coupling publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2021.116508 – volume: 103 start-page: 27 year: 2021 ident: ref_7 article-title: Nonlinear vibration analysis of vortex-induced vibrations in overhead power lines with nonlinear vibration absorbers publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06100-9 – volume: 231 start-page: 125 year: 2019 ident: ref_8 article-title: Investigating nonlinear vibrations of higher-order hyper-elastic beams using the Hamiltonian method publication-title: Acta Mech. doi: 10.1007/s00707-019-02533-5 – ident: ref_11 doi: 10.1002/9783527617562 – volume: 111 start-page: 16729 year: 2023 ident: ref_24 article-title: A comparative study on transient vibration suppression of magnetic nonlinear vibration absorbers with different arrangements publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08732-z – volume: 255 start-page: 115307 year: 2022 ident: ref_29 article-title: Theoretical and experimental investigation of a bi-stable piezoelectric energy harvester incorporating fluid-induced vibration publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115307 – volume: 31 start-page: 921 year: 2020 ident: ref_1 article-title: Review of nonlinear vibration energy harvesting: Duffing, bistability, parametric, stochastic and others publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X20905989 – volume: 100 start-page: 1963 year: 2020 ident: ref_19 article-title: Dynamics of the double-beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping-based vibration publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05633-3 – volume: 45 start-page: 389 year: 2024 ident: ref_22 article-title: Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink publication-title: Appl. Math. Mech. doi: 10.1007/s10483-024-3095-9 – volume: 107 start-page: 165 year: 2022 ident: ref_30 article-title: Energy harvesting of a fluid-conveying piezoelectric pipe publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2022.02.027 – volume: 135 start-page: 1 year: 2020 ident: ref_14 article-title: Internal resonance analysis of a fluid-conveying tube resting on a nonlinear elastic foundation publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00353-4 – volume: 239 start-page: 122376 year: 2022 ident: ref_23 article-title: Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches publication-title: Energy doi: 10.1016/j.energy.2021.122376 – ident: ref_32 doi: 10.2514/6.1990-1229 – volume: 92 start-page: 105479 year: 2021 ident: ref_21 article-title: Simultaneous vibration mitigation and energy harvesting from a pendulum-type absorber publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2020.105479 – ident: ref_16 doi: 10.3390/jmse8090714 – volume: 207 start-page: 106618 year: 2021 ident: ref_26 article-title: Exploiting bi-stable magneto-piezoelastic absorber for simultaneous energy harvesting and vibration mitigation publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2021.106618 – volume: 53 start-page: 550 year: 2021 ident: ref_3 article-title: Some advancews in nonlinear vibration energy harvesting technology publication-title: Chin. J. Theor. Appl. Mech. – volume: 208 start-page: 110998 year: 2024 ident: ref_35 article-title: Magnetic-linkage nonlinear piezoelectric energy harvester with time-varying potential wells: Theoretical and experimental investigations publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110998 – volume: 244 start-page: 114505 year: 2021 ident: ref_36 article-title: A broadband magnetically coupled bistable energy harvester via parametric excitation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114505 – volume: 484 start-page: 115534 year: 2020 ident: ref_20 article-title: A vibratory energy harvesting absorber using integration of a lever-enhanced nonlinear energy sink and a levitation magnetoelectric energy harvester publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115534 – volume: 102 start-page: 661 year: 2021 ident: ref_31 article-title: Investigating the performance of tri-stable magneto-piezoelastic absorber in simultaneous energy harvesting and vibration isolation publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.09.044 |
SSID | ssj0023338 |
Score | 2.4417095 |
Snippet | This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 5334 |
SubjectTerms | Alternative energy Behavior Deformation Efficiency Energy conversion Flow velocity fluid–structure interaction magnetic dipole–dipole interactions (MDDIs) method of multiple scales Partial differential equations piezoelectric energy conversion Vibration analysis vibration energy harvesting system |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_i2_VFFK-LyebR5uijRQTFg4q3JZuHFnQrtv3_zmS3pRXBi9ckLNlvNpv5MplvCDkrgHJJ15G5iZHl0iuWm0JVua28iLyKhU_hgrt7ffMkb1_Uy1ypL7wT1sgDN8CdV4FJYfG0wxkZpTXBcBmMcywwx3xSAmWGTclUS7UEMK9GR0gAqT8fwT6lMel0YfdJIv2_eZY_L0jO7Tj9dbLWuor0opniBlkK9SZZnRMQ3CL-gt7Z1zqMh3kv1bMZOHodcPFTcEZp_30y8PRh8IlJ52FE8dCVPiNBRnPQa_uB2VLU1n6utZeyASkWDUIFjvp1mzz1e49XN3lbNyF3UrBxLnnR0dorQEn7iIE7AF45ryP8TJyrusp2gooY_5UqisBRMUbHbhEj0I1gxA5Zrod12CMUHogXQZ3zMF5bTLcsuLWGhYKDkXVGTqd4lp-NPEYJtAJBL2egZ-QSkZ4NQEXr1AB2Lls7l3_ZOSOHUzuV7TIblYKh_CCQPJjIyawbFghGPWwdhpM0BhBARysju41ZZzMB55Ap8LAy0l0w-MJUF3vqwVsS4eZcqC4gsP8fL3dAVgpwlvCsmncOyfL4axKOwNkZV8fpu_4GiRD-UQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gUeEOMzYyCDeI1mJ7bbPCC0sVYT0qoJMbS3yPFHVwmSbm3_f-7cJLTTtNfYspw7-_w7n-93AF8ydLmkHcq0CIGn0imeFpmqUlO5PIgqZC6GCy6m-vxK_rhW13sw7XJh6FllZxOjoXaNpTvy45wT0xzief1tcZtS1SiKrnYlNExbWsF9jRRjT2AfTbLiA9g_HU8vf_YuWI4e2YZfKEdn_3iJ55emZNSdUymS9z-EOO8_nNw6iSYv4HkLIdnJRucHsOfrl_Bsi1jwFbgTdmFmtV816TjWuZlbdubJKDAEqWzyZz137HK-oGR0v2R0Gct-k-NMamJn5i9lUTFTu62v45glyKiYEDFz1LPXcDUZ__p-nrb1FFIrc75KpciGWjvlC6tdoIAeKkRZpwMaGWurkTJDrwLFhaUKuRfEJKPDKAsB3RBf5G9gUDe1fwcMB6QHotY67K8NpWFmwpiC-0yg8nUCnzt5losNbUaJ7gYJveyFnsApSbrvQEzX8UNzNyvbjVNWnsvc0G2XLWSQpvCFkPgHlntuucNBjjo9le32W5b_F0sCn_pm3DgUDTG1b9axD0qAAFgCbzdq7WeCoJErRF4JjHYUvjPV3ZZ6fhPJuYXI1QglcPj4vN7D0wzhEd1Oi-ERDFZ3a_8B4c2q-tiu2X9i6Pvi priority: 102 providerName: ProQuest |
Title | A Magneto-Electric Device for Fluid Pipelines with Vibration Damping and Vibration Energy Harvesting |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39205028 https://www.proquest.com/docview/3098221496 https://www.proquest.com/docview/3099796584 https://pubmed.ncbi.nlm.nih.gov/PMC11358946 https://doaj.org/article/be043a6796c94f4a9e914e9cc0e0c0d4 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4s2WsjKIq8FJbCc5INTSXSqkVhVi0d4ix4_tSiVb9iGVf8-MdzfaoB645GA7jjPjxzw83wC8T1HlkjaXvAxBcOmU4GWqam5ql4WkDqmL7oKLS30-kt_GarwH2xybGwIu7lXtKJ_UaH7z4e73n8-44D-Rxokq-8cFnkKaQkr34TC6iegGn2ydCWmWxYTWFNPF8TwUa4Ch7qudYymi998ncv57c3LnKBo-hkcbGZKdrJn-BPZ88xQe7iALPgN3wi7MpPHLGR_ERDdTy8487QoMpVQ2vFlNHbua3lI0ul8wssayn6Q5E5_YmflFYVTMNG6ndBDDBBllEyJojmbyHEbDwY8v53yTUIFbmYkll0maa-2UL612gTx6yBFlnQ64y1hbF8rkXgVyDEsVMp8QlIwORRoC6iG-zF7AQTNr_Ctg2CHdELXWYXttKA4zTYwphU8T5L7uwbstPavbNW5GhfoGEb1qid6DU6J024CgrmPBbD6pNiunqr2QmSFzly1lkKb0ZSLxD6zwwgqHnRxv-VRtp0-VCcIlRO0PB_K2rcaVQ-4Q0_jZKrZBCpAE1oOXa7a2I0GpUSgUvXpQdBjeGWq3ppleR3TuJMlUgRQ4-o8Pv4YHKQpJZKNO8mM4WM5X_g0KOcu6D_v5OMdnMfzah8PTweXV9340GPTj5P4LQ_H_AQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QE4IN41FFgQHK2u17tOfKhQSxKltIkq1KLezHofIRLYoUmE-HP8NmYc2yQIcevVXlnr2Zndb2Z2vgF4I9DlkqYrw9R7HkqreJgKlYc6t7GPci9slS4YT5LRpfxwpa524FdTC0PXKps9sdqobWkoRn4Qc2KaQzyfvJt_D6lrFGVXmxYaum6tYA8rirG6sOPU_fyBLtzi8KSP6_1WiOHg4v0orLsMhEbGfBnKSHSTxCqXmsR6SnPhNJWxiUfTMybvKd11ylO2VCofu4j4VRLfE94jOHdExoRHwK6kAEoHdo8Hk_OPrcsXowe45jOK45QfLPC8TKj4desUrJoF_Avh_n1Rc-PkG96DuzVkZUdrHbsPO654AHc2iAwfgj1iYz0t3LIMB1VfnZlhfUebEENQzIZfVzPLzmdzKn53C0bBX_aJHHVSC9bX36hqi-nCbjwdVFWJjJoXERNIMX0Elzci2cfQKcrC7QHDD9KFVGMsjk80lX2KSOuUOxGhsiUBvG7kmc3XNB0Zujck9KwVegDHJOl2ADFrVw_K62lWG2qWOy5jTdE1k0ovderSSOIfGO644RY_st-sU1ab-yL7o5wBvGpfo6FS9kUXrlxVY1ACBPgCeLJe1nYmCFK5QqQXQG9rwbemuv2mmH2pyMCjKFY9lMDT_8_rJdwaXYzPsrOTyekzuC0QmlFkPOruQ2d5vXLPEVot8xe1_jL4fNMm8xuR9jg0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrYTggHjXUGBBcLSy3pfjQ4VakqilNIoQRb2Z9T5CJLBDkwjxF_lVzDi2SRDi1qu9stazMzvf7Ox8Q8grDiGXtKmMsxBYLJ1iccZVEZvCiZAUgbs6XXA-1icX8t2lutwhv9paGLxW2e6J9UbtKotn5D3BkGkO8LzuheZaxGQwejP_HmMHKcy0tu00TNNmwR3WdGNNkceZ__kDwrnF4ekA1v4156Phx7cncdNxILZSsGUsE55q7ZTPrHYBU14wZWWdDmCG1hZ9ZVKvAmZOpQrCJ8i1okOfhwBA3SMxE7iDvRS8PgSCe8fD8eRDF_4JiAbX3EZCZKy3AN-psRB2yyPWjQP-hXb_vrS54QVHd8jtBr7So7W-3SU7vrxHbm2QGt4n7oiem2npl1U8rHvszCwdeNyQKABkOvq6mjk6mc2xEN4vKB4E008YtKOK0IH5hhVc1JRu4-mwrlCk2MgIWUHK6QNycS2SfUh2y6r0-4TCB_FyqrUOxmuDJaA8MSZjniegeDoiL1t55vM1ZUcOoQ4KPe-EHpFjlHQ3AFm26wfV1TRvjDYvPJPC4EmbzWSQJvNZIuEPLPPMMgcfOWjXKW9Mf5H_UdSIvOheg9FiJsaUvlrVY0ACCP4i8mi9rN1MALAyBagvIv2tBd-a6vabcvalJgZPEqH6IIHH_5_Xc3IDTCd_fzo-e0JuckBpeEiepAdkd3m18k8BZS2LZ436UvL5ui3mNx5NPHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Magneto-Electric+Device+for+Fluid+Pipelines+with+Vibration+Damping+and+Vibration+Energy+Harvesting&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yi-Ren&rft.au=Huang%2C+Po-Chuan&rft.date=2024-08-17&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=16&rft_id=info:doi/10.3390%2Fs24165334&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |