Interleukin-5 Facilitates Lung Metastasis by Modulating the Immune Microenvironment
Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, f...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 75; no. 8; pp. 1624 - 1634 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-5472 1538-7445 1538-7445 |
DOI | 10.1158/0008-5472.CAN-14-2379 |
Cover
Abstract | Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma, and colon cancer. IL5 neutralization protected subjects from metastasis, whereas IL5 reconstitution or adoptive transfer of eosinophils into IL5-deficient mice exerted prometastatic effects. However, IL5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells to the lungs. During early stages of metastasis, Treg created a protumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis. Cancer Res; 75(8); 1624–34. ©2015 AACR. |
---|---|
AbstractList | Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma, and colon cancer. IL5 neutralization protected subjects from metastasis, whereas IL5 reconstitution or adoptive transfer of eosinophils into IL5-deficient mice exerted prometastatic effects. However, IL5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells to the lungs. During early stages of metastasis, Treg created a protumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis.Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma, and colon cancer. IL5 neutralization protected subjects from metastasis, whereas IL5 reconstitution or adoptive transfer of eosinophils into IL5-deficient mice exerted prometastatic effects. However, IL5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells to the lungs. During early stages of metastasis, Treg created a protumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis. Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma, and colon cancer. IL5 neutralization protected subjects from metastasis, whereas IL5 reconstitution or adoptive transfer of eosinophils into IL5-deficient mice exerted prometastatic effects. However, IL5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells to the lungs. During early stages of metastasis, Treg created a protumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis. Although the lung is the most common metastatic site for cancer cells, biological mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL-5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL-5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma and colon cancer. IL-5 neutralization protected subjects from metastasis, whereas IL-5 reconstitution or adoptive transfer of eosinophils into IL-5 deficient mice exerted pro-metastatic effects. However, IL-5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells (Treg) to the lungs. During early stages of metastasis Treg created a pro-tumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis. Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using heterotopic and intravenous injection models of lung metastasis in mice, we found that IL5, a cytokine involved in allergic and infectious diseases, facilitates metastatic colonization through recruitment of sentinel eosinophils and regulation of other inflammatory/immune cells in the microenvironment of the distal lung. Genetic IL5 deficiency offered marked protection of the lungs from metastasis of different types of tumor cells, including lung cancer, melanoma, and colon cancer. IL5 neutralization protected subjects from metastasis, whereas IL5 reconstitution or adoptive transfer of eosinophils into IL5-deficient mice exerted prometastatic effects. However, IL5 deficiency did not affect the growth of the primary tumor or the size of metastatic lesions. Mechanistic investigations revealed that eosinophils produce CCL22, which recruits regulatory T cells to the lungs. During early stages of metastasis, Treg created a protumorigenic microenvironment, potentially by suppressing IFNγ-producing natural killer cells and M1-polarized macrophages. Together, our results establish a network of allergic inflammatory circuitry that can be co-opted by metastatic cancer cells to facilitate lung colonization, suggesting interventions to target this pathway may offer therapeutic benefits to prevent or treat lung metastasis. Cancer Res; 75(8); 1624–34. ©2015 AACR. |
Author | Saxon, Jamie A. Habermann, Arun C. Peebles, R. Stokes Yull, Fiona E. Dulek, Daniel Blackwell, Timothy S. Stathopoulos, Georgios T. McLoed, Allyson G. Fingleton, Barbara Connelly, Linda Gleaves, Linda A. Zaynagetdinov, Rinat Sherrill, Taylor P. |
AuthorAffiliation | 3 Department of Pharmaceutical Sciences, University of Hawaii, Hilo, Hawaii, USA, 96720 5 U.S. Department of Veterans Affairs 8 Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA, 37232 4 Department of Pediatrics, Vanderbilt University, Nashville, TN, USA, 37232 7 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA, 37232 1 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA, 37232 2 Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA, 37232 6 Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, University of Patras, 26504 Rio, Greece |
AuthorAffiliation_xml | – name: 2 Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA, 37232 – name: 8 Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA, 37232 – name: 3 Department of Pharmaceutical Sciences, University of Hawaii, Hilo, Hawaii, USA, 96720 – name: 6 Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, University of Patras, 26504 Rio, Greece – name: 4 Department of Pediatrics, Vanderbilt University, Nashville, TN, USA, 37232 – name: 1 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN, USA, 37232 – name: 7 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA, 37232 – name: 5 U.S. Department of Veterans Affairs |
Author_xml | – sequence: 1 givenname: Rinat surname: Zaynagetdinov fullname: Zaynagetdinov, Rinat – sequence: 2 givenname: Taylor P. surname: Sherrill fullname: Sherrill, Taylor P. – sequence: 3 givenname: Linda A. surname: Gleaves fullname: Gleaves, Linda A. – sequence: 4 givenname: Allyson G. surname: McLoed fullname: McLoed, Allyson G. – sequence: 5 givenname: Jamie A. surname: Saxon fullname: Saxon, Jamie A. – sequence: 6 givenname: Arun C. surname: Habermann fullname: Habermann, Arun C. – sequence: 7 givenname: Linda surname: Connelly fullname: Connelly, Linda – sequence: 8 givenname: Daniel surname: Dulek fullname: Dulek, Daniel – sequence: 9 givenname: R. Stokes surname: Peebles fullname: Peebles, R. Stokes – sequence: 10 givenname: Barbara surname: Fingleton fullname: Fingleton, Barbara – sequence: 11 givenname: Fiona E. surname: Yull fullname: Yull, Fiona E. – sequence: 12 givenname: Georgios T. surname: Stathopoulos fullname: Stathopoulos, Georgios T. – sequence: 13 givenname: Timothy S. surname: Blackwell fullname: Blackwell, Timothy S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25691457$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUV1LwzAUDTLROf0JSh99qSZt0rQIwhh-DDZ9cO8hTW9dtE20SQf-e1OmQ30RLoTLPR_hnCM0MtYAQqcEXxDC8kuMcR4zypOL2fQhJjROUl7soTFhaR5zStkIjXeYQ3Tk3EtYGcHsAB0mLCsIZXyMnubGQ9dA_6pNzKJbqXSjvfTgokVvnqMleOnCaBeVH9HSVn0jvQ4Hv4Zo3ra9gWipVWfBbHRnTQvGH6P9WjYOTr7eCVrd3qxm9_Hi8W4-my5iRVPs41RVSSVBEZAygZpRyDBUwEue0YwXtSyYInVSVKTGhUwChxR1XeSlzBWnPJ2g663sW1-2UKng3MlGvHW6ld2HsFKL3xej1-LZbgSlmGRZGgTOvwQ6-96D86LVTkHTSAO2d4JknCY4zygJ0LOfXjuT7yADgG0BIQrnOqh3EILFUJgYyhBDGSIUJggVQ2GBd_WHp4b4tR2-rJt_2J9BY521 |
CitedBy_id | crossref_primary_10_1002_cac2_12584 crossref_primary_10_1007_s12274_021_3813_1 crossref_primary_10_3389_fgene_2022_805256 crossref_primary_10_3390_cancers12092671 crossref_primary_10_1136_jitc_2020_001374 crossref_primary_10_1007_s13277_016_5123_x crossref_primary_10_1111_all_13311 crossref_primary_10_4251_wjgo_v16_i7_3097 crossref_primary_10_1080_2162402X_2017_1331195 crossref_primary_10_1016_j_jaci_2017_09_022 crossref_primary_10_26508_lsa_202000903 crossref_primary_10_3389_fimmu_2021_632581 crossref_primary_10_1007_s00262_020_02798_z crossref_primary_10_3390_jpm12091506 crossref_primary_10_1186_s12943_024_01958_4 crossref_primary_10_1158_2159_8290_CD_20_0896 crossref_primary_10_1186_s12943_025_02249_2 crossref_primary_10_1002_14651858_CD015783 crossref_primary_10_1038_s41590_020_0745_y crossref_primary_10_1038_ncb3578 crossref_primary_10_1371_journal_pone_0263997 crossref_primary_10_1007_s12094_022_02950_4 crossref_primary_10_1186_s12943_023_01885_w crossref_primary_10_1016_j_biomaterials_2019_119543 crossref_primary_10_1016_j_rmed_2019_105819 crossref_primary_10_3390_cancers15061681 crossref_primary_10_1126_sciadv_abb5943 crossref_primary_10_1002_jcp_29287 crossref_primary_10_3390_ijms241713432 crossref_primary_10_1007_s00262_018_2255_4 crossref_primary_10_1080_2162402X_2016_1248015 crossref_primary_10_3892_wasj_2020_57 crossref_primary_10_3390_ijms23095066 crossref_primary_10_1038_s41577_024_01048_y crossref_primary_10_1007_s40264_020_00926_3 crossref_primary_10_1155_2023_9292536 crossref_primary_10_3390_biomedicines4010007 crossref_primary_10_1016_j_tem_2022_11_002 crossref_primary_10_1016_j_lfs_2019_117144 crossref_primary_10_1177_1533033818764720 crossref_primary_10_3389_fimmu_2020_00676 crossref_primary_10_1038_s41598_022_22355_1 crossref_primary_10_1172_JCI176567 crossref_primary_10_1016_j_ccell_2017_06_009 crossref_primary_10_1007_s00408_021_00474_2 crossref_primary_10_1016_j_celrep_2020_107848 crossref_primary_10_3389_fonc_2022_836517 crossref_primary_10_1093_cvr_cvab237 crossref_primary_10_1038_s41568_020_0283_9 crossref_primary_10_1149_2754_2726_ac9227 crossref_primary_10_1016_j_neo_2022_100855 crossref_primary_10_1038_srep44687 crossref_primary_10_1126_sciimmunol_aba0759 crossref_primary_10_1111_1759_7714_15100 crossref_primary_10_1007_s11427_018_9428_9 crossref_primary_10_1183_13993003_01217_2022 crossref_primary_10_1186_s40880_016_0178_z crossref_primary_10_1038_s41467_024_55659_z crossref_primary_10_1111_all_16246 crossref_primary_10_3390_cancers13235885 crossref_primary_10_3390_cancers12113311 crossref_primary_10_1136_jitc_2023_008020 crossref_primary_10_3892_wasj_2018_2 crossref_primary_10_1186_s12967_023_04418_7 crossref_primary_10_3389_fonc_2023_1064616 crossref_primary_10_1016_j_yrmex_2019_100007 crossref_primary_10_5056_jnm23040 crossref_primary_10_3389_fcell_2022_1002692 crossref_primary_10_3389_fimmu_2022_939378 crossref_primary_10_36384_01232576_573 crossref_primary_10_1080_2162402X_2016_1256528 crossref_primary_10_1159_000528156 crossref_primary_10_1016_j_lfs_2023_122390 crossref_primary_10_1186_s40425_015_0090_0 crossref_primary_10_1016_j_trecan_2016_10_002 crossref_primary_10_3390_cancers15030852 crossref_primary_10_1101_cshperspect_a038026 crossref_primary_10_1158_0008_5472_CAN_20_3143 crossref_primary_10_1016_j_cyto_2019_04_013 crossref_primary_10_3390_cells10010056 crossref_primary_10_1002_mco2_390 crossref_primary_10_1016_j_ccell_2022_11_014 crossref_primary_10_1038_s41590_022_01291_2 crossref_primary_10_1038_s41417_023_00678_z crossref_primary_10_1111_all_15884 crossref_primary_10_1124_pharmrev_123_000901 crossref_primary_10_1016_j_biopha_2023_116014 crossref_primary_10_1016_j_rec_2019_07_005 crossref_primary_10_1080_08977194_2022_2087520 crossref_primary_10_1096_fj_202300626R crossref_primary_10_1016_j_recesp_2019_07_013 crossref_primary_10_3389_fonc_2022_841921 |
Cites_doi | 10.1189/jlb.1106686 10.1073/pnas.0705316104 10.1073/pnas.1220572110 10.2183/pjab.87.463 10.1200/JCO.2007.15.8899 10.1007/s10585-007-9100-z 10.1165/rcmb.2012-0263OC 10.1016/S0065-230X(10)07003-X 10.1002/1097-0142(19810601)47:11<2595::AID-CNCR2820471114>3.0.CO;2-Q 10.4049/jimmunol.178.7.4222 10.1016/S0385-8146(01)00135-3 10.4049/jimmunol.1101270 10.4049/jimmunol.1000446 10.7326/0003-4819-35-1-213 10.1002/(SICI)1096-9896(199912)189:4<487::AID-PATH484>3.0.CO;2-I 10.1371/journal.pone.0049047 10.1016/j.cell.2010.01.025 10.4049/jimmunol.125.6.2646 10.1002/eji.200324723 10.1002/ijc.25281 10.1097/01.cji.0000211324.53396.f6 10.1186/1465-9921-11-118 10.1016/j.jim.2007.07.011 10.1038/onc.2011.480 10.1002/eji.201142018 10.1084/jem.183.1.195 10.1016/j.jaci.2007.02.046 10.1158/0008-5472.CAN-10-1040 10.1016/S1368-8375(99)00023-8 10.1158/0008-5472.CAN-08-4619 10.1164/rccm.201001-0001OC 10.4049/jimmunol.162.5.2997 10.1046/j.1365-2559.2002.01437.x 10.1016/j.cell.2011.09.024 10.1038/nature07205 10.1128/IAI.66.9.4425-4430.1998 10.4049/jimmunol.165.10.5509 10.1158/2326-6066.CIR-13-0196 10.1002/jlb.50.5.471 10.1586/eci.11.27 10.1016/j.cellsig.2013.06.004 10.1165/rcmb.2012-0366MA 10.1002/ijc.25464 10.1038/ni.2617 10.1002/ajh.20789 10.1097/CJI.0b013e318294357c |
ContentType | Journal Article |
Copyright | 2015 American Association for Cancer Research. |
Copyright_xml | – notice: 2015 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/0008-5472.CAN-14-2379 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 1634 |
ExternalDocumentID | PMC4401663 25691457 10_1158_0008_5472_CAN_14_2379 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM103466 – fundername: NHLBI NIH HHS grantid: T32HL094296 – fundername: NHLBI NIH HHS grantid: T32 HL094296 |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c430t-3cd2daec1eaa2ef54e60ede7b764679fa95c1f29d1f09a243019ff98ba8c7473 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Aug 21 18:28:26 EDT 2025 Fri Sep 05 07:33:14 EDT 2025 Mon Jul 21 05:21:16 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Tue Jul 01 02:03:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2015 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c430t-3cd2daec1eaa2ef54e60ede7b764679fa95c1f29d1f09a243019ff98ba8c7473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25691457 |
PQID | 1674208641 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4401663 proquest_miscellaneous_1674208641 pubmed_primary_25691457 crossref_primary_10_1158_0008_5472_CAN_14_2379 crossref_citationtrail_10_1158_0008_5472_CAN_14_2379 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-15 |
PublicationDateYYYYMMDD | 2015-04-15 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2015 |
References | Coleman (2022061704575405100_bib27) 2013; 48 Eiro (2022061704575405100_bib29) 2012; 7 Mantovani (2022061704575405100_bib3) 2008; 454 Takatsu (2022061704575405100_bib6) 1980; 125 Fujii (2022061704575405100_bib33) 2002; 29 Hall (2022061704575405100_bib8) 1998; 66 Brick (2022061704575405100_bib38) 1951; 35 Voehringer (2022061704575405100_bib24) 2007; 81 Zaynagetdinov (2022061704575405100_bib44) 2012; 31 Foster (2022061704575405100_bib7) 1996; 183 Wong (2022061704575405100_bib41) 1999; 35 Olkhanud (2022061704575405100_bib46) 2009; 69 Takatsu (2022061704575405100_bib5) 2011; 87 Wilke (2022061704575405100_bib43) 2010; 127 Doris (2022061704575405100_bib9) 2010; 11 Ginsberg (2022061704575405100_bib47) 1997 Dorta (2022061704575405100_bib32) 2002; 41 Huang (2022061704575405100_bib30) 1995; 55 Stathopoulos (2022061704575405100_bib10) 2010; 182 Schwarze (2022061704575405100_bib17) 1999; 162 Crow (2022061704575405100_bib1) 1981; 47 Licona-Limon (2022061704575405100_bib25) 2013; 14 Nielsen (2022061704575405100_bib35) 1999; 189 Legrand (2022061704575405100_bib34) 2010; 185 Pandit (2022061704575405100_bib13) 2007; 82 Stevens (2022061704575405100_bib22) 2007; 327 Talmadge (2022061704575405100_bib48) 2010; 70 Klein Wolterink (2022061704575405100_bib4) 2012; 42 Stathopoulos (2022061704575405100_bib15) 2008; 25 Grivennikov (2022061704575405100_bib26) 2010; 140 Denzler (2022061704575405100_bib18) 2000; 165 Mailloux (2022061704575405100_bib28) 2010; 127 Zaynagetdinov (2022061704575405100_bib19) 2013; 49 Lotfi (2022061704575405100_bib40) 2007; 30 Wen (2022061704575405100_bib20) 2013; 110 El-Osta (2022061704575405100_bib39) 2008; 26 Stathopoulos (2022061704575405100_bib16) 2007; 104 Biragyn (2022061704575405100_bib45) 2013; 36 Valastyan (2022061704575405100_bib2) 2011; 147 Davis (2022061704575405100_bib36) 2014; 2 Simson (2022061704575405100_bib11) 2007; 178 Takanami (2022061704575405100_bib37) 2002; 22 Ikutani (2022061704575405100_bib12) 2012; 188 Mougiakakos (2022061704575405100_bib42) 2010; 107 Zhang (2022061704575405100_bib23) 2004; 34 Abonia (2022061704575405100_bib49) 2011; 7 McGarry (2022061704575405100_bib21) 1991; 50 Lee (2022061704575405100_bib31) 2013; 25 Nakae (2022061704575405100_bib14) 2007; 120 1721083 - J Leukoc Biol. 1991 Nov;50(5):471-8 18008176 - Clin Exp Metastasis. 2008;25(1):43-51 11067904 - J Immunol. 2000 Nov 15;165(10):5509-17 11893453 - Auris Nasus Larynx. 2002 Apr;29(2):175-81 18612162 - J Clin Oncol. 2008 Jul 10;26(20):3456-7 12147093 - Histopathology. 2002 Aug;41(2):152-7 20303878 - Cell. 2010 Mar 19;140(6):883-99 20610625 - Cancer Res. 2010 Jul 15;70(14):5649-69 23536294 - Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6067-72 18000061 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18514-9 23492186 - Am J Respir Cell Mol Biol. 2013 Jun;48(6):773-80 17482668 - J Allergy Clin Immunol. 2007 Jul;120(1):48-55 22000009 - Cell. 2011 Oct 14;147(2):275-92 17371978 - J Immunol. 2007 Apr 1;178(7):4222-9 21068403 - J Immunol. 2010 Dec 15;185(12):7443-51 8551223 - J Exp Med. 1996 Jan 1;183(1):195-201 23685824 - Nat Immunol. 2013 Jun;14(6):536-42 20399961 - Adv Cancer Res. 2010;107:57-117 10694950 - Oral Oncol. 1999 Sep;35(5):496-501 23603860 - J Immunother. 2013 May;36(4):258-67 23770289 - Cell Signal. 2013 Oct;25(10):2025-38 22002309 - Oncogene. 2012 Jun 28;31(26):3164-76 17160990 - Am J Hematol. 2007 Mar;82(3):234-7 23145063 - PLoS One. 2012;7(11):e49047 6159416 - J Immunol. 1980 Dec;125(6):2646-53 12174932 - Anticancer Res. 2002 Jul-Aug;22(4):2391-6 20796309 - Respir Res. 2010;11:118 24778159 - Cancer Immunol Res. 2014 Jan;2(1):1-8 9712797 - Infect Immun. 1998 Sep;66(9):4425-30 19567680 - Cancer Res. 2009 Jul 15;69(14):5996-6004 7260854 - Cancer. 1981 Jun 1;47(11):2595-602 20473951 - Int J Cancer. 2010 Aug 15;127(4):748-58 20198623 - Int J Cancer. 2010 Dec 1;127(11):2598-611 14847458 - Ann Intern Med. 1951 Jul;35(1):213-8 10629548 - J Pathol. 1999 Dec;189(4):487-95 22539286 - Eur J Immunol. 2012 May;42(5):1106-16 17716680 - J Immunol Methods. 2007 Oct 31;327(1-2):63-74 18650914 - Nature. 2008 Jul 24;454(7203):436-44 17339609 - J Leukoc Biol. 2007 Jun;81(6):1434-44 15048729 - Eur J Immunol. 2004 Apr;34(4):1175-84 17198080 - J Immunother. 2007 Jan;30(1):16-28 23492192 - Am J Respir Cell Mol Biol. 2013 Aug;49(2):180-9 10072551 - J Immunol. 1999 Mar 1;162(5):2997-3004 21986312 - Proc Jpn Acad Ser B Phys Biol Sci. 2011;87(8):463-85 22174445 - J Immunol. 2012 Jan 15;188(2):703-13 20595227 - Am J Respir Crit Care Med. 2010 Nov 15;182(10):1273-81 21790283 - Expert Rev Clin Immunol. 2011 Jul;7(4):411-7 7641203 - Cancer Res. 1995 Sep 1;55(17):3847-53 |
References_xml | – volume: 81 start-page: 1434 year: 2007 ident: 2022061704575405100_bib24 article-title: Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages publication-title: J Leukoc Biol doi: 10.1189/jlb.1106686 – volume: 104 start-page: 18514 year: 2007 ident: 2022061704575405100_bib16 article-title: Epithelial NF-kappaB activation promotes urethane-induced lung carcinogenesis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0705316104 – volume: 110 start-page: 6067 year: 2013 ident: 2022061704575405100_bib20 article-title: Eosinophil adoptive transfer system to directly evaluate pulmonary eosinophil trafficking in vivo publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1220572110 – volume: 87 start-page: 463 year: 2011 ident: 2022061704575405100_bib5 article-title: Interleukin-5 and IL5 receptor in health and diseases publication-title: Proc Jpn Acad Ser B Phys Biol Sci doi: 10.2183/pjab.87.463 – volume: 26 start-page: 3456 year: 2008 ident: 2022061704575405100_bib39 article-title: Lung carcinoma associated with excessive eosinophilia publication-title: J Clin Oncol doi: 10.1200/JCO.2007.15.8899 – volume: 25 start-page: 43 year: 2008 ident: 2022061704575405100_bib15 article-title: Use of bioluminescent imaging to investigate the role of nuclear factor-kappaBeta in experimental non-small cell lung cancer metastasis publication-title: Clin Exp Metastasis doi: 10.1007/s10585-007-9100-z – volume: 48 start-page: 773 year: 2013 ident: 2022061704575405100_bib27 article-title: Alveolar macrophages contribute to respiratory tolerance by inducing FoxP3 expression in naive T cells publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2012-0263OC – volume: 107 start-page: 57 year: 2010 ident: 2022061704575405100_bib42 article-title: Regulatory T cells in cancer publication-title: Adv Cancer Res doi: 10.1016/S0065-230X(10)07003-X – volume: 55 start-page: 3847 year: 1995 ident: 2022061704575405100_bib30 article-title: Human non-small cell lung cancer cells express a type 2 cytokine pattern publication-title: Cancer Res – volume: 47 start-page: 2595 year: 1981 ident: 2022061704575405100_bib1 article-title: Pulmonary metastasis: a pathologic and radiologic study publication-title: Cancer doi: 10.1002/1097-0142(19810601)47:11<2595::AID-CNCR2820471114>3.0.CO;2-Q – volume: 178 start-page: 4222 year: 2007 ident: 2022061704575405100_bib11 article-title: Regulation of carcinogenesis by IL5 and CCL11: a potential role for eosinophils in tumor immune surveillance publication-title: J Immunol doi: 10.4049/jimmunol.178.7.4222 – volume: 29 start-page: 175 year: 2002 ident: 2022061704575405100_bib33 article-title: Significance of epidermal growth factor receptor and tumor associated tissue eosinophilia in the prognosis of patients with nasopharyngeal carcinoma publication-title: Auris Nasus Larynx doi: 10.1016/S0385-8146(01)00135-3 – volume: 188 start-page: 703 year: 2012 ident: 2022061704575405100_bib12 article-title: Identification of innate IL5-producing cells and their role in lung eosinophil regulation and antitumor immunity publication-title: J Immunol doi: 10.4049/jimmunol.1101270 – volume: 185 start-page: 7443 year: 2010 ident: 2022061704575405100_bib34 article-title: Human eosinophils exert TNF-alpha and granzyme A-mediated tumoricidal activity toward colon carcinoma cells publication-title: J Immunol doi: 10.4049/jimmunol.1000446 – volume: 35 start-page: 213 year: 1951 ident: 2022061704575405100_bib38 article-title: Marked eosinophilia with cancer: a poor prognostic sign publication-title: Ann Intern Med doi: 10.7326/0003-4819-35-1-213 – volume: 189 start-page: 487 year: 1999 ident: 2022061704575405100_bib35 article-title: Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue publication-title: J Pathol doi: 10.1002/(SICI)1096-9896(199912)189:4<487::AID-PATH484>3.0.CO;2-I – volume: 7 start-page: e49047 year: 2012 ident: 2022061704575405100_bib29 article-title: Relationship between the inflammatory molecular profile of breast carcinomas and distant metastasis development publication-title: PLoS ONE doi: 10.1371/journal.pone.0049047 – volume: 140 start-page: 883 year: 2010 ident: 2022061704575405100_bib26 article-title: Immunity, inflammation, and cancer publication-title: Cell doi: 10.1016/j.cell.2010.01.025 – volume: 125 start-page: 2646 year: 1980 ident: 2022061704575405100_bib6 article-title: Antigen-induced T cell-replacing factor (TRF). III. Establishment of T cell hybrid clone continuously producing TRF and functional analysis of released TRF publication-title: J Immunol doi: 10.4049/jimmunol.125.6.2646 – volume: 34 start-page: 1175 year: 2004 ident: 2022061704575405100_bib23 article-title: The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils publication-title: Eur J Immunol doi: 10.1002/eji.200324723 – volume: 127 start-page: 2598 year: 2010 ident: 2022061704575405100_bib28 article-title: NK depletion results in increased CCL22 secretion and Treg levels in Lewis lung carcinoma via the accumulation of CCL22-secreting CD11b+CD11c+ cells publication-title: Int J Cancer doi: 10.1002/ijc.25281 – volume: 30 start-page: 16 year: 2007 ident: 2022061704575405100_bib40 article-title: Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors publication-title: J Immunother doi: 10.1097/01.cji.0000211324.53396.f6 – volume: 11 start-page: 118 year: 2010 ident: 2022061704575405100_bib9 article-title: Allergic inflammation does not impact chemical-induced carcinogenesis in the lungs of mice publication-title: Respir Res doi: 10.1186/1465-9921-11-118 – volume: 327 start-page: 63 year: 2007 ident: 2022061704575405100_bib22 article-title: Detection and quantitation of eosinophils in the murine respiratory tract by flow cytometry publication-title: J Immunol Methods doi: 10.1016/j.jim.2007.07.011 – volume: 31 start-page: 3164 year: 2012 ident: 2022061704575405100_bib44 article-title: Epithelial nuclear factor-kappaB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes publication-title: Oncogene doi: 10.1038/onc.2011.480 – volume: 42 start-page: 1106 year: 2012 ident: 2022061704575405100_bib4 article-title: Pulmonary innate lymphoid cells are major producers of IL5 and IL13 in murine models of allergic asthma publication-title: Eur J Immunol doi: 10.1002/eji.201142018 – volume: 183 start-page: 195 year: 1996 ident: 2022061704575405100_bib7 article-title: Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model publication-title: J Exp Med doi: 10.1084/jem.183.1.195 – volume: 120 start-page: 48 year: 2007 ident: 2022061704575405100_bib14 article-title: Mast cell-derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2007.02.046 – volume: 70 start-page: 5649 year: 2010 ident: 2022061704575405100_bib48 article-title: AACR centennial series: the biology of cancer metastasis: historical perspective publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-1040 – volume: 35 start-page: 496 year: 1999 ident: 2022061704575405100_bib41 article-title: Eosinophil ablation and tumor development publication-title: Oral Oncol doi: 10.1016/S1368-8375(99)00023-8 – volume: 69 start-page: 5996 year: 2009 ident: 2022061704575405100_bib46 article-title: Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-4619 – volume: 182 start-page: 1273 year: 2010 ident: 2022061704575405100_bib10 article-title: Host-derived interleukin-5 promotes adenocarcinoma-induced malignant pleural effusion publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201001-0001OC – volume: 162 start-page: 2997 year: 1999 ident: 2022061704575405100_bib17 article-title: IL5 and eosinophils are essential for the development of airway hyperresponsiveness following acute respiratory syncytial virus infection publication-title: J Immunol doi: 10.4049/jimmunol.162.5.2997 – volume: 41 start-page: 152 year: 2002 ident: 2022061704575405100_bib32 article-title: Tumour-associated tissue eosinophilia as a prognostic factor in oral squamous cell carcinomas publication-title: Histopathology doi: 10.1046/j.1365-2559.2002.01437.x – volume: 147 start-page: 275 year: 2011 ident: 2022061704575405100_bib2 article-title: Tumor metastasis: molecular insights and evolving paradigms publication-title: Cell doi: 10.1016/j.cell.2011.09.024 – volume: 454 start-page: 436 year: 2008 ident: 2022061704575405100_bib3 article-title: Cancer-related inflammation publication-title: Nature doi: 10.1038/nature07205 – volume: 66 start-page: 4425 year: 1998 ident: 2022061704575405100_bib8 article-title: An essential role for interleukin-5 and eosinophils in helminth-induced airway hyperresponsiveness publication-title: Infect Immun doi: 10.1128/IAI.66.9.4425-4430.1998 – volume: 165 start-page: 5509 year: 2000 ident: 2022061704575405100_bib18 article-title: Eosinophil major basic protein-1 does not contribute to allergen-induced airway pathologies in mouse models of asthma publication-title: J Immunol doi: 10.4049/jimmunol.165.10.5509 – volume: 2 start-page: 1 year: 2014 ident: 2022061704575405100_bib36 article-title: Eosinophils and cancer publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-13-0196 – volume: 50 start-page: 471 year: 1991 ident: 2022061704575405100_bib21 article-title: Murine eosinophil granulocytes bind the murine macrophage-monocyte specific monoclonal antibody F4/80 publication-title: J Leukoc Biol doi: 10.1002/jlb.50.5.471 – volume: 22 start-page: 2391 year: 2002 ident: 2022061704575405100_bib37 article-title: Immunohistochemical detection of eosinophilic infiltration in pulmonary adenocarcinoma publication-title: Anticancer Res – volume: 7 start-page: 411 year: 2011 ident: 2022061704575405100_bib49 article-title: Mepolizumab in eosinophilic disorders publication-title: Expert Rev Clin Immunol doi: 10.1586/eci.11.27 – volume: 25 start-page: 2025 year: 2013 ident: 2022061704575405100_bib31 article-title: Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-kappaB/AP-1 pathway: Involvement of the p21WAF1 expression publication-title: Cell Signal doi: 10.1016/j.cellsig.2013.06.004 – volume: 49 start-page: 180 year: 2013 ident: 2022061704575405100_bib19 article-title: Identification of myeloid cell subsets in murine lungs using flow cytometry publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2012-0366MA – year: 1997 ident: 2022061704575405100_bib47 article-title: Cancer of the lung. Cancer: Principles and Practice of Oncology – volume: 127 start-page: 748 year: 2010 ident: 2022061704575405100_bib43 article-title: Prognostic significance of regulatory T cells in tumor publication-title: Int J Cancer doi: 10.1002/ijc.25464 – volume: 14 start-page: 536 year: 2013 ident: 2022061704575405100_bib25 article-title: TH2, allergy and group 2 innate lymphoid cells publication-title: Nat Immunol doi: 10.1038/ni.2617 – volume: 82 start-page: 234 year: 2007 ident: 2022061704575405100_bib13 article-title: Non-small-cell lung cancer associated with excessive eosinophilia and secretion of interleukin-5 as a paraneoplastic syndrome publication-title: Am J Hematol doi: 10.1002/ajh.20789 – volume: 36 start-page: 258 year: 2013 ident: 2022061704575405100_bib45 article-title: Inhibition of lung metastasis by chemokine CCL17-mediated in vivo silencing of genes in CCR4+ Tregs publication-title: J Immunother doi: 10.1097/CJI.0b013e318294357c – reference: 11893453 - Auris Nasus Larynx. 2002 Apr;29(2):175-81 – reference: 20796309 - Respir Res. 2010;11:118 – reference: 7260854 - Cancer. 1981 Jun 1;47(11):2595-602 – reference: 6159416 - J Immunol. 1980 Dec;125(6):2646-53 – reference: 18008176 - Clin Exp Metastasis. 2008;25(1):43-51 – reference: 12147093 - Histopathology. 2002 Aug;41(2):152-7 – reference: 21790283 - Expert Rev Clin Immunol. 2011 Jul;7(4):411-7 – reference: 19567680 - Cancer Res. 2009 Jul 15;69(14):5996-6004 – reference: 20198623 - Int J Cancer. 2010 Dec 1;127(11):2598-611 – reference: 23492192 - Am J Respir Cell Mol Biol. 2013 Aug;49(2):180-9 – reference: 12174932 - Anticancer Res. 2002 Jul-Aug;22(4):2391-6 – reference: 20303878 - Cell. 2010 Mar 19;140(6):883-99 – reference: 17371978 - J Immunol. 2007 Apr 1;178(7):4222-9 – reference: 17198080 - J Immunother. 2007 Jan;30(1):16-28 – reference: 1721083 - J Leukoc Biol. 1991 Nov;50(5):471-8 – reference: 22539286 - Eur J Immunol. 2012 May;42(5):1106-16 – reference: 10072551 - J Immunol. 1999 Mar 1;162(5):2997-3004 – reference: 20610625 - Cancer Res. 2010 Jul 15;70(14):5649-69 – reference: 23536294 - Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6067-72 – reference: 24778159 - Cancer Immunol Res. 2014 Jan;2(1):1-8 – reference: 17339609 - J Leukoc Biol. 2007 Jun;81(6):1434-44 – reference: 18000061 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18514-9 – reference: 22174445 - J Immunol. 2012 Jan 15;188(2):703-13 – reference: 10629548 - J Pathol. 1999 Dec;189(4):487-95 – reference: 21986312 - Proc Jpn Acad Ser B Phys Biol Sci. 2011;87(8):463-85 – reference: 23685824 - Nat Immunol. 2013 Jun;14(6):536-42 – reference: 23603860 - J Immunother. 2013 May;36(4):258-67 – reference: 20473951 - Int J Cancer. 2010 Aug 15;127(4):748-58 – reference: 20595227 - Am J Respir Crit Care Med. 2010 Nov 15;182(10):1273-81 – reference: 18612162 - J Clin Oncol. 2008 Jul 10;26(20):3456-7 – reference: 23492186 - Am J Respir Cell Mol Biol. 2013 Jun;48(6):773-80 – reference: 9712797 - Infect Immun. 1998 Sep;66(9):4425-30 – reference: 23770289 - Cell Signal. 2013 Oct;25(10):2025-38 – reference: 21068403 - J Immunol. 2010 Dec 15;185(12):7443-51 – reference: 18650914 - Nature. 2008 Jul 24;454(7203):436-44 – reference: 22002309 - Oncogene. 2012 Jun 28;31(26):3164-76 – reference: 17160990 - Am J Hematol. 2007 Mar;82(3):234-7 – reference: 17716680 - J Immunol Methods. 2007 Oct 31;327(1-2):63-74 – reference: 8551223 - J Exp Med. 1996 Jan 1;183(1):195-201 – reference: 14847458 - Ann Intern Med. 1951 Jul;35(1):213-8 – reference: 17482668 - J Allergy Clin Immunol. 2007 Jul;120(1):48-55 – reference: 7641203 - Cancer Res. 1995 Sep 1;55(17):3847-53 – reference: 10694950 - Oral Oncol. 1999 Sep;35(5):496-501 – reference: 22000009 - Cell. 2011 Oct 14;147(2):275-92 – reference: 11067904 - J Immunol. 2000 Nov 15;165(10):5509-17 – reference: 15048729 - Eur J Immunol. 2004 Apr;34(4):1175-84 – reference: 23145063 - PLoS One. 2012;7(11):e49047 – reference: 20399961 - Adv Cancer Res. 2010;107:57-117 |
SSID | ssj0005105 |
Score | 2.5000162 |
Snippet | Although the lung is the most common metastatic site for cancer cells, biologic mechanisms regulating lung metastasis are not fully understood. Using... Although the lung is the most common metastatic site for cancer cells, biological mechanisms regulating lung metastasis are not fully understood. Using... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1624 |
SubjectTerms | Animals Carcinoma, Lewis Lung - genetics Carcinoma, Lewis Lung - immunology Carcinoma, Lewis Lung - pathology Cell Line, Tumor Eosinophils - pathology Female Interleukin-5 - physiology Lung - immunology Lung - pathology Lung Neoplasms - genetics Lung Neoplasms - immunology Lung Neoplasms - secondary Male Mice Mice, Inbred C57BL Mice, Knockout T-Lymphocytes, Regulatory - immunology Tumor Escape - genetics Tumor Microenvironment - genetics Tumor Microenvironment - immunology |
Title | Interleukin-5 Facilitates Lung Metastasis by Modulating the Immune Microenvironment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25691457 https://www.proquest.com/docview/1674208641 https://pubmed.ncbi.nlm.nih.gov/PMC4401663 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jCuKLeHfWCxV8K6m9JG3yOAyuq-wsiiMsvpQ0TdjF0spsZ2H2T_kXPWk6vYyDur6UoZ2elpzTc8t3zkHojYhCX8SJxjTXDBMI1zAjwseZyHwFwTbP8gblexoffyUfz-jZZPJzgFpa15knr_fWlfwPV-Ec8NVUyd6Asx1ROAG_gb9wBA7D8Z943KTzCrX-flFi6h4JaVtuq0v3BL5hd6FqAc6faTkCTuaiyptRXW151AdTGKIMbH5VDardhs7q3EjEym37AZ03G74WudFolqLwBnmEb2JjgDQ12MLqypbsl6LD1NgOkHaLwyYJ3E9eh_0plLiy6qpJEbiz7tJCnlQ2HTsrio2ZlvjeGyYqAmr2XGypZqd8GabETurxVK9vE2I7Sm4VckIHgscG2jWIbb11a6nBlST7rQBlFjZpn-fNZ6c4IDiM7NyacdftHWvYYRSb6IgyszvPUkMmBTIQKaWGzC10O0zAWTMogM99e3raYma3T25LxoDM271vM3aGfotwdoG6A89neR_da0MWZ2bl7wGaqPIhurNoQRmP0JeRGDoDMXSMGDq9GDrZxunF0AExdKwYOrti-Bgtj94t58e4ndWBJYn8GkcyD3OhZKCECJWmRMW-ylWSJTGYYq4FpzLQIc8D7XMRwj0B15qzTDAJEW30BB2UVameISeSmhMJi0t1TMAeCR5lRIOfzmDF8yifIrJds1S2fezNOJUi_SPHpsjrbvthG7n87YbXW4akoHLNPpooVbW-TE3hTuizmART9NQyqCMJEQQPCE2mKBmxrvuDaec-vlJenDdt3QmB8CuODm_6os_R3f5ze4EO6tVavQRPuc5eNdL5C1TXuFs |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interleukin-5+Facilitates+Lung+Metastasis+by+Modulating+the+Immune+Microenvironment&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Zaynagetdinov%2C+Rinat&rft.au=Sherrill%2C+Taylor+P.&rft.au=Gleaves%2C+Linda+A.&rft.au=McLoed%2C+Allyson+G.&rft.date=2015-04-15&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=75&rft.issue=8&rft.spage=1624&rft.epage=1634&rft_id=info:doi/10.1158%2F0008-5472.CAN-14-2379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_14_2379 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |