Towards self-learning based hypotheses generation in biomedical text domain
Abstract Motivation The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible...
Saved in:
| Published in | Bioinformatics Vol. 34; no. 12; pp. 2103 - 2115 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
15.06.2018
|
| Online Access | Get full text |
| ISSN | 1367-4803 1367-4811 1460-2059 1367-4811 |
| DOI | 10.1093/bioinformatics/btx837 |
Cover
| Abstract | Abstract
Motivation
The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy.
Results
We show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention.
Availability and implementation
The relevant JAVA codes are available at: https://github.com/vishrawas/Medline–Code_v2.
Supplementary information
Supplementary data are available at Bioinformatics online. |
|---|---|
| AbstractList | Abstract
Motivation
The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy.
Results
We show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention.
Availability and implementation
The relevant JAVA codes are available at: https://github.com/vishrawas/Medline–Code_v2.
Supplementary information
Supplementary data are available at Bioinformatics online. The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy. We show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention. The relevant JAVA codes are available at: https://github.com/vishrawas/Medline-Code_v2. Supplementary data are available at Bioinformatics online. The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy.MotivationThe overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy.We show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention.ResultsWe show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention.The relevant JAVA codes are available at: https://github.com/vishrawas/Medline-Code_v2.Availability and implementationThe relevant JAVA codes are available at: https://github.com/vishrawas/Medline-Code_v2.Supplementary data are available at Bioinformatics online.Supplementary informationSupplementary data are available at Bioinformatics online. |
| Author | Ngo, Hung Q Zhang, Aidong Xun, Guangxu Jha, Kishlay Gopalakrishnan, Vishrawas |
| Author_xml | – sequence: 1 givenname: Vishrawas surname: Gopalakrishnan fullname: Gopalakrishnan, Vishrawas email: vishrawa@buffalo.edu organization: Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA – sequence: 2 givenname: Kishlay surname: Jha fullname: Jha, Kishlay email: kishlayj@buffalo.edu organization: Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA – sequence: 3 givenname: Guangxu surname: Xun fullname: Xun, Guangxu organization: Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA – sequence: 4 givenname: Hung Q surname: Ngo fullname: Ngo, Hung Q organization: Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA – sequence: 5 givenname: Aidong surname: Zhang fullname: Zhang, Aidong organization: Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29293920$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkE1PxCAURYnROH79BE2XbupAoRTiyhi_4iRuxnVDgSqGQgUanX9vtaOJbpzVY3EP972zD7addxqAYwTPEOR43hhvXOtDJ5KRcd6kd4arLbCHCIV5AUu-Pb4xrXLCIJ6B_RhfICwRIWQXzApecMwLuAful_5NBBWzqG2bWy2CM-4pa0TUKnte9T4966hj9qSdDmOVd5lx2VjeaWWksFnS7ylTvhPGHYKdVtioj9bzADxeXy0vb_PFw83d5cUilwTDlGOOygpVJaKtULgsCUdQ4lZVtGGItYpWUAlKGFOUtZwVCmumJEZCSaIEQ_gA0OnfwfVi9SasrftgOhFWNYL1p536t516sjOCpxPYB_866JjqzkSprRVO-yHWiDNSUIq-Ok7W0aEZT_0p-DY3Bs6ngAw-xqDbWpr0JSgFYey_m5R_6E0vgBPnh35D5AMHBLFj |
| CitedBy_id | crossref_primary_10_1145_3365756 crossref_primary_10_1016_j_jbi_2024_104716 crossref_primary_10_7717_peerj_cs_235 crossref_primary_10_1145_3310254 crossref_primary_10_1002_bmb_21419 crossref_primary_10_1093_bib_bbaa057 crossref_primary_10_1093_bioinformatics_btz142 crossref_primary_10_1145_3421713 |
| Cites_doi | 10.1093/database/baq036 10.1016/j.physa.2010.11.027 10.1093/bioinformatics/btw529 10.1109/21.24528 10.3233/ISU-2011-0627 10.1016/S0925-2312(98)00030-7 10.1002/(SICI)1097-4571(199806)49:8<674::AID-ASI2>3.0.CO;2-T 10.1002/asi.1104 10.1186/s13326-015-0021-5 10.1007/s11517-012-0991-8 10.1016/j.jbi.2006.06.004 10.1002/asi.10389 10.1016/j.pmr.2012.11.005 10.1093/bib/6.3.277 10.5210/disco.v5i0.3090 10.1101/gr.107524.110 10.1371/journal.pone.0102188 10.7551/mitpress/7287.003.0018 10.1186/1471-2105-5-145 10.1088/1367-2630/17/11/113037 10.2147/tcrm.2006.2.4.355 10.7326/0003-4819-134-11-200106050-00008 10.1093/bib/6.1.57 10.2337/diacare.21.3.444 10.1016/j.jbi.2015.01.014 10.1056/NEJMoa1002853 10.1353/pbm.1986.0087 10.1186/1743-0003-2-2 10.3414/ME15-01-0108 10.1002/asi.20591 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2017 |
| Copyright_xml | – notice: The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2017 |
| DBID | AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1093/bioinformatics/btx837 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1460-2059 1367-4811 |
| EndPage | 2115 |
| ExternalDocumentID | 10.1093/bioinformatics/btx837 29293920 10_1093_bioinformatics_btx837 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: IIS-1218393; IIS-1514204 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .2P 5GY AAMVS ABJNI ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS F5P HW0 Q5Y RD5 ROZ TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM M49 NPM 7X8 .-4 .GJ 1TH ABEFU ABNGD ACUKT ADTOC AFFNX AGQPQ AI. AQDSO ATTQO AZFZN C1A CAG COF ELUNK HVGLF NTWIH NVLIB O0~ O~Y PB- RNI RZF RZO UNPAY VH1 ZGI |
| ID | FETCH-LOGICAL-c430t-3915717516fad3554910c3fd76b818fd670da6488d68f982d3e8dc31adc4da813 |
| IEDL.DBID | UNPAY |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Tue Aug 19 17:41:48 EDT 2025 Thu Oct 02 06:40:03 EDT 2025 Thu Apr 03 07:04:40 EDT 2025 Tue Jul 01 03:27:24 EDT 2025 Thu Apr 24 23:03:26 EDT 2025 Wed Apr 02 07:05:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) https://academic.oup.com/journals/pages/about_us/legal/notices |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c430t-3915717516fad3554910c3fd76b818fd670da6488d68f982d3e8dc31adc4da813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/34/12/2103/25051548/btx837.pdf |
| PMID | 29293920 |
| PQID | 1984266181 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btx837 proquest_miscellaneous_1984266181 pubmed_primary_29293920 crossref_citationtrail_10_1093_bioinformatics_btx837 crossref_primary_10_1093_bioinformatics_btx837 oup_primary_10_1093_bioinformatics_btx837 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20180615 2018-06-15 |
| PublicationDateYYYYMMDD | 2018-06-15 |
| PublicationDate_xml | – month: 06 year: 2018 text: 20180615 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2018 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Cameron (2023012810011140200_btx837-B5) 2015; 54 Kastrin (2023012810011140200_btx837-B23) 2014; 9 Muneeb (2023012810011140200_btx837-B44) 2015 Miller (2023012810011140200_btx837-B41) 2012; 35 Bonato (2023012810011140200_btx837-B4) 2005; 2 Goodwin (2023012810011140200_btx837-B14) 2012 Jha (2023012810011140200_btx837-B22) 2016 Hristovski (2023012810011140200_btx837-B17) 2006 Leacock (2023012810011140200_btx837-B28) 1998; 49 Miklavčič (2023012810011140200_btx837-B39) 2012; 50 Wilkowski (2023012810011140200_btx837-B62) 2011; 2011 Chiu (2023012810011140200_btx837-B6) 2016 Tax (2023012810011140200_btx837-B57) 2015 Lü (2023012810011140200_btx837-B34) 2011; 390 Mikolov (2023012810011140200_btx837-B40) 2010 Gopalakrishnan (2023012810011140200_btx837-B15) 2016 Liben-Nowell (2023012810011140200_btx837-B33) 2007; 58 Hristovski (2023012810011140200_btx837-B18) 2010 Wren (2023012810011140200_btx837-B63) 2004; 5 Li (2023012810011140200_btx837-B31) 2011 Pakhomov (2023012810011140200_btx837-B48) 2016; 32 Pedersen (2023012810011140200_btx837-B49) 2007; 40 Rogers (2023012810011140200_btx837-B53) 2001; 134 Mnih (2023012810011140200_btx837-B42) 2009 Swanson (2023012810011140200_btx837-B56) 1986; 30 Li (2023012810011140200_btx837-B32) 2014 Goldberg (2023012810011140200_btx837-B13) 2014 Choi (2023012810011140200_btx837-B7) 2003 Bergenstal (2023012810011140200_btx837-B3) 2010; 363 Weeber (2023012810011140200_btx837-B60) 2005; 6 Jaremko (2023012810011140200_btx837-B21) 1998; 21 Hu (2023012810011140200_btx837-B20) 2010; 25 Gärtner (2023012810011140200_btx837-B12) 2007 Pratt (2023012810011140200_btx837-B50) 2003 Hu (2023012810011140200_btx837-B19) 2006 Cohen (2023012810011140200_btx837-B9) 2010; 5 Weeber (2023012810011140200_btx837-B59) 2001; 52 Sheffler (2023012810011140200_btx837-B54) 2013; 24 Rindflesch (2023012810011140200_btx837-B52) 2011; 31 Moen (2023012810011140200_btx837-B43) 2013 Yu (2023012810011140200_btx837-B65) 2016 Wu (2023012810011140200_btx837-B64) 1994 Novacek (2023012810011140200_btx837-B46) 2015 Kohonen (2023012810011140200_btx837-B25) 1998; 21 Weissenborn (2023012810011140200_btx837-B61) 2015; 6 Daminelli (2023012810011140200_btx837-B11) 2015; 17 Gordon (2023012810011140200_btx837-B16) 1998; 49 Maaten (2023012810011140200_btx837-B36) 2008; 9 Kastrin (2023012810011140200_btx837-B24) 2016; 55 Wang (2023012810011140200_btx837-B58) 2006; 2 McKenna (2023012810011140200_btx837-B38) 2010; 20 McInnes (2023012810011140200_btx837-B37) 2017 Kostoff (2023012810011140200_btx837-B26) 2005 Kunegis (2023012810011140200_btx837-B27) 2010 Lu (2023012810011140200_btx837-B35) 2011; 2011 Nguyen (2023012810011140200_btx837-B45) 2006 Levy (2023012810011140200_btx837-B29) 2014 Srinivasan (2023012810011140200_btx837-B55) 2004; 55 Rada (2023012810011140200_btx837-B51) 1989; 19 Aronson (2023012810011140200_btx837-B1) 2001 Li (2023012810011140200_btx837-B30) 2010 Collobert (2023012810011140200_btx837-B10) 2011; 12 Bengio (2023012810011140200_btx837-B2) 2003; 3 Pakhomov (2023012810011140200_btx837-B47) 2010 Cohen (2023012810011140200_btx837-B8) 2005; 6 |
| References_xml | – volume: 2011 start-page: baq036. year: 2011 ident: 2023012810011140200_btx837-B35 article-title: Pubmed and beyond: a survey of web tools for searching biomedical literature publication-title: Database doi: 10.1093/database/baq036 – volume: 390 start-page: 1150 year: 2011 ident: 2023012810011140200_btx837-B34 article-title: Link prediction in complex networks: a survey publication-title: Physica A: Statist. Mechan. Appl doi: 10.1016/j.physa.2010.11.027 – year: 2015 ident: 2023012810011140200_btx837-B46 – start-page: 232 year: 2012 ident: 2023012810011140200_btx837-B14 – start-page: 623 year: 2006 ident: 2023012810011140200_btx837-B45 – volume: 32 start-page: 3635 year: 2016 ident: 2023012810011140200_btx837-B48 article-title: Corpus domain effects on distributional semantic modeling of medical terms publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw529 – start-page: 158 year: 2015 ident: 2023012810011140200_btx837-B44 – volume: 19 start-page: 17 year: 1989 ident: 2023012810011140200_btx837-B51 article-title: Development and application of a metric on semantic nets publication-title: IEEE Trans. Syst. Man Cybernetics doi: 10.1109/21.24528 – volume: 31 start-page: 15 year: 2011 ident: 2023012810011140200_btx837-B52 article-title: Semantic MEDLINE: an advanced information management application for biomedicine publication-title: Inform. Serv. Use doi: 10.3233/ISU-2011-0627 – volume: 9 start-page: 2579 year: 2008 ident: 2023012810011140200_btx837-B36 article-title: Visualizing data using t-sne publication-title: J. Machine Learn. Res – volume: 21 start-page: 1 year: 1998 ident: 2023012810011140200_btx837-B25 article-title: The self-organizing map publication-title: Neurocomputing doi: 10.1016/S0925-2312(98)00030-7 – volume: 49 start-page: 674 year: 1998 ident: 2023012810011140200_btx837-B16 article-title: Using latent semantic indexing for literature based discovery publication-title: J. Am. Soc. Inf. Sci doi: 10.1002/(SICI)1097-4571(199806)49:8<674::AID-ASI2>3.0.CO;2-T – year: 2013 ident: 2023012810011140200_btx837-B43 – start-page: 848 year: 2011 ident: 2023012810011140200_btx837-B31 – volume: 2011 start-page: 1514 year: 2011 ident: 2023012810011140200_btx837-B62 article-title: Graph-based methods for discovery browsing with semantic predications publication-title: AMIA Annu. Symp. Proc – start-page: 380 year: 2010 ident: 2023012810011140200_btx837-B27 – volume: 52 start-page: 548 year: 2001 ident: 2023012810011140200_btx837-B59 article-title: Using concepts in literature-based discovery: simulating swanson’s Raynaud–Fish oil and Migraine–magnesium discoveries publication-title: J. Assoc. Inf. Sci. Technol doi: 10.1002/asi.1104 – volume: 6 start-page: 28. year: 2015 ident: 2023012810011140200_btx837-B61 article-title: Discovering relations between indirectly connected biomedical concepts publication-title: J. Biomed. Semantics doi: 10.1186/s13326-015-0021-5 – volume: 50 start-page: 1213 year: 2012 ident: 2023012810011140200_btx837-B39 article-title: Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors publication-title: Medical Biol. Eng. Comput doi: 10.1007/s11517-012-0991-8 – volume: 40 start-page: 288 year: 2007 ident: 2023012810011140200_btx837-B49 article-title: Measures of semantic similarity and relatedness in the biomedical domain publication-title: J. Biomed. Informatics doi: 10.1016/j.jbi.2006.06.004 – start-page: 43 year: 2016 ident: 2023012810011140200_btx837-B65 – volume: 55 start-page: 396 year: 2004 ident: 2023012810011140200_btx837-B55 article-title: Text mining: generating hypotheses from medline publication-title: J. Assoc. Inf. Sci. Technol doi: 10.1002/asi.10389 – start-page: 2177 year: 2014 ident: 2023012810011140200_btx837-B29 – volume: 24 start-page: 305 year: 2013 ident: 2023012810011140200_btx837-B54 article-title: Technological advances in interventions to enhance poststroke gait publication-title: Phys. Med. Rehab. Clin. North Am doi: 10.1016/j.pmr.2012.11.005 – year: 2010 ident: 2023012810011140200_btx837-B40 – start-page: 1081 year: 2009 ident: 2023012810011140200_btx837-B42 – year: 2007 ident: 2023012810011140200_btx837-B12 – start-page: 317 year: 2016 ident: 2023012810011140200_btx837-B22 – year: 2016 ident: 2023012810011140200_btx837-B6 – start-page: 23 year: 2016 ident: 2023012810011140200_btx837-B15 – start-page: 53 volume-title: In: Linking Literature, Information, and Knowledge for Biology: Workshop of the BioLink Special Interest Group, ISMB/ECCB 2009, Stockholm, June 28–29, 2009, Revised Selected Papers. year: 2010 ident: 2023012810011140200_btx837-B18 – volume: 6 start-page: 277 year: 2005 ident: 2023012810011140200_btx837-B60 article-title: Online tools to support literature-based discovery in the life sciences publication-title: Brief. Bioinformatics doi: 10.1093/bib/6.3.277 – volume: 5 start-page: 21 year: 2010 ident: 2023012810011140200_btx837-B9 article-title: EpiphaNet: an interactive tool to support biomedical discoveries publication-title: J. Biomed. Discov. Collab doi: 10.5210/disco.v5i0.3090 – volume: 20 start-page: 1297 year: 2010 ident: 2023012810011140200_btx837-B38 article-title: The genome analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing data publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 9 start-page: e102188. year: 2014 ident: 2023012810011140200_btx837-B23 article-title: Large-scale structure of a network of co-occurring mesh terms: statistical analysis of macroscopic properties publication-title: PLoS One doi: 10.1371/journal.pone.0102188 – volume: 12 start-page: 2493 year: 2011 ident: 2023012810011140200_btx837-B10 article-title: Natural language processing (almost) from scratch publication-title: J. Machine Learn. Res – year: 2005 ident: 2023012810011140200_btx837-B26 – volume: 49 start-page: 265 year: 1998 ident: 2023012810011140200_btx837-B28 article-title: Combining local context and wordnet similarity for word sense identification publication-title: WordNet: Electronic Lexical Database doi: 10.7551/mitpress/7287.003.0018 – start-page: 133 year: 1994 ident: 2023012810011140200_btx837-B64 – start-page: 349 year: 2006 ident: 2023012810011140200_btx837-B17 article-title: Exploiting semantic relations for literature-based discovery publication-title: AMIA Annu. Symp. Proc – volume: 5 start-page: 145. year: 2004 ident: 2023012810011140200_btx837-B63 article-title: Extending the mutual information measure to rank inferred literature relationships publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-145 – volume: 3 start-page: 1137 year: 2003 ident: 2023012810011140200_btx837-B2 article-title: A neural probabilistic language model publication-title: J. Machine Learn. Res – volume: 17 start-page: 113037. year: 2015 ident: 2023012810011140200_btx837-B11 article-title: Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks publication-title: New J. Phys doi: 10.1088/1367-2630/17/11/113037 – volume: 2 start-page: 355. year: 2006 ident: 2023012810011140200_btx837-B58 article-title: In vitro fertilization (ivf): a review of 3 decades of clinical innovation and technological advancement publication-title: Therapeutics Clin. Risk Manage doi: 10.2147/tcrm.2006.2.4.355 – volume: 25 start-page: 207 year: 2010 ident: 2023012810011140200_btx837-B20 article-title: Mining hidden connections among biomedical concepts from disjoint biomedical literature sets through semantic-based association rule publication-title: Int. J. Intelligent Syst – start-page: 200 year: 2006 ident: 2023012810011140200_btx837-B19 – start-page: 17 year: 2001 ident: 2023012810011140200_btx837-B1 – start-page: 572 volume-title: AMIA Annu. Symp. Proc year: 2010 ident: 2023012810011140200_btx837-B47 – volume: 134 start-page: 1024 year: 2001 ident: 2023012810011140200_btx837-B53 article-title: Home monitoring service improves mean arterial pressure in patients with essential hypertensiona randomized, controlled trial publication-title: Ann. Internal Med doi: 10.7326/0003-4819-134-11-200106050-00008 – volume: 6 start-page: 57 year: 2005 ident: 2023012810011140200_btx837-B8 article-title: A survey of current work in biomedical text mining publication-title: Brief. Bioinformatics doi: 10.1093/bib/6.1.57 – volume: 21 start-page: 444 year: 1998 ident: 2023012810011140200_btx837-B21 article-title: Advances toward the implantable artificial pancreas for treatment of diabetes publication-title: Diabetes Care doi: 10.2337/diacare.21.3.444 – volume: 35 start-page: 279 year: 2012 ident: 2023012810011140200_btx837-B41 article-title: A closed literature-based discovery technique finds a mechanistic link between hypogonadism and diminished sleep quality in aging men publication-title: Sleep – start-page: 371 year: 2003 ident: 2023012810011140200_btx837-B7 – start-page: 289 year: 2014 ident: 2023012810011140200_btx837-B32 – start-page: 105 year: 2003 ident: 2023012810011140200_btx837-B50 – volume: 54 start-page: 141 year: 2015 ident: 2023012810011140200_btx837-B5 article-title: Context-driven automatic subgraph creation for literature-based discovery publication-title: J. Biomed. Inform doi: 10.1016/j.jbi.2015.01.014 – volume: 363 start-page: 311 year: 2010 ident: 2023012810011140200_btx837-B3 article-title: Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes publication-title: N. Engl. J. Med doi: 10.1056/NEJMoa1002853 – volume: 30 start-page: 7 year: 1986 ident: 2023012810011140200_btx837-B56 article-title: Fish oil, Raynaud’s syndrome, and undiscovered public knowledge publication-title: Perspect. Biol. Med doi: 10.1353/pbm.1986.0087 – year: 2015 ident: 2023012810011140200_btx837-B57 – volume: 2 start-page: 2. year: 2005 ident: 2023012810011140200_btx837-B4 article-title: Advances in wearable technology and applications in physical medicine and rehabilitation publication-title: J. Neuroeng. Rehab doi: 10.1186/1743-0003-2-2 – start-page: 283 year: 2010 ident: 2023012810011140200_btx837-B30 – year: 2014 ident: 2023012810011140200_btx837-B13 – volume: 55 start-page: 340 year: 2016 ident: 2023012810011140200_btx837-B24 article-title: Link prediction on a network of co-occurring mesh terms: towards literature-based discovery publication-title: Methods Inform. Med doi: 10.3414/ME15-01-0108 – volume: 58 start-page: 1019 year: 2007 ident: 2023012810011140200_btx837-B33 article-title: The link-prediction problem for social networks publication-title: J. Assoc. Inform. Sci. Technol doi: 10.1002/asi.20591 – year: 2017 ident: 2023012810011140200_btx837-B37 |
| SSID | ssj0051444 ssj0005056 |
| Score | 2.3612013 |
| Snippet | Abstract
Motivation
The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed.... The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is... |
| SourceID | unpaywall proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2103 |
| Title | Towards self-learning based hypotheses generation in biomedical text domain |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29293920 https://www.proquest.com/docview/1984266181 https://academic.oup.com/bioinformatics/article-pdf/34/12/2103/25051548/btx837.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1460-2059 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1460-2059 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4tXSHEgfejCFZG4sLBSR2njnNcIVYLKxaEWqmcIj_ipaKkFUkF5dczrp1quxcWiUsUKR5btseZb-SZbwBeSVEaxo2kUipHc5cZKp02dGRFxoxiipc-3_nDuTid5u9n49kBfO5zYVSMCk_6lAY9X0YKUU9bnMb1pCvrUp6nLEvRZ-GpN-QefKe6-4UuV4Kfb8ChGCM-H8Dh9PzT8ZeQgFXQXG7LJcd3xvq0npJfHSv0tWew9pLgLmHR23Br3azU5qdaLC7Zp5O70PYzC2Ep35J1pxPz-wrp4_-d-j24E-EsOQ5C9-Ggbh7AzVDgcvMQzibbqNyWtPXC0Vih4oJ402nJ183Kp3-1dUsutuTXXkfIvCGBEsBrD_FxKcQuv6t58wimJ28nb05pLN9ATc5HHfXU8-gsjplwynpYg8jEcGcLoRElOCuKkVUCfyBWSFfKzPJaWsOZsia3SjL-GAbNsqmfAhEIXLg02tOJ5UVpdaa1c064omAKLewQ8n6PKhO5zX2JjUUV7th5tb-WVVirISQ7sVUg9_ibwGvcnOu2fdmrSYVH1t_DqKZertuKlXKLiyQbwpOgP7suM4SrCFlHQ0h3CnW98Z79s8RzGHQ_1vULRFWdPkJ_4t0ZPicfZ0fxyPwB-Ycr-g |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH6CIoR24McYWxGbjLTLDk7qOHWcI0IgxASaJiqxU-QfMVSUtFpSQfnrsWunolzGJG6RkmfL9nPeZ_l93wP4zlmuCFUccy4MTk2iMDdS4Z5mCVGCCJo7vvPFJTsbpOfX_esV-N1yYUTICo9aSoMcjoOEqJMtjsN84ok2MU1jksT2zEJjF8gd-I5l82iPXJF9vQprrG_xeQfWBpe_jv54AlaGUz4vlxyeCWlpPTl93ZdvaylgLZHgXmDRD7AxrSZi9iBGoxfx6XQL6nZkPi3lLpo2MlJPr0Qf33fo27AZ4Cw68kY7sFJWH2HdF7ic7cLPq3lWbo3qcmRwqFBxg1zo1Oh2NnH0r7qs0c1c_Nr5CBpWyEsCOO9BLi8F6fG9GFafYHB6cnV8hkP5BqxS2muwk563h8U-YUZoB2ssMlHU6IxJixKMZllPC2Z_IJpxk_NE05JrRYnQKtWCE7oHnWpclV8AMQtcKFfSyYmlWa5lIqUxhpksI8JG2C6k7RoVKmibuxIbo8LfsdNieS4LP1ddiBZmEy_u8S-DH3Zx3vrtYesmhd2y7h5GVOV4Whck53NcxEkXPnv_WTSZWLhqIWuvC_HCod7W3_5_WxxAp_k7Lb9aVNXIb2GbPAP7VCnl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+self-learning+based+hypotheses+generation+in+biomedical+text+domain&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Gopalakrishnan%2C+Vishrawas&rft.au=Jha%2C+Kishlay&rft.au=Xun%2C+Guangxu&rft.au=Ngo%2C+Hung+Q&rft.date=2018-06-15&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=34&rft.issue=12&rft.spage=2103&rft.epage=2115&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtx837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btx837 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |