Towards self-learning based hypotheses generation in biomedical text domain

Abstract Motivation The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 34; no. 12; pp. 2103 - 2115
Main Authors Gopalakrishnan, Vishrawas, Jha, Kishlay, Xun, Guangxu, Ngo, Hung Q, Zhang, Aidong
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.06.2018
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btx837

Cover

Abstract Abstract Motivation The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy. Results We show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention. Availability and implementation The relevant JAVA codes are available at: https://github.com/vishrawas/Medline–Code_v2. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Abstract Motivation The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy. Results We show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention. Availability and implementation The relevant JAVA codes are available at: https://github.com/vishrawas/Medline–Code_v2. Supplementary information Supplementary data are available at Bioinformatics online.
The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy. We show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention. The relevant JAVA codes are available at: https://github.com/vishrawas/Medline-Code_v2. Supplementary data are available at Bioinformatics online.
The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy.MotivationThe overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy.We show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention.ResultsWe show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention.The relevant JAVA codes are available at: https://github.com/vishrawas/Medline-Code_v2.Availability and implementationThe relevant JAVA codes are available at: https://github.com/vishrawas/Medline-Code_v2.Supplementary data are available at Bioinformatics online.Supplementary informationSupplementary data are available at Bioinformatics online.
Author Ngo, Hung Q
Zhang, Aidong
Xun, Guangxu
Jha, Kishlay
Gopalakrishnan, Vishrawas
Author_xml – sequence: 1
  givenname: Vishrawas
  surname: Gopalakrishnan
  fullname: Gopalakrishnan, Vishrawas
  email: vishrawa@buffalo.edu
  organization: Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA
– sequence: 2
  givenname: Kishlay
  surname: Jha
  fullname: Jha, Kishlay
  email: kishlayj@buffalo.edu
  organization: Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA
– sequence: 3
  givenname: Guangxu
  surname: Xun
  fullname: Xun, Guangxu
  organization: Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA
– sequence: 4
  givenname: Hung Q
  surname: Ngo
  fullname: Ngo, Hung Q
  organization: Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA
– sequence: 5
  givenname: Aidong
  surname: Zhang
  fullname: Zhang, Aidong
  organization: Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29293920$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1PxCAURYnROH79BE2XbupAoRTiyhi_4iRuxnVDgSqGQgUanX9vtaOJbpzVY3EP972zD7addxqAYwTPEOR43hhvXOtDJ5KRcd6kd4arLbCHCIV5AUu-Pb4xrXLCIJ6B_RhfICwRIWQXzApecMwLuAful_5NBBWzqG2bWy2CM-4pa0TUKnte9T4966hj9qSdDmOVd5lx2VjeaWWksFnS7ylTvhPGHYKdVtioj9bzADxeXy0vb_PFw83d5cUilwTDlGOOygpVJaKtULgsCUdQ4lZVtGGItYpWUAlKGFOUtZwVCmumJEZCSaIEQ_gA0OnfwfVi9SasrftgOhFWNYL1p536t516sjOCpxPYB_866JjqzkSprRVO-yHWiDNSUIq-Ok7W0aEZT_0p-DY3Bs6ngAw-xqDbWpr0JSgFYey_m5R_6E0vgBPnh35D5AMHBLFj
CitedBy_id crossref_primary_10_1145_3365756
crossref_primary_10_1016_j_jbi_2024_104716
crossref_primary_10_7717_peerj_cs_235
crossref_primary_10_1145_3310254
crossref_primary_10_1002_bmb_21419
crossref_primary_10_1093_bib_bbaa057
crossref_primary_10_1093_bioinformatics_btz142
crossref_primary_10_1145_3421713
Cites_doi 10.1093/database/baq036
10.1016/j.physa.2010.11.027
10.1093/bioinformatics/btw529
10.1109/21.24528
10.3233/ISU-2011-0627
10.1016/S0925-2312(98)00030-7
10.1002/(SICI)1097-4571(199806)49:8<674::AID-ASI2>3.0.CO;2-T
10.1002/asi.1104
10.1186/s13326-015-0021-5
10.1007/s11517-012-0991-8
10.1016/j.jbi.2006.06.004
10.1002/asi.10389
10.1016/j.pmr.2012.11.005
10.1093/bib/6.3.277
10.5210/disco.v5i0.3090
10.1101/gr.107524.110
10.1371/journal.pone.0102188
10.7551/mitpress/7287.003.0018
10.1186/1471-2105-5-145
10.1088/1367-2630/17/11/113037
10.2147/tcrm.2006.2.4.355
10.7326/0003-4819-134-11-200106050-00008
10.1093/bib/6.1.57
10.2337/diacare.21.3.444
10.1016/j.jbi.2015.01.014
10.1056/NEJMoa1002853
10.1353/pbm.1986.0087
10.1186/1743-0003-2-2
10.3414/ME15-01-0108
10.1002/asi.20591
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2017
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2017
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btx837
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 2115
ExternalDocumentID 10.1093/bioinformatics/btx837
29293920
10_1093_bioinformatics_btx837
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-1218393; IIS-1514204
  funderid: 10.13039/100000001
GroupedDBID -~X
.2P
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
F5P
HW0
Q5Y
RD5
ROZ
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
M49
NPM
7X8
.-4
.GJ
1TH
ABEFU
ABNGD
ACUKT
ADTOC
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
C1A
CAG
COF
ELUNK
HVGLF
NTWIH
NVLIB
O0~
O~Y
PB-
RNI
RZF
RZO
UNPAY
VH1
ZGI
ID FETCH-LOGICAL-c430t-3915717516fad3554910c3fd76b818fd670da6488d68f982d3e8dc31adc4da813
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Tue Aug 19 17:41:48 EDT 2025
Thu Oct 02 06:40:03 EDT 2025
Thu Apr 03 07:04:40 EDT 2025
Tue Jul 01 03:27:24 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Wed Apr 02 07:05:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)
https://academic.oup.com/journals/pages/about_us/legal/notices
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-3915717516fad3554910c3fd76b818fd670da6488d68f982d3e8dc31adc4da813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/34/12/2103/25051548/btx837.pdf
PMID 29293920
PQID 1984266181
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btx837
proquest_miscellaneous_1984266181
pubmed_primary_29293920
crossref_citationtrail_10_1093_bioinformatics_btx837
crossref_primary_10_1093_bioinformatics_btx837
oup_primary_10_1093_bioinformatics_btx837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180615
2018-06-15
PublicationDateYYYYMMDD 2018-06-15
PublicationDate_xml – month: 06
  year: 2018
  text: 20180615
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Cameron (2023012810011140200_btx837-B5) 2015; 54
Kastrin (2023012810011140200_btx837-B23) 2014; 9
Muneeb (2023012810011140200_btx837-B44) 2015
Miller (2023012810011140200_btx837-B41) 2012; 35
Bonato (2023012810011140200_btx837-B4) 2005; 2
Goodwin (2023012810011140200_btx837-B14) 2012
Jha (2023012810011140200_btx837-B22) 2016
Hristovski (2023012810011140200_btx837-B17) 2006
Leacock (2023012810011140200_btx837-B28) 1998; 49
Miklavčič (2023012810011140200_btx837-B39) 2012; 50
Wilkowski (2023012810011140200_btx837-B62) 2011; 2011
Chiu (2023012810011140200_btx837-B6) 2016
Tax (2023012810011140200_btx837-B57) 2015
Lü (2023012810011140200_btx837-B34) 2011; 390
Mikolov (2023012810011140200_btx837-B40) 2010
Gopalakrishnan (2023012810011140200_btx837-B15) 2016
Liben-Nowell (2023012810011140200_btx837-B33) 2007; 58
Hristovski (2023012810011140200_btx837-B18) 2010
Wren (2023012810011140200_btx837-B63) 2004; 5
Li (2023012810011140200_btx837-B31) 2011
Pakhomov (2023012810011140200_btx837-B48) 2016; 32
Pedersen (2023012810011140200_btx837-B49) 2007; 40
Rogers (2023012810011140200_btx837-B53) 2001; 134
Mnih (2023012810011140200_btx837-B42) 2009
Swanson (2023012810011140200_btx837-B56) 1986; 30
Li (2023012810011140200_btx837-B32) 2014
Goldberg (2023012810011140200_btx837-B13) 2014
Choi (2023012810011140200_btx837-B7) 2003
Bergenstal (2023012810011140200_btx837-B3) 2010; 363
Weeber (2023012810011140200_btx837-B60) 2005; 6
Jaremko (2023012810011140200_btx837-B21) 1998; 21
Hu (2023012810011140200_btx837-B20) 2010; 25
Gärtner (2023012810011140200_btx837-B12) 2007
Pratt (2023012810011140200_btx837-B50) 2003
Hu (2023012810011140200_btx837-B19) 2006
Cohen (2023012810011140200_btx837-B9) 2010; 5
Weeber (2023012810011140200_btx837-B59) 2001; 52
Sheffler (2023012810011140200_btx837-B54) 2013; 24
Rindflesch (2023012810011140200_btx837-B52) 2011; 31
Moen (2023012810011140200_btx837-B43) 2013
Yu (2023012810011140200_btx837-B65) 2016
Wu (2023012810011140200_btx837-B64) 1994
Novacek (2023012810011140200_btx837-B46) 2015
Kohonen (2023012810011140200_btx837-B25) 1998; 21
Weissenborn (2023012810011140200_btx837-B61) 2015; 6
Daminelli (2023012810011140200_btx837-B11) 2015; 17
Gordon (2023012810011140200_btx837-B16) 1998; 49
Maaten (2023012810011140200_btx837-B36) 2008; 9
Kastrin (2023012810011140200_btx837-B24) 2016; 55
Wang (2023012810011140200_btx837-B58) 2006; 2
McKenna (2023012810011140200_btx837-B38) 2010; 20
McInnes (2023012810011140200_btx837-B37) 2017
Kostoff (2023012810011140200_btx837-B26) 2005
Kunegis (2023012810011140200_btx837-B27) 2010
Lu (2023012810011140200_btx837-B35) 2011; 2011
Nguyen (2023012810011140200_btx837-B45) 2006
Levy (2023012810011140200_btx837-B29) 2014
Srinivasan (2023012810011140200_btx837-B55) 2004; 55
Rada (2023012810011140200_btx837-B51) 1989; 19
Aronson (2023012810011140200_btx837-B1) 2001
Li (2023012810011140200_btx837-B30) 2010
Collobert (2023012810011140200_btx837-B10) 2011; 12
Bengio (2023012810011140200_btx837-B2) 2003; 3
Pakhomov (2023012810011140200_btx837-B47) 2010
Cohen (2023012810011140200_btx837-B8) 2005; 6
References_xml – volume: 2011
  start-page: baq036.
  year: 2011
  ident: 2023012810011140200_btx837-B35
  article-title: Pubmed and beyond: a survey of web tools for searching biomedical literature
  publication-title: Database
  doi: 10.1093/database/baq036
– volume: 390
  start-page: 1150
  year: 2011
  ident: 2023012810011140200_btx837-B34
  article-title: Link prediction in complex networks: a survey
  publication-title: Physica A: Statist. Mechan. Appl
  doi: 10.1016/j.physa.2010.11.027
– year: 2015
  ident: 2023012810011140200_btx837-B46
– start-page: 232
  year: 2012
  ident: 2023012810011140200_btx837-B14
– start-page: 623
  year: 2006
  ident: 2023012810011140200_btx837-B45
– volume: 32
  start-page: 3635
  year: 2016
  ident: 2023012810011140200_btx837-B48
  article-title: Corpus domain effects on distributional semantic modeling of medical terms
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw529
– start-page: 158
  year: 2015
  ident: 2023012810011140200_btx837-B44
– volume: 19
  start-page: 17
  year: 1989
  ident: 2023012810011140200_btx837-B51
  article-title: Development and application of a metric on semantic nets
  publication-title: IEEE Trans. Syst. Man Cybernetics
  doi: 10.1109/21.24528
– volume: 31
  start-page: 15
  year: 2011
  ident: 2023012810011140200_btx837-B52
  article-title: Semantic MEDLINE: an advanced information management application for biomedicine
  publication-title: Inform. Serv. Use
  doi: 10.3233/ISU-2011-0627
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2023012810011140200_btx837-B36
  article-title: Visualizing data using t-sne
  publication-title: J. Machine Learn. Res
– volume: 21
  start-page: 1
  year: 1998
  ident: 2023012810011140200_btx837-B25
  article-title: The self-organizing map
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(98)00030-7
– volume: 49
  start-page: 674
  year: 1998
  ident: 2023012810011140200_btx837-B16
  article-title: Using latent semantic indexing for literature based discovery
  publication-title: J. Am. Soc. Inf. Sci
  doi: 10.1002/(SICI)1097-4571(199806)49:8<674::AID-ASI2>3.0.CO;2-T
– year: 2013
  ident: 2023012810011140200_btx837-B43
– start-page: 848
  year: 2011
  ident: 2023012810011140200_btx837-B31
– volume: 2011
  start-page: 1514
  year: 2011
  ident: 2023012810011140200_btx837-B62
  article-title: Graph-based methods for discovery browsing with semantic predications
  publication-title: AMIA Annu. Symp. Proc
– start-page: 380
  year: 2010
  ident: 2023012810011140200_btx837-B27
– volume: 52
  start-page: 548
  year: 2001
  ident: 2023012810011140200_btx837-B59
  article-title: Using concepts in literature-based discovery: simulating swanson’s Raynaud–Fish oil and Migraine–magnesium discoveries
  publication-title: J. Assoc. Inf. Sci. Technol
  doi: 10.1002/asi.1104
– volume: 6
  start-page: 28.
  year: 2015
  ident: 2023012810011140200_btx837-B61
  article-title: Discovering relations between indirectly connected biomedical concepts
  publication-title: J. Biomed. Semantics
  doi: 10.1186/s13326-015-0021-5
– volume: 50
  start-page: 1213
  year: 2012
  ident: 2023012810011140200_btx837-B39
  article-title: Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors
  publication-title: Medical Biol. Eng. Comput
  doi: 10.1007/s11517-012-0991-8
– volume: 40
  start-page: 288
  year: 2007
  ident: 2023012810011140200_btx837-B49
  article-title: Measures of semantic similarity and relatedness in the biomedical domain
  publication-title: J. Biomed. Informatics
  doi: 10.1016/j.jbi.2006.06.004
– start-page: 43
  year: 2016
  ident: 2023012810011140200_btx837-B65
– volume: 55
  start-page: 396
  year: 2004
  ident: 2023012810011140200_btx837-B55
  article-title: Text mining: generating hypotheses from medline
  publication-title: J. Assoc. Inf. Sci. Technol
  doi: 10.1002/asi.10389
– start-page: 2177
  year: 2014
  ident: 2023012810011140200_btx837-B29
– volume: 24
  start-page: 305
  year: 2013
  ident: 2023012810011140200_btx837-B54
  article-title: Technological advances in interventions to enhance poststroke gait
  publication-title: Phys. Med. Rehab. Clin. North Am
  doi: 10.1016/j.pmr.2012.11.005
– year: 2010
  ident: 2023012810011140200_btx837-B40
– start-page: 1081
  year: 2009
  ident: 2023012810011140200_btx837-B42
– year: 2007
  ident: 2023012810011140200_btx837-B12
– start-page: 317
  year: 2016
  ident: 2023012810011140200_btx837-B22
– year: 2016
  ident: 2023012810011140200_btx837-B6
– start-page: 23
  year: 2016
  ident: 2023012810011140200_btx837-B15
– start-page: 53
  volume-title: In: Linking Literature, Information, and Knowledge for Biology: Workshop of the BioLink Special Interest Group, ISMB/ECCB 2009, Stockholm, June 28–29, 2009, Revised Selected Papers.
  year: 2010
  ident: 2023012810011140200_btx837-B18
– volume: 6
  start-page: 277
  year: 2005
  ident: 2023012810011140200_btx837-B60
  article-title: Online tools to support literature-based discovery in the life sciences
  publication-title: Brief. Bioinformatics
  doi: 10.1093/bib/6.3.277
– volume: 5
  start-page: 21
  year: 2010
  ident: 2023012810011140200_btx837-B9
  article-title: EpiphaNet: an interactive tool to support biomedical discoveries
  publication-title: J. Biomed. Discov. Collab
  doi: 10.5210/disco.v5i0.3090
– volume: 20
  start-page: 1297
  year: 2010
  ident: 2023012810011140200_btx837-B38
  article-title: The genome analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing data
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 9
  start-page: e102188.
  year: 2014
  ident: 2023012810011140200_btx837-B23
  article-title: Large-scale structure of a network of co-occurring mesh terms: statistical analysis of macroscopic properties
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0102188
– volume: 12
  start-page: 2493
  year: 2011
  ident: 2023012810011140200_btx837-B10
  article-title: Natural language processing (almost) from scratch
  publication-title: J. Machine Learn. Res
– year: 2005
  ident: 2023012810011140200_btx837-B26
– volume: 49
  start-page: 265
  year: 1998
  ident: 2023012810011140200_btx837-B28
  article-title: Combining local context and wordnet similarity for word sense identification
  publication-title: WordNet: Electronic Lexical Database
  doi: 10.7551/mitpress/7287.003.0018
– start-page: 133
  year: 1994
  ident: 2023012810011140200_btx837-B64
– start-page: 349
  year: 2006
  ident: 2023012810011140200_btx837-B17
  article-title: Exploiting semantic relations for literature-based discovery
  publication-title: AMIA Annu. Symp. Proc
– volume: 5
  start-page: 145.
  year: 2004
  ident: 2023012810011140200_btx837-B63
  article-title: Extending the mutual information measure to rank inferred literature relationships
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-145
– volume: 3
  start-page: 1137
  year: 2003
  ident: 2023012810011140200_btx837-B2
  article-title: A neural probabilistic language model
  publication-title: J. Machine Learn. Res
– volume: 17
  start-page: 113037.
  year: 2015
  ident: 2023012810011140200_btx837-B11
  article-title: Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks
  publication-title: New J. Phys
  doi: 10.1088/1367-2630/17/11/113037
– volume: 2
  start-page: 355.
  year: 2006
  ident: 2023012810011140200_btx837-B58
  article-title: In vitro fertilization (ivf): a review of 3 decades of clinical innovation and technological advancement
  publication-title: Therapeutics Clin. Risk Manage
  doi: 10.2147/tcrm.2006.2.4.355
– volume: 25
  start-page: 207
  year: 2010
  ident: 2023012810011140200_btx837-B20
  article-title: Mining hidden connections among biomedical concepts from disjoint biomedical literature sets through semantic-based association rule
  publication-title: Int. J. Intelligent Syst
– start-page: 200
  year: 2006
  ident: 2023012810011140200_btx837-B19
– start-page: 17
  year: 2001
  ident: 2023012810011140200_btx837-B1
– start-page: 572
  volume-title: AMIA Annu. Symp. Proc
  year: 2010
  ident: 2023012810011140200_btx837-B47
– volume: 134
  start-page: 1024
  year: 2001
  ident: 2023012810011140200_btx837-B53
  article-title: Home monitoring service improves mean arterial pressure in patients with essential hypertensiona randomized, controlled trial
  publication-title: Ann. Internal Med
  doi: 10.7326/0003-4819-134-11-200106050-00008
– volume: 6
  start-page: 57
  year: 2005
  ident: 2023012810011140200_btx837-B8
  article-title: A survey of current work in biomedical text mining
  publication-title: Brief. Bioinformatics
  doi: 10.1093/bib/6.1.57
– volume: 21
  start-page: 444
  year: 1998
  ident: 2023012810011140200_btx837-B21
  article-title: Advances toward the implantable artificial pancreas for treatment of diabetes
  publication-title: Diabetes Care
  doi: 10.2337/diacare.21.3.444
– volume: 35
  start-page: 279
  year: 2012
  ident: 2023012810011140200_btx837-B41
  article-title: A closed literature-based discovery technique finds a mechanistic link between hypogonadism and diminished sleep quality in aging men
  publication-title: Sleep
– start-page: 371
  year: 2003
  ident: 2023012810011140200_btx837-B7
– start-page: 289
  year: 2014
  ident: 2023012810011140200_btx837-B32
– start-page: 105
  year: 2003
  ident: 2023012810011140200_btx837-B50
– volume: 54
  start-page: 141
  year: 2015
  ident: 2023012810011140200_btx837-B5
  article-title: Context-driven automatic subgraph creation for literature-based discovery
  publication-title: J. Biomed. Inform
  doi: 10.1016/j.jbi.2015.01.014
– volume: 363
  start-page: 311
  year: 2010
  ident: 2023012810011140200_btx837-B3
  article-title: Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMoa1002853
– volume: 30
  start-page: 7
  year: 1986
  ident: 2023012810011140200_btx837-B56
  article-title: Fish oil, Raynaud’s syndrome, and undiscovered public knowledge
  publication-title: Perspect. Biol. Med
  doi: 10.1353/pbm.1986.0087
– year: 2015
  ident: 2023012810011140200_btx837-B57
– volume: 2
  start-page: 2.
  year: 2005
  ident: 2023012810011140200_btx837-B4
  article-title: Advances in wearable technology and applications in physical medicine and rehabilitation
  publication-title: J. Neuroeng. Rehab
  doi: 10.1186/1743-0003-2-2
– start-page: 283
  year: 2010
  ident: 2023012810011140200_btx837-B30
– year: 2014
  ident: 2023012810011140200_btx837-B13
– volume: 55
  start-page: 340
  year: 2016
  ident: 2023012810011140200_btx837-B24
  article-title: Link prediction on a network of co-occurring mesh terms: towards literature-based discovery
  publication-title: Methods Inform. Med
  doi: 10.3414/ME15-01-0108
– volume: 58
  start-page: 1019
  year: 2007
  ident: 2023012810011140200_btx837-B33
  article-title: The link-prediction problem for social networks
  publication-title: J. Assoc. Inform. Sci. Technol
  doi: 10.1002/asi.20591
– year: 2017
  ident: 2023012810011140200_btx837-B37
SSID ssj0051444
ssj0005056
Score 2.3612013
Snippet Abstract Motivation The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed....
The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is...
SourceID unpaywall
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2103
Title Towards self-learning based hypotheses generation in biomedical text domain
URI https://www.ncbi.nlm.nih.gov/pubmed/29293920
https://www.proquest.com/docview/1984266181
https://academic.oup.com/bioinformatics/article-pdf/34/12/2103/25051548/btx837.pdf
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4tXSHEgfejCFZG4sLBSR2njnNcIVYLKxaEWqmcIj_ipaKkFUkF5dczrp1quxcWiUsUKR5btseZb-SZbwBeSVEaxo2kUipHc5cZKp02dGRFxoxiipc-3_nDuTid5u9n49kBfO5zYVSMCk_6lAY9X0YKUU9bnMb1pCvrUp6nLEvRZ-GpN-QefKe6-4UuV4Kfb8ChGCM-H8Dh9PzT8ZeQgFXQXG7LJcd3xvq0npJfHSv0tWew9pLgLmHR23Br3azU5qdaLC7Zp5O70PYzC2Ep35J1pxPz-wrp4_-d-j24E-EsOQ5C9-Ggbh7AzVDgcvMQzibbqNyWtPXC0Vih4oJ402nJ183Kp3-1dUsutuTXXkfIvCGBEsBrD_FxKcQuv6t58wimJ28nb05pLN9ATc5HHfXU8-gsjplwynpYg8jEcGcLoRElOCuKkVUCfyBWSFfKzPJaWsOZsia3SjL-GAbNsqmfAhEIXLg02tOJ5UVpdaa1c064omAKLewQ8n6PKhO5zX2JjUUV7th5tb-WVVirISQ7sVUg9_ibwGvcnOu2fdmrSYVH1t_DqKZertuKlXKLiyQbwpOgP7suM4SrCFlHQ0h3CnW98Z79s8RzGHQ_1vULRFWdPkJ_4t0ZPicfZ0fxyPwB-Ycr-g
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH6CIoR24McYWxGbjLTLDk7qOHWcI0IgxASaJiqxU-QfMVSUtFpSQfnrsWunolzGJG6RkmfL9nPeZ_l93wP4zlmuCFUccy4MTk2iMDdS4Z5mCVGCCJo7vvPFJTsbpOfX_esV-N1yYUTICo9aSoMcjoOEqJMtjsN84ok2MU1jksT2zEJjF8gd-I5l82iPXJF9vQprrG_xeQfWBpe_jv54AlaGUz4vlxyeCWlpPTl93ZdvaylgLZHgXmDRD7AxrSZi9iBGoxfx6XQL6nZkPi3lLpo2MlJPr0Qf33fo27AZ4Cw68kY7sFJWH2HdF7ic7cLPq3lWbo3qcmRwqFBxg1zo1Oh2NnH0r7qs0c1c_Nr5CBpWyEsCOO9BLi8F6fG9GFafYHB6cnV8hkP5BqxS2muwk563h8U-YUZoB2ssMlHU6IxJixKMZllPC2Z_IJpxk_NE05JrRYnQKtWCE7oHnWpclV8AMQtcKFfSyYmlWa5lIqUxhpksI8JG2C6k7RoVKmibuxIbo8LfsdNieS4LP1ddiBZmEy_u8S-DH3Zx3vrtYesmhd2y7h5GVOV4Whck53NcxEkXPnv_WTSZWLhqIWuvC_HCod7W3_5_WxxAp_k7Lb9aVNXIb2GbPAP7VCnl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+self-learning+based+hypotheses+generation+in+biomedical+text+domain&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Gopalakrishnan%2C+Vishrawas&rft.au=Jha%2C+Kishlay&rft.au=Xun%2C+Guangxu&rft.au=Ngo%2C+Hung+Q&rft.date=2018-06-15&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=34&rft.issue=12&rft.spage=2103&rft.epage=2115&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtx837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btx837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon