Intelligent Diagnostic Prediction and Classification Models for Detection of Kidney Disease
Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early stages of the condition, the patient has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this cond...
Saved in:
| Published in | Healthcare (Basel) Vol. 10; no. 2; p. 371 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
14.02.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-9032 2227-9032 |
| DOI | 10.3390/healthcare10020371 |
Cover
| Abstract | Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early stages of the condition, the patient has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this condition early in order to save the lives of their patients. To detect this illness early on, researchers have used a variety of methods. Prediction analysis based on machine learning has been shown to be more accurate than other methodologies. This research can help us to better understand global disparities in kidney disease, as well as what we can do to address them and coordinate our efforts to achieve global kidney health equity. This study provides an excellent feature-based prediction model for detecting kidney disease. Various machine learning algorithms, including k-nearest neighbors algorithm (KNN), artificial neural networks (ANN), support vector machines (SVM), naive bayes (NB), and others, as well as Re-cursive Feature Elimination (RFE) and Chi-Square test feature-selection techniques, were used to build and analyze various prediction models on a publicly available dataset of healthy and kidney disease patients. The studies found that a logistic regression-based prediction model with optimal features chosen using the Chi-Square technique had the highest accuracy of 98.75 percent. White Blood Cell Count (Wbcc), Blood Glucose Random (bgr), Blood Urea (Bu), Serum Creatinine (Sc), Packed Cell Volume (Pcv), Albumin (Al), Hemoglobin (Hemo), Age, Sugar (Su), Hypertension (Htn), Diabetes Mellitus (Dm), and Blood Pressure (Bp) are examples of these traits. |
|---|---|
| AbstractList | Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early stages of the condition, the patient has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this condition early in order to save the lives of their patients. To detect this illness early on, researchers have used a variety of methods. Prediction analysis based on machine learning has been shown to be more accurate than other methodologies. This research can help us to better understand global disparities in kidney disease, as well as what we can do to address them and coordinate our efforts to achieve global kidney health equity. This study provides an excellent feature-based prediction model for detecting kidney disease. Various machine learning algorithms, including k-nearest neighbors algorithm (KNN), artificial neural networks (ANN), support vector machines (SVM), naive bayes (NB), and others, as well as Re-cursive Feature Elimination (RFE) and Chi-Square test feature-selection techniques, were used to build and analyze various prediction models on a publicly available dataset of healthy and kidney disease patients. The studies found that a logistic regression-based prediction model with optimal features chosen using the Chi-Square technique had the highest accuracy of 98.75 percent. White Blood Cell Count (Wbcc), Blood Glucose Random (bgr), Blood Urea (Bu), Serum Creatinine (Sc), Packed Cell Volume (Pcv), Albumin (Al), Hemoglobin (Hemo), Age, Sugar (Su), Hypertension (Htn), Diabetes Mellitus (Dm), and Blood Pressure (Bp) are examples of these traits.Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early stages of the condition, the patient has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this condition early in order to save the lives of their patients. To detect this illness early on, researchers have used a variety of methods. Prediction analysis based on machine learning has been shown to be more accurate than other methodologies. This research can help us to better understand global disparities in kidney disease, as well as what we can do to address them and coordinate our efforts to achieve global kidney health equity. This study provides an excellent feature-based prediction model for detecting kidney disease. Various machine learning algorithms, including k-nearest neighbors algorithm (KNN), artificial neural networks (ANN), support vector machines (SVM), naive bayes (NB), and others, as well as Re-cursive Feature Elimination (RFE) and Chi-Square test feature-selection techniques, were used to build and analyze various prediction models on a publicly available dataset of healthy and kidney disease patients. The studies found that a logistic regression-based prediction model with optimal features chosen using the Chi-Square technique had the highest accuracy of 98.75 percent. White Blood Cell Count (Wbcc), Blood Glucose Random (bgr), Blood Urea (Bu), Serum Creatinine (Sc), Packed Cell Volume (Pcv), Albumin (Al), Hemoglobin (Hemo), Age, Sugar (Su), Hypertension (Htn), Diabetes Mellitus (Dm), and Blood Pressure (Bp) are examples of these traits. Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early stages of the condition, the patient has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this condition early in order to save the lives of their patients. To detect this illness early on, researchers have used a variety of methods. Prediction analysis based on machine learning has been shown to be more accurate than other methodologies. This research can help us to better understand global disparities in kidney disease, as well as what we can do to address them and coordinate our efforts to achieve global kidney health equity. This study provides an excellent feature-based prediction model for detecting kidney disease. Various machine learning algorithms, including k-nearest neighbors algorithm (KNN), artificial neural networks (ANN), support vector machines (SVM), naive bayes (NB), and others, as well as Re-cursive Feature Elimination (RFE) and Chi-Square test feature-selection techniques, were used to build and analyze various prediction models on a publicly available dataset of healthy and kidney disease patients. The studies found that a logistic regression-based prediction model with optimal features chosen using the Chi-Square technique had the highest accuracy of 98.75 percent. White Blood Cell Count (Wbcc), Blood Glucose Random (bgr), Blood Urea (Bu), Serum Creatinine (Sc), Packed Cell Volume (Pcv), Albumin (Al), Hemoglobin (Hemo), Age, Sugar (Su), Hypertension (Htn), Diabetes Mellitus (Dm), and Blood Pressure (Bp) are examples of these traits. |
| Author | Hamza, Manar Ahmed Abunadi, Ibrahim Poonia, Ramesh Chandra Albraikan, Amani Abdulrahman B, Tulasi Al-Wesabi, Fahd N. Gupta, Mukesh Kumar |
| AuthorAffiliation | 1 Department of Computer Science, CHRIST (Deemed to be University), Bangalore 560029, India; rameshcpoonia@gmail.com (R.C.P.); tulasi.b@christuniversity.in (T.B.) 4 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; aalbraikan@pnu.edu.sa 5 Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Abha 61421, Saudi Arabia 3 Department of Information Systems, Prince Sultan University, P.O. Box No. 66833 Rafha Street, Riyadh 11586, Saudi Arabia; i.abunadi@psu.edu.sa 6 Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia; mahamza@psau.edu.sa 2 Department of Computer Science & Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan (SKIT), Jaipur 302017, India; mukeshgupta@skit.ac.in |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science, CHRIST (Deemed to be University), Bangalore 560029, India; rameshcpoonia@gmail.com (R.C.P.); tulasi.b@christuniversity.in (T.B.) – name: 6 Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia; mahamza@psau.edu.sa – name: 5 Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Abha 61421, Saudi Arabia – name: 4 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; aalbraikan@pnu.edu.sa – name: 2 Department of Computer Science & Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan (SKIT), Jaipur 302017, India; mukeshgupta@skit.ac.in – name: 3 Department of Information Systems, Prince Sultan University, P.O. Box No. 66833 Rafha Street, Riyadh 11586, Saudi Arabia; i.abunadi@psu.edu.sa |
| Author_xml | – sequence: 1 givenname: Ramesh Chandra orcidid: 0000-0001-8054-2405 surname: Poonia fullname: Poonia, Ramesh Chandra – sequence: 2 givenname: Mukesh Kumar orcidid: 0000-0002-4907-0259 surname: Gupta fullname: Gupta, Mukesh Kumar – sequence: 3 givenname: Ibrahim surname: Abunadi fullname: Abunadi, Ibrahim – sequence: 4 givenname: Amani Abdulrahman surname: Albraikan fullname: Albraikan, Amani Abdulrahman – sequence: 5 givenname: Fahd N. orcidid: 0000-0002-4389-4927 surname: Al-Wesabi fullname: Al-Wesabi, Fahd N. – sequence: 6 givenname: Manar Ahmed surname: Hamza fullname: Hamza, Manar Ahmed – sequence: 7 givenname: Tulasi surname: B fullname: B, Tulasi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35206985$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vVCEYhYmpsbX2D7gwN3HTzSgXuANsTJoZPxprdKErF4QLLzM0DIzA1cy_l3aq1po0soHAcw6Hw2N0EFMEhJ72-AWlEr9cgw51bXSGHmOCKe8foCNCCJ9JTMnBrfUhOinlErcheyro8Agd0oHguRTDEfp6HiuE4FcQa7f0ehVTqd50nzJYb6pPsdPRdougS_HOG3299SFZCKVzKXdLqLDnkuveexth13wK6AJP0EOnQ4GTm_kYfXnz-vPi3ezi49vzxdnFzDCK64xwRmEkjI1CczlK14uBjWxsCYl1GuZ4HOzonGOUW2GYAC7nAwGhJR2c5fQY0b3vFLd690OHoLbZb3TeqR6rq7bUv2011au9ajuNG7CmFZD1H2XSXv19Ev1ardJ3JQTv-SCbwemNQU7fJihVbXwxrUwdIU1FkXm7mvIGN_T5HfQyTTm2Uq6oVgBmHDfq2e1Ev6P8-q0GiD1gciolg1PG1-sfaQF9uP-15I70Pyr6CW1ov-Q |
| CitedBy_id | crossref_primary_10_1016_j_prime_2024_100664 crossref_primary_10_3390_biology11081220 crossref_primary_10_1002_cpe_7446 crossref_primary_10_1016_j_eswa_2023_119851 crossref_primary_10_3390_app13052885 crossref_primary_10_2174_0126662558291849240118104616 crossref_primary_10_1016_j_prime_2024_100463 crossref_primary_10_32604_cmc_2022_031976 crossref_primary_10_3390_biomimetics8070554 crossref_primary_10_3390_app12157953 crossref_primary_10_1155_2022_6162445 crossref_primary_10_2139_ssrn_4118862 crossref_primary_10_3390_a17100443 crossref_primary_10_1007_s11255_024_04281_5 crossref_primary_10_1155_2023_3140270 crossref_primary_10_32604_cmc_2022_031324 crossref_primary_10_1109_ACCESS_2023_3264270 crossref_primary_10_12720_jait_14_5_941_949 crossref_primary_10_3390_bdcc7030144 crossref_primary_10_1007_s41939_025_00806_2 crossref_primary_10_1186_s40537_022_00657_5 crossref_primary_10_1007_s44174_024_00262_5 crossref_primary_10_3389_frai_2023_1339988 crossref_primary_10_2139_ssrn_4628220 crossref_primary_10_37648_ijrmst_v18i01_004 crossref_primary_10_1007_s13721_024_00452_7 crossref_primary_10_1016_j_jpi_2024_100371 crossref_primary_10_1109_ACCESS_2024_3470537 crossref_primary_10_3390_app13063937 |
| Cites_doi | 10.1109/ACCESS.2020.2995310 10.1109/LSENS.2019.2942145 10.1016/j.compbiomed.2019.04.017 10.1109/TBME.2018.2879362 10.1109/ICCIC.2016.7919649 10.1186/s12882-020-02093-0 10.1109/RBME.2017.2787480 10.1109/ACDT.2016.7437659 10.1109/ACCESS.2021.3109168 10.1007/s11042-019-07839-z 10.1109/TMI.2021.3060465 10.1109/TBME.2018.2849987 10.1007/s10916-017-0732-5 10.1155/2015/450531 10.1109/ACCESS.2020.2981689 10.1007/s10916-017-0703-x 10.17485/ijst/2016/v9i29/93880 10.1109/TUFFC.2018.2865203 10.1109/CEC.2018.8477876 10.1016/j.future.2020.04.036 10.3390/electronics9111963 10.1109/ACCESS.2021.3053763 10.1007/978-981-10-2750-5_31 10.1038/s41598-019-48263-5 10.1109/TCBB.2019.2911071 10.1109/ACCESS.2021.3078430 10.1109/ACCESS.2019.2948430 10.1109/ACCESS.2019.2963053 10.1109/RBME.2019.2933339 10.1109/TMI.2018.2851150 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 3V. 7RV 7XB 8C1 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH KB0 M2O MBDVC NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.3390/healthcare10020371 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Central (purchase pre-March 2016) Public Health Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Nursing & Allied Health Database (Alumni Edition) Research Library Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central Health Research Premium Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 2227-9032 |
| ExternalDocumentID | 10.3390/healthcare10020371 PMC8871759 35206985 10_3390_healthcare10020371 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Deanship of Scientific Research, King Saud University, Saudi Arabia grantid: GRP 2/209/42 |
| GroupedDBID | 53G 5VS 7RV 8C1 8FI 8FJ 8G5 AAFWJ AAHBH AAYXX ABUWG ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU CITATION DIK DWQXO FYUFA GNUQQ GUQSH GX1 HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E NAPCQ OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC RNS RPM UKHRP 3V. ALIPV GROUPED_DOAJ NPM 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC EIHBH IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c430t-2743eb244b8a79b9f1854b4b0692dfae60b5dbfff437d8c48e79652e8a935fd73 |
| IEDL.DBID | M48 |
| ISSN | 2227-9032 |
| IngestDate | Sun Oct 26 04:09:48 EDT 2025 Tue Sep 30 16:51:50 EDT 2025 Fri Sep 05 10:24:56 EDT 2025 Fri Jul 25 02:47:50 EDT 2025 Thu Jan 02 22:56:58 EST 2025 Thu Oct 16 04:44:33 EDT 2025 Thu Apr 24 23:05:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | medical information systems machine learning algorithms image matching morphological operations usability score artificial intelligence |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c430t-2743eb244b8a79b9f1854b4b0692dfae60b5dbfff437d8c48e79652e8a935fd73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4907-0259 0000-0002-4389-4927 0000-0001-8054-2405 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2227-9032/10/2/371/pdf?version=1645156172 |
| PMID | 35206985 |
| PQID | 2632740470 |
| PQPubID | 2032390 |
| ParticipantIDs | unpaywall_primary_10_3390_healthcare10020371 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8871759 proquest_miscellaneous_2633937717 proquest_journals_2632740470 pubmed_primary_35206985 crossref_citationtrail_10_3390_healthcare10020371 crossref_primary_10_3390_healthcare10020371 |
| PublicationCentury | 2000 |
| PublicationDate | 20220214 |
| PublicationDateYYYYMMDD | 2022-02-14 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220214 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Healthcare (Basel) |
| PublicationTitleAlternate | Healthcare (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Khan (ref_22) 2020; 8 Sharma (ref_25) 2018; 4 Chen (ref_21) 2020; 8 Menasche (ref_6) 2018; Volume 2 Cheng (ref_29) 2019; 41 Tabassum (ref_23) 2018; 4 Ma (ref_13) 2020; 111 Qin (ref_15) 2019; 8 Antony (ref_32) 2021; 9 Chittora (ref_37) 2021; 9 Pang (ref_20) 2015; 2015 Drall (ref_27) 2018; 8 Marsh (ref_31) 2018; 37 ref_19 Nishanth (ref_2) 2018; 11 ref_18 Dang (ref_28) 2020; 13 ref_16 (ref_10) 2019; 7 Hossain (ref_33) 2018; 66 Shehata (ref_35) 2018; 66 Polat (ref_7) 2017; 41 Almansour (ref_14) 2019; 109 Khamparia (ref_17) 2020; 79 Makino (ref_11) 2019; 9 ref_24 Zollner (ref_38) 2021; 9 Ren (ref_12) 2019; 19 Hodneland (ref_30) 2019; 66 Hussain (ref_34) 2021; 40 ref_1 Ogunleye (ref_3) 2020; 17 ref_9 ref_8 Bhaskar (ref_36) 2019; 3 ref_5 ref_4 Devishri (ref_26) 2019; 8 |
| References_xml | – volume: 4 start-page: 25 year: 2018 ident: ref_23 article-title: Analysis and Prediction of Chronic Kidney Disease using Data Mining Techniques publication-title: Int. J. Eng. Res. Comput. Sci. Eng. – volume: 8 start-page: 100497 year: 2020 ident: ref_21 article-title: Prediction of Chronic Kidney Disease Using Adaptive Hybridized Deep Convolutional Neural Network on the Internet of Medical Things Platform publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995310 – volume: 3 start-page: 1 year: 2019 ident: ref_36 article-title: A Deep-Learning-Based System for Automated Sensing of Chronic Kidney Disease publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2019.2942145 – volume: 109 start-page: 101 year: 2019 ident: ref_14 article-title: Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.04.017 – volume: 66 start-page: 1779 year: 2019 ident: ref_30 article-title: In Vivo Detection of Chronic Kidney Disease Using Tissue Deformation Fields from Dynamic MR Imaging publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2879362 – ident: ref_9 doi: 10.1109/ICCIC.2016.7919649 – ident: ref_16 doi: 10.1186/s12882-020-02093-0 – volume: 8 start-page: 278 year: 2018 ident: ref_27 article-title: Chronic Kidney Disease Prediction Using Machine Learning: A New Approach publication-title: Int. J. Manag. – volume: 11 start-page: 208 year: 2018 ident: ref_2 article-title: Identifying Important Attributes for Early Detection of Chronic Kidney Disease publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2017.2787480 – ident: ref_8 doi: 10.1109/ACDT.2016.7437659 – volume: 9 start-page: 126481 year: 2021 ident: ref_32 article-title: A Comprehensive Unsupervised Framework for Chronic Kidney Disease Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3109168 – volume: 79 start-page: 35425 year: 2020 ident: ref_17 article-title: KDSAE: Chronic kidney disease classification with multimedia data learning using deep stacked autoencoder network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-07839-z – volume: 40 start-page: 1555 year: 2021 ident: ref_34 article-title: Cascaded Localization Regression Neural Nets for Kidney Localization and Segmentation-free Volume Estimation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3060465 – volume: 66 start-page: 539 year: 2018 ident: ref_35 article-title: Computer-Aided Diagnostic System for Early Detection of Acute Renal Transplant Rejection Using Diffusion-Weighted MRI publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2849987 – volume: 41 start-page: 85 year: 2019 ident: ref_29 article-title: Applying the Temporal Abstraction Technique to the Prediction of Chronic Kidney Disease Progression publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0732-5 – ident: ref_18 – volume: 2015 start-page: 450531 year: 2015 ident: ref_20 article-title: A Computer-Aided Diagnosis System for Dynamic Contrast-Enhanced MR Images Based on Level Set Segmentation and ReliefF Feature Selection publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/450531 – volume: 8 start-page: 180 year: 2019 ident: ref_26 article-title: Comparative Study of Classification Algorithms in Chronic Kidney Disease publication-title: Int. J. Recent Technol. Eng. – volume: 8 start-page: 55012 year: 2020 ident: ref_22 article-title: An Empirical Evaluation of Machine Learning Techniques for Chronic Kidney Disease Prophecy publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981689 – volume: 41 start-page: 55 year: 2017 ident: ref_7 article-title: Diagnosis of chronic kidney disease based on support vector machine by feature selection methods publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0703-x – ident: ref_24 doi: 10.17485/ijst/2016/v9i29/93880 – volume: 66 start-page: 551 year: 2018 ident: ref_33 article-title: Mechanical Anisotropy Assessment in Kidney Cortex Using ARFI Peak Displacement: Preclinical Validation and Pilot In Vivo Clinical Results in Kidney Allografts publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2018.2865203 – volume: 4 start-page: 11 year: 2018 ident: ref_25 article-title: Performance Based Evaluation of Various Machine Learning Classification Techniques for Chronic Kidney Disease Diagnosis publication-title: Int. J. Mod. Comput. Sci. – ident: ref_1 doi: 10.1109/CEC.2018.8477876 – ident: ref_4 – volume: 19 start-page: 131 year: 2019 ident: ref_12 article-title: A hybrid neural network model for predicting kidney disease in hypertension patients based on electronic health records publication-title: BMC Med. Inf. Decis. Mak. – volume: 111 start-page: 17 year: 2020 ident: ref_13 article-title: Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.04.036 – ident: ref_19 doi: 10.3390/electronics9111963 – volume: Volume 2 start-page: 701 year: 2018 ident: ref_6 article-title: Predicting Chronic Kidney Failure Disease Using Data Mining Techniques publication-title: Advances in Ubiquitous Networking – volume: 9 start-page: 17312 year: 2021 ident: ref_37 article-title: Prediction of Chronic Kidney Disease—A Machine Learning Perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053763 – ident: ref_5 doi: 10.1007/978-981-10-2750-5_31 – volume: 9 start-page: 11862 year: 2019 ident: ref_11 article-title: Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-48263-5 – volume: 17 start-page: 2131 year: 2020 ident: ref_3 article-title: XGBoost Model for Chronic Kidney Disease Diagnosis publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2019.2911071 – volume: 9 start-page: 71577 year: 2021 ident: ref_38 article-title: Kidney Segmentation in Renal Magnetic Resonance Imaging—Current Status and Prospects publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3078430 – volume: 7 start-page: 152900 year: 2019 ident: ref_10 article-title: Explainable Prediction of Chronic Renal Disease in the Colombian Population Using Neural Networks and Case-Based Reasoning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948430 – volume: 8 start-page: 20991 year: 2019 ident: ref_15 article-title: A Machine Learning Methodology for Diagnosing Chronic Kidney Disease publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963053 – volume: 13 start-page: 261 year: 2020 ident: ref_28 article-title: Toward Portable Artificial Kidneys: The Role of Advanced Microfluidics and Membrane Technologies in Implantable Systems publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2019.2933339 – volume: 37 start-page: 2718 year: 2018 ident: ref_31 article-title: Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2851150 |
| SSID | ssj0000913835 |
| Score | 2.3925564 |
| Snippet | Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 371 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Blood pressure Datasets Decision trees Diabetes Electronic health records Feature selection Hypertension Illnesses Industrialized nations Kidney diseases Kidney transplants Machine learning Medical diagnosis Mortality Neural networks Patients Support vector machines Urine |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SzaGFENJX4jQpKuSWmtiWZNmHUvIkSekSSgOBHoxkySSweLeJl5J_3xn50S4LIWePbaQZSTOame8D2ONOlamRPExirkNR2TzMhMtDYbjEKCgtU49b8H2cnl-Lyxt5swLjvheGyir7PdFv1HZa0h35AeGKKxEJFX2d_Q6JNYqyqz2Fhu6oFewXDzH2AlYTQsYawerR6fjqx3DrQiiY6HO03TMc4_2D26HMKvZZORUvnlBLbudy9eTLeT3Tj3_0ZPLf0XS2AeudT8kOWyN4DSuufgNr7YUca_uM3sKviwF8s2EnbYEdyrOre0rVkHqYri3zJJlUPuQ1xogqbfLA0LNlJ65xrdy0Yt_ubO0e8Ts-vfMOrs9Ofx6fhx2zQlgKHjUhziTHkFoIk2mVm7zCU1sYYaI0T2ylXRoZaU1VVYIrm5UicypPZeIynXNZWcXfw6ie1m4LmCq1NcqiSOKEU5G2Uik84mxkk7iUOoC4n82i7GDHif1iUmD4QRooljUQwP7wzqwF3XhSeqdXUtEtwIfin7kE8Gl4jEuH8iG6dtO5lyE4QAxoA9hsdTr8Dv1SnIxMBqAWtD0IECz34pP67tbDc-O2jT5ZHsDnwS6eMYrtp0fxAV4l1HhBVDRiB0bN_dztojvUmI-djf8FHgMOCA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wASAsavBTZkJN4gaxLbcfyEJrZpbNq0ByoN8RDZsa1VVGm1pkPjr-ccpxFdpQl49jmRc-fcd77zdwDvqRVVrjmNs5SqmDkj44JZGTNNOUZBeZW3vAWnZ_nRiB1f8IvuwG3elVViKD5uf9L-nmYsE5rh3h5mQyrS4cy4T9fdSRIiffTG3gXfh42cIxYfwMbo7Hzvm-8ot5wbbspQjO2Hl31JVdpm4ES66o3WIOZ6peSDRT1TNz_VZPKHGzp8AuVyAaH65MfuotG71a9b3I7_v8Kn8LhDqGQvmNQm3LP1M3gUjvdIuLX0HL5_6ak8G7IfyvVQnpxf-cSPVzZRtSFty01fjNTqn_jGa5M5QZxM9m1jg9zUkZOxqe0NPqdNFr2A0eHB189HcdenIa4YTZoYA1uKATpjulBCaukQAzDNdJLLzDhl80Rzo51zjApTVKywQuY8s4WSlDsj6EsY1NPabgERlTJaGBTJLLMiUYYLgQ7TJCZLK64iSJf6KquOxNz30piUGMx4HZfrOo7gQz9nFig87pTeXppB2W3neelJ7QVLmEgieNcP40b02RVV2-milfHkghgeR_AqWE3_OkS5-DEKHoFYsadewJN8r47U48uW7BudACI8GcHH3vL-YhWv_038DTzM_LUO3-iGbcOguVrYHQRbjX7b7ajfT18nyg priority: 102 providerName: Unpaywall |
| Title | Intelligent Diagnostic Prediction and Classification Models for Detection of Kidney Disease |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35206985 https://www.proquest.com/docview/2632740470 https://www.proquest.com/docview/2633937717 https://pubmed.ncbi.nlm.nih.gov/PMC8871759 https://www.mdpi.com/2227-9032/10/2/371/pdf?version=1645156172 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: DIK dateStart: 20130101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: RPM dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: 8C1 dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2227-9032 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: M48 dateStart: 20131001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_68bDBGPuetzZoMPayebUt2bIeyuj6QbfREMYCHXswkiXTgnHS1GHLf9872zEN2UYfjc6yrZN09_Od7gfwljuZJybmfhRy7YvCKj8VTvnC8BhRUJInTd2Cs2FyOhZfz-PzDVim23YDeP1XaEd8UuNZ-fHP1eITLvh9QpwI2fcu-kypsAmsyfDd9MonYikKwHYsG5uwjcZLEbvDWYcAms1ahYjRKNGRDoX6KuBRe7TmHz2vmq81n3Q9tfLevJrqxW9dlrfs1skjeNg5nOygnSGPYcNVT-BB-7eOtYeQnsKvL31lzpodtdl3KM9GM4rjkO6YrixrGDQpt6hRJyMetfKaodvLjlztWrlJwb5d2sotsJ8m9vMMxifHPw5P_Y52wc8FD2ofcSpHvC2ESbVURhVo0oURJkhUZAvtksDE1hRFIbi0aS5SJ1USRy7ViseFlfw5bFWTyr0EJnNtjbQoEjnhZKBtLCXaPxvYKMxj7UG4HM0s72qSEzVGmSE2IQ1k6xrw4H1_z7StyPFf6Z2lkrLl5MqoRr0UgZCBB2_6ZlxXFCzRlZvMGxmqFYho14MXrU77x6HTioORxh7IFW33AlSze7Wlurxoanfjno4Om_LgQz8v7vAVr-7wmq_hfkRHM4isRuzAVj2bu110mGozgM30MBzA9ufj4ej7oFkAeDUejg5-3gCdcBwX |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N8TAkhPg7AgOMBE8QLYntOH5ACK1MLd0mHjZpEg_Bjh1tUpWWNdXUL8Vn5Gw3garSxMuefXES39l357v7HcA7akWVa07jLKUqZrWRccGsjJmmHL2gvMo9bsHxST48Y9_O-fkW_O5qYVxaZXcm-oPaTCt3R77vcMUFS5hIPs9-xa5rlIuudi00gliM7fIaXbb5p9EA-fs-yw6_nh4M41VXgbhiNGljnIWiO8mYLpSQWtaosZhmOsllZmpl80Rzo-u6ZlSYomKFFTLnmS2UpLw2guK8d-Auw89xB0FxkPZ3Og5jEy2aUJtDqUz2L_okrtTH_ES6rv82jNrN3MydRTNTy2s1mfyj-A4fwoOVxUq-BBF7BFu2eQz3w3UfCVVMT-DHqIf2bMkgpO8hPfl-5QJBjvlENYb4FpwuOcnLA3GN2CZzgnYzGdjWBrppTcaXprFLnMcHj57C2a2s8DPYbqaNfQ5EVMpoYZAks8yKRBkuBCpQk5gsrbiKIO1Ws6xWoOaut8akROfGcaDc5EAEH_pnZgHS40bqvY5J5Wp7z8u_whjB234YN6aLtqjGTheexoENorscwW7gaf86tHpxMQoegVjjdk_gQL_XR5rLCw_-jUoBLT4ZwcdeLv7jL17c_BdvYGd4enxUHo1Oxi_hXuZKPFzTG7YH2-3Vwr5Cw6vVr720E_h529vrD6EmRI0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qCyqI1O_VqhH0SZfb3SSbzYOU0vPoeVr6YKHgwzbZZGnh2Dt7e5T71_zrnGQ_9DgovvQ5s1mSmWRmMjO_AXhPrShSzWmYxFSFrDQyzJiVIdOUoxeUFqnHLfh-nB6dsq9n_GwLfne1MC6tsrsT_UVtZoV7Ix84XHHBIiaiQdmmRZwMR_vzX6HrIOUirV07jUZEJnZ1je7b4vN4iLz-kCSjLz8Oj8K2w0BYMBrVIc5I0bVkTGdKSC1L1F5MMx2lMjGlsmmkudFlWTIqTFawzAqZ8sRmSlJeGkFx3juwIyiuyFWpH8b9-47D20TrpqnToVRGg4s-oSv28T8Rr-vCDQN3M0_z3rKaq9W1mk7_UYKjXXjYWq_koBG3R7Blq8fwoHn6I01F0xP4Oe5hPmsybFL5kJ6cXLmgkBMEoipDfDtOl6jkZYO4pmzTBUEbmgxtbRu6WUkml6ayK5zHB5Kewumt7PAz2K5mlX0BRBTKaGGQJLHMikgZLgQqUxOZJC64CiDudjMvWoBz12djmqOj4ziQb3IggI_9N_MG3uNG6r2OSXl71Bf5X8EM4F0_jIfURV5UZWdLT-OAB9F1DuB5w9P-d2gB42ZkPACxxu2ewAGAr49UlxceCBwVBFp_MoBPvVz8xype3ryKt3AXD1b-bXw8eQX3E1ft4frfsD3Yrq-W9jXaYLV-44WdwPltn64_evhIxw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wASAsavBTZkJN4gaxLbcfyEJrZpbNq0ByoN8RDZsa1VVGm1pkPjr-ccpxFdpQl49jmRc-fcd77zdwDvqRVVrjmNs5SqmDkj44JZGTNNOUZBeZW3vAWnZ_nRiB1f8IvuwG3elVViKD5uf9L-nmYsE5rh3h5mQyrS4cy4T9fdSRIiffTG3gXfh42cIxYfwMbo7Hzvm-8ot5wbbspQjO2Hl31JVdpm4ES66o3WIOZ6peSDRT1TNz_VZPKHGzp8AuVyAaH65MfuotG71a9b3I7_v8Kn8LhDqGQvmNQm3LP1M3gUjvdIuLX0HL5_6ak8G7IfyvVQnpxf-cSPVzZRtSFty01fjNTqn_jGa5M5QZxM9m1jg9zUkZOxqe0NPqdNFr2A0eHB189HcdenIa4YTZoYA1uKATpjulBCaukQAzDNdJLLzDhl80Rzo51zjApTVKywQuY8s4WSlDsj6EsY1NPabgERlTJaGBTJLLMiUYYLgQ7TJCZLK64iSJf6KquOxNz30piUGMx4HZfrOo7gQz9nFig87pTeXppB2W3neelJ7QVLmEgieNcP40b02RVV2-milfHkghgeR_AqWE3_OkS5-DEKHoFYsadewJN8r47U48uW7BudACI8GcHH3vL-YhWv_038DTzM_LUO3-iGbcOguVrYHQRbjX7b7ajfT18nyg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Diagnostic+Prediction+and+Classification+Models+for+Detection+of+Kidney+Disease&rft.jtitle=Healthcare+%28Basel%29&rft.au=Poonia%2C+Ramesh+Chandra&rft.au=Gupta%2C+Mukesh+Kumar&rft.au=Abunadi%2C+Ibrahim&rft.au=Albraikan%2C+Amani+Abdulrahman&rft.date=2022-02-14&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=10&rft.issue=2&rft_id=info:doi/10.3390%2Fhealthcare10020371&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon |