Intelligent Diagnostic Prediction and Classification Models for Detection of Kidney Disease

Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early stages of the condition, the patient has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this cond...

Full description

Saved in:
Bibliographic Details
Published inHealthcare (Basel) Vol. 10; no. 2; p. 371
Main Authors Poonia, Ramesh Chandra, Gupta, Mukesh Kumar, Abunadi, Ibrahim, Albraikan, Amani Abdulrahman, Al-Wesabi, Fahd N., Hamza, Manar Ahmed, B, Tulasi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.02.2022
MDPI
Subjects
Online AccessGet full text
ISSN2227-9032
2227-9032
DOI10.3390/healthcare10020371

Cover

Abstract Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early stages of the condition, the patient has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this condition early in order to save the lives of their patients. To detect this illness early on, researchers have used a variety of methods. Prediction analysis based on machine learning has been shown to be more accurate than other methodologies. This research can help us to better understand global disparities in kidney disease, as well as what we can do to address them and coordinate our efforts to achieve global kidney health equity. This study provides an excellent feature-based prediction model for detecting kidney disease. Various machine learning algorithms, including k-nearest neighbors algorithm (KNN), artificial neural networks (ANN), support vector machines (SVM), naive bayes (NB), and others, as well as Re-cursive Feature Elimination (RFE) and Chi-Square test feature-selection techniques, were used to build and analyze various prediction models on a publicly available dataset of healthy and kidney disease patients. The studies found that a logistic regression-based prediction model with optimal features chosen using the Chi-Square technique had the highest accuracy of 98.75 percent. White Blood Cell Count (Wbcc), Blood Glucose Random (bgr), Blood Urea (Bu), Serum Creatinine (Sc), Packed Cell Volume (Pcv), Albumin (Al), Hemoglobin (Hemo), Age, Sugar (Su), Hypertension (Htn), Diabetes Mellitus (Dm), and Blood Pressure (Bp) are examples of these traits.
AbstractList Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early stages of the condition, the patient has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this condition early in order to save the lives of their patients. To detect this illness early on, researchers have used a variety of methods. Prediction analysis based on machine learning has been shown to be more accurate than other methodologies. This research can help us to better understand global disparities in kidney disease, as well as what we can do to address them and coordinate our efforts to achieve global kidney health equity. This study provides an excellent feature-based prediction model for detecting kidney disease. Various machine learning algorithms, including k-nearest neighbors algorithm (KNN), artificial neural networks (ANN), support vector machines (SVM), naive bayes (NB), and others, as well as Re-cursive Feature Elimination (RFE) and Chi-Square test feature-selection techniques, were used to build and analyze various prediction models on a publicly available dataset of healthy and kidney disease patients. The studies found that a logistic regression-based prediction model with optimal features chosen using the Chi-Square technique had the highest accuracy of 98.75 percent. White Blood Cell Count (Wbcc), Blood Glucose Random (bgr), Blood Urea (Bu), Serum Creatinine (Sc), Packed Cell Volume (Pcv), Albumin (Al), Hemoglobin (Hemo), Age, Sugar (Su), Hypertension (Htn), Diabetes Mellitus (Dm), and Blood Pressure (Bp) are examples of these traits.Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early stages of the condition, the patient has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this condition early in order to save the lives of their patients. To detect this illness early on, researchers have used a variety of methods. Prediction analysis based on machine learning has been shown to be more accurate than other methodologies. This research can help us to better understand global disparities in kidney disease, as well as what we can do to address them and coordinate our efforts to achieve global kidney health equity. This study provides an excellent feature-based prediction model for detecting kidney disease. Various machine learning algorithms, including k-nearest neighbors algorithm (KNN), artificial neural networks (ANN), support vector machines (SVM), naive bayes (NB), and others, as well as Re-cursive Feature Elimination (RFE) and Chi-Square test feature-selection techniques, were used to build and analyze various prediction models on a publicly available dataset of healthy and kidney disease patients. The studies found that a logistic regression-based prediction model with optimal features chosen using the Chi-Square technique had the highest accuracy of 98.75 percent. White Blood Cell Count (Wbcc), Blood Glucose Random (bgr), Blood Urea (Bu), Serum Creatinine (Sc), Packed Cell Volume (Pcv), Albumin (Al), Hemoglobin (Hemo), Age, Sugar (Su), Hypertension (Htn), Diabetes Mellitus (Dm), and Blood Pressure (Bp) are examples of these traits.
Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early stages of the condition, the patient has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this condition early in order to save the lives of their patients. To detect this illness early on, researchers have used a variety of methods. Prediction analysis based on machine learning has been shown to be more accurate than other methodologies. This research can help us to better understand global disparities in kidney disease, as well as what we can do to address them and coordinate our efforts to achieve global kidney health equity. This study provides an excellent feature-based prediction model for detecting kidney disease. Various machine learning algorithms, including k-nearest neighbors algorithm (KNN), artificial neural networks (ANN), support vector machines (SVM), naive bayes (NB), and others, as well as Re-cursive Feature Elimination (RFE) and Chi-Square test feature-selection techniques, were used to build and analyze various prediction models on a publicly available dataset of healthy and kidney disease patients. The studies found that a logistic regression-based prediction model with optimal features chosen using the Chi-Square technique had the highest accuracy of 98.75 percent. White Blood Cell Count (Wbcc), Blood Glucose Random (bgr), Blood Urea (Bu), Serum Creatinine (Sc), Packed Cell Volume (Pcv), Albumin (Al), Hemoglobin (Hemo), Age, Sugar (Su), Hypertension (Htn), Diabetes Mellitus (Dm), and Blood Pressure (Bp) are examples of these traits.
Author Hamza, Manar Ahmed
Abunadi, Ibrahim
Poonia, Ramesh Chandra
Albraikan, Amani Abdulrahman
B, Tulasi
Al-Wesabi, Fahd N.
Gupta, Mukesh Kumar
AuthorAffiliation 1 Department of Computer Science, CHRIST (Deemed to be University), Bangalore 560029, India; rameshcpoonia@gmail.com (R.C.P.); tulasi.b@christuniversity.in (T.B.)
4 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; aalbraikan@pnu.edu.sa
5 Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Abha 61421, Saudi Arabia
3 Department of Information Systems, Prince Sultan University, P.O. Box No. 66833 Rafha Street, Riyadh 11586, Saudi Arabia; i.abunadi@psu.edu.sa
6 Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia; mahamza@psau.edu.sa
2 Department of Computer Science & Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan (SKIT), Jaipur 302017, India; mukeshgupta@skit.ac.in
AuthorAffiliation_xml – name: 1 Department of Computer Science, CHRIST (Deemed to be University), Bangalore 560029, India; rameshcpoonia@gmail.com (R.C.P.); tulasi.b@christuniversity.in (T.B.)
– name: 6 Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia; mahamza@psau.edu.sa
– name: 5 Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Abha 61421, Saudi Arabia
– name: 4 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; aalbraikan@pnu.edu.sa
– name: 2 Department of Computer Science & Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan (SKIT), Jaipur 302017, India; mukeshgupta@skit.ac.in
– name: 3 Department of Information Systems, Prince Sultan University, P.O. Box No. 66833 Rafha Street, Riyadh 11586, Saudi Arabia; i.abunadi@psu.edu.sa
Author_xml – sequence: 1
  givenname: Ramesh Chandra
  orcidid: 0000-0001-8054-2405
  surname: Poonia
  fullname: Poonia, Ramesh Chandra
– sequence: 2
  givenname: Mukesh Kumar
  orcidid: 0000-0002-4907-0259
  surname: Gupta
  fullname: Gupta, Mukesh Kumar
– sequence: 3
  givenname: Ibrahim
  surname: Abunadi
  fullname: Abunadi, Ibrahim
– sequence: 4
  givenname: Amani Abdulrahman
  surname: Albraikan
  fullname: Albraikan, Amani Abdulrahman
– sequence: 5
  givenname: Fahd N.
  orcidid: 0000-0002-4389-4927
  surname: Al-Wesabi
  fullname: Al-Wesabi, Fahd N.
– sequence: 6
  givenname: Manar Ahmed
  surname: Hamza
  fullname: Hamza, Manar Ahmed
– sequence: 7
  givenname: Tulasi
  surname: B
  fullname: B, Tulasi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35206985$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vVCEYhYmpsbX2D7gwN3HTzSgXuANsTJoZPxprdKErF4QLLzM0DIzA1cy_l3aq1po0soHAcw6Hw2N0EFMEhJ72-AWlEr9cgw51bXSGHmOCKe8foCNCCJ9JTMnBrfUhOinlErcheyro8Agd0oHguRTDEfp6HiuE4FcQa7f0ehVTqd50nzJYb6pPsdPRdougS_HOG3299SFZCKVzKXdLqLDnkuveexth13wK6AJP0EOnQ4GTm_kYfXnz-vPi3ezi49vzxdnFzDCK64xwRmEkjI1CczlK14uBjWxsCYl1GuZ4HOzonGOUW2GYAC7nAwGhJR2c5fQY0b3vFLd690OHoLbZb3TeqR6rq7bUv2011au9ajuNG7CmFZD1H2XSXv19Ev1ardJ3JQTv-SCbwemNQU7fJihVbXwxrUwdIU1FkXm7mvIGN_T5HfQyTTm2Uq6oVgBmHDfq2e1Ev6P8-q0GiD1gciolg1PG1-sfaQF9uP-15I70Pyr6CW1ov-Q
CitedBy_id crossref_primary_10_1016_j_prime_2024_100664
crossref_primary_10_3390_biology11081220
crossref_primary_10_1002_cpe_7446
crossref_primary_10_1016_j_eswa_2023_119851
crossref_primary_10_3390_app13052885
crossref_primary_10_2174_0126662558291849240118104616
crossref_primary_10_1016_j_prime_2024_100463
crossref_primary_10_32604_cmc_2022_031976
crossref_primary_10_3390_biomimetics8070554
crossref_primary_10_3390_app12157953
crossref_primary_10_1155_2022_6162445
crossref_primary_10_2139_ssrn_4118862
crossref_primary_10_3390_a17100443
crossref_primary_10_1007_s11255_024_04281_5
crossref_primary_10_1155_2023_3140270
crossref_primary_10_32604_cmc_2022_031324
crossref_primary_10_1109_ACCESS_2023_3264270
crossref_primary_10_12720_jait_14_5_941_949
crossref_primary_10_3390_bdcc7030144
crossref_primary_10_1007_s41939_025_00806_2
crossref_primary_10_1186_s40537_022_00657_5
crossref_primary_10_1007_s44174_024_00262_5
crossref_primary_10_3389_frai_2023_1339988
crossref_primary_10_2139_ssrn_4628220
crossref_primary_10_37648_ijrmst_v18i01_004
crossref_primary_10_1007_s13721_024_00452_7
crossref_primary_10_1016_j_jpi_2024_100371
crossref_primary_10_1109_ACCESS_2024_3470537
crossref_primary_10_3390_app13063937
Cites_doi 10.1109/ACCESS.2020.2995310
10.1109/LSENS.2019.2942145
10.1016/j.compbiomed.2019.04.017
10.1109/TBME.2018.2879362
10.1109/ICCIC.2016.7919649
10.1186/s12882-020-02093-0
10.1109/RBME.2017.2787480
10.1109/ACDT.2016.7437659
10.1109/ACCESS.2021.3109168
10.1007/s11042-019-07839-z
10.1109/TMI.2021.3060465
10.1109/TBME.2018.2849987
10.1007/s10916-017-0732-5
10.1155/2015/450531
10.1109/ACCESS.2020.2981689
10.1007/s10916-017-0703-x
10.17485/ijst/2016/v9i29/93880
10.1109/TUFFC.2018.2865203
10.1109/CEC.2018.8477876
10.1016/j.future.2020.04.036
10.3390/electronics9111963
10.1109/ACCESS.2021.3053763
10.1007/978-981-10-2750-5_31
10.1038/s41598-019-48263-5
10.1109/TCBB.2019.2911071
10.1109/ACCESS.2021.3078430
10.1109/ACCESS.2019.2948430
10.1109/ACCESS.2019.2963053
10.1109/RBME.2019.2933339
10.1109/TMI.2018.2851150
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7RV
7XB
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
KB0
M2O
MBDVC
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/healthcare10020371
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Public Health Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Nursing & Allied Health Database (Alumni Edition)
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2227-9032
ExternalDocumentID 10.3390/healthcare10020371
PMC8871759
35206985
10_3390_healthcare10020371
Genre Journal Article
GrantInformation_xml – fundername: Deanship of Scientific Research, King Saud University, Saudi Arabia
  grantid: GRP 2/209/42
GroupedDBID 53G
5VS
7RV
8C1
8FI
8FJ
8G5
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
FYUFA
GNUQQ
GUQSH
GX1
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
NAPCQ
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
RNS
RPM
UKHRP
3V.
ALIPV
GROUPED_DOAJ
NPM
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
EIHBH
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c430t-2743eb244b8a79b9f1854b4b0692dfae60b5dbfff437d8c48e79652e8a935fd73
IEDL.DBID M48
ISSN 2227-9032
IngestDate Sun Oct 26 04:09:48 EDT 2025
Tue Sep 30 16:51:50 EDT 2025
Fri Sep 05 10:24:56 EDT 2025
Fri Jul 25 02:47:50 EDT 2025
Thu Jan 02 22:56:58 EST 2025
Thu Oct 16 04:44:33 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords medical information systems
machine learning algorithms
image matching
morphological operations
usability score artificial intelligence
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-2743eb244b8a79b9f1854b4b0692dfae60b5dbfff437d8c48e79652e8a935fd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4907-0259
0000-0002-4389-4927
0000-0001-8054-2405
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2227-9032/10/2/371/pdf?version=1645156172
PMID 35206985
PQID 2632740470
PQPubID 2032390
ParticipantIDs unpaywall_primary_10_3390_healthcare10020371
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8871759
proquest_miscellaneous_2633937717
proquest_journals_2632740470
pubmed_primary_35206985
crossref_citationtrail_10_3390_healthcare10020371
crossref_primary_10_3390_healthcare10020371
PublicationCentury 2000
PublicationDate 20220214
PublicationDateYYYYMMDD 2022-02-14
PublicationDate_xml – month: 2
  year: 2022
  text: 20220214
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Healthcare (Basel)
PublicationTitleAlternate Healthcare (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Khan (ref_22) 2020; 8
Sharma (ref_25) 2018; 4
Chen (ref_21) 2020; 8
Menasche (ref_6) 2018; Volume 2
Cheng (ref_29) 2019; 41
Tabassum (ref_23) 2018; 4
Ma (ref_13) 2020; 111
Qin (ref_15) 2019; 8
Antony (ref_32) 2021; 9
Chittora (ref_37) 2021; 9
Pang (ref_20) 2015; 2015
Drall (ref_27) 2018; 8
Marsh (ref_31) 2018; 37
ref_19
Nishanth (ref_2) 2018; 11
ref_18
Dang (ref_28) 2020; 13
ref_16
(ref_10) 2019; 7
Hossain (ref_33) 2018; 66
Shehata (ref_35) 2018; 66
Polat (ref_7) 2017; 41
Almansour (ref_14) 2019; 109
Khamparia (ref_17) 2020; 79
Makino (ref_11) 2019; 9
ref_24
Zollner (ref_38) 2021; 9
Ren (ref_12) 2019; 19
Hodneland (ref_30) 2019; 66
Hussain (ref_34) 2021; 40
ref_1
Ogunleye (ref_3) 2020; 17
ref_9
ref_8
Bhaskar (ref_36) 2019; 3
ref_5
ref_4
Devishri (ref_26) 2019; 8
References_xml – volume: 4
  start-page: 25
  year: 2018
  ident: ref_23
  article-title: Analysis and Prediction of Chronic Kidney Disease using Data Mining Techniques
  publication-title: Int. J. Eng. Res. Comput. Sci. Eng.
– volume: 8
  start-page: 100497
  year: 2020
  ident: ref_21
  article-title: Prediction of Chronic Kidney Disease Using Adaptive Hybridized Deep Convolutional Neural Network on the Internet of Medical Things Platform
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995310
– volume: 3
  start-page: 1
  year: 2019
  ident: ref_36
  article-title: A Deep-Learning-Based System for Automated Sensing of Chronic Kidney Disease
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2019.2942145
– volume: 109
  start-page: 101
  year: 2019
  ident: ref_14
  article-title: Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.017
– volume: 66
  start-page: 1779
  year: 2019
  ident: ref_30
  article-title: In Vivo Detection of Chronic Kidney Disease Using Tissue Deformation Fields from Dynamic MR Imaging
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2879362
– ident: ref_9
  doi: 10.1109/ICCIC.2016.7919649
– ident: ref_16
  doi: 10.1186/s12882-020-02093-0
– volume: 8
  start-page: 278
  year: 2018
  ident: ref_27
  article-title: Chronic Kidney Disease Prediction Using Machine Learning: A New Approach
  publication-title: Int. J. Manag.
– volume: 11
  start-page: 208
  year: 2018
  ident: ref_2
  article-title: Identifying Important Attributes for Early Detection of Chronic Kidney Disease
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2017.2787480
– ident: ref_8
  doi: 10.1109/ACDT.2016.7437659
– volume: 9
  start-page: 126481
  year: 2021
  ident: ref_32
  article-title: A Comprehensive Unsupervised Framework for Chronic Kidney Disease Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3109168
– volume: 79
  start-page: 35425
  year: 2020
  ident: ref_17
  article-title: KDSAE: Chronic kidney disease classification with multimedia data learning using deep stacked autoencoder network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-07839-z
– volume: 40
  start-page: 1555
  year: 2021
  ident: ref_34
  article-title: Cascaded Localization Regression Neural Nets for Kidney Localization and Segmentation-free Volume Estimation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3060465
– volume: 66
  start-page: 539
  year: 2018
  ident: ref_35
  article-title: Computer-Aided Diagnostic System for Early Detection of Acute Renal Transplant Rejection Using Diffusion-Weighted MRI
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2849987
– volume: 41
  start-page: 85
  year: 2019
  ident: ref_29
  article-title: Applying the Temporal Abstraction Technique to the Prediction of Chronic Kidney Disease Progression
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0732-5
– ident: ref_18
– volume: 2015
  start-page: 450531
  year: 2015
  ident: ref_20
  article-title: A Computer-Aided Diagnosis System for Dynamic Contrast-Enhanced MR Images Based on Level Set Segmentation and ReliefF Feature Selection
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/450531
– volume: 8
  start-page: 180
  year: 2019
  ident: ref_26
  article-title: Comparative Study of Classification Algorithms in Chronic Kidney Disease
  publication-title: Int. J. Recent Technol. Eng.
– volume: 8
  start-page: 55012
  year: 2020
  ident: ref_22
  article-title: An Empirical Evaluation of Machine Learning Techniques for Chronic Kidney Disease Prophecy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981689
– volume: 41
  start-page: 55
  year: 2017
  ident: ref_7
  article-title: Diagnosis of chronic kidney disease based on support vector machine by feature selection methods
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0703-x
– ident: ref_24
  doi: 10.17485/ijst/2016/v9i29/93880
– volume: 66
  start-page: 551
  year: 2018
  ident: ref_33
  article-title: Mechanical Anisotropy Assessment in Kidney Cortex Using ARFI Peak Displacement: Preclinical Validation and Pilot In Vivo Clinical Results in Kidney Allografts
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2018.2865203
– volume: 4
  start-page: 11
  year: 2018
  ident: ref_25
  article-title: Performance Based Evaluation of Various Machine Learning Classification Techniques for Chronic Kidney Disease Diagnosis
  publication-title: Int. J. Mod. Comput. Sci.
– ident: ref_1
  doi: 10.1109/CEC.2018.8477876
– ident: ref_4
– volume: 19
  start-page: 131
  year: 2019
  ident: ref_12
  article-title: A hybrid neural network model for predicting kidney disease in hypertension patients based on electronic health records
  publication-title: BMC Med. Inf. Decis. Mak.
– volume: 111
  start-page: 17
  year: 2020
  ident: ref_13
  article-title: Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.04.036
– ident: ref_19
  doi: 10.3390/electronics9111963
– volume: Volume 2
  start-page: 701
  year: 2018
  ident: ref_6
  article-title: Predicting Chronic Kidney Failure Disease Using Data Mining Techniques
  publication-title: Advances in Ubiquitous Networking
– volume: 9
  start-page: 17312
  year: 2021
  ident: ref_37
  article-title: Prediction of Chronic Kidney Disease—A Machine Learning Perspective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053763
– ident: ref_5
  doi: 10.1007/978-981-10-2750-5_31
– volume: 9
  start-page: 11862
  year: 2019
  ident: ref_11
  article-title: Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48263-5
– volume: 17
  start-page: 2131
  year: 2020
  ident: ref_3
  article-title: XGBoost Model for Chronic Kidney Disease Diagnosis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2019.2911071
– volume: 9
  start-page: 71577
  year: 2021
  ident: ref_38
  article-title: Kidney Segmentation in Renal Magnetic Resonance Imaging—Current Status and Prospects
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3078430
– volume: 7
  start-page: 152900
  year: 2019
  ident: ref_10
  article-title: Explainable Prediction of Chronic Renal Disease in the Colombian Population Using Neural Networks and Case-Based Reasoning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948430
– volume: 8
  start-page: 20991
  year: 2019
  ident: ref_15
  article-title: A Machine Learning Methodology for Diagnosing Chronic Kidney Disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963053
– volume: 13
  start-page: 261
  year: 2020
  ident: ref_28
  article-title: Toward Portable Artificial Kidneys: The Role of Advanced Microfluidics and Membrane Technologies in Implantable Systems
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2019.2933339
– volume: 37
  start-page: 2718
  year: 2018
  ident: ref_31
  article-title: Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2851150
SSID ssj0000913835
Score 2.3925564
Snippet Kidney disease is a major public health concern that has only recently emerged. Toxins are removed from the body by the kidneys through urine. In the early...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 371
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Blood pressure
Datasets
Decision trees
Diabetes
Electronic health records
Feature selection
Hypertension
Illnesses
Industrialized nations
Kidney diseases
Kidney transplants
Machine learning
Medical diagnosis
Mortality
Neural networks
Patients
Support vector machines
Urine
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SzaGFENJX4jQpKuSWmtiWZNmHUvIkSekSSgOBHoxkySSweLeJl5J_3xn50S4LIWePbaQZSTOame8D2ONOlamRPExirkNR2TzMhMtDYbjEKCgtU49b8H2cnl-Lyxt5swLjvheGyir7PdFv1HZa0h35AeGKKxEJFX2d_Q6JNYqyqz2Fhu6oFewXDzH2AlYTQsYawerR6fjqx3DrQiiY6HO03TMc4_2D26HMKvZZORUvnlBLbudy9eTLeT3Tj3_0ZPLf0XS2AeudT8kOWyN4DSuufgNr7YUca_uM3sKviwF8s2EnbYEdyrOre0rVkHqYri3zJJlUPuQ1xogqbfLA0LNlJ65xrdy0Yt_ubO0e8Ts-vfMOrs9Ofx6fhx2zQlgKHjUhziTHkFoIk2mVm7zCU1sYYaI0T2ylXRoZaU1VVYIrm5UicypPZeIynXNZWcXfw6ie1m4LmCq1NcqiSOKEU5G2Uik84mxkk7iUOoC4n82i7GDHif1iUmD4QRooljUQwP7wzqwF3XhSeqdXUtEtwIfin7kE8Gl4jEuH8iG6dtO5lyE4QAxoA9hsdTr8Dv1SnIxMBqAWtD0IECz34pP67tbDc-O2jT5ZHsDnwS6eMYrtp0fxAV4l1HhBVDRiB0bN_dztojvUmI-djf8FHgMOCA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wASAsavBTZkJN4gaxLbcfyEJrZpbNq0ByoN8RDZsa1VVGm1pkPjr-ccpxFdpQl49jmRc-fcd77zdwDvqRVVrjmNs5SqmDkj44JZGTNNOUZBeZW3vAWnZ_nRiB1f8IvuwG3elVViKD5uf9L-nmYsE5rh3h5mQyrS4cy4T9fdSRIiffTG3gXfh42cIxYfwMbo7Hzvm-8ot5wbbspQjO2Hl31JVdpm4ES66o3WIOZ6peSDRT1TNz_VZPKHGzp8AuVyAaH65MfuotG71a9b3I7_v8Kn8LhDqGQvmNQm3LP1M3gUjvdIuLX0HL5_6ak8G7IfyvVQnpxf-cSPVzZRtSFty01fjNTqn_jGa5M5QZxM9m1jg9zUkZOxqe0NPqdNFr2A0eHB189HcdenIa4YTZoYA1uKATpjulBCaukQAzDNdJLLzDhl80Rzo51zjApTVKywQuY8s4WSlDsj6EsY1NPabgERlTJaGBTJLLMiUYYLgQ7TJCZLK64iSJf6KquOxNz30piUGMx4HZfrOo7gQz9nFig87pTeXppB2W3neelJ7QVLmEgieNcP40b02RVV2-milfHkghgeR_AqWE3_OkS5-DEKHoFYsadewJN8r47U48uW7BudACI8GcHH3vL-YhWv_038DTzM_LUO3-iGbcOguVrYHQRbjX7b7ajfT18nyg
  priority: 102
  providerName: Unpaywall
Title Intelligent Diagnostic Prediction and Classification Models for Detection of Kidney Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/35206985
https://www.proquest.com/docview/2632740470
https://www.proquest.com/docview/2633937717
https://pubmed.ncbi.nlm.nih.gov/PMC8871759
https://www.mdpi.com/2227-9032/10/2/371/pdf?version=1645156172
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: 8C1
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M48
  dateStart: 20131001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_68bDBGPuetzZoMPayebUt2bIeyuj6QbfREMYCHXswkiXTgnHS1GHLf9872zEN2UYfjc6yrZN09_Od7gfwljuZJybmfhRy7YvCKj8VTvnC8BhRUJInTd2Cs2FyOhZfz-PzDVim23YDeP1XaEd8UuNZ-fHP1eITLvh9QpwI2fcu-kypsAmsyfDd9MonYikKwHYsG5uwjcZLEbvDWYcAms1ahYjRKNGRDoX6KuBRe7TmHz2vmq81n3Q9tfLevJrqxW9dlrfs1skjeNg5nOygnSGPYcNVT-BB-7eOtYeQnsKvL31lzpodtdl3KM9GM4rjkO6YrixrGDQpt6hRJyMetfKaodvLjlztWrlJwb5d2sotsJ8m9vMMxifHPw5P_Y52wc8FD2ofcSpHvC2ESbVURhVo0oURJkhUZAvtksDE1hRFIbi0aS5SJ1USRy7ViseFlfw5bFWTyr0EJnNtjbQoEjnhZKBtLCXaPxvYKMxj7UG4HM0s72qSEzVGmSE2IQ1k6xrw4H1_z7StyPFf6Z2lkrLl5MqoRr0UgZCBB2_6ZlxXFCzRlZvMGxmqFYho14MXrU77x6HTioORxh7IFW33AlSze7Wlurxoanfjno4Om_LgQz8v7vAVr-7wmq_hfkRHM4isRuzAVj2bu110mGozgM30MBzA9ufj4ej7oFkAeDUejg5-3gCdcBwX
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N8TAkhPg7AgOMBE8QLYntOH5ACK1MLd0mHjZpEg_Bjh1tUpWWNdXUL8Vn5Gw3garSxMuefXES39l357v7HcA7akWVa07jLKUqZrWRccGsjJmmHL2gvMo9bsHxST48Y9_O-fkW_O5qYVxaZXcm-oPaTCt3R77vcMUFS5hIPs9-xa5rlIuudi00gliM7fIaXbb5p9EA-fs-yw6_nh4M41VXgbhiNGljnIWiO8mYLpSQWtaosZhmOsllZmpl80Rzo-u6ZlSYomKFFTLnmS2UpLw2guK8d-Auw89xB0FxkPZ3Og5jEy2aUJtDqUz2L_okrtTH_ES6rv82jNrN3MydRTNTy2s1mfyj-A4fwoOVxUq-BBF7BFu2eQz3w3UfCVVMT-DHqIf2bMkgpO8hPfl-5QJBjvlENYb4FpwuOcnLA3GN2CZzgnYzGdjWBrppTcaXprFLnMcHj57C2a2s8DPYbqaNfQ5EVMpoYZAks8yKRBkuBCpQk5gsrbiKIO1Ws6xWoOaut8akROfGcaDc5EAEH_pnZgHS40bqvY5J5Wp7z8u_whjB234YN6aLtqjGTheexoENorscwW7gaf86tHpxMQoegVjjdk_gQL_XR5rLCw_-jUoBLT4ZwcdeLv7jL17c_BdvYGd4enxUHo1Oxi_hXuZKPFzTG7YH2-3Vwr5Cw6vVr720E_h529vrD6EmRI0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qCyqI1O_VqhH0SZfb3SSbzYOU0vPoeVr6YKHgwzbZZGnh2Dt7e5T71_zrnGQ_9DgovvQ5s1mSmWRmMjO_AXhPrShSzWmYxFSFrDQyzJiVIdOUoxeUFqnHLfh-nB6dsq9n_GwLfne1MC6tsrsT_UVtZoV7Ix84XHHBIiaiQdmmRZwMR_vzX6HrIOUirV07jUZEJnZ1je7b4vN4iLz-kCSjLz8Oj8K2w0BYMBrVIc5I0bVkTGdKSC1L1F5MMx2lMjGlsmmkudFlWTIqTFawzAqZ8sRmSlJeGkFx3juwIyiuyFWpH8b9-47D20TrpqnToVRGg4s-oSv28T8Rr-vCDQN3M0_z3rKaq9W1mk7_UYKjXXjYWq_koBG3R7Blq8fwoHn6I01F0xP4Oe5hPmsybFL5kJ6cXLmgkBMEoipDfDtOl6jkZYO4pmzTBUEbmgxtbRu6WUkml6ayK5zHB5Kewumt7PAz2K5mlX0BRBTKaGGQJLHMikgZLgQqUxOZJC64CiDudjMvWoBz12djmqOj4ziQb3IggI_9N_MG3uNG6r2OSXl71Bf5X8EM4F0_jIfURV5UZWdLT-OAB9F1DuB5w9P-d2gB42ZkPACxxu2ewAGAr49UlxceCBwVBFp_MoBPvVz8xype3ryKt3AXD1b-bXw8eQX3E1ft4frfsD3Yrq-W9jXaYLV-44WdwPltn64_evhIxw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B9wASAsavBTZkJN4gaxLbcfyEJrZpbNq0ByoN8RDZsa1VVGm1pkPjr-ccpxFdpQl49jmRc-fcd77zdwDvqRVVrjmNs5SqmDkj44JZGTNNOUZBeZW3vAWnZ_nRiB1f8IvuwG3elVViKD5uf9L-nmYsE5rh3h5mQyrS4cy4T9fdSRIiffTG3gXfh42cIxYfwMbo7Hzvm-8ot5wbbspQjO2Hl31JVdpm4ES66o3WIOZ6peSDRT1TNz_VZPKHGzp8AuVyAaH65MfuotG71a9b3I7_v8Kn8LhDqGQvmNQm3LP1M3gUjvdIuLX0HL5_6ak8G7IfyvVQnpxf-cSPVzZRtSFty01fjNTqn_jGa5M5QZxM9m1jg9zUkZOxqe0NPqdNFr2A0eHB189HcdenIa4YTZoYA1uKATpjulBCaukQAzDNdJLLzDhl80Rzo51zjApTVKywQuY8s4WSlDsj6EsY1NPabgERlTJaGBTJLLMiUYYLgQ7TJCZLK64iSJf6KquOxNz30piUGMx4HZfrOo7gQz9nFig87pTeXppB2W3neelJ7QVLmEgieNcP40b02RVV2-milfHkghgeR_AqWE3_OkS5-DEKHoFYsadewJN8r47U48uW7BudACI8GcHH3vL-YhWv_038DTzM_LUO3-iGbcOguVrYHQRbjX7b7ajfT18nyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Diagnostic+Prediction+and+Classification+Models+for+Detection+of+Kidney+Disease&rft.jtitle=Healthcare+%28Basel%29&rft.au=Poonia%2C+Ramesh+Chandra&rft.au=Gupta%2C+Mukesh+Kumar&rft.au=Abunadi%2C+Ibrahim&rft.au=Albraikan%2C+Amani+Abdulrahman&rft.date=2022-02-14&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=10&rft.issue=2&rft_id=info:doi/10.3390%2Fhealthcare10020371&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon