Multivariate analysis of soils: microbial biomass, metabolic activity, and bacterial-community structure and their relationships with soil depth and type
A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting‐land‐use soils. Soil samples were collected at increasing depth from a calcareous agricultural soil, a temperate upland grassland soil, a moderately acidic agricultural...
Saved in:
| Published in | Journal of plant nutrition and soil science Vol. 174; no. 3; pp. 381 - 394 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Weinheim
WILEY-VCH Verlag
01.06.2011
WILEY‐VCH Verlag Wiley-VCH |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1436-8730 1522-2624 1522-2624 |
| DOI | 10.1002/jpln.200900267 |
Cover
| Abstract | A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting‐land‐use soils. Soil samples were collected at increasing depth from a calcareous agricultural soil, a temperate upland grassland soil, a moderately acidic agricultural soil, and an acidic pine forest soil. Analytical investigations were carried out by using a combination of conventional physical, chemical, and biochemical methods coupled with denaturing gradient gel electrophoresis (DGGE) community fingerprinting of PCR‐amplified 16S rRNA gene‐coding fragments from soil‐extracted total‐community DNA. The data set of soil physical, chemical, and biochemical variables was reduced in dimensionality by means of a principal‐component‐analysis (PCA) procedure. Compositional shifts in soil bacterial‐community structure were analyzed through a clustering algorithm that allowed identifying six main bacterial‐community clusters. DGGE fingerprinting clusters were further analyzed by discriminant analysis (DA) using extracted PCA components as explanatory variables. Soil organic matter–related pools (TOC, TN) and functionally related active pools (microbial biomass C and N, K2SO4‐extractable C) significantly decreased with soil depth, and resulted statistically linked to one other and positively related to enzymatic activities (acid phosphatase, arylsulfatase, β‐glucosidase, dehydrogenase, hydrolysis of fluorescein diacetate) and silt content. Besides organic‐C gradients, pedogenetic‐driven physico‐chemical properties, and possibly soil thermal and moisture regimes seemed to play a key role in regulating size and energetic ecophysiological status of soil microbial communities. DGGE analysis showed that contrasting horizons were conducive to the dominance of particular bacterial ribotypes. DA revealed that the bacterial‐community structure was mainly influenced by organic matter–related variables (TOC, TN, CEC, Cflush, Nflush, Extr‐C), chemical properties such as pH, CaCO3, and EC, together with textural properties. Results indicate that, beyond land use or plant cover, pedogenetic‐driven physico‐chemical conditions changing with soil type and depth are the key factors regulating microbial size and activity, and determining the genetic structure of bacterial community. |
|---|---|
| AbstractList | A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting-land-use soils. Soil samples were collected at increasing depth from a calcareous agricultural soil, a temperate upland grassland soil, a moderately acidic agricultural soil, and an acidic pine forest soil. Analytical investigations were carried out by using a combination of conventional physical, chemical, and biochemical methods coupled with denaturing gradient gel electrophoresis (DGGE) community fingerprinting of PCR-amplified 16S rRNA gene-coding fragments from soil-extracted total-community DNA. The data set of soil physical, chemical, and biochemical variables was reduced in dimensionality by means of a principal-component-analysis (PCA) procedure. Compositional shifts in soil bacterial-community structure were analyzed through a clustering algorithm that allowed identifying six main bacterial-community clusters. DGGE fingerprinting clusters were further analyzed by discriminant analysis (DA) using extracted PCA components as explanatory variables. Soil organic matter-related pools (TOC, TN) and functionally related active pools (microbial biomass C and N, K₂SO₄-extractable C) significantly decreased with soil depth, and resulted statistically linked to one other and positively related to enzymatic activities (acid phosphatase, arylsulfatase, β-glucosidase, dehydrogenase, hydrolysis of fluorescein diacetate) and silt content. Besides organic-C gradients, pedogenetic-driven physico-chemical properties, and possibly soil thermal and moisture regimes seemed to play a key role in regulating size and energetic ecophysiological status of soil microbial communities. DGGE analysis showed that contrasting horizons were conducive to the dominance of particular bacterial ribotypes. DA revealed that the bacterial-community structure was mainly influenced by organic matter-related variables (TOC, TN, CEC, Cflush, Nflush, Extr-C), chemical properties such as pH, CaCO₃, and EC, together with textural properties. Results indicate that, beyond land use or plant cover, pedogenetic-driven physico-chemical conditions changing with soil type and depth are the key factors regulating microbial size and activity, and determining the genetic structure of bacterial community. A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting‐land‐use soils. Soil samples were collected at increasing depth from a calcareous agricultural soil, a temperate upland grassland soil, a moderately acidic agricultural soil, and an acidic pine forest soil. Analytical investigations were carried out by using a combination of conventional physical, chemical, and biochemical methods coupled with denaturing gradient gel electrophoresis (DGGE) community fingerprinting of PCR‐amplified 16S rRNA gene‐coding fragments from soil‐extracted total‐community DNA. The data set of soil physical, chemical, and biochemical variables was reduced in dimensionality by means of a principal‐component‐analysis (PCA) procedure. Compositional shifts in soil bacterial‐community structure were analyzed through a clustering algorithm that allowed identifying six main bacterial‐community clusters. DGGE fingerprinting clusters were further analyzed by discriminant analysis (DA) using extracted PCA components as explanatory variables. Soil organic matter–related pools (TOC, TN) and functionally related active pools (microbial biomass C and N, K 2 SO 4 ‐extractable C) significantly decreased with soil depth, and resulted statistically linked to one other and positively related to enzymatic activities (acid phosphatase, arylsulfatase, β‐glucosidase, dehydrogenase, hydrolysis of fluorescein diacetate) and silt content. Besides organic‐C gradients, pedogenetic‐driven physico‐chemical properties, and possibly soil thermal and moisture regimes seemed to play a key role in regulating size and energetic ecophysiological status of soil microbial communities. DGGE analysis showed that contrasting horizons were conducive to the dominance of particular bacterial ribotypes. DA revealed that the bacterial‐community structure was mainly influenced by organic matter–related variables (TOC, TN, CEC, C flush , N flush , Extr‐C), chemical properties such as pH, CaCO 3 , and EC, together with textural properties. Results indicate that, beyond land use or plant cover, pedogenetic‐driven physico‐chemical conditions changing with soil type and depth are the key factors regulating microbial size and activity, and determining the genetic structure of bacterial community. A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting‐land‐use soils. Soil samples were collected at increasing depth from a calcareous agricultural soil, a temperate upland grassland soil, a moderately acidic agricultural soil, and an acidic pine forest soil. Analytical investigations were carried out by using a combination of conventional physical, chemical, and biochemical methods coupled with denaturing gradient gel electrophoresis (DGGE) community fingerprinting of PCR‐amplified 16S rRNA gene‐coding fragments from soil‐extracted total‐community DNA. The data set of soil physical, chemical, and biochemical variables was reduced in dimensionality by means of a principal‐component‐analysis (PCA) procedure. Compositional shifts in soil bacterial‐community structure were analyzed through a clustering algorithm that allowed identifying six main bacterial‐community clusters. DGGE fingerprinting clusters were further analyzed by discriminant analysis (DA) using extracted PCA components as explanatory variables. Soil organic matter–related pools (TOC, TN) and functionally related active pools (microbial biomass C and N, K2SO4‐extractable C) significantly decreased with soil depth, and resulted statistically linked to one other and positively related to enzymatic activities (acid phosphatase, arylsulfatase, β‐glucosidase, dehydrogenase, hydrolysis of fluorescein diacetate) and silt content. Besides organic‐C gradients, pedogenetic‐driven physico‐chemical properties, and possibly soil thermal and moisture regimes seemed to play a key role in regulating size and energetic ecophysiological status of soil microbial communities. DGGE analysis showed that contrasting horizons were conducive to the dominance of particular bacterial ribotypes. DA revealed that the bacterial‐community structure was mainly influenced by organic matter–related variables (TOC, TN, CEC, Cflush, Nflush, Extr‐C), chemical properties such as pH, CaCO3, and EC, together with textural properties. Results indicate that, beyond land use or plant cover, pedogenetic‐driven physico‐chemical conditions changing with soil type and depth are the key factors regulating microbial size and activity, and determining the genetic structure of bacterial community. |
| Author | Azzellino, Arianna Gelsomino, Antonio |
| Author_xml | – sequence: 1 givenname: Antonio surname: Gelsomino fullname: Gelsomino, Antonio email: agelsomino@unirc.it organization: Dipartimento di Biotecnologie per il Monitoraggio Agroalimentare ed Ambientale (BIOMAA), Università Mediterranea di Reggio Calabria, Salita Melissari, 89124 Reggio Calabria, Italy – sequence: 2 givenname: Arianna surname: Azzellino fullname: Azzellino, Arianna organization: Dipartimento di Ingegneria Idraulica Ambientale Infrastrutture Viarie, Rilevamento (DIIAR), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24245687$$DView record in Pascal Francis |
| BookMark | eNqFkMtuFDEQRVsoSCSBLWtvkFikJ372gx0KkICGgFAQS6vsdmsc3A9sN0N_Sv42nulohJBQVlWluudW6Z5kR_3Qmyx7SfCKYEzPb0fXryjGdRqK8kl2TASlOS0oP0o9Z0VelQw_y05CuMUYc1LT4-zu8-Si_Q3eQjQIenBzsAENLQqDdeEN6qz2g7LgkLJDByGcoc5EUIOzGoFOrI3zWSIbpNJokpHL9dB1U58WKEQ_6Th5s1fEjbEeeeMg2qEPGzsGtLVxsz-GGjOmdq-bR_M8e9qCC-bFQz3Nvn94f3Nxla-_XH68eLvONWe4zBsoaEtwQUVbNJrwSpG20opUSjDNSmbKRuNWcSxU2WpTqroWqhEVZUBEySg7zc4X36kfYd6Cc3L0tgM_S4LlLlm5S1Yekk3E64UY_fBrMiHKzgZtnIPeDFOQhPO65kVNRJK-epBC0OBaD7224XCAcspFUe0s-aJLYYfgTSu1jfuQogfr_v_J6h_s0dfrBdhaZ-ZH1PLT1_X132y-sDZE8-fAgv8p07YU8sf1pSTVt6vihr-Ta3YPHCvN_Q |
| CitedBy_id | crossref_primary_10_1016_j_soilbio_2014_04_017 crossref_primary_10_1016_j_soilbio_2016_06_026 crossref_primary_10_1007_s11368_015_1258_4 crossref_primary_10_1371_journal_pone_0067353 crossref_primary_10_3390_soilsystems8040105 crossref_primary_10_1016_j_quascirev_2013_12_028 crossref_primary_10_1007_s13762_018_1861_1 crossref_primary_10_1016_j_apsoil_2024_105407 crossref_primary_10_1016_j_pedobi_2021_150747 crossref_primary_10_1111_j_1365_2389_2012_01433_x crossref_primary_10_3390_agronomy12020264 crossref_primary_10_1016_j_scitotenv_2020_138504 crossref_primary_10_1016_j_soilbio_2013_02_006 crossref_primary_10_1016_j_ecoleng_2017_09_015 crossref_primary_10_1016_j_geoderma_2022_115829 crossref_primary_10_1111_ejss_12230 crossref_primary_10_1016_j_forsciint_2015_03_008 crossref_primary_10_1016_j_scitotenv_2021_146732 crossref_primary_10_1016_j_scitotenv_2020_140248 crossref_primary_10_1016_j_soilbio_2014_10_019 crossref_primary_10_1007_s00425_025_04635_y crossref_primary_10_1016_j_scitotenv_2023_161754 crossref_primary_10_1016_j_soilbio_2013_10_040 crossref_primary_10_1016_j_catena_2012_01_014 crossref_primary_10_1016_j_apsoil_2013_11_007 crossref_primary_10_3390_agriculture12020268 crossref_primary_10_1016_j_fmre_2022_06_013 crossref_primary_10_1093_femsre_fuu011 crossref_primary_10_1080_02571862_2015_1053155 crossref_primary_10_1016_j_soilbio_2012_08_011 crossref_primary_10_1016_j_catena_2017_10_028 crossref_primary_10_3390_agriculture14020288 crossref_primary_10_3390_ma14216364 crossref_primary_10_1016_j_soilbio_2015_07_008 crossref_primary_10_1016_S1002_0160_17_60329_1 crossref_primary_10_1111_sum_12688 crossref_primary_10_1111_1365_2435_13555 crossref_primary_10_1016_j_foreco_2025_122543 crossref_primary_10_3390_f13060861 crossref_primary_10_3390_plants13233420 crossref_primary_10_1016_j_ejsobi_2015_07_007 crossref_primary_10_1016_j_soilbio_2016_08_023 crossref_primary_10_1016_j_apsoil_2023_104849 crossref_primary_10_1016_j_ecolind_2020_106530 crossref_primary_10_1016_j_soilbio_2024_109399 crossref_primary_10_3389_fmicb_2021_735282 crossref_primary_10_3390_agriculture10040099 crossref_primary_10_1071_SR13039 crossref_primary_10_1016_j_soilbio_2016_04_008 crossref_primary_10_3390_ijerph19053120 crossref_primary_10_1016_j_scitotenv_2013_03_061 crossref_primary_10_3390_soilsystems5040059 |
| Cites_doi | 10.1023/B:PLSO.0000035569.80747.c5 10.1111/j.1365-2389.2000.00346.x 10.1016/j.soilbio.2005.04.021 10.1079/9780851990989.0077 10.1016/S0016-7061(03)00045-4 10.1023/A:1010394221729 10.2136/sssaspecpub49.c15 10.1146/annurev.phyto.42.012604.135455 10.1111/j.1574-6941.2003.tb01043.x 10.1016/S0038-0717(02)00251-1 10.1002/jpln.200421651 10.1016/S0167-7012(99)00054-8 10.1128/AEM.67.5.2284-2291.2001 10.1111/j.1574-6941.2006.00085.x 10.1002/jpln.200521941 10.1071/SR05042 10.1016/j.femsec.2004.03.005 10.1016/j.soilbio.2004.02.004 10.1126/science.1071698 10.1128/AEM.69.3.1800-1809.2003 10.1016/S0038-0717(01)00065-7 10.1016/S0038-0717(01)00199-7 10.1002/1522-2624(200206)165:3<274::AID-JPLN274>3.0.CO;2-2 10.1016/S0038-0717(00)00188-7 10.1016/j.soilbio.2004.04.020 10.1128/aem.63.8.3233-3241.1997 10.1007/s003740050230 10.1016/S0929-1393(02)00025-2 10.1016/j.soilbio.2004.05.024 10.1007/s003740050260 10.1007/978-1-4899-3342-3 10.1016/j.soilbio.2004.04.035 10.1016/S0038-0717(97)00268-X 10.1016/j.soilbio.2006.12.023 10.2136/sssaj2006.0375 10.1002/1522-2624(200108)164:4<407::AID-JPLN407>3.0.CO;2-9 10.1139/w02-095 10.1007/s00442-007-0700-8 10.1111/j.1574-6941.2007.00375.x 10.1002/1522-2624(200202)165:1<9::AID-JPLN9>3.0.CO;2-O 10.1016/j.soilbio.2008.06.020 10.1007/s002480000108 10.1111/j.1574-6941.2002.tb00921.x 10.2136/sssabookser5.3 10.1016/S0038-0717(02)00297-3 10.1007/978-3-642-60694-6_1 10.1128/AEM.67.12.5849-5854.2001 10.1128/AEM.70.1.468-474.2004 10.1007/978-3-642-60966-4_28 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1002/jpln.200900267 |
| DatabaseName | Istex CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology Botany |
| EISSN | 1522-2624 |
| EndPage | 394 |
| ExternalDocumentID | 10.1002/jpln.200900267 24245687 10_1002_jpln_200900267 JPLN200900267 ark_67375_WNG_18RH6T4D_L |
| Genre | article |
| GrantInformation_xml | – fundername: Università Mediterranea di Reggio Calabria – fundername: National Research Council (CNR) |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RX1 SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WWD AAYXX CITATION IQODW 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4307-da62f10625f6dc148b1f8cb18b53c373e7dc0fb405b7fce7b995bd5823a157323 |
| IEDL.DBID | UNPAY |
| ISSN | 1436-8730 1522-2624 |
| IngestDate | Tue Aug 19 21:50:00 EDT 2025 Thu Jul 10 19:03:47 EDT 2025 Mon Jul 21 09:17:03 EDT 2025 Wed Oct 01 01:27:49 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Wed Jan 22 16:42:13 EST 2025 Sun Sep 21 06:20:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | DGGE community fingerprinting soil enzymes Multivariate analysis Depth Bacteria Microbial community pedogenetic horizons Community structure Gradient depth gradients Gel electrophoresis Enzyme Biochemical compound Denaturing gradient gel electrophoresis Ecophysiology Microbial biomass Biological activity Statistical method Soils Type Fingerprint method multivariate statistics Prokaryote energetic ecophysiological indices Microorganism Soil plant relation |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4307-da62f10625f6dc148b1f8cb18b53c373e7dc0fb405b7fce7b995bd5823a157323 |
| Notes | National Research Council (CNR) ark:/67375/WNG-18RH6T4D-L ArticleID:JPLN200900267 istex:DB3556BBB6855B40106AD4BCD3D6A60C2DFA54FB Università Mediterranea di Reggio Calabria ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jpln.200900267 |
| PQID | 1449946915 |
| PQPubID | 24069 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_1002_jpln_200900267 proquest_miscellaneous_1449946915 pascalfrancis_primary_24245687 crossref_citationtrail_10_1002_jpln_200900267 crossref_primary_10_1002_jpln_200900267 wiley_primary_10_1002_jpln_200900267_JPLN200900267 istex_primary_ark_67375_WNG_18RH6T4D_L |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June, 2011 |
| PublicationDateYYYYMMDD | 2011-06-01 |
| PublicationDate_xml | – month: 06 year: 2011 text: June, 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Journal of plant nutrition and soil science |
| PublicationTitleAlternate | Z. Pflanzenernähr. Bodenk |
| PublicationYear | 2011 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH |
| References | Bending, G. D. , Turner, M. K. , Rayns, F. , Marx, M.-C. , Wood, M. (2004): Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol. Biochem. 36, 1785-1792. Haney, R. L. , Franzluebbers, A. J. , Hons, F. M. , Hossner, L. R. , Zuberer, D. A. (2001): Molar concentration of K2SO4 and soil pH affect estimation of extractable C with chloroform fumigation-extraction. Soil Biol. Biochem. 33, 1501-1507. Marschner, P. , Crowley, D. , Yang, C. H. (2004): Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261, 199-208. Landgraf, D. , Klose, S. (2002): Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. J. Plant Nutr. Soil Sci. 165, 9-16. van Elsas, J. D. , Mäntynen, V. , Wolters, A. C. (1997): Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Biol. Fertil. Soils 24, 188-195. Agnelli, A. , Ascher, J. , Corti, G. , Ceccherini, M. T. , Nannipieri, P. , Pietramellara, G. (2004): Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol. Biochem. 36, 859-868. Tessier, L. , Gregorich, E. G. , Topp, E. (1998): Spatial variability of soil microbial biomass measured by the fumigation extraction method, and KEC as affected by depth and manure application. Soil Biol. Biochem. 30, 1369-1377. Gelsomino, A. , Keijzer-Wolters, A. C. , Cacco, G. , van Elsas, J. D. (1999): Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods 38, 1-15. Jeffery, S. , Harris, J. A. , Rickson, R. J. , Ritz, K. (2007): Microbial community phenotypic profiles change markedly with depth within the first centimetre of the arable soil surface. Soil Biol. Biochem. 39, 1226-1229. Boström, B. , Comstedt, D. , Ekblad, A. (2007): Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153, 89-98. Dilly, O. , Winter, K. , Lang, A. , Munch, J.-C. (2001): Energetic eco-physiology of the soil microbiota in two landscapes of southern and northern Germany. J. Plant Nutr. Soil Sci. 164, 407-413. Blume, E. , Bischoff, M. , Reichert, J. M. , Moorman, T. , Konopka, A. , Turco, R. F. (2002): Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol. 20, 171-181. Garbeva, P. , van Veen, J. A. , van Elsas, J. D. (2004): Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42, 243-270. Gelsomino, A. , Cacco, G. (2006): Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis. Soil Biol. Biochem. 38, 91-102. Dilly, O. , Bloem, J. , Vos, A. , Munch, J. C. (2004): Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70, 468-474. Ritz, K. , Wheatley, R. E. , Griffiths, B. S. (1997): Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. Biol. Fertil. Soils 24, 372-377. Joergensen, R. G. , Emmerling, C. (2006): Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J. Plant Nutr. Soil Sci. 169, 295-309. Wieland, G. , Neumann, R. , Backhaus, H. (2001): Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl. Environ. Microbiol. 67, 5849-5854. Oren, A. , Steinberger, Y. (2008): Coping with artifacts induced by CaCO3-CO2-H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol. Biochem. 40, 2569-2577. Buyer, J. S. , Roberts, D. P. , Russek-Cohen, E. (2002): Soil and plant effects on microbial community structure. Can. J. Microbiol. 48, 955-964. Fritze, H. , Pietikäinen, J. , Pennanen, T. (2000): Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur. J. Soil Sci. 51, 565-573. Ramette, A. (2007): Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142-160. Griffiths, R. I. , Whiteley, A. S. , O'Donnell, A. G. , Bailey, M. J. (2003): Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiol. Ecol. 43, 35-43. Ibekwe, A. M. , Kennedy, A. C. , Frohne, P. S. , Papiernik, S. K. , Yang, C.-H. , Crowley, D. E. (2002): Microbial diversity along a transect of agronomic zones. FEMS Microbiol. Ecol. 39, 183-191. Certini, G. , Dilly, O. , Ugolini, F. C. , Corti, G. (1999): Distribution of the microbial biomass in forest soils of the Tuscan Apennines. Agrochimica XLIII, 10-17. Fierer, N. , Schimel, J. P. , Holden, P. A. (2003): Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167-176. O'Donnell, A. G. , Seasman, M. , Macrae, A. , Waite, I. , Davies, J. T. (2001): Plants and fertilisers as drivers of change in microbial community structure and functions in soils. Plant Soil 232, 135-145. Heuer, H. , Krsek, M. , Baker, P. , Smalla, K. , Wellington, E. M. H. (1997): Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63, 3233-3241. Castellazzi, M. S. , Brookes, P. C. , Jenkinson, D. S. (2004): Distribution of microbial biomass down soil profiles under regenerating woodland. Soil Biol. Biochem. 36, 1485-1489. Girvan, M. S. , Bullimore, J. , Pretty, J. N. , Osborn, A. M. , Ball, A. S. (2003): Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 69, 1800-1809. Marschner, P. , Kandeler, E. , Marschner, B. (2003): Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453-461. Buckley, D. H. , Schmidt, T. M. (2001): The structure of microbial communities in soil and the lasting impact of cultivation. Microb. Ecol. 42, 11-21. Ekelund, F. , Rønn, R. , Christensen, S. (2001): Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol. Biochem. 33, 475-481. Jörgensen, R. G. , Raubuch, M. , Brandt, M. (2002): Soil microbial properties down the profile of a black earth buried by colluvium. J. Plant Nutr. Soil Sci. 165, 274-280. Rasmussen, C. , Southard, R. J. , Horwath, W. R. (2007): Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming. Soil Sci. Soc. Am. J. 71, 1141-1150. Smit, E. , Leeflang, P. , Gommans, S. , van den Broek, J. , van Mil, S. , Wernars, K. (2001): Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67, 2284-2291. Haynes, R. J. (2005): Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 85, 211-268. Johnson, M. J. , Lee, K. Y. , Scow, K. M. (2003): DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279-303. Marx, M.-C. , Kandeler, E. , Wood, M. , Wermbter, N. , Jarvis, S. C. (2005): Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 37, 35-48. Sanesi, G. , Certini, G. (2005): The umbric epipedon in the N Apennines, Italy - An example from the Vallombrosa Forest. J. Plant Nutr. Soil Sci. 168, 392-398. Torsvik, V. , Øvreås, L. , Thingstad, T. F. (2002): Prokaryotic diversity-Magnitude, dynamics, and controlling factors. Science 296, 1064-1066. Ulrich, A. , Becker, R. (2006): Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol. Ecol. 56, 430-443. Taylor, J. P. , Wilson, B. , Mills, M. S. , Burns, R. G. (2002): Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 34, 387-401. Ritz, K. , McNicol, J. W. , Nunan, N. , Grayston, S. , Millard, P. , Atkinson, D. , Gollotte, A. , Habeshaw, D. , Boag, B. , Clegg, C. D. , Griffiths, B. S. , Wheatley, R. E. , Glover, L. A. , McCaig, A. E. , Prosser, J. I. (2004): Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiol. Ecol. 49, 191-205. Cookson, W. R. , Marschner, P. , Clark, I. M. , Milton, N. , Smirk, M. N. , Murphy, D. V. , Osman, M. , Stockdale, E. A. , Hirsch, P. R. (2006): The influence of season, agricultural management, and soil properties on gross nitrogen transformations and bacterial community structure. Aust. J. Soil Res. 44, 453-565. 2007; 39 2002; 39 2004; 42 2001; 164 2002; 296 2006; 56 2004; 49 1997; 63 2006; 38 2002; 34 2004; 261 1997; 24 2003; 35 2000; 51 2005; 85 2007; 71 2003; 114 2001; 67 2001; 42 2001; 232 2002; 48 2004; 70 2002; 20 2002; 165 2006; 44 2005; 168 2004; 36 1999; 38 1999; XLIII 2007; 153 2003; 69 2007; 62 2001; 33 2005; 37 1998; 30 2008; 40 2003; 43 2006; 169 e_1_2_1_20_1 Haynes R. J. (e_1_2_1_26_1) 2005; 85 e_1_2_1_41_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_47_1 Certini G. (e_1_2_1_11_1) 1999 Heuer H. (e_1_2_1_27_1) 1997; 63 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_56_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_58_1 e_1_2_1_18_1 e_1_2_1_42_1 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_29_1 Buckley D. H. (e_1_2_1_8_1) 2001; 42 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_55_1 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_1_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_19_1 |
| References_xml | – reference: Blume, E. , Bischoff, M. , Reichert, J. M. , Moorman, T. , Konopka, A. , Turco, R. F. (2002): Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol. 20, 171-181. – reference: Joergensen, R. G. , Emmerling, C. (2006): Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J. Plant Nutr. Soil Sci. 169, 295-309. – reference: Landgraf, D. , Klose, S. (2002): Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. J. Plant Nutr. Soil Sci. 165, 9-16. – reference: Buyer, J. S. , Roberts, D. P. , Russek-Cohen, E. (2002): Soil and plant effects on microbial community structure. Can. J. Microbiol. 48, 955-964. – reference: Marschner, P. , Crowley, D. , Yang, C. H. (2004): Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261, 199-208. – reference: Ekelund, F. , Rønn, R. , Christensen, S. (2001): Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol. Biochem. 33, 475-481. – reference: Gelsomino, A. , Cacco, G. (2006): Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis. Soil Biol. Biochem. 38, 91-102. – reference: Gelsomino, A. , Keijzer-Wolters, A. C. , Cacco, G. , van Elsas, J. D. (1999): Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods 38, 1-15. – reference: Girvan, M. S. , Bullimore, J. , Pretty, J. N. , Osborn, A. M. , Ball, A. S. (2003): Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 69, 1800-1809. – reference: Certini, G. , Dilly, O. , Ugolini, F. C. , Corti, G. (1999): Distribution of the microbial biomass in forest soils of the Tuscan Apennines. Agrochimica XLIII, 10-17. – reference: Garbeva, P. , van Veen, J. A. , van Elsas, J. D. (2004): Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42, 243-270. – reference: Haney, R. L. , Franzluebbers, A. J. , Hons, F. M. , Hossner, L. R. , Zuberer, D. A. (2001): Molar concentration of K2SO4 and soil pH affect estimation of extractable C with chloroform fumigation-extraction. Soil Biol. Biochem. 33, 1501-1507. – reference: Taylor, J. P. , Wilson, B. , Mills, M. S. , Burns, R. G. (2002): Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 34, 387-401. – reference: Ramette, A. (2007): Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142-160. – reference: Agnelli, A. , Ascher, J. , Corti, G. , Ceccherini, M. T. , Nannipieri, P. , Pietramellara, G. (2004): Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol. Biochem. 36, 859-868. – reference: Torsvik, V. , Øvreås, L. , Thingstad, T. F. (2002): Prokaryotic diversity-Magnitude, dynamics, and controlling factors. Science 296, 1064-1066. – reference: Heuer, H. , Krsek, M. , Baker, P. , Smalla, K. , Wellington, E. M. H. (1997): Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63, 3233-3241. – reference: Smit, E. , Leeflang, P. , Gommans, S. , van den Broek, J. , van Mil, S. , Wernars, K. (2001): Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67, 2284-2291. – reference: Ritz, K. , McNicol, J. W. , Nunan, N. , Grayston, S. , Millard, P. , Atkinson, D. , Gollotte, A. , Habeshaw, D. , Boag, B. , Clegg, C. D. , Griffiths, B. S. , Wheatley, R. E. , Glover, L. A. , McCaig, A. E. , Prosser, J. I. (2004): Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiol. Ecol. 49, 191-205. – reference: Tessier, L. , Gregorich, E. G. , Topp, E. (1998): Spatial variability of soil microbial biomass measured by the fumigation extraction method, and KEC as affected by depth and manure application. Soil Biol. Biochem. 30, 1369-1377. – reference: Dilly, O. , Winter, K. , Lang, A. , Munch, J.-C. (2001): Energetic eco-physiology of the soil microbiota in two landscapes of southern and northern Germany. J. Plant Nutr. Soil Sci. 164, 407-413. – reference: Ibekwe, A. M. , Kennedy, A. C. , Frohne, P. S. , Papiernik, S. K. , Yang, C.-H. , Crowley, D. E. (2002): Microbial diversity along a transect of agronomic zones. FEMS Microbiol. Ecol. 39, 183-191. – reference: Boström, B. , Comstedt, D. , Ekblad, A. (2007): Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153, 89-98. – reference: Fritze, H. , Pietikäinen, J. , Pennanen, T. (2000): Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur. J. Soil Sci. 51, 565-573. – reference: Buckley, D. H. , Schmidt, T. M. (2001): The structure of microbial communities in soil and the lasting impact of cultivation. Microb. Ecol. 42, 11-21. – reference: Fierer, N. , Schimel, J. P. , Holden, P. A. (2003): Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167-176. – reference: Marx, M.-C. , Kandeler, E. , Wood, M. , Wermbter, N. , Jarvis, S. C. (2005): Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 37, 35-48. – reference: Jeffery, S. , Harris, J. A. , Rickson, R. J. , Ritz, K. (2007): Microbial community phenotypic profiles change markedly with depth within the first centimetre of the arable soil surface. Soil Biol. Biochem. 39, 1226-1229. – reference: Marschner, P. , Kandeler, E. , Marschner, B. (2003): Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453-461. – reference: Oren, A. , Steinberger, Y. (2008): Coping with artifacts induced by CaCO3-CO2-H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol. Biochem. 40, 2569-2577. – reference: Cookson, W. R. , Marschner, P. , Clark, I. M. , Milton, N. , Smirk, M. N. , Murphy, D. V. , Osman, M. , Stockdale, E. A. , Hirsch, P. R. (2006): The influence of season, agricultural management, and soil properties on gross nitrogen transformations and bacterial community structure. Aust. J. Soil Res. 44, 453-565. – reference: Haynes, R. J. (2005): Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 85, 211-268. – reference: Castellazzi, M. S. , Brookes, P. C. , Jenkinson, D. S. (2004): Distribution of microbial biomass down soil profiles under regenerating woodland. Soil Biol. Biochem. 36, 1485-1489. – reference: van Elsas, J. D. , Mäntynen, V. , Wolters, A. C. (1997): Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Biol. Fertil. Soils 24, 188-195. – reference: Wieland, G. , Neumann, R. , Backhaus, H. (2001): Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl. Environ. Microbiol. 67, 5849-5854. – reference: O'Donnell, A. G. , Seasman, M. , Macrae, A. , Waite, I. , Davies, J. T. (2001): Plants and fertilisers as drivers of change in microbial community structure and functions in soils. Plant Soil 232, 135-145. – reference: Dilly, O. , Bloem, J. , Vos, A. , Munch, J. C. (2004): Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70, 468-474. – reference: Bending, G. D. , Turner, M. K. , Rayns, F. , Marx, M.-C. , Wood, M. (2004): Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol. Biochem. 36, 1785-1792. – reference: Johnson, M. J. , Lee, K. Y. , Scow, K. M. (2003): DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279-303. – reference: Rasmussen, C. , Southard, R. J. , Horwath, W. R. (2007): Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming. Soil Sci. Soc. Am. J. 71, 1141-1150. – reference: Ulrich, A. , Becker, R. (2006): Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol. Ecol. 56, 430-443. – reference: Jörgensen, R. G. , Raubuch, M. , Brandt, M. (2002): Soil microbial properties down the profile of a black earth buried by colluvium. J. Plant Nutr. Soil Sci. 165, 274-280. – reference: Griffiths, R. I. , Whiteley, A. S. , O'Donnell, A. G. , Bailey, M. J. (2003): Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiol. Ecol. 43, 35-43. – reference: Ritz, K. , Wheatley, R. E. , Griffiths, B. S. (1997): Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. Biol. Fertil. Soils 24, 372-377. – reference: Sanesi, G. , Certini, G. (2005): The umbric epipedon in the N Apennines, Italy - An example from the Vallombrosa Forest. J. Plant Nutr. Soil Sci. 168, 392-398. – volume: 48 start-page: 955 year: 2002 end-page: 964 article-title: Soil and plant effects on microbial community structure. publication-title: Can. J. Microbiol. – volume: 168 start-page: 392 year: 2005 end-page: 398 article-title: The umbric epipedon in the N Apennines, Italy – An example from the Vallombrosa Forest. publication-title: J. Plant Nutr. Soil Sci. – volume: 20 start-page: 171 year: 2002 end-page: 181 article-title: Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. publication-title: Appl. Soil Ecol. – volume: 67 start-page: 5849 year: 2001 end-page: 5854 article-title: Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. publication-title: Appl. Environ. Microbiol. – volume: 164 start-page: 407 year: 2001 end-page: 413 article-title: Energetic eco‐physiology of the soil microbiota in two landscapes of southern and northern Germany. publication-title: J. Plant Nutr. Soil Sci. – volume: 296 start-page: 1064 year: 2002 end-page: 1066 article-title: Prokaryotic diversity–Magnitude, dynamics, and controlling factors. publication-title: Science – volume: 165 start-page: 274 year: 2002 end-page: 280 article-title: Soil microbial properties down the profile of a black earth buried by colluvium. publication-title: J. Plant Nutr. Soil Sci. – volume: 232 start-page: 135 year: 2001 end-page: 145 article-title: Plants and fertilisers as drivers of change in microbial community structure and functions in soils. publication-title: Plant Soil – volume: 49 start-page: 191 year: 2004 end-page: 205 article-title: Spatial structure in soil chemical and microbiological properties in an upland grassland. publication-title: FEMS Microbiol. Ecol. – volume: 169 start-page: 295 year: 2006 end-page: 309 article-title: Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. publication-title: J. Plant Nutr. Soil Sci. – volume: 24 start-page: 372 year: 1997 end-page: 377 article-title: Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. publication-title: Biol. Fertil. Soils – volume: 42 start-page: 11 year: 2001 end-page: 21 article-title: The structure of microbial communities in soil and the lasting impact of cultivation. publication-title: Microb. Ecol. – volume: 35 start-page: 167 year: 2003 end-page: 176 article-title: Variations in microbial community composition through two soil depth profiles. publication-title: Soil Biol. Biochem. – volume: 165 start-page: 9 year: 2002 end-page: 16 article-title: Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. publication-title: J. Plant Nutr. Soil Sci. – volume: 51 start-page: 565 year: 2000 end-page: 573 article-title: Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. publication-title: Eur. J. Soil Sci. – volume: 34 start-page: 387 year: 2002 end-page: 401 article-title: Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. publication-title: Soil Biol. Biochem. – volume: 38 start-page: 1 year: 1999 end-page: 15 article-title: Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. publication-title: J. Microbiol. Methods – volume: 37 start-page: 35 year: 2005 end-page: 48 article-title: Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle‐size fractions. publication-title: Soil Biol. Biochem. – volume: 36 start-page: 1485 year: 2004 end-page: 1489 article-title: Distribution of microbial biomass down soil profiles under regenerating woodland. publication-title: Soil Biol. Biochem. – volume: 153 start-page: 89 year: 2007 end-page: 98 article-title: Isotope fractionation and C enrichment in soil profiles during the decomposition of soil organic matter. publication-title: Oecologia – volume: XLIII start-page: 10 year: 1999 end-page: 17 article-title: Distribution of the microbial biomass in forest soils of the Tuscan Apennines. publication-title: Agrochimica – volume: 30 start-page: 1369 year: 1998 end-page: 1377 article-title: Spatial variability of soil microbial biomass measured by the fumigation extraction method, and as affected by depth and manure application. publication-title: Soil Biol. Biochem. – volume: 42 start-page: 243 year: 2004 end-page: 270 article-title: Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. publication-title: Annu. Rev. Phytopathol. – volume: 33 start-page: 1501 year: 2001 end-page: 1507 article-title: Molar concentration of K SO and soil pH affect estimation of extractable C with chloroform fumigation‐extraction. publication-title: Soil Biol. Biochem. – volume: 114 start-page: 279 year: 2003 end-page: 303 article-title: DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. publication-title: Geoderma – volume: 44 start-page: 453 year: 2006 end-page: 565 article-title: The influence of season, agricultural management, and soil properties on gross nitrogen transformations and bacterial community structure. publication-title: Aust. J. Soil Res. – volume: 39 start-page: 1226 year: 2007 end-page: 1229 article-title: Microbial community phenotypic profiles change markedly with depth within the first centimetre of the arable soil surface. publication-title: Soil Biol. Biochem. – volume: 62 start-page: 142 year: 2007 end-page: 160 article-title: Multivariate analyses in microbial ecology. publication-title: FEMS Microbiol. Ecol. – volume: 56 start-page: 430 year: 2006 end-page: 443 article-title: Soil parent material is a key determinant of the bacterial community structure in arable soils. publication-title: FEMS Microbiol. Ecol. – volume: 63 start-page: 3233 year: 1997 end-page: 3241 article-title: Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel‐electrophoretic separation in denaturing gradients. publication-title: Appl. Environ. Microbiol. – volume: 35 start-page: 453 year: 2003 end-page: 461 article-title: Structure and function of the soil microbial community in a long‐term fertilizer experiment. publication-title: Soil Biol. Biochem. – volume: 71 start-page: 1141 year: 2007 end-page: 1150 article-title: Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming. publication-title: Soil Sci. Soc. Am. J. – volume: 24 start-page: 188 year: 1997 end-page: 195 article-title: Soil DNA extraction and assessment of the fate of strain PCP‐1 in different soils by 16S ribosomal RNA gene sequence based most‐probable‐number PCR and immunofluorescence. publication-title: Biol. Fertil. Soils – volume: 33 start-page: 475 year: 2001 end-page: 481 article-title: Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. publication-title: Soil Biol. Biochem. – volume: 261 start-page: 199 year: 2004 end-page: 208 article-title: Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. publication-title: Plant Soil – volume: 36 start-page: 859 year: 2004 end-page: 868 article-title: Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. publication-title: Soil Biol. Biochem. – volume: 67 start-page: 2284 year: 2001 end-page: 2291 article-title: Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. publication-title: Appl. Environ. Microbiol. – volume: 36 start-page: 1785 year: 2004 end-page: 1792 article-title: Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. publication-title: Soil Biol. Biochem. – volume: 38 start-page: 91 year: 2006 end-page: 102 article-title: Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis. publication-title: Soil Biol. Biochem. – volume: 70 start-page: 468 year: 2004 end-page: 474 article-title: Bacterial diversity in agricultural soils during litter decomposition. publication-title: Appl. Environ. Microbiol. – volume: 43 start-page: 35 year: 2003 end-page: 43 article-title: Influence of depth and sampling time on bacterial community structure in an upland grassland soil. publication-title: FEMS Microbiol. Ecol. – volume: 39 start-page: 183 year: 2002 end-page: 191 article-title: Microbial diversity along a transect of agronomic zones. publication-title: FEMS Microbiol. Ecol. – volume: 85 start-page: 211 year: 2005 end-page: 268 article-title: Labile organic matter fractions as central components of the quality of agricultural soils: An overview. publication-title: Adv. Agron. – volume: 69 start-page: 1800 year: 2003 end-page: 1809 article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. publication-title: Appl. Environ. Microbiol. – volume: 40 start-page: 2569 year: 2008 end-page: 2577 article-title: Coping with artifacts induced by CaCO ‐CO ‐H O equilibria in substrate utilization profiling of calcareous soils. publication-title: Soil Biol. Biochem. – ident: e_1_2_1_36_1 doi: 10.1023/B:PLSO.0000035569.80747.c5 – ident: e_1_2_1_49_1 – ident: e_1_2_1_18_1 doi: 10.1111/j.1365-2389.2000.00346.x – ident: e_1_2_1_20_1 doi: 10.1016/j.soilbio.2005.04.021 – volume: 85 start-page: 211 year: 2005 ident: e_1_2_1_26_1 article-title: Labile organic matter fractions as central components of the quality of agricultural soils: An overview. publication-title: Adv. Agron. – ident: e_1_2_1_51_1 – ident: e_1_2_1_7_1 doi: 10.1079/9780851990989.0077 – ident: e_1_2_1_32_1 doi: 10.1016/S0016-7061(03)00045-4 – ident: e_1_2_1_38_1 doi: 10.1023/A:1010394221729 – ident: e_1_2_1_13_1 doi: 10.2136/sssaspecpub49.c15 – ident: e_1_2_1_19_1 doi: 10.1146/annurev.phyto.42.012604.135455 – ident: e_1_2_1_24_1 doi: 10.1111/j.1574-6941.2003.tb01043.x – ident: e_1_2_1_17_1 doi: 10.1016/S0038-0717(02)00251-1 – ident: e_1_2_1_47_1 doi: 10.1002/jpln.200421651 – ident: e_1_2_1_21_1 doi: 10.1016/S0167-7012(99)00054-8 – ident: e_1_2_1_48_1 doi: 10.1128/AEM.67.5.2284-2291.2001 – ident: e_1_2_1_55_1 doi: 10.1111/j.1574-6941.2006.00085.x – start-page: 10 year: 1999 ident: e_1_2_1_11_1 article-title: Distribution of the microbial biomass in forest soils of the Tuscan Apennines. publication-title: Agrochimica – ident: e_1_2_1_31_1 doi: 10.1002/jpln.200521941 – ident: e_1_2_1_12_1 doi: 10.1071/SR05042 – ident: e_1_2_1_45_1 doi: 10.1016/j.femsec.2004.03.005 – ident: e_1_2_1_2_1 doi: 10.1016/j.soilbio.2004.02.004 – ident: e_1_2_1_54_1 doi: 10.1126/science.1071698 – ident: e_1_2_1_22_1 doi: 10.1128/AEM.69.3.1800-1809.2003 – ident: e_1_2_1_25_1 doi: 10.1016/S0038-0717(01)00065-7 – ident: e_1_2_1_52_1 doi: 10.1016/S0038-0717(01)00199-7 – ident: e_1_2_1_33_1 doi: 10.1002/1522-2624(200206)165:3<274::AID-JPLN274>3.0.CO;2-2 – ident: e_1_2_1_16_1 doi: 10.1016/S0038-0717(00)00188-7 – ident: e_1_2_1_10_1 doi: 10.1016/j.soilbio.2004.04.020 – ident: e_1_2_1_46_1 – volume: 63 start-page: 3233 year: 1997 ident: e_1_2_1_27_1 article-title: Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel‐electrophoretic separation in denaturing gradients. publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.8.3233-3241.1997 – ident: e_1_2_1_56_1 doi: 10.1007/s003740050230 – ident: e_1_2_1_4_1 doi: 10.1016/S0929-1393(02)00025-2 – ident: e_1_2_1_37_1 doi: 10.1016/j.soilbio.2004.05.024 – ident: e_1_2_1_44_1 doi: 10.1007/s003740050260 – ident: e_1_2_1_1_1 doi: 10.1007/978-1-4899-3342-3 – ident: e_1_2_1_3_1 doi: 10.1016/j.soilbio.2004.04.035 – ident: e_1_2_1_53_1 doi: 10.1016/S0038-0717(97)00268-X – ident: e_1_2_1_30_1 doi: 10.1016/j.soilbio.2006.12.023 – ident: e_1_2_1_43_1 doi: 10.2136/sssaj2006.0375 – ident: e_1_2_1_14_1 doi: 10.1002/1522-2624(200108)164:4<407::AID-JPLN407>3.0.CO;2-9 – ident: e_1_2_1_29_1 – ident: e_1_2_1_9_1 doi: 10.1139/w02-095 – ident: e_1_2_1_5_1 doi: 10.1007/s00442-007-0700-8 – ident: e_1_2_1_42_1 doi: 10.1111/j.1574-6941.2007.00375.x – ident: e_1_2_1_6_1 – ident: e_1_2_1_34_1 doi: 10.1002/1522-2624(200202)165:1<9::AID-JPLN9>3.0.CO;2-O – ident: e_1_2_1_40_1 doi: 10.1016/j.soilbio.2008.06.020 – volume: 42 start-page: 11 year: 2001 ident: e_1_2_1_8_1 article-title: The structure of microbial communities in soil and the lasting impact of cultivation. publication-title: Microb. Ecol. doi: 10.1007/s002480000108 – ident: e_1_2_1_28_1 doi: 10.1111/j.1574-6941.2002.tb00921.x – ident: e_1_2_1_50_1 doi: 10.2136/sssabookser5.3 – ident: e_1_2_1_35_1 doi: 10.1016/S0038-0717(02)00297-3 – ident: e_1_2_1_41_1 – ident: e_1_2_1_23_1 doi: 10.1007/978-3-642-60694-6_1 – ident: e_1_2_1_57_1 doi: 10.1128/AEM.67.12.5849-5854.2001 – ident: e_1_2_1_58_1 – ident: e_1_2_1_15_1 doi: 10.1128/AEM.70.1.468-474.2004 – ident: e_1_2_1_39_1 doi: 10.1007/978-3-642-60966-4_28 |
| SSID | ssj0004192 |
| Score | 2.1808999 |
| Snippet | A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting‐land‐use soils. Soil... A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting-land-use soils. Soil... |
| SourceID | unpaywall proquest pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 381 |
| SubjectTerms | acid phosphatase agricultural soils Agronomy. Soil science and plant productions algorithms arylsulfatase bacterial communities Biochemistry and biology Biological and medical sciences Chemical, physicochemical, biochemical and biological properties coniferous forests data collection denaturing gradient gel electrophoresis depth gradients DGGE community fingerprinting discriminant analysis DNA energetic ecophysiological indices enzyme activity forest soils Fundamental and applied biological sciences. Psychology General agronomy. Plant production grassland soils ground cover plants highlands hydrolysis land use microbial biomass Microbiology multivariate analysis multivariate statistics organic soils pedogenetic horizons Physics, chemistry, biochemistry and biology of agricultural and forest soils ribosomal RNA ribotypes silt soil depth soil enzymes soil microorganisms soil sampling Soil science Soil-plant relationships. Soil fertility Soil-plant relationships. Soil fertility. Fertilization. Amendments |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQC6IseAxUTIHKSAhYNG0Tx3mwK48yqsoIVa3oLrIdh06bJtFkBhhWfAJ7_o4v4V47SQkSqgS7RLpOYvvYOdf2PZeQJ8Dg3Uh52nG55I4vlXCkwOAckcY8FjxWEUYjvxsHoyN_75gf_xbFb_UhugU3HBlmvsYBLmS9dSEaelrlRr80RjcCw8ldFhif6uBCPwq3OE14EaruApZb1cZtb6tfvPdXWsYG_oKnJEUNDZXZDBc9Cnp9XlRi8VnkeZ_Umr_S7i0i2vrYwyhnm_OZ3FRf_5B6_J8K3yY3G8pKdyzG7pAruhiQGzsfp41shx6Qazal5WJArr4sgW4u7pIfJrT3E7jiwGapaLRPaJnRupzk9Qt6PjEaUPBklAAADr9Bz_UMMJlPFMVwC8xqsQElUyqtpLTIf377rmxEy2xBrfQtvN_YmB0POm3P9p1MqpriIrN5HU11BZfGDhzve-Ro983hq5HTZIJwlI8qlinAJwPn1eNZkCrw4KSbRUq6keRMsZDpMFXbmQTyKcNM6VDGMZcpjzwmXB4yj62SpaIs9H1CtQ_QhBmehYL5AYPpKfViKbWrfB7LIB0Sp0VCohqZdMzWkSdW4NlLsB-Srh-G5FlnX1mBkL9aPjXA6szE9AyP1YU8-TB-m7jRwSg49F8n-0Oy3kNeV8Az29QRPOlxC8UEZgPc4hGFLuc1OHLgwfpB7PIhed5h9NIP8wzuLjFL9t7vj7u7tX8p9ICs2DV5XMV6SJYAJ_oRkLqZXDcD9xfgTUb7 priority: 102 providerName: Wiley-Blackwell |
| Title | Multivariate analysis of soils: microbial biomass, metabolic activity, and bacterial-community structure and their relationships with soil depth and type |
| URI | https://api.istex.fr/ark:/67375/WNG-18RH6T4D-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.200900267 https://www.proquest.com/docview/1449946915 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jpln.200900267 |
| UnpaywallVersion | publishedVersion |
| Volume | 174 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2624 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2624 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004192 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXVDhwGMBsTxWRkLAoSnEifPgtlDKqiqrquqKcopsxylL0yTaB7Cc-Anc-Xf8EsZ2EmlBqEjcEmnivD6Pv7E93wA8QgbvRpIqx2WCOb6Q3BFcJ-fwNGYxZ7GMdDby23Ewmvh7x-x4A3aaXBirD9FOuOmeYfy17uBVmlk_X6_u02cfq9xomMY6lAgvQDdgyMg70J2MD4bvTWKR1tsNTckRHKmoQwPqN9qNfzSwNjZ19Wf-ovdK8jl-rszWuVgjopvLouKrzzzP16mtGZt2r4Fq3spuSTndXi7Etvz6m-Dj_772dbhak1cytGi7ARuq6MGV4cmsFvBQPbhki1uuenDxZYnEc3UTfpgk308YlCOvJbxWQSFlRublNJ-_IGdTowaFLWsxAGTzW-RMLRCd-VQSnXih61ts4ZUpEVZcmuc_v32XNrdlsSJWBBfvb2zM2geZNbv8PkyrOdHTzeZ2JFUVHho7DMFvwWT39dGrkVPXhHCkr_UsUwRShmEsZVmQSozlhJtFUriRYJ70Qk-FqXyeCaShIsykCkUcM5GyiHrcZaFHvdvQKcpC3QGifAQp-nov5J4feOioUhoLoVzps1gEaR-cBg2JrAXTdd2OPLFSzzTR_yFp_0MfnrT2lZUK-avlYwOu1ozPTvUGu5Al78ZvEjc6HAVH_k6y34fBGvraC6hZsI6wpYcNHBP0C3qxhxeqXM4xpMNY1g9il_XhaYvTcx-MGuydY5bsHeyP27O7_97-Pbhs5-T1LNZ96CA61AMkdQsxwHDmkA7qnvsLONBLOw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBRUOPBYQy6MYCUEPTds8nAe38ihL2a5QtRXcLNtxYGmaRJtdYDnxE7jz7_glzNhJqkVCleC2kcbJJvnsfDOe-YaQR8Dg3Vh52nGZZE4glXCkwOIckSYsESxRMVYjH4zCwVGw_5612YRYC2P1IbqAG84Ms17jBMeA9PapauinKjcCpgn6EdF5shqE4KwgLzo8VZDCTU5TYIS6u4DmVrdxx9teHr_0XVrFR_wV8yRFDY8qsz0ulkjo2ryoxOKLyPNlWmu-S3tXiWzvyKajHG_NZ3JLfftD7PG_bvkaudKwVrprYXadnNNFj1ze_TBtlDt0j1y0XS0XPXLhWQmMc3GD_DTVvZ_BGwdCS0Ujf0LLjNblJK-f0pOJkYGCM6MKAND4TXqiZwDLfKIoVlxgY4tNGJlSaVWlRf7r-w9li1pmC2rVb-H6xsZsetBpm973cVLVFOPM5nI01RX8NHbge98kR3svx88HTtMMwlEBClmmgKAM_FePZWGqwImTbhYr6caS-cqPfB2laieTwD9llCkdySRhMmWx5wuXRb7n3yIrRVno24TqANAJi7wfCT8IfVihUi-RUrsqYIkM0z5xWihw1SilY8OOnFuNZ4_je-Dde-iTJ519ZTVC_mr52CCrMxPTY8ysixh_N3rF3fhwEI6DF3zYJ-tL0OsGeGanOoYzPWyxyGFBwF0eUehyXoMvB05sECYu65ONDqRn_jHPAO8MM77_djjqju78y6AHZG0wPhjy4evRm7vkkg3RY1DrHlkBzOj7wPFmct3M4t87AUsc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5dUDjwXEUihGQsChaZuH8-BWWJalLKuqagW3yHYcWJom0WYXWE78BO78O34JM3aSKkioEtwSaZzEyWfnG3vmG0IeAYO3Q-koy2aCWZ6Q3BIck3N4ErGIs0iGmI38duKPjry996yJJsRcGKMP0S644cjQ8zUOcFUm6fapauinMtMCphH6EcF5suqxKMSovsHBqYIUbnLqBCPU3QU0N7qNO852t33nv7SKr_grxknyCl5VampcdEjo5UVe8uUXnmVdWqv_S8NrRDQ9MuEox1uLudiS3_4Qe_yvLl8nV2vWSncNzG6QcyrvkbXdD7NauUP1yEVT1XLZIxeeF8A4lzfJT53d-xm8cSC0lNfyJ7RIaVVMs-oZPZlqGSi4MqoAAI3fpCdqDrDMppJixgUWttiElgkVRlWaZ7--_5AmqWW-pEb9Fu6vbfSmB5014X0fp2VFcZ1Z344mqoRDbQe-9y1yNHx5-GJk1cUgLOmhkGUCCErBf3VY6icSnDhhp6EUdiiYK93AVUEid1IB_FMEqVSBiCImEhY6LrdZ4DrubbKSF7m6Q6jyAJ0wybsBdz3fhRkqcSIhlC0BQcJP-sRqoBDLWikdC3ZksdF4dmL8DnH7HfrkSWtfGo2Qv1o-1shqzfjsGCPrAha_m7yK7fBg5B96g3jcJxsd6LUNHL1THcKVHjZYjGFCwF0enqtiUYEvB06s50c265OnLUjPfDBHA-8Ms3hvfzxpz-7-S6MH5NL-YBiPX0_erJMrZoUe17TukRWAjLoPFG8uNvQg_g1-e0qg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXRBw4LGAWB6VkRBwaApx4jy4LZSyqsqqQl3RniLbcWBpmkSbXWA58RO48-_4JYztJNKCUJG4JdLEeX0ef2N7vgF4iAzejSRVjssEc3whuSO4Ts7hacxizmIZ6WzkN5NgPPX3jtjRBuy0uTBWH6KbcNM9w_hr3cGrNLN-vlndp08_VrnRMI11KBGeg37AkJH3oD-dHIyOTWKR1tsNTckRHKmoQwPqt9qNfzSwNjb19Wf-ovdK8ho_V2brXKwR0YvLouKrzzzP16mtGZt2r4Jq38puSTnZXi7Etvz6m-Dj_772NbjSkFcysmi7DhuqGMDl0ft5I-ChBnDBFrdcDeD8ixKJ5-oG_DBJvp8wKEdeS3ijgkLKjNTlLK-fk9OZUYPClrUYALL5LXKqFojOfCaJTrzQ9S228MqUCCsuzfOf375Lm9uyWBErgov3NzZm7YPM211-H2ZVTfR0s7kdSVWFh8YOQ_CbMN19dfhy7DQ1IRzpaz3LFIGUYRhLWRakEmM54WaRFG4kmCe90FNhKp9lAmmoCDOpQhHHTKQsoh53WehR7xb0irJQt4EoH0GKvt4LuecHHjqqlMZCKFf6LBZBOgSnRUMiG8F0XbcjT6zUM030f0i6_zCEx519ZaVC_mr5yICrM-PzE73BLmTJu8nrxI3ejoNDfyfZH8LmGvq6C6hZsI6wpQctHBP0C3qxhxeqXNYY0mEs6wexy4bwpMPpmQ9GDfbOMEv2DvYn3dmdf2__Llyyc_J6Fuse9BAd6j6SuoXYbPrsL3s8SlI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+analysis+of+soils%3A+microbial+biomass%2C+metabolic+activity%2C+and+bacterial-community+structure+and+their+relationships+with+soil+depth+and+type&rft.jtitle=Journal+of+plant+nutrition+and+soil+science&rft.au=Gelsomino%2C+Antonio&rft.au=Azzellino%2C+Arianna&rft.date=2011-06-01&rft.issn=1436-8730&rft.volume=174&rft.issue=3+p.381-394&rft.spage=381&rft.epage=394&rft_id=info:doi/10.1002%2Fjpln.200900267&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-8730&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-8730&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-8730&client=summon |