Multivariate analysis of soils: microbial biomass, metabolic activity, and bacterial-community structure and their relationships with soil depth and type

A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting‐land‐use soils. Soil samples were collected at increasing depth from a calcareous agricultural soil, a temperate upland grassland soil, a moderately acidic agricultural...

Full description

Saved in:
Bibliographic Details
Published inJournal of plant nutrition and soil science Vol. 174; no. 3; pp. 381 - 394
Main Authors Gelsomino, Antonio, Azzellino, Arianna
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.06.2011
WILEY‐VCH Verlag
Wiley-VCH
Subjects
Online AccessGet full text
ISSN1436-8730
1522-2624
1522-2624
DOI10.1002/jpln.200900267

Cover

Abstract A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting‐land‐use soils. Soil samples were collected at increasing depth from a calcareous agricultural soil, a temperate upland grassland soil, a moderately acidic agricultural soil, and an acidic pine forest soil. Analytical investigations were carried out by using a combination of conventional physical, chemical, and biochemical methods coupled with denaturing gradient gel electrophoresis (DGGE) community fingerprinting of PCR‐amplified 16S rRNA gene‐coding fragments from soil‐extracted total‐community DNA. The data set of soil physical, chemical, and biochemical variables was reduced in dimensionality by means of a principal‐component‐analysis (PCA) procedure. Compositional shifts in soil bacterial‐community structure were analyzed through a clustering algorithm that allowed identifying six main bacterial‐community clusters. DGGE fingerprinting clusters were further analyzed by discriminant analysis (DA) using extracted PCA components as explanatory variables. Soil organic matter–related pools (TOC, TN) and functionally related active pools (microbial biomass C and N, K2SO4‐extractable C) significantly decreased with soil depth, and resulted statistically linked to one other and positively related to enzymatic activities (acid phosphatase, arylsulfatase, β‐glucosidase, dehydrogenase, hydrolysis of fluorescein diacetate) and silt content. Besides organic‐C gradients, pedogenetic‐driven physico‐chemical properties, and possibly soil thermal and moisture regimes seemed to play a key role in regulating size and energetic ecophysiological status of soil microbial communities. DGGE analysis showed that contrasting horizons were conducive to the dominance of particular bacterial ribotypes. DA revealed that the bacterial‐community structure was mainly influenced by organic matter–related variables (TOC, TN, CEC, Cflush, Nflush, Extr‐C), chemical properties such as pH, CaCO3, and EC, together with textural properties. Results indicate that, beyond land use or plant cover, pedogenetic‐driven physico‐chemical conditions changing with soil type and depth are the key factors regulating microbial size and activity, and determining the genetic structure of bacterial community.
AbstractList A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting-land-use soils. Soil samples were collected at increasing depth from a calcareous agricultural soil, a temperate upland grassland soil, a moderately acidic agricultural soil, and an acidic pine forest soil. Analytical investigations were carried out by using a combination of conventional physical, chemical, and biochemical methods coupled with denaturing gradient gel electrophoresis (DGGE) community fingerprinting of PCR-amplified 16S rRNA gene-coding fragments from soil-extracted total-community DNA. The data set of soil physical, chemical, and biochemical variables was reduced in dimensionality by means of a principal-component-analysis (PCA) procedure. Compositional shifts in soil bacterial-community structure were analyzed through a clustering algorithm that allowed identifying six main bacterial-community clusters. DGGE fingerprinting clusters were further analyzed by discriminant analysis (DA) using extracted PCA components as explanatory variables. Soil organic matter-related pools (TOC, TN) and functionally related active pools (microbial biomass C and N, K₂SO₄-extractable C) significantly decreased with soil depth, and resulted statistically linked to one other and positively related to enzymatic activities (acid phosphatase, arylsulfatase, β-glucosidase, dehydrogenase, hydrolysis of fluorescein diacetate) and silt content. Besides organic-C gradients, pedogenetic-driven physico-chemical properties, and possibly soil thermal and moisture regimes seemed to play a key role in regulating size and energetic ecophysiological status of soil microbial communities. DGGE analysis showed that contrasting horizons were conducive to the dominance of particular bacterial ribotypes. DA revealed that the bacterial-community structure was mainly influenced by organic matter-related variables (TOC, TN, CEC, Cflush, Nflush, Extr-C), chemical properties such as pH, CaCO₃, and EC, together with textural properties. Results indicate that, beyond land use or plant cover, pedogenetic-driven physico-chemical conditions changing with soil type and depth are the key factors regulating microbial size and activity, and determining the genetic structure of bacterial community.
A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting‐land‐use soils. Soil samples were collected at increasing depth from a calcareous agricultural soil, a temperate upland grassland soil, a moderately acidic agricultural soil, and an acidic pine forest soil. Analytical investigations were carried out by using a combination of conventional physical, chemical, and biochemical methods coupled with denaturing gradient gel electrophoresis (DGGE) community fingerprinting of PCR‐amplified 16S rRNA gene‐coding fragments from soil‐extracted total‐community DNA. The data set of soil physical, chemical, and biochemical variables was reduced in dimensionality by means of a principal‐component‐analysis (PCA) procedure. Compositional shifts in soil bacterial‐community structure were analyzed through a clustering algorithm that allowed identifying six main bacterial‐community clusters. DGGE fingerprinting clusters were further analyzed by discriminant analysis (DA) using extracted PCA components as explanatory variables. Soil organic matter–related pools (TOC, TN) and functionally related active pools (microbial biomass C and N, K 2 SO 4 ‐extractable C) significantly decreased with soil depth, and resulted statistically linked to one other and positively related to enzymatic activities (acid phosphatase, arylsulfatase, β‐glucosidase, dehydrogenase, hydrolysis of fluorescein diacetate) and silt content. Besides organic‐C gradients, pedogenetic‐driven physico‐chemical properties, and possibly soil thermal and moisture regimes seemed to play a key role in regulating size and energetic ecophysiological status of soil microbial communities. DGGE analysis showed that contrasting horizons were conducive to the dominance of particular bacterial ribotypes. DA revealed that the bacterial‐community structure was mainly influenced by organic matter–related variables (TOC, TN, CEC, C flush , N flush , Extr‐C), chemical properties such as pH, CaCO 3 , and EC, together with textural properties. Results indicate that, beyond land use or plant cover, pedogenetic‐driven physico‐chemical conditions changing with soil type and depth are the key factors regulating microbial size and activity, and determining the genetic structure of bacterial community.
A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting‐land‐use soils. Soil samples were collected at increasing depth from a calcareous agricultural soil, a temperate upland grassland soil, a moderately acidic agricultural soil, and an acidic pine forest soil. Analytical investigations were carried out by using a combination of conventional physical, chemical, and biochemical methods coupled with denaturing gradient gel electrophoresis (DGGE) community fingerprinting of PCR‐amplified 16S rRNA gene‐coding fragments from soil‐extracted total‐community DNA. The data set of soil physical, chemical, and biochemical variables was reduced in dimensionality by means of a principal‐component‐analysis (PCA) procedure. Compositional shifts in soil bacterial‐community structure were analyzed through a clustering algorithm that allowed identifying six main bacterial‐community clusters. DGGE fingerprinting clusters were further analyzed by discriminant analysis (DA) using extracted PCA components as explanatory variables. Soil organic matter–related pools (TOC, TN) and functionally related active pools (microbial biomass C and N, K2SO4‐extractable C) significantly decreased with soil depth, and resulted statistically linked to one other and positively related to enzymatic activities (acid phosphatase, arylsulfatase, β‐glucosidase, dehydrogenase, hydrolysis of fluorescein diacetate) and silt content. Besides organic‐C gradients, pedogenetic‐driven physico‐chemical properties, and possibly soil thermal and moisture regimes seemed to play a key role in regulating size and energetic ecophysiological status of soil microbial communities. DGGE analysis showed that contrasting horizons were conducive to the dominance of particular bacterial ribotypes. DA revealed that the bacterial‐community structure was mainly influenced by organic matter–related variables (TOC, TN, CEC, Cflush, Nflush, Extr‐C), chemical properties such as pH, CaCO3, and EC, together with textural properties. Results indicate that, beyond land use or plant cover, pedogenetic‐driven physico‐chemical conditions changing with soil type and depth are the key factors regulating microbial size and activity, and determining the genetic structure of bacterial community.
Author Azzellino, Arianna
Gelsomino, Antonio
Author_xml – sequence: 1
  givenname: Antonio
  surname: Gelsomino
  fullname: Gelsomino, Antonio
  email: agelsomino@unirc.it
  organization: Dipartimento di Biotecnologie per il Monitoraggio Agroalimentare ed Ambientale (BIOMAA), Università Mediterranea di Reggio Calabria, Salita Melissari, 89124 Reggio Calabria, Italy
– sequence: 2
  givenname: Arianna
  surname: Azzellino
  fullname: Azzellino, Arianna
  organization: Dipartimento di Ingegneria Idraulica Ambientale Infrastrutture Viarie, Rilevamento (DIIAR), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24245687$$DView record in Pascal Francis
BookMark eNqFkMtuFDEQRVsoSCSBLWtvkFikJ372gx0KkICGgFAQS6vsdmsc3A9sN0N_Sv42nulohJBQVlWluudW6Z5kR_3Qmyx7SfCKYEzPb0fXryjGdRqK8kl2TASlOS0oP0o9Z0VelQw_y05CuMUYc1LT4-zu8-Si_Q3eQjQIenBzsAENLQqDdeEN6qz2g7LgkLJDByGcoc5EUIOzGoFOrI3zWSIbpNJokpHL9dB1U58WKEQ_6Th5s1fEjbEeeeMg2qEPGzsGtLVxsz-GGjOmdq-bR_M8e9qCC-bFQz3Nvn94f3Nxla-_XH68eLvONWe4zBsoaEtwQUVbNJrwSpG20opUSjDNSmbKRuNWcSxU2WpTqroWqhEVZUBEySg7zc4X36kfYd6Cc3L0tgM_S4LlLlm5S1Yekk3E64UY_fBrMiHKzgZtnIPeDFOQhPO65kVNRJK-epBC0OBaD7224XCAcspFUe0s-aJLYYfgTSu1jfuQogfr_v_J6h_s0dfrBdhaZ-ZH1PLT1_X132y-sDZE8-fAgv8p07YU8sf1pSTVt6vihr-Ta3YPHCvN_Q
CitedBy_id crossref_primary_10_1016_j_soilbio_2014_04_017
crossref_primary_10_1016_j_soilbio_2016_06_026
crossref_primary_10_1007_s11368_015_1258_4
crossref_primary_10_1371_journal_pone_0067353
crossref_primary_10_3390_soilsystems8040105
crossref_primary_10_1016_j_quascirev_2013_12_028
crossref_primary_10_1007_s13762_018_1861_1
crossref_primary_10_1016_j_apsoil_2024_105407
crossref_primary_10_1016_j_pedobi_2021_150747
crossref_primary_10_1111_j_1365_2389_2012_01433_x
crossref_primary_10_3390_agronomy12020264
crossref_primary_10_1016_j_scitotenv_2020_138504
crossref_primary_10_1016_j_soilbio_2013_02_006
crossref_primary_10_1016_j_ecoleng_2017_09_015
crossref_primary_10_1016_j_geoderma_2022_115829
crossref_primary_10_1111_ejss_12230
crossref_primary_10_1016_j_forsciint_2015_03_008
crossref_primary_10_1016_j_scitotenv_2021_146732
crossref_primary_10_1016_j_scitotenv_2020_140248
crossref_primary_10_1016_j_soilbio_2014_10_019
crossref_primary_10_1007_s00425_025_04635_y
crossref_primary_10_1016_j_scitotenv_2023_161754
crossref_primary_10_1016_j_soilbio_2013_10_040
crossref_primary_10_1016_j_catena_2012_01_014
crossref_primary_10_1016_j_apsoil_2013_11_007
crossref_primary_10_3390_agriculture12020268
crossref_primary_10_1016_j_fmre_2022_06_013
crossref_primary_10_1093_femsre_fuu011
crossref_primary_10_1080_02571862_2015_1053155
crossref_primary_10_1016_j_soilbio_2012_08_011
crossref_primary_10_1016_j_catena_2017_10_028
crossref_primary_10_3390_agriculture14020288
crossref_primary_10_3390_ma14216364
crossref_primary_10_1016_j_soilbio_2015_07_008
crossref_primary_10_1016_S1002_0160_17_60329_1
crossref_primary_10_1111_sum_12688
crossref_primary_10_1111_1365_2435_13555
crossref_primary_10_1016_j_foreco_2025_122543
crossref_primary_10_3390_f13060861
crossref_primary_10_3390_plants13233420
crossref_primary_10_1016_j_ejsobi_2015_07_007
crossref_primary_10_1016_j_soilbio_2016_08_023
crossref_primary_10_1016_j_apsoil_2023_104849
crossref_primary_10_1016_j_ecolind_2020_106530
crossref_primary_10_1016_j_soilbio_2024_109399
crossref_primary_10_3389_fmicb_2021_735282
crossref_primary_10_3390_agriculture10040099
crossref_primary_10_1071_SR13039
crossref_primary_10_1016_j_soilbio_2016_04_008
crossref_primary_10_3390_ijerph19053120
crossref_primary_10_1016_j_scitotenv_2013_03_061
crossref_primary_10_3390_soilsystems5040059
Cites_doi 10.1023/B:PLSO.0000035569.80747.c5
10.1111/j.1365-2389.2000.00346.x
10.1016/j.soilbio.2005.04.021
10.1079/9780851990989.0077
10.1016/S0016-7061(03)00045-4
10.1023/A:1010394221729
10.2136/sssaspecpub49.c15
10.1146/annurev.phyto.42.012604.135455
10.1111/j.1574-6941.2003.tb01043.x
10.1016/S0038-0717(02)00251-1
10.1002/jpln.200421651
10.1016/S0167-7012(99)00054-8
10.1128/AEM.67.5.2284-2291.2001
10.1111/j.1574-6941.2006.00085.x
10.1002/jpln.200521941
10.1071/SR05042
10.1016/j.femsec.2004.03.005
10.1016/j.soilbio.2004.02.004
10.1126/science.1071698
10.1128/AEM.69.3.1800-1809.2003
10.1016/S0038-0717(01)00065-7
10.1016/S0038-0717(01)00199-7
10.1002/1522-2624(200206)165:3<274::AID-JPLN274>3.0.CO;2-2
10.1016/S0038-0717(00)00188-7
10.1016/j.soilbio.2004.04.020
10.1128/aem.63.8.3233-3241.1997
10.1007/s003740050230
10.1016/S0929-1393(02)00025-2
10.1016/j.soilbio.2004.05.024
10.1007/s003740050260
10.1007/978-1-4899-3342-3
10.1016/j.soilbio.2004.04.035
10.1016/S0038-0717(97)00268-X
10.1016/j.soilbio.2006.12.023
10.2136/sssaj2006.0375
10.1002/1522-2624(200108)164:4<407::AID-JPLN407>3.0.CO;2-9
10.1139/w02-095
10.1007/s00442-007-0700-8
10.1111/j.1574-6941.2007.00375.x
10.1002/1522-2624(200202)165:1<9::AID-JPLN9>3.0.CO;2-O
10.1016/j.soilbio.2008.06.020
10.1007/s002480000108
10.1111/j.1574-6941.2002.tb00921.x
10.2136/sssabookser5.3
10.1016/S0038-0717(02)00297-3
10.1007/978-3-642-60694-6_1
10.1128/AEM.67.12.5849-5854.2001
10.1128/AEM.70.1.468-474.2004
10.1007/978-3-642-60966-4_28
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7S9
L.6
ADTOC
UNPAY
DOI 10.1002/jpln.200900267
DatabaseName Istex
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Botany
EISSN 1522-2624
EndPage 394
ExternalDocumentID 10.1002/jpln.200900267
24245687
10_1002_jpln_200900267
JPLN200900267
ark_67375_WNG_18RH6T4D_L
Genre article
GrantInformation_xml – fundername: Università Mediterranea di Reggio Calabria
– fundername: National Research Council (CNR)
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RX1
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WWD
AAYXX
CITATION
IQODW
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c4307-da62f10625f6dc148b1f8cb18b53c373e7dc0fb405b7fce7b995bd5823a157323
IEDL.DBID UNPAY
ISSN 1436-8730
1522-2624
IngestDate Tue Aug 19 21:50:00 EDT 2025
Thu Jul 10 19:03:47 EDT 2025
Mon Jul 21 09:17:03 EDT 2025
Wed Oct 01 01:27:49 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Wed Jan 22 16:42:13 EST 2025
Sun Sep 21 06:20:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords DGGE community fingerprinting
soil enzymes
Multivariate analysis
Depth
Bacteria
Microbial community
pedogenetic horizons
Community structure
Gradient
depth gradients
Gel electrophoresis
Enzyme
Biochemical compound
Denaturing gradient gel electrophoresis
Ecophysiology
Microbial biomass
Biological activity
Statistical method
Soils
Type
Fingerprint method
multivariate statistics
Prokaryote
energetic ecophysiological indices
Microorganism
Soil plant relation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4307-da62f10625f6dc148b1f8cb18b53c373e7dc0fb405b7fce7b995bd5823a157323
Notes National Research Council (CNR)
ark:/67375/WNG-18RH6T4D-L
ArticleID:JPLN200900267
istex:DB3556BBB6855B40106AD4BCD3D6A60C2DFA54FB
Università Mediterranea di Reggio Calabria
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jpln.200900267
PQID 1449946915
PQPubID 24069
PageCount 14
ParticipantIDs unpaywall_primary_10_1002_jpln_200900267
proquest_miscellaneous_1449946915
pascalfrancis_primary_24245687
crossref_citationtrail_10_1002_jpln_200900267
crossref_primary_10_1002_jpln_200900267
wiley_primary_10_1002_jpln_200900267_JPLN200900267
istex_primary_ark_67375_WNG_18RH6T4D_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June, 2011
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: June, 2011
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Journal of plant nutrition and soil science
PublicationTitleAlternate Z. Pflanzenernähr. Bodenk
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
References Bending, G. D. , Turner, M. K. , Rayns, F. , Marx, M.-C. , Wood, M. (2004): Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol. Biochem. 36, 1785-1792.
Haney, R. L. , Franzluebbers, A. J. , Hons, F. M. , Hossner, L. R. , Zuberer, D. A. (2001): Molar concentration of K2SO4 and soil pH affect estimation of extractable C with chloroform fumigation-extraction. Soil Biol. Biochem. 33, 1501-1507.
Marschner, P. , Crowley, D. , Yang, C. H. (2004): Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261, 199-208.
Landgraf, D. , Klose, S. (2002): Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. J. Plant Nutr. Soil Sci. 165, 9-16.
van Elsas, J. D. , Mäntynen, V. , Wolters, A. C. (1997): Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Biol. Fertil. Soils 24, 188-195.
Agnelli, A. , Ascher, J. , Corti, G. , Ceccherini, M. T. , Nannipieri, P. , Pietramellara, G. (2004): Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol. Biochem. 36, 859-868.
Tessier, L. , Gregorich, E. G. , Topp, E. (1998): Spatial variability of soil microbial biomass measured by the fumigation extraction method, and KEC as affected by depth and manure application. Soil Biol. Biochem. 30, 1369-1377.
Gelsomino, A. , Keijzer-Wolters, A. C. , Cacco, G. , van Elsas, J. D. (1999): Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods 38, 1-15.
Jeffery, S. , Harris, J. A. , Rickson, R. J. , Ritz, K. (2007): Microbial community phenotypic profiles change markedly with depth within the first centimetre of the arable soil surface. Soil Biol. Biochem. 39, 1226-1229.
Boström, B. , Comstedt, D. , Ekblad, A. (2007): Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153, 89-98.
Dilly, O. , Winter, K. , Lang, A. , Munch, J.-C. (2001): Energetic eco-physiology of the soil microbiota in two landscapes of southern and northern Germany. J. Plant Nutr. Soil Sci. 164, 407-413.
Blume, E. , Bischoff, M. , Reichert, J. M. , Moorman, T. , Konopka, A. , Turco, R. F. (2002): Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol. 20, 171-181.
Garbeva, P. , van Veen, J. A. , van Elsas, J. D. (2004): Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42, 243-270.
Gelsomino, A. , Cacco, G. (2006): Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis. Soil Biol. Biochem. 38, 91-102.
Dilly, O. , Bloem, J. , Vos, A. , Munch, J. C. (2004): Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70, 468-474.
Ritz, K. , Wheatley, R. E. , Griffiths, B. S. (1997): Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. Biol. Fertil. Soils 24, 372-377.
Joergensen, R. G. , Emmerling, C. (2006): Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J. Plant Nutr. Soil Sci. 169, 295-309.
Wieland, G. , Neumann, R. , Backhaus, H. (2001): Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl. Environ. Microbiol. 67, 5849-5854.
Oren, A. , Steinberger, Y. (2008): Coping with artifacts induced by CaCO3-CO2-H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol. Biochem. 40, 2569-2577.
Buyer, J. S. , Roberts, D. P. , Russek-Cohen, E. (2002): Soil and plant effects on microbial community structure. Can. J. Microbiol. 48, 955-964.
Fritze, H. , Pietikäinen, J. , Pennanen, T. (2000): Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur. J. Soil Sci. 51, 565-573.
Ramette, A. (2007): Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142-160.
Griffiths, R. I. , Whiteley, A. S. , O'Donnell, A. G. , Bailey, M. J. (2003): Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiol. Ecol. 43, 35-43.
Ibekwe, A. M. , Kennedy, A. C. , Frohne, P. S. , Papiernik, S. K. , Yang, C.-H. , Crowley, D. E. (2002): Microbial diversity along a transect of agronomic zones. FEMS Microbiol. Ecol. 39, 183-191.
Certini, G. , Dilly, O. , Ugolini, F. C. , Corti, G. (1999): Distribution of the microbial biomass in forest soils of the Tuscan Apennines. Agrochimica XLIII, 10-17.
Fierer, N. , Schimel, J. P. , Holden, P. A. (2003): Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167-176.
O'Donnell, A. G. , Seasman, M. , Macrae, A. , Waite, I. , Davies, J. T. (2001): Plants and fertilisers as drivers of change in microbial community structure and functions in soils. Plant Soil 232, 135-145.
Heuer, H. , Krsek, M. , Baker, P. , Smalla, K. , Wellington, E. M. H. (1997): Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63, 3233-3241.
Castellazzi, M. S. , Brookes, P. C. , Jenkinson, D. S. (2004): Distribution of microbial biomass down soil profiles under regenerating woodland. Soil Biol. Biochem. 36, 1485-1489.
Girvan, M. S. , Bullimore, J. , Pretty, J. N. , Osborn, A. M. , Ball, A. S. (2003): Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 69, 1800-1809.
Marschner, P. , Kandeler, E. , Marschner, B. (2003): Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453-461.
Buckley, D. H. , Schmidt, T. M. (2001): The structure of microbial communities in soil and the lasting impact of cultivation. Microb. Ecol. 42, 11-21.
Ekelund, F. , Rønn, R. , Christensen, S. (2001): Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol. Biochem. 33, 475-481.
Jörgensen, R. G. , Raubuch, M. , Brandt, M. (2002): Soil microbial properties down the profile of a black earth buried by colluvium. J. Plant Nutr. Soil Sci. 165, 274-280.
Rasmussen, C. , Southard, R. J. , Horwath, W. R. (2007): Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming. Soil Sci. Soc. Am. J. 71, 1141-1150.
Smit, E. , Leeflang, P. , Gommans, S. , van den Broek, J. , van Mil, S. , Wernars, K. (2001): Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67, 2284-2291.
Haynes, R. J. (2005): Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 85, 211-268.
Johnson, M. J. , Lee, K. Y. , Scow, K. M. (2003): DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279-303.
Marx, M.-C. , Kandeler, E. , Wood, M. , Wermbter, N. , Jarvis, S. C. (2005): Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 37, 35-48.
Sanesi, G. , Certini, G. (2005): The umbric epipedon in the N Apennines, Italy - An example from the Vallombrosa Forest. J. Plant Nutr. Soil Sci. 168, 392-398.
Torsvik, V. , Øvreås, L. , Thingstad, T. F. (2002): Prokaryotic diversity-Magnitude, dynamics, and controlling factors. Science 296, 1064-1066.
Ulrich, A. , Becker, R. (2006): Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol. Ecol. 56, 430-443.
Taylor, J. P. , Wilson, B. , Mills, M. S. , Burns, R. G. (2002): Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 34, 387-401.
Ritz, K. , McNicol, J. W. , Nunan, N. , Grayston, S. , Millard, P. , Atkinson, D. , Gollotte, A. , Habeshaw, D. , Boag, B. , Clegg, C. D. , Griffiths, B. S. , Wheatley, R. E. , Glover, L. A. , McCaig, A. E. , Prosser, J. I. (2004): Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiol. Ecol. 49, 191-205.
Cookson, W. R. , Marschner, P. , Clark, I. M. , Milton, N. , Smirk, M. N. , Murphy, D. V. , Osman, M. , Stockdale, E. A. , Hirsch, P. R. (2006): The influence of season, agricultural management, and soil properties on gross nitrogen transformations and bacterial community structure. Aust. J. Soil Res. 44, 453-565.
2007; 39
2002; 39
2004; 42
2001; 164
2002; 296
2006; 56
2004; 49
1997; 63
2006; 38
2002; 34
2004; 261
1997; 24
2003; 35
2000; 51
2005; 85
2007; 71
2003; 114
2001; 67
2001; 42
2001; 232
2002; 48
2004; 70
2002; 20
2002; 165
2006; 44
2005; 168
2004; 36
1999; 38
1999; XLIII
2007; 153
2003; 69
2007; 62
2001; 33
2005; 37
1998; 30
2008; 40
2003; 43
2006; 169
e_1_2_1_20_1
Haynes R. J. (e_1_2_1_26_1) 2005; 85
e_1_2_1_41_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_47_1
Certini G. (e_1_2_1_11_1) 1999
Heuer H. (e_1_2_1_27_1) 1997; 63
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_56_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_58_1
e_1_2_1_18_1
e_1_2_1_42_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
Buckley D. H. (e_1_2_1_8_1) 2001; 42
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_1_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: Blume, E. , Bischoff, M. , Reichert, J. M. , Moorman, T. , Konopka, A. , Turco, R. F. (2002): Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol. 20, 171-181.
– reference: Joergensen, R. G. , Emmerling, C. (2006): Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J. Plant Nutr. Soil Sci. 169, 295-309.
– reference: Landgraf, D. , Klose, S. (2002): Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. J. Plant Nutr. Soil Sci. 165, 9-16.
– reference: Buyer, J. S. , Roberts, D. P. , Russek-Cohen, E. (2002): Soil and plant effects on microbial community structure. Can. J. Microbiol. 48, 955-964.
– reference: Marschner, P. , Crowley, D. , Yang, C. H. (2004): Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261, 199-208.
– reference: Ekelund, F. , Rønn, R. , Christensen, S. (2001): Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol. Biochem. 33, 475-481.
– reference: Gelsomino, A. , Cacco, G. (2006): Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis. Soil Biol. Biochem. 38, 91-102.
– reference: Gelsomino, A. , Keijzer-Wolters, A. C. , Cacco, G. , van Elsas, J. D. (1999): Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods 38, 1-15.
– reference: Girvan, M. S. , Bullimore, J. , Pretty, J. N. , Osborn, A. M. , Ball, A. S. (2003): Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 69, 1800-1809.
– reference: Certini, G. , Dilly, O. , Ugolini, F. C. , Corti, G. (1999): Distribution of the microbial biomass in forest soils of the Tuscan Apennines. Agrochimica XLIII, 10-17.
– reference: Garbeva, P. , van Veen, J. A. , van Elsas, J. D. (2004): Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42, 243-270.
– reference: Haney, R. L. , Franzluebbers, A. J. , Hons, F. M. , Hossner, L. R. , Zuberer, D. A. (2001): Molar concentration of K2SO4 and soil pH affect estimation of extractable C with chloroform fumigation-extraction. Soil Biol. Biochem. 33, 1501-1507.
– reference: Taylor, J. P. , Wilson, B. , Mills, M. S. , Burns, R. G. (2002): Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 34, 387-401.
– reference: Ramette, A. (2007): Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142-160.
– reference: Agnelli, A. , Ascher, J. , Corti, G. , Ceccherini, M. T. , Nannipieri, P. , Pietramellara, G. (2004): Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol. Biochem. 36, 859-868.
– reference: Torsvik, V. , Øvreås, L. , Thingstad, T. F. (2002): Prokaryotic diversity-Magnitude, dynamics, and controlling factors. Science 296, 1064-1066.
– reference: Heuer, H. , Krsek, M. , Baker, P. , Smalla, K. , Wellington, E. M. H. (1997): Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63, 3233-3241.
– reference: Smit, E. , Leeflang, P. , Gommans, S. , van den Broek, J. , van Mil, S. , Wernars, K. (2001): Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67, 2284-2291.
– reference: Ritz, K. , McNicol, J. W. , Nunan, N. , Grayston, S. , Millard, P. , Atkinson, D. , Gollotte, A. , Habeshaw, D. , Boag, B. , Clegg, C. D. , Griffiths, B. S. , Wheatley, R. E. , Glover, L. A. , McCaig, A. E. , Prosser, J. I. (2004): Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiol. Ecol. 49, 191-205.
– reference: Tessier, L. , Gregorich, E. G. , Topp, E. (1998): Spatial variability of soil microbial biomass measured by the fumigation extraction method, and KEC as affected by depth and manure application. Soil Biol. Biochem. 30, 1369-1377.
– reference: Dilly, O. , Winter, K. , Lang, A. , Munch, J.-C. (2001): Energetic eco-physiology of the soil microbiota in two landscapes of southern and northern Germany. J. Plant Nutr. Soil Sci. 164, 407-413.
– reference: Ibekwe, A. M. , Kennedy, A. C. , Frohne, P. S. , Papiernik, S. K. , Yang, C.-H. , Crowley, D. E. (2002): Microbial diversity along a transect of agronomic zones. FEMS Microbiol. Ecol. 39, 183-191.
– reference: Boström, B. , Comstedt, D. , Ekblad, A. (2007): Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153, 89-98.
– reference: Fritze, H. , Pietikäinen, J. , Pennanen, T. (2000): Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur. J. Soil Sci. 51, 565-573.
– reference: Buckley, D. H. , Schmidt, T. M. (2001): The structure of microbial communities in soil and the lasting impact of cultivation. Microb. Ecol. 42, 11-21.
– reference: Fierer, N. , Schimel, J. P. , Holden, P. A. (2003): Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167-176.
– reference: Marx, M.-C. , Kandeler, E. , Wood, M. , Wermbter, N. , Jarvis, S. C. (2005): Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 37, 35-48.
– reference: Jeffery, S. , Harris, J. A. , Rickson, R. J. , Ritz, K. (2007): Microbial community phenotypic profiles change markedly with depth within the first centimetre of the arable soil surface. Soil Biol. Biochem. 39, 1226-1229.
– reference: Marschner, P. , Kandeler, E. , Marschner, B. (2003): Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453-461.
– reference: Oren, A. , Steinberger, Y. (2008): Coping with artifacts induced by CaCO3-CO2-H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol. Biochem. 40, 2569-2577.
– reference: Cookson, W. R. , Marschner, P. , Clark, I. M. , Milton, N. , Smirk, M. N. , Murphy, D. V. , Osman, M. , Stockdale, E. A. , Hirsch, P. R. (2006): The influence of season, agricultural management, and soil properties on gross nitrogen transformations and bacterial community structure. Aust. J. Soil Res. 44, 453-565.
– reference: Haynes, R. J. (2005): Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 85, 211-268.
– reference: Castellazzi, M. S. , Brookes, P. C. , Jenkinson, D. S. (2004): Distribution of microbial biomass down soil profiles under regenerating woodland. Soil Biol. Biochem. 36, 1485-1489.
– reference: van Elsas, J. D. , Mäntynen, V. , Wolters, A. C. (1997): Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Biol. Fertil. Soils 24, 188-195.
– reference: Wieland, G. , Neumann, R. , Backhaus, H. (2001): Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl. Environ. Microbiol. 67, 5849-5854.
– reference: O'Donnell, A. G. , Seasman, M. , Macrae, A. , Waite, I. , Davies, J. T. (2001): Plants and fertilisers as drivers of change in microbial community structure and functions in soils. Plant Soil 232, 135-145.
– reference: Dilly, O. , Bloem, J. , Vos, A. , Munch, J. C. (2004): Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70, 468-474.
– reference: Bending, G. D. , Turner, M. K. , Rayns, F. , Marx, M.-C. , Wood, M. (2004): Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol. Biochem. 36, 1785-1792.
– reference: Johnson, M. J. , Lee, K. Y. , Scow, K. M. (2003): DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279-303.
– reference: Rasmussen, C. , Southard, R. J. , Horwath, W. R. (2007): Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming. Soil Sci. Soc. Am. J. 71, 1141-1150.
– reference: Ulrich, A. , Becker, R. (2006): Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol. Ecol. 56, 430-443.
– reference: Jörgensen, R. G. , Raubuch, M. , Brandt, M. (2002): Soil microbial properties down the profile of a black earth buried by colluvium. J. Plant Nutr. Soil Sci. 165, 274-280.
– reference: Griffiths, R. I. , Whiteley, A. S. , O'Donnell, A. G. , Bailey, M. J. (2003): Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiol. Ecol. 43, 35-43.
– reference: Ritz, K. , Wheatley, R. E. , Griffiths, B. S. (1997): Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. Biol. Fertil. Soils 24, 372-377.
– reference: Sanesi, G. , Certini, G. (2005): The umbric epipedon in the N Apennines, Italy - An example from the Vallombrosa Forest. J. Plant Nutr. Soil Sci. 168, 392-398.
– volume: 48
  start-page: 955
  year: 2002
  end-page: 964
  article-title: Soil and plant effects on microbial community structure.
  publication-title: Can. J. Microbiol.
– volume: 168
  start-page: 392
  year: 2005
  end-page: 398
  article-title: The umbric epipedon in the N Apennines, Italy – An example from the Vallombrosa Forest.
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 20
  start-page: 171
  year: 2002
  end-page: 181
  article-title: Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season.
  publication-title: Appl. Soil Ecol.
– volume: 67
  start-page: 5849
  year: 2001
  end-page: 5854
  article-title: Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development.
  publication-title: Appl. Environ. Microbiol.
– volume: 164
  start-page: 407
  year: 2001
  end-page: 413
  article-title: Energetic eco‐physiology of the soil microbiota in two landscapes of southern and northern Germany.
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 296
  start-page: 1064
  year: 2002
  end-page: 1066
  article-title: Prokaryotic diversity–Magnitude, dynamics, and controlling factors.
  publication-title: Science
– volume: 165
  start-page: 274
  year: 2002
  end-page: 280
  article-title: Soil microbial properties down the profile of a black earth buried by colluvium.
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 232
  start-page: 135
  year: 2001
  end-page: 145
  article-title: Plants and fertilisers as drivers of change in microbial community structure and functions in soils.
  publication-title: Plant Soil
– volume: 49
  start-page: 191
  year: 2004
  end-page: 205
  article-title: Spatial structure in soil chemical and microbiological properties in an upland grassland.
  publication-title: FEMS Microbiol. Ecol.
– volume: 169
  start-page: 295
  year: 2006
  end-page: 309
  article-title: Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils.
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 24
  start-page: 372
  year: 1997
  end-page: 377
  article-title: Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley.
  publication-title: Biol. Fertil. Soils
– volume: 42
  start-page: 11
  year: 2001
  end-page: 21
  article-title: The structure of microbial communities in soil and the lasting impact of cultivation.
  publication-title: Microb. Ecol.
– volume: 35
  start-page: 167
  year: 2003
  end-page: 176
  article-title: Variations in microbial community composition through two soil depth profiles.
  publication-title: Soil Biol. Biochem.
– volume: 165
  start-page: 9
  year: 2002
  end-page: 16
  article-title: Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems.
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 51
  start-page: 565
  year: 2000
  end-page: 573
  article-title: Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest.
  publication-title: Eur. J. Soil Sci.
– volume: 34
  start-page: 387
  year: 2002
  end-page: 401
  article-title: Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques.
  publication-title: Soil Biol. Biochem.
– volume: 38
  start-page: 1
  year: 1999
  end-page: 15
  article-title: Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis.
  publication-title: J. Microbiol. Methods
– volume: 37
  start-page: 35
  year: 2005
  end-page: 48
  article-title: Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle‐size fractions.
  publication-title: Soil Biol. Biochem.
– volume: 36
  start-page: 1485
  year: 2004
  end-page: 1489
  article-title: Distribution of microbial biomass down soil profiles under regenerating woodland.
  publication-title: Soil Biol. Biochem.
– volume: 153
  start-page: 89
  year: 2007
  end-page: 98
  article-title: Isotope fractionation and C enrichment in soil profiles during the decomposition of soil organic matter.
  publication-title: Oecologia
– volume: XLIII
  start-page: 10
  year: 1999
  end-page: 17
  article-title: Distribution of the microbial biomass in forest soils of the Tuscan Apennines.
  publication-title: Agrochimica
– volume: 30
  start-page: 1369
  year: 1998
  end-page: 1377
  article-title: Spatial variability of soil microbial biomass measured by the fumigation extraction method, and as affected by depth and manure application.
  publication-title: Soil Biol. Biochem.
– volume: 42
  start-page: 243
  year: 2004
  end-page: 270
  article-title: Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness.
  publication-title: Annu. Rev. Phytopathol.
– volume: 33
  start-page: 1501
  year: 2001
  end-page: 1507
  article-title: Molar concentration of K SO and soil pH affect estimation of extractable C with chloroform fumigation‐extraction.
  publication-title: Soil Biol. Biochem.
– volume: 114
  start-page: 279
  year: 2003
  end-page: 303
  article-title: DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities.
  publication-title: Geoderma
– volume: 44
  start-page: 453
  year: 2006
  end-page: 565
  article-title: The influence of season, agricultural management, and soil properties on gross nitrogen transformations and bacterial community structure.
  publication-title: Aust. J. Soil Res.
– volume: 39
  start-page: 1226
  year: 2007
  end-page: 1229
  article-title: Microbial community phenotypic profiles change markedly with depth within the first centimetre of the arable soil surface.
  publication-title: Soil Biol. Biochem.
– volume: 62
  start-page: 142
  year: 2007
  end-page: 160
  article-title: Multivariate analyses in microbial ecology.
  publication-title: FEMS Microbiol. Ecol.
– volume: 56
  start-page: 430
  year: 2006
  end-page: 443
  article-title: Soil parent material is a key determinant of the bacterial community structure in arable soils.
  publication-title: FEMS Microbiol. Ecol.
– volume: 63
  start-page: 3233
  year: 1997
  end-page: 3241
  article-title: Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel‐electrophoretic separation in denaturing gradients.
  publication-title: Appl. Environ. Microbiol.
– volume: 35
  start-page: 453
  year: 2003
  end-page: 461
  article-title: Structure and function of the soil microbial community in a long‐term fertilizer experiment.
  publication-title: Soil Biol. Biochem.
– volume: 71
  start-page: 1141
  year: 2007
  end-page: 1150
  article-title: Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming.
  publication-title: Soil Sci. Soc. Am. J.
– volume: 24
  start-page: 188
  year: 1997
  end-page: 195
  article-title: Soil DNA extraction and assessment of the fate of strain PCP‐1 in different soils by 16S ribosomal RNA gene sequence based most‐probable‐number PCR and immunofluorescence.
  publication-title: Biol. Fertil. Soils
– volume: 33
  start-page: 475
  year: 2001
  end-page: 481
  article-title: Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites.
  publication-title: Soil Biol. Biochem.
– volume: 261
  start-page: 199
  year: 2004
  end-page: 208
  article-title: Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type.
  publication-title: Plant Soil
– volume: 36
  start-page: 859
  year: 2004
  end-page: 868
  article-title: Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA.
  publication-title: Soil Biol. Biochem.
– volume: 67
  start-page: 2284
  year: 2001
  end-page: 2291
  article-title: Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods.
  publication-title: Appl. Environ. Microbiol.
– volume: 36
  start-page: 1785
  year: 2004
  end-page: 1792
  article-title: Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes.
  publication-title: Soil Biol. Biochem.
– volume: 38
  start-page: 91
  year: 2006
  end-page: 102
  article-title: Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis.
  publication-title: Soil Biol. Biochem.
– volume: 70
  start-page: 468
  year: 2004
  end-page: 474
  article-title: Bacterial diversity in agricultural soils during litter decomposition.
  publication-title: Appl. Environ. Microbiol.
– volume: 43
  start-page: 35
  year: 2003
  end-page: 43
  article-title: Influence of depth and sampling time on bacterial community structure in an upland grassland soil.
  publication-title: FEMS Microbiol. Ecol.
– volume: 39
  start-page: 183
  year: 2002
  end-page: 191
  article-title: Microbial diversity along a transect of agronomic zones.
  publication-title: FEMS Microbiol. Ecol.
– volume: 85
  start-page: 211
  year: 2005
  end-page: 268
  article-title: Labile organic matter fractions as central components of the quality of agricultural soils: An overview.
  publication-title: Adv. Agron.
– volume: 69
  start-page: 1800
  year: 2003
  end-page: 1809
  article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils.
  publication-title: Appl. Environ. Microbiol.
– volume: 40
  start-page: 2569
  year: 2008
  end-page: 2577
  article-title: Coping with artifacts induced by CaCO ‐CO ‐H O equilibria in substrate utilization profiling of calcareous soils.
  publication-title: Soil Biol. Biochem.
– ident: e_1_2_1_36_1
  doi: 10.1023/B:PLSO.0000035569.80747.c5
– ident: e_1_2_1_49_1
– ident: e_1_2_1_18_1
  doi: 10.1111/j.1365-2389.2000.00346.x
– ident: e_1_2_1_20_1
  doi: 10.1016/j.soilbio.2005.04.021
– volume: 85
  start-page: 211
  year: 2005
  ident: e_1_2_1_26_1
  article-title: Labile organic matter fractions as central components of the quality of agricultural soils: An overview.
  publication-title: Adv. Agron.
– ident: e_1_2_1_51_1
– ident: e_1_2_1_7_1
  doi: 10.1079/9780851990989.0077
– ident: e_1_2_1_32_1
  doi: 10.1016/S0016-7061(03)00045-4
– ident: e_1_2_1_38_1
  doi: 10.1023/A:1010394221729
– ident: e_1_2_1_13_1
  doi: 10.2136/sssaspecpub49.c15
– ident: e_1_2_1_19_1
  doi: 10.1146/annurev.phyto.42.012604.135455
– ident: e_1_2_1_24_1
  doi: 10.1111/j.1574-6941.2003.tb01043.x
– ident: e_1_2_1_17_1
  doi: 10.1016/S0038-0717(02)00251-1
– ident: e_1_2_1_47_1
  doi: 10.1002/jpln.200421651
– ident: e_1_2_1_21_1
  doi: 10.1016/S0167-7012(99)00054-8
– ident: e_1_2_1_48_1
  doi: 10.1128/AEM.67.5.2284-2291.2001
– ident: e_1_2_1_55_1
  doi: 10.1111/j.1574-6941.2006.00085.x
– start-page: 10
  year: 1999
  ident: e_1_2_1_11_1
  article-title: Distribution of the microbial biomass in forest soils of the Tuscan Apennines.
  publication-title: Agrochimica
– ident: e_1_2_1_31_1
  doi: 10.1002/jpln.200521941
– ident: e_1_2_1_12_1
  doi: 10.1071/SR05042
– ident: e_1_2_1_45_1
  doi: 10.1016/j.femsec.2004.03.005
– ident: e_1_2_1_2_1
  doi: 10.1016/j.soilbio.2004.02.004
– ident: e_1_2_1_54_1
  doi: 10.1126/science.1071698
– ident: e_1_2_1_22_1
  doi: 10.1128/AEM.69.3.1800-1809.2003
– ident: e_1_2_1_25_1
  doi: 10.1016/S0038-0717(01)00065-7
– ident: e_1_2_1_52_1
  doi: 10.1016/S0038-0717(01)00199-7
– ident: e_1_2_1_33_1
  doi: 10.1002/1522-2624(200206)165:3<274::AID-JPLN274>3.0.CO;2-2
– ident: e_1_2_1_16_1
  doi: 10.1016/S0038-0717(00)00188-7
– ident: e_1_2_1_10_1
  doi: 10.1016/j.soilbio.2004.04.020
– ident: e_1_2_1_46_1
– volume: 63
  start-page: 3233
  year: 1997
  ident: e_1_2_1_27_1
  article-title: Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel‐electrophoretic separation in denaturing gradients.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.8.3233-3241.1997
– ident: e_1_2_1_56_1
  doi: 10.1007/s003740050230
– ident: e_1_2_1_4_1
  doi: 10.1016/S0929-1393(02)00025-2
– ident: e_1_2_1_37_1
  doi: 10.1016/j.soilbio.2004.05.024
– ident: e_1_2_1_44_1
  doi: 10.1007/s003740050260
– ident: e_1_2_1_1_1
  doi: 10.1007/978-1-4899-3342-3
– ident: e_1_2_1_3_1
  doi: 10.1016/j.soilbio.2004.04.035
– ident: e_1_2_1_53_1
  doi: 10.1016/S0038-0717(97)00268-X
– ident: e_1_2_1_30_1
  doi: 10.1016/j.soilbio.2006.12.023
– ident: e_1_2_1_43_1
  doi: 10.2136/sssaj2006.0375
– ident: e_1_2_1_14_1
  doi: 10.1002/1522-2624(200108)164:4<407::AID-JPLN407>3.0.CO;2-9
– ident: e_1_2_1_29_1
– ident: e_1_2_1_9_1
  doi: 10.1139/w02-095
– ident: e_1_2_1_5_1
  doi: 10.1007/s00442-007-0700-8
– ident: e_1_2_1_42_1
  doi: 10.1111/j.1574-6941.2007.00375.x
– ident: e_1_2_1_6_1
– ident: e_1_2_1_34_1
  doi: 10.1002/1522-2624(200202)165:1<9::AID-JPLN9>3.0.CO;2-O
– ident: e_1_2_1_40_1
  doi: 10.1016/j.soilbio.2008.06.020
– volume: 42
  start-page: 11
  year: 2001
  ident: e_1_2_1_8_1
  article-title: The structure of microbial communities in soil and the lasting impact of cultivation.
  publication-title: Microb. Ecol.
  doi: 10.1007/s002480000108
– ident: e_1_2_1_28_1
  doi: 10.1111/j.1574-6941.2002.tb00921.x
– ident: e_1_2_1_50_1
  doi: 10.2136/sssabookser5.3
– ident: e_1_2_1_35_1
  doi: 10.1016/S0038-0717(02)00297-3
– ident: e_1_2_1_41_1
– ident: e_1_2_1_23_1
  doi: 10.1007/978-3-642-60694-6_1
– ident: e_1_2_1_57_1
  doi: 10.1128/AEM.67.12.5849-5854.2001
– ident: e_1_2_1_58_1
– ident: e_1_2_1_15_1
  doi: 10.1128/AEM.70.1.468-474.2004
– ident: e_1_2_1_39_1
  doi: 10.1007/978-3-642-60966-4_28
SSID ssj0004192
Score 2.1808999
Snippet A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting‐land‐use soils. Soil...
A multivariate statistical approach based on a large data set of abiotic and biotic variables was used to classify four contrasting-land-use soils. Soil...
SourceID unpaywall
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms acid phosphatase
agricultural soils
Agronomy. Soil science and plant productions
algorithms
arylsulfatase
bacterial communities
Biochemistry and biology
Biological and medical sciences
Chemical, physicochemical, biochemical and biological properties
coniferous forests
data collection
denaturing gradient gel electrophoresis
depth gradients
DGGE community fingerprinting
discriminant analysis
DNA
energetic ecophysiological indices
enzyme activity
forest soils
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
grassland soils
ground cover plants
highlands
hydrolysis
land use
microbial biomass
Microbiology
multivariate analysis
multivariate statistics
organic soils
pedogenetic horizons
Physics, chemistry, biochemistry and biology of agricultural and forest soils
ribosomal RNA
ribotypes
silt
soil depth
soil enzymes
soil microorganisms
soil sampling
Soil science
Soil-plant relationships. Soil fertility
Soil-plant relationships. Soil fertility. Fertilization. Amendments
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQC6IseAxUTIHKSAhYNG0Tx3mwK48yqsoIVa3oLrIdh06bJtFkBhhWfAJ7_o4v4V47SQkSqgS7RLpOYvvYOdf2PZeQJ8Dg3Uh52nG55I4vlXCkwOAckcY8FjxWEUYjvxsHoyN_75gf_xbFb_UhugU3HBlmvsYBLmS9dSEaelrlRr80RjcCw8ldFhif6uBCPwq3OE14EaruApZb1cZtb6tfvPdXWsYG_oKnJEUNDZXZDBc9Cnp9XlRi8VnkeZ_Umr_S7i0i2vrYwyhnm_OZ3FRf_5B6_J8K3yY3G8pKdyzG7pAruhiQGzsfp41shx6Qazal5WJArr4sgW4u7pIfJrT3E7jiwGapaLRPaJnRupzk9Qt6PjEaUPBklAAADr9Bz_UMMJlPFMVwC8xqsQElUyqtpLTIf377rmxEy2xBrfQtvN_YmB0POm3P9p1MqpriIrN5HU11BZfGDhzve-Ro983hq5HTZIJwlI8qlinAJwPn1eNZkCrw4KSbRUq6keRMsZDpMFXbmQTyKcNM6VDGMZcpjzwmXB4yj62SpaIs9H1CtQ_QhBmehYL5AYPpKfViKbWrfB7LIB0Sp0VCohqZdMzWkSdW4NlLsB-Srh-G5FlnX1mBkL9aPjXA6szE9AyP1YU8-TB-m7jRwSg49F8n-0Oy3kNeV8Az29QRPOlxC8UEZgPc4hGFLuc1OHLgwfpB7PIhed5h9NIP8wzuLjFL9t7vj7u7tX8p9ICs2DV5XMV6SJYAJ_oRkLqZXDcD9xfgTUb7
  priority: 102
  providerName: Wiley-Blackwell
Title Multivariate analysis of soils: microbial biomass, metabolic activity, and bacterial-community structure and their relationships with soil depth and type
URI https://api.istex.fr/ark:/67375/WNG-18RH6T4D-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjpln.200900267
https://www.proquest.com/docview/1449946915
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jpln.200900267
UnpaywallVersion publishedVersion
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2624
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2624
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004192
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXVDhwGMBsTxWRkLAoSnEifPgtlDKqiqrquqKcopsxylL0yTaB7Cc-Anc-Xf8EsZ2EmlBqEjcEmnivD6Pv7E93wA8QgbvRpIqx2WCOb6Q3BFcJ-fwNGYxZ7GMdDby23Ewmvh7x-x4A3aaXBirD9FOuOmeYfy17uBVmlk_X6_u02cfq9xomMY6lAgvQDdgyMg70J2MD4bvTWKR1tsNTckRHKmoQwPqN9qNfzSwNjZ19Wf-ovdK8jl-rszWuVgjopvLouKrzzzP16mtGZt2r4Fq3spuSTndXi7Etvz6m-Dj_772dbhak1cytGi7ARuq6MGV4cmsFvBQPbhki1uuenDxZYnEc3UTfpgk308YlCOvJbxWQSFlRublNJ-_IGdTowaFLWsxAGTzW-RMLRCd-VQSnXih61ts4ZUpEVZcmuc_v32XNrdlsSJWBBfvb2zM2geZNbv8PkyrOdHTzeZ2JFUVHho7DMFvwWT39dGrkVPXhHCkr_UsUwRShmEsZVmQSozlhJtFUriRYJ70Qk-FqXyeCaShIsykCkUcM5GyiHrcZaFHvdvQKcpC3QGifAQp-nov5J4feOioUhoLoVzps1gEaR-cBg2JrAXTdd2OPLFSzzTR_yFp_0MfnrT2lZUK-avlYwOu1ozPTvUGu5Al78ZvEjc6HAVH_k6y34fBGvraC6hZsI6wpYcNHBP0C3qxhxeqXM4xpMNY1g9il_XhaYvTcx-MGuydY5bsHeyP27O7_97-Pbhs5-T1LNZ96CA61AMkdQsxwHDmkA7qnvsLONBLOw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBRUOPBYQy6MYCUEPTds8nAe38ihL2a5QtRXcLNtxYGmaRJtdYDnxE7jz7_glzNhJqkVCleC2kcbJJvnsfDOe-YaQR8Dg3Vh52nGZZE4glXCkwOIckSYsESxRMVYjH4zCwVGw_5612YRYC2P1IbqAG84Ms17jBMeA9PapauinKjcCpgn6EdF5shqE4KwgLzo8VZDCTU5TYIS6u4DmVrdxx9teHr_0XVrFR_wV8yRFDY8qsz0ulkjo2ryoxOKLyPNlWmu-S3tXiWzvyKajHG_NZ3JLfftD7PG_bvkaudKwVrprYXadnNNFj1ze_TBtlDt0j1y0XS0XPXLhWQmMc3GD_DTVvZ_BGwdCS0Ujf0LLjNblJK-f0pOJkYGCM6MKAND4TXqiZwDLfKIoVlxgY4tNGJlSaVWlRf7r-w9li1pmC2rVb-H6xsZsetBpm973cVLVFOPM5nI01RX8NHbge98kR3svx88HTtMMwlEBClmmgKAM_FePZWGqwImTbhYr6caS-cqPfB2laieTwD9llCkdySRhMmWx5wuXRb7n3yIrRVno24TqANAJi7wfCT8IfVihUi-RUrsqYIkM0z5xWihw1SilY8OOnFuNZ4_je-Dde-iTJ519ZTVC_mr52CCrMxPTY8ysixh_N3rF3fhwEI6DF3zYJ-tL0OsGeGanOoYzPWyxyGFBwF0eUehyXoMvB05sECYu65ONDqRn_jHPAO8MM77_djjqju78y6AHZG0wPhjy4evRm7vkkg3RY1DrHlkBzOj7wPFmct3M4t87AUsc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5dUDjwXEUihGQsChaZuH8-BWWJalLKuqagW3yHYcWJom0WYXWE78BO78O34JM3aSKkioEtwSaZzEyWfnG3vmG0IeAYO3Q-koy2aCWZ6Q3BIck3N4ErGIs0iGmI38duKPjry996yJJsRcGKMP0S644cjQ8zUOcFUm6fapauinMtMCphH6EcF5suqxKMSovsHBqYIUbnLqBCPU3QU0N7qNO852t33nv7SKr_grxknyCl5VampcdEjo5UVe8uUXnmVdWqv_S8NrRDQ9MuEox1uLudiS3_4Qe_yvLl8nV2vWSncNzG6QcyrvkbXdD7NauUP1yEVT1XLZIxeeF8A4lzfJT53d-xm8cSC0lNfyJ7RIaVVMs-oZPZlqGSi4MqoAAI3fpCdqDrDMppJixgUWttiElgkVRlWaZ7--_5AmqWW-pEb9Fu6vbfSmB5014X0fp2VFcZ1Z344mqoRDbQe-9y1yNHx5-GJk1cUgLOmhkGUCCErBf3VY6icSnDhhp6EUdiiYK93AVUEid1IB_FMEqVSBiCImEhY6LrdZ4DrubbKSF7m6Q6jyAJ0wybsBdz3fhRkqcSIhlC0BQcJP-sRqoBDLWikdC3ZksdF4dmL8DnH7HfrkSWtfGo2Qv1o-1shqzfjsGCPrAha_m7yK7fBg5B96g3jcJxsd6LUNHL1THcKVHjZYjGFCwF0enqtiUYEvB06s50c265OnLUjPfDBHA-8Ms3hvfzxpz-7-S6MH5NL-YBiPX0_erJMrZoUe17TukRWAjLoPFG8uNvQg_g1-e0qg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXRBw4LGAWB6VkRBwaApx4jy4LZSyqsqqQl3RniLbcWBpmkSbXWA58RO48-_4JYztJNKCUJG4JdLEeX0ef2N7vgF4iAzejSRVjssEc3whuSO4Ts7hacxizmIZ6WzkN5NgPPX3jtjRBuy0uTBWH6KbcNM9w_hr3cGrNLN-vlndp08_VrnRMI11KBGeg37AkJH3oD-dHIyOTWKR1tsNTckRHKmoQwPqt9qNfzSwNjb19Wf-ovdK8ho_V2brXKwR0YvLouKrzzzP16mtGZt2r4Jq38puSTnZXi7Etvz6m-Dj_772NbjSkFcysmi7DhuqGMDl0ft5I-ChBnDBFrdcDeD8ixKJ5-oG_DBJvp8wKEdeS3ijgkLKjNTlLK-fk9OZUYPClrUYALL5LXKqFojOfCaJTrzQ9S228MqUCCsuzfOf375Lm9uyWBErgov3NzZm7YPM211-H2ZVTfR0s7kdSVWFh8YOQ_CbMN19dfhy7DQ1IRzpaz3LFIGUYRhLWRakEmM54WaRFG4kmCe90FNhKp9lAmmoCDOpQhHHTKQsoh53WehR7xb0irJQt4EoH0GKvt4LuecHHjqqlMZCKFf6LBZBOgSnRUMiG8F0XbcjT6zUM030f0i6_zCEx519ZaVC_mr5yICrM-PzE73BLmTJu8nrxI3ejoNDfyfZH8LmGvq6C6hZsI6wpQctHBP0C3qxhxeqXNYY0mEs6wexy4bwpMPpmQ9GDfbOMEv2DvYn3dmdf2__Llyyc_J6Fuse9BAd6j6SuoXYbPrsL3s8SlI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+analysis+of+soils%3A+microbial+biomass%2C+metabolic+activity%2C+and+bacterial-community+structure+and+their+relationships+with+soil+depth+and+type&rft.jtitle=Journal+of+plant+nutrition+and+soil+science&rft.au=Gelsomino%2C+Antonio&rft.au=Azzellino%2C+Arianna&rft.date=2011-06-01&rft.issn=1436-8730&rft.volume=174&rft.issue=3+p.381-394&rft.spage=381&rft.epage=394&rft_id=info:doi/10.1002%2Fjpln.200900267&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-8730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-8730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-8730&client=summon