Functional MRI of swallowing: From neurophysiology to neuroplasticity
Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathway...
Saved in:
Published in | Head & neck Vol. 33; no. S1; pp. S14 - S20 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1043-3074 1097-0347 1097-0347 |
DOI | 10.1002/hed.21903 |
Cover
Abstract | Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre‐posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. © 2011 Wiley Periodicals, Inc. Head Neck, 2011 |
---|---|
AbstractList | Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre‐posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. © 2011 Wiley Periodicals, Inc. Head Neck, 2011 Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre‐posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. © 2011 Wiley Periodicals, Inc. Head Neck , 2011 Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre-posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre-posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice.Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre-posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre-posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. ? 2011 Wiley Periodicals, Inc. Head Neck, 2011 |
Author | Malandraki, Georgia A. Robbins, JoAnne Johnson, Sterling |
Author_xml | – sequence: 1 givenname: Georgia A. surname: Malandraki fullname: Malandraki, Georgia A. email: malandraki@tc.columbia.edu organization: Department of Biobehavioral Sciences, Program of Speech and Language Pathology, Teachers College, Columbia University, New York, New York – sequence: 2 givenname: Sterling surname: Johnson fullname: Johnson, Sterling organization: Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin – sequence: 3 givenname: JoAnne surname: Robbins fullname: Robbins, JoAnne organization: Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21901779$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URNuFA38A5QYc0toex465VWXTrVRAKqAeLcdxWoM3XuxE2_z7Juy2ByR6mg8978zonWN00IXOIvSW4BOCMT29s80JJRLDC3REsBQ5BiYO5pxBDliwQ3Sc0i-MMXBGX6HDGSZCyCO0rIbO9C502mdfri-z0GZpq70PW9fdfsqqGNZZZ4cYNndjcsGH2zHrw77ldeqdcf34Gr1stU_2zT4u0M9q-eN8lV99u7g8P7vKDQMMeWtoI-oSG6AloZyJprBANBS8oC1vpS2NNoVkFJuy4EBZw-upIo2VrK4bCwv0fjd3E8OfwaZerV0y1nvd2TAkVUqQJeYcJvLDsyQBCtMNxWTaAr3bo0O9to3aRLfWcVSPJk3Axx1gYkgp2vYJIVjND1DTA_7i897Tf9jJHz0b3Eft_HOKrfN2_P9otVp-flTkO4VLvb1_Uuj4W3EBolA3Xy_Uisjrm4p-VxU8APzOpFg |
CitedBy_id | crossref_primary_10_1055_s_0042_1759612 crossref_primary_10_18273_revmed_v36n1_2023005 crossref_primary_10_1007_s00455_024_10730_1 crossref_primary_10_1007_s00455_020_10223_x crossref_primary_10_1111_jebm_12242 crossref_primary_10_1044_2020_JSLHR_20_00171 crossref_primary_10_1007_s00455_017_9794_2 crossref_primary_10_1002_phy2_239 crossref_primary_10_1007_s00455_022_10516_3 crossref_primary_10_1007_s00455_017_9810_6 crossref_primary_10_1007_s00455_017_9816_0 crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_09_051 crossref_primary_10_4103_1673_5374_153701 crossref_primary_10_1016_j_jstrokecerebrovasdis_2015_08_037 crossref_primary_10_1590_S2317_64312015000200001471 crossref_primary_10_3389_fnagi_2022_912691 crossref_primary_10_1007_s00455_023_10613_x crossref_primary_10_1044_2023_PERSP_23_00123 crossref_primary_10_1007_s00455_023_10572_3 crossref_primary_10_1007_s10072_021_05654_9 crossref_primary_10_1007_s40141_021_00334_3 crossref_primary_10_1007_s40141_013_0025_y crossref_primary_10_1111_ene_12670 crossref_primary_10_1007_s00455_022_10426_4 crossref_primary_10_1590_0004_282x20180005 crossref_primary_10_11138_oi_v17i1_98 crossref_primary_10_3389_fnins_2018_00488 crossref_primary_10_1002_hed_21902 crossref_primary_10_3389_fnhum_2021_628424 crossref_primary_10_1109_MSP_2018_2875863 crossref_primary_10_1044_2019_AJSLP_19_00088 crossref_primary_10_1590_1678_775720140132 crossref_primary_10_1016_j_jvoice_2017_03_010 crossref_primary_10_1016_j_jpg_2013_11_004 crossref_primary_10_1111_joor_13274 crossref_primary_10_1016_j_jns_2014_05_064 crossref_primary_10_3390_brainsci12060803 crossref_primary_10_1016_j_biomaterials_2018_05_016 crossref_primary_10_1016_j_dcn_2024_101481 crossref_primary_10_1007_s00455_022_10460_2 crossref_primary_10_3389_fneur_2023_1279452 crossref_primary_10_1016_j_physbeh_2015_09_026 crossref_primary_10_3389_fnhum_2023_1077234 crossref_primary_10_1016_j_jstrokecerebrovasdis_2018_11_013 crossref_primary_10_1073_pnas_1907393117 crossref_primary_10_1159_000531265 crossref_primary_10_1080_10749357_2019_1628464 crossref_primary_10_3390_jcm11185480 crossref_primary_10_3389_fnins_2020_00226 crossref_primary_10_3389_fneur_2024_1346522 crossref_primary_10_1016_j_exger_2018_11_007 crossref_primary_10_1044_persp1_SIG13_48 crossref_primary_10_1088_1741_2560_12_5_051001 crossref_primary_10_1007_s40141_015_0078_1 crossref_primary_10_1044_2023_JSLHR_23_00059 |
Cites_doi | 10.1152/ajpgi.2001.280.4.G531 10.1073/pnas.89.12.5675 10.1007/BF02406275 10.1016/0016-5085(92)90013-O 10.1007/s00455-002-0088-x 10.1016/j.bpg.2007.03.006 10.1109/MEMB.2006.1607665 10.1044/1092-4388(2008/021) 10.1152/physrev.2001.81.2.929 10.1146/annurev.biophys.27.1.447 10.1016/S0166-2236(02)00039-5 10.1111/j.1532-5415.1980.tb00240.x 10.1007/BF02493452 10.1002/lary.21125 10.1152/jn.01144.2003 10.1177/0884533609332005 10.1111/j.1532-5415.2005.53467.x 10.1002/mrm.1910250220 10.1038/nrn1246 10.1002/mrm.22824 10.1007/s00221-006-0592-6 10.1288/00005537-199202000-00001 10.1016/j.neuroimage.2008.10.012 10.1007/BF02407121 10.1016/S1388-2457(03)00237-2 10.1016/S0002-9343(97)00327-6 10.1152/jn.2001.85.2.938 10.1152/ajpgi.1999.277.1.G219 10.1007/s002210100813 10.1073/pnas.89.13.5951 10.1007/PL00009529 10.1007/BF02493446 10.1080/10749357.1996.11754118 10.1016/0016-5085(94)90164-3 10.1136/jnnp.2009.176214 10.1152/ajpgi.2001.280.3.G354 10.2209/tdcpublication.50.169 10.1016/0016-5085(88)90290-9 10.1093/gerona/60.3.391 10.1097/00005537-200107000-00010 10.1002/hbm.20743 10.3233/JAD-2010-1316 10.1002/mrm.1910140108 10.1038/nrn730 10.1152/ajpgi.00161.2010 10.1007/978-1-4757-1682-5 10.1007/s00455-009-9250-z 10.1093/gerona/60.1.109 10.1146/annurev.bioeng.2.1.633 10.1007/BF02493518 10.1007/BF00417897 10.1007/PL00009610 10.1007/BF01354538 10.1044/1092-4388(2008/018) 10.1002/hbm.21062 10.1007/s00221-004-2048-1 10.1093/gerona/50A.5.M257 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1002/hed.21903 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1097-0347 |
EndPage | S20 |
ExternalDocumentID | 21901779 10_1002_hed_21903 HED21903 ark_67375_WNG_H19RWF2S_F |
Genre | miscellaneous Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Case Reports Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: P30 HD003352 – fundername: NIA NIH HHS grantid: P50 AG033514 – fundername: NIDCD NIH HHS grantid: R13 DC009556 – fundername: NIDCD NIH HHS grantid: #1R13DC009556-01A1S1 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AIACR AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DUUFO EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6P MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 0R~ AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP WWO AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
ID | FETCH-LOGICAL-c4303-fc2d7b80c32812647d5e31a35652f6f9e8cac59420c856324d6b9421de94bbde3 |
IEDL.DBID | DR2 |
ISSN | 1043-3074 1097-0347 |
IngestDate | Fri Jul 11 07:19:07 EDT 2025 Fri Jul 11 07:20:12 EDT 2025 Wed Feb 19 02:36:32 EST 2025 Tue Jul 01 03:27:44 EDT 2025 Thu Apr 24 22:57:11 EDT 2025 Wed Jan 22 16:52:08 EST 2025 Sun Sep 21 06:19:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4303-fc2d7b80c32812647d5e31a35652f6f9e8cac59420c856324d6b9421de94bbde3 |
Notes | Disclaimer: The contents do not represent the views of the Department of Veterans Affairs or the United States Government. istex:F660E71F208E614B7E1F19BCB56764427E12591C ArticleID:HED21903 Proceedings of the Integrative Neural Systems Underlying Vital Aerodigestive Tract Functions Conference, June 17-19, 2010 ark:/67375/WNG-H19RWF2S-F Contract grant sponsor: Supported in part by the Department of Venterans affiars, Veterans Health Administration, Office of Research and Development, Rehabilitation Research and Development service, VA Merit Grant C4796R. This is GRECC manuscript #2011-09. This Supplement was jointly supported by funds from the National Institutes for Health (NIDCD - National Institute on Deafness and Other Communication Disorders, Grant #1R13DC009556-01A1S1) and the Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health. Contract grant sponsor: Supported in part by the Department of Venterans affiars, Veterans Health Administration, Office of Research and Development, Rehabilitation Research and Development service, VA Merit Grant C4796R. This is GRECC manuscript #2011–09. This Supplement was jointly supported by funds from the National Institutes for Health (NIDCD – National Institute on Deafness and Other Communication Disorders, Grant #1R13DC009556‐01A1S1) and the Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health. Proceedings of the Integrative Neural Systems Underlying Vital Aerodigestive Tract Functions Conference, June 17–19, 2010 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Case Study-2 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hed.21903 |
PMID | 21901779 |
PQID | 1323812590 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_893980663 proquest_miscellaneous_1323812590 pubmed_primary_21901779 crossref_primary_10_1002_hed_21903 crossref_citationtrail_10_1002_hed_21903 wiley_primary_10_1002_hed_21903_HED21903 istex_primary_ark_67375_WNG_H19RWF2S_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10 October 2011 2011-10-00 2011-Oct 20111001 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Head & neck |
PublicationTitleAlternate | Head Neck |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14: 68-78. Logemann JA. Swallowing disorders. Best Pract Res Clin Gastroenterol 2007; 21: 563-573. Martin R, Barr A, MacIntosh B, et al. Cerebral cortical processing of swallowing in older adults. Exp Brain Res 2007; 176: 12-22. Babaei A, Kern M, Antonik S, et al. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol Gastrointest Liver Physiol 2010; 299: G422-G429. Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia 1993; 8: 195-202. Aviv JE. Effects of aging on sensitivity of the pharyngeal and supraglottic areas. Am J Med 1997; 103: 74S-76S. Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia 2003; 18: 71-77. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia 1996; 11: 93-98. Ogawa S, Menon RS, Kim SG, Ugurbil K. On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 1998; 27: 447-474. Robbins J, Levine R, Wood J, Roecker EB, Luschei E. Age effects on lingual pressure generation as a risk factor for dysphagia. J Gerontol A Biol Sci Med Sci 1995; 50: M257-M262. Mosier KM, Liu WC, Maldjian JA, Shah R, Modi B. Lateralization of cortical function in swallowing: a functional MR imaging study. AJNR Am J Neuroradiol 1999; 20: 1520-1526. Kern M, Birn R, Jaradeh S, et al. Swallow-related cerebral cortical activity maps are not specific to deglutition. Am J Physiol Gastrointest Liver Physiol 2001; 280: G531-G538. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 2001; 81: 929-969. Robbins JA, Levine RL. Swallowing after unilateral stroke of the cerebral cortex: preliminary experience. Dysphagia 1988; 3: 11-17. Cook IJ, Weltman MD, Wallace K, et al. Influence of aging on oral-pharyngeal bolus transit and clearance during swallowing: scintigraphic study. Am J Physiol 1994; 266: G972-G977. Humbert IA, McLaren DG, Kosmatka K, et al. Early deficits in cortical control of swallowing in Alzheimer's disease. J Alzheimers Dis 2010; 19: 1185-1197. D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 2003; 4: 863-872. Paine T, Conway C, Malandraki GA, Sutton BP. Simultaneous dynamic and functional MRI scanning (SimulScan) of natural swallows. Magn Reson Med 2011; 65: 1247-1252. Robbins J, Hamilton JW, Lof GL, Kempster GB. Oropharyngeal swallowing in normal adults of different ages. Gastroenterology 1992; 103: 823-829. Robbins J, Butler SG, Daniels SK, et al. Swallowing and dysphagia rehabilitation: translating principles of neural plasticity into clinically oriented evidence. J Speech Lang Hear Res 2008; 51: S276-S300. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med 1992; 25: 390-397. Hamdy S, Mikulis DJ, Crawley A, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol 1999; 277: G219-G225. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res 2008; 51: S225-S239. [No authors listed] American College of Sports Medicine position stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med Sci Sports Exerc 1990; 22: 265-274. Ney DM, Weiss JM, Kind AJ, Robbins J. Senescent swallowing: impact, strategies, and interventions. Nutr Clin Pract 2009; 24: 395-413. Toogood JA, Barr AM, Stevens TK, Gati JS, Menon RS, Martin RE. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) "Go, No-Go" study. Exp Brain Res 2005; 161: 81-90. Miller AJ. Neurophysiological basis of swallowing. Dysphagia 1986; 1: 91-100. Bieger D. Neuropharmacologic correlates of deglutition: lessons from fictive swallowing. Dysphagia 1991; 6: 147-164. Kawai T, Watanabe Y, Tonogi M, et al. Visual and auditory stimuli associated with swallowing: an FMRI study. Bull Tokyo Dent Coll 2009; 50: 169-181. Robbins J, Gangnon RE, Theis SM, Kays SA, Heewitt AL, Hind JA. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc 2005; 53: 1483-1489. Li S, Luo C, Yu B, et al. Functional magnetic resonance imaging study on dysphagia after unilateral hemispheric stroke: a preliminary study. J Neurol Neurosurg Psychiatry 2009; 80: 1320-1329. Calhoun KH, Gibson B, Hartley L, Minton J, Hokanson JA. Age-related changes in oral sensation. Laryngoscope 1992; 102: 109-116. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89: 5675-5679. Daniels SK, Foundas AL. The role of the insular cortex in dysphagia. Dysphagia 1997; 12: 146-156. Martin RE, MacIntosh BJ, Smith RC, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 2004; 92: 2428-2443. Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol 2001; 280: G354-G360. Malandraki GA, Sutton BP, Perlman AL, Karampinos DC. Reduced somatosensory activations in swallowing with age. Hum Brain Mapp 2011; 32: 730-743. Ugurbil K, Adriany G, Andersen P, et al. Magnetic resonance studies of brain function and neurochemistry. Annu Rev Biomed Eng 2000; 2: 633-660. Leslie P, Drinnan MJ, Ford GA, Wilson JA. Swallow respiratory patterns and aging: presbyphagia or dysphagia? J Gerontol A Biol Sci Med Sci 2005; 60: 391-395. Pekar JJ. A brief introduction to functional MRI. IEEE Eng Med Biol Mag 2006; 25: 24-26. Shaker R, Ren J, Zamir Z, Sarna A, Liu J, Sui Z. Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows. Gastroenterology 1994; 107: 396-402. Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol 2001; 85: 938-950. Malandraki GA, Sutton BP, Perlman AL, Karampinos DC. Age-related differences in laterality of cortical activations in swallowing. Dysphagia 2010; 25: 238-249. Robbins J, Coyle J, Roecker E, Rosenbek J, Wood J. Differentiation of normal and abnormal airway protection during swallowing using the penetration-aspiration scale. Dysphagia 1999; 14: 228-232. Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002; 3: 142-151. Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol 2003; 114: 2226-2244. Webb AG. Introduction to biomedical imaging: IEEE Press Series on Biomedical Engineering. Wiley-IEEE Press, 2003. Humbert IA, Fitzgerald ME, McLaren DG, et al. Neurophysiology of swallowing: effects of age and bolus type. Neuroimage 2009; 44: 982-991. Celifarco A, Gerard G, Faegenburg D, Burakoff R. Dysphagia as the sole manifestation of bilateral strokes. Am J Gastroenterol 1990; 85: 610-613. Hartnick CJ, Rudolph C, Willging JP, Holland SK. Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope 2001; 111: 1183-1191. Feldman RS, Kapur KK, Alman JE, Chauncey HH. Aging and mastication: changes in performance and in the swallowing threshold with natural dentition. Am Geriatr Soc 1980; 28: 97-103. Malandraki GA, Sutton BP, Perlman AL, Karampinos DC, Conway C. Neural activation of swallowing and swallowing-related tasks in healthy young adults: an attempt to separate the components of deglutition. Hum Brain Mapp 2009; 30: 3209-3226. Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology 1988; 95: 52-62. Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992; 89: 5951-5955. Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res 2001; 140: 280-289. Fukunaga A, Uematsu H, Sugimoto K. Influences of aging on taste perception and oral somatic sensation. J Gerontol A Biol Sci Med Sci 2005; 60: 109-113. Alberts MJ, Horner J, Gray L, Brazer SR. Aspiration after stroke: lesion analysis by brain MRI. Dysphagia 1992; 7: 170-173. Levine R, Robbins JA, Maser A. Periventricular white matter changes and oropharyngeal swallowing in normal individuals. Dysphagia 1992; 7: 142-147. Ugurbil K, Toth L, Kim DS. How accurate is magnetic resonance imaging of brain function? Trends Neurosci 2003; 26: 108-114. Peck KK, Branski RC, Lazarus C, et al. Cortical activation during swallowing rehabilitation maneuvers: a functional MRI study of healthy controls. Laryngoscope 2010; 120: 2153-2159. Perlman AL. Neuroanatomy and neurophysiology: implications for swallowing. Top Stroke Rehabil 1996; 3: 1-13. Dubner R, Sessle B, Storey A. The neural basis of oral and facial function. New York: Plenum, 1978. 2009; 44 1993; 8 2001; 140 1990; 14 2009; 80 2010; 19 2000; 2 2003; 18 2005; 60 2003; 114 2001; 85 1978 1994; 266 1990; 85 1992; 7 1997; 103 1986; 1 2010; 25 2009; 50 2007; 176 2006; 25 1997; 12 1999; 14 2003; 4 2011; 65 2007; 21 1994; 107 1996; 3 1992; 89 1998; 27 1980; 28 2009; 24 1995; 50 2001; 280 1992; 102 1992; 103 2002; 3 2011; 32 2010; 120 1999; 20 1988; 95 2003 2008; 51 1991; 6 1996; 11 2001; 111 2001; 81 1988; 3 2005; 161 2009; 30 1990; 22 2004; 92 2010; 299 2003; 26 2005; 53 1992; 25 1999; 277 e_1_2_11_30_2 e_1_2_11_55_2 e_1_2_11_57_2 e_1_2_11_34_2 e_1_2_11_51_2 e_1_2_11_11_2 e_1_2_11_32_2 e_1_2_11_53_2 e_1_2_11_6_2 e_1_2_11_27_2 e_1_2_11_25_2 e_1_2_11_2_2 e_1_2_11_48_2 e_1_2_11_29_2 e_1_2_11_60_2 e_1_2_11_20_2 e_1_2_11_43_2 e_1_2_11_45_2 e_1_2_11_24_2 e_1_2_11_62_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_41_2 e_1_2_11_17_2 Cook IJ (e_1_2_11_47_2) 1994; 266 e_1_2_11_15_2 e_1_2_11_36_2 e_1_2_11_59_2 e_1_2_11_19_2 e_1_2_11_38_2 Webb AG (e_1_2_11_31_2) 2003 e_1_2_11_54_2 e_1_2_11_56_2 e_1_2_11_35_2 e_1_2_11_50_2 e_1_2_11_12_2 e_1_2_11_33_2 e_1_2_11_52_2 e_1_2_11_10_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_49_2 Celifarco A (e_1_2_11_9_2) 1990; 85 [No authors listed] American College of Sports Medicine position stand (e_1_2_11_61_2) 1990; 22 Mosier KM (e_1_2_11_13_2) 1999; 20 e_1_2_11_44_2 e_1_2_11_46_2 Perlman AL (e_1_2_11_4_2) 1996; 3 e_1_2_11_23_2 e_1_2_11_40_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_42_2 e_1_2_11_63_2 e_1_2_11_16_2 e_1_2_11_14_2 e_1_2_11_58_2 e_1_2_11_37_2 e_1_2_11_18_2 e_1_2_11_39_2 |
References_xml | – reference: [No authors listed] American College of Sports Medicine position stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med Sci Sports Exerc 1990; 22: 265-274. – reference: D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 2003; 4: 863-872. – reference: Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res 2008; 51: S225-S239. – reference: Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med 1992; 25: 390-397. – reference: Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 2001; 81: 929-969. – reference: Humbert IA, Fitzgerald ME, McLaren DG, et al. Neurophysiology of swallowing: effects of age and bolus type. Neuroimage 2009; 44: 982-991. – reference: Miller AJ. Neurophysiological basis of swallowing. Dysphagia 1986; 1: 91-100. – reference: Robbins J, Butler SG, Daniels SK, et al. Swallowing and dysphagia rehabilitation: translating principles of neural plasticity into clinically oriented evidence. J Speech Lang Hear Res 2008; 51: S276-S300. – reference: Alberts MJ, Horner J, Gray L, Brazer SR. Aspiration after stroke: lesion analysis by brain MRI. Dysphagia 1992; 7: 170-173. – reference: Ney DM, Weiss JM, Kind AJ, Robbins J. Senescent swallowing: impact, strategies, and interventions. Nutr Clin Pract 2009; 24: 395-413. – reference: Ugurbil K, Adriany G, Andersen P, et al. Magnetic resonance studies of brain function and neurochemistry. Annu Rev Biomed Eng 2000; 2: 633-660. – reference: Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002; 3: 142-151. – reference: Aviv JE. Effects of aging on sensitivity of the pharyngeal and supraglottic areas. Am J Med 1997; 103: 74S-76S. – reference: Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14: 68-78. – reference: Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89: 5675-5679. – reference: Logemann JA. Swallowing disorders. Best Pract Res Clin Gastroenterol 2007; 21: 563-573. – reference: Feldman RS, Kapur KK, Alman JE, Chauncey HH. Aging and mastication: changes in performance and in the swallowing threshold with natural dentition. Am Geriatr Soc 1980; 28: 97-103. – reference: Martin RE, MacIntosh BJ, Smith RC, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 2004; 92: 2428-2443. – reference: Mosier KM, Liu WC, Maldjian JA, Shah R, Modi B. Lateralization of cortical function in swallowing: a functional MR imaging study. AJNR Am J Neuroradiol 1999; 20: 1520-1526. – reference: Leslie P, Drinnan MJ, Ford GA, Wilson JA. Swallow respiratory patterns and aging: presbyphagia or dysphagia? J Gerontol A Biol Sci Med Sci 2005; 60: 391-395. – reference: Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol 2001; 280: G354-G360. – reference: Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia 1996; 11: 93-98. – reference: Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology 1988; 95: 52-62. – reference: Kern M, Birn R, Jaradeh S, et al. Swallow-related cerebral cortical activity maps are not specific to deglutition. Am J Physiol Gastrointest Liver Physiol 2001; 280: G531-G538. – reference: Bieger D. Neuropharmacologic correlates of deglutition: lessons from fictive swallowing. Dysphagia 1991; 6: 147-164. – reference: Ogawa S, Menon RS, Kim SG, Ugurbil K. On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 1998; 27: 447-474. – reference: Babaei A, Kern M, Antonik S, et al. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol Gastrointest Liver Physiol 2010; 299: G422-G429. – reference: Fukunaga A, Uematsu H, Sugimoto K. Influences of aging on taste perception and oral somatic sensation. J Gerontol A Biol Sci Med Sci 2005; 60: 109-113. – reference: Pekar JJ. A brief introduction to functional MRI. IEEE Eng Med Biol Mag 2006; 25: 24-26. – reference: Martin R, Barr A, MacIntosh B, et al. Cerebral cortical processing of swallowing in older adults. Exp Brain Res 2007; 176: 12-22. – reference: Hartnick CJ, Rudolph C, Willging JP, Holland SK. Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope 2001; 111: 1183-1191. – reference: Robbins J, Levine R, Wood J, Roecker EB, Luschei E. Age effects on lingual pressure generation as a risk factor for dysphagia. J Gerontol A Biol Sci Med Sci 1995; 50: M257-M262. – reference: Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia 1993; 8: 195-202. – reference: Calhoun KH, Gibson B, Hartley L, Minton J, Hokanson JA. Age-related changes in oral sensation. Laryngoscope 1992; 102: 109-116. – reference: Levine R, Robbins JA, Maser A. Periventricular white matter changes and oropharyngeal swallowing in normal individuals. Dysphagia 1992; 7: 142-147. – reference: Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol 2003; 114: 2226-2244. – reference: Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res 2001; 140: 280-289. – reference: Malandraki GA, Sutton BP, Perlman AL, Karampinos DC, Conway C. Neural activation of swallowing and swallowing-related tasks in healthy young adults: an attempt to separate the components of deglutition. Hum Brain Mapp 2009; 30: 3209-3226. – reference: Kawai T, Watanabe Y, Tonogi M, et al. Visual and auditory stimuli associated with swallowing: an FMRI study. Bull Tokyo Dent Coll 2009; 50: 169-181. – reference: Toogood JA, Barr AM, Stevens TK, Gati JS, Menon RS, Martin RE. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) "Go, No-Go" study. Exp Brain Res 2005; 161: 81-90. – reference: Dubner R, Sessle B, Storey A. The neural basis of oral and facial function. New York: Plenum, 1978. – reference: Robbins JA, Levine RL. Swallowing after unilateral stroke of the cerebral cortex: preliminary experience. Dysphagia 1988; 3: 11-17. – reference: Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol 2001; 85: 938-950. – reference: Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia 2003; 18: 71-77. – reference: Hamdy S, Mikulis DJ, Crawley A, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol 1999; 277: G219-G225. – reference: Perlman AL. Neuroanatomy and neurophysiology: implications for swallowing. Top Stroke Rehabil 1996; 3: 1-13. – reference: Daniels SK, Foundas AL. The role of the insular cortex in dysphagia. Dysphagia 1997; 12: 146-156. – reference: Webb AG. Introduction to biomedical imaging: IEEE Press Series on Biomedical Engineering. Wiley-IEEE Press, 2003. – reference: Cook IJ, Weltman MD, Wallace K, et al. Influence of aging on oral-pharyngeal bolus transit and clearance during swallowing: scintigraphic study. Am J Physiol 1994; 266: G972-G977. – reference: Li S, Luo C, Yu B, et al. Functional magnetic resonance imaging study on dysphagia after unilateral hemispheric stroke: a preliminary study. J Neurol Neurosurg Psychiatry 2009; 80: 1320-1329. – reference: Robbins J, Gangnon RE, Theis SM, Kays SA, Heewitt AL, Hind JA. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc 2005; 53: 1483-1489. – reference: Malandraki GA, Sutton BP, Perlman AL, Karampinos DC. Reduced somatosensory activations in swallowing with age. Hum Brain Mapp 2011; 32: 730-743. – reference: Peck KK, Branski RC, Lazarus C, et al. Cortical activation during swallowing rehabilitation maneuvers: a functional MRI study of healthy controls. Laryngoscope 2010; 120: 2153-2159. – reference: Ugurbil K, Toth L, Kim DS. How accurate is magnetic resonance imaging of brain function? Trends Neurosci 2003; 26: 108-114. – reference: Paine T, Conway C, Malandraki GA, Sutton BP. Simultaneous dynamic and functional MRI scanning (SimulScan) of natural swallows. Magn Reson Med 2011; 65: 1247-1252. – reference: Malandraki GA, Sutton BP, Perlman AL, Karampinos DC. Age-related differences in laterality of cortical activations in swallowing. Dysphagia 2010; 25: 238-249. – reference: Shaker R, Ren J, Zamir Z, Sarna A, Liu J, Sui Z. Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows. Gastroenterology 1994; 107: 396-402. – reference: Humbert IA, McLaren DG, Kosmatka K, et al. Early deficits in cortical control of swallowing in Alzheimer's disease. J Alzheimers Dis 2010; 19: 1185-1197. – reference: Robbins J, Coyle J, Roecker E, Rosenbek J, Wood J. Differentiation of normal and abnormal airway protection during swallowing using the penetration-aspiration scale. Dysphagia 1999; 14: 228-232. – reference: Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992; 89: 5951-5955. – reference: Robbins J, Hamilton JW, Lof GL, Kempster GB. Oropharyngeal swallowing in normal adults of different ages. Gastroenterology 1992; 103: 823-829. – reference: Celifarco A, Gerard G, Faegenburg D, Burakoff R. Dysphagia as the sole manifestation of bilateral strokes. Am J Gastroenterol 1990; 85: 610-613. – volume: 25 start-page: 24 year: 2006 end-page: 26 article-title: A brief introduction to functional MRI publication-title: IEEE Eng Med Biol Mag – volume: 114 start-page: 2226 year: 2003 end-page: 2244 article-title: Neurophysiology of swallowing publication-title: Clin Neurophysiol – volume: 25 start-page: 390 year: 1992 end-page: 397 article-title: Time course EPI of human brain function during task activation publication-title: Magn Reson Med – volume: 60 start-page: 391 year: 2005 end-page: 395 article-title: Swallow respiratory patterns and aging: presbyphagia or dysphagia? publication-title: J Gerontol A Biol Sci Med Sci – volume: 60 start-page: 109 year: 2005 end-page: 113 article-title: Influences of aging on taste perception and oral somatic sensation publication-title: J Gerontol A Biol Sci Med Sci – volume: 80 start-page: 1320 year: 2009 end-page: 1329 article-title: Functional magnetic resonance imaging study on dysphagia after unilateral hemispheric stroke: a preliminary study publication-title: J Neurol Neurosurg Psychiatry – volume: 1 start-page: 91 year: 1986 end-page: 100 article-title: Neurophysiological basis of swallowing publication-title: Dysphagia – volume: 3 start-page: 11 year: 1988 end-page: 17 article-title: Swallowing after unilateral stroke of the cerebral cortex: preliminary experience publication-title: Dysphagia – volume: 280 start-page: G354 year: 2001 end-page: G360 article-title: Cerebral cortical representation of reflexive and volitional swallowing in humans publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 14 start-page: 68 year: 1990 end-page: 78 article-title: Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields publication-title: Magn Reson Med – volume: 277 start-page: G219 year: 1999 end-page: G225 article-title: Cortical activation during human volitional swallowing: an event‐related fMRI study publication-title: Am J Physiol – volume: 85 start-page: 610 year: 1990 end-page: 613 article-title: Dysphagia as the sole manifestation of bilateral strokes publication-title: Am J Gastroenterol – volume: 44 start-page: 982 year: 2009 end-page: 991 article-title: Neurophysiology of swallowing: effects of age and bolus type publication-title: Neuroimage – volume: 22 start-page: 265 year: 1990 end-page: 274 article-title: The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults publication-title: Med Sci Sports Exerc – volume: 103 start-page: 823 year: 1992 end-page: 829 article-title: Oropharyngeal swallowing in normal adults of different ages publication-title: Gastroenterology – volume: 299 start-page: G422 year: 2010 end-page: G429 article-title: Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 89 start-page: 5951 year: 1992 end-page: 5955 article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging publication-title: Proc Natl Acad Sci U S A – volume: 161 start-page: 81 year: 2005 end-page: 90 article-title: Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) “Go, No‐Go” study publication-title: Exp Brain Res – volume: 27 start-page: 447 year: 1998 end-page: 474 article-title: On the characteristics of functional magnetic resonance imaging of the brain publication-title: Annu Rev Biophys Biomol Struct – volume: 4 start-page: 863 year: 2003 end-page: 872 article-title: Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging publication-title: Nat Rev Neurosci – volume: 18 start-page: 71 year: 2003 end-page: 77 article-title: Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging publication-title: Dysphagia – volume: 50 start-page: 169 year: 2009 end-page: 181 article-title: Visual and auditory stimuli associated with swallowing: an FMRI study publication-title: Bull Tokyo Dent Coll – volume: 81 start-page: 929 year: 2001 end-page: 969 article-title: Brain stem control of swallowing: neuronal network and cellular mechanisms publication-title: Physiol Rev – volume: 7 start-page: 170 year: 1992 end-page: 173 article-title: Aspiration after stroke: lesion analysis by brain MRI publication-title: Dysphagia – volume: 26 start-page: 108 year: 2003 end-page: 114 article-title: How accurate is magnetic resonance imaging of brain function? publication-title: Trends Neurosci – volume: 12 start-page: 146 year: 1997 end-page: 156 article-title: The role of the insular cortex in dysphagia publication-title: Dysphagia – volume: 103 start-page: 74S year: 1997 end-page: 76S article-title: Effects of aging on sensitivity of the pharyngeal and supraglottic areas publication-title: Am J Med – volume: 51 start-page: S225 year: 2008 end-page: S239 article-title: Principles of experience‐dependent neural plasticity: implications for rehabilitation after brain damage publication-title: J Speech Lang Hear Res – volume: 25 start-page: 238 year: 2010 end-page: 249 article-title: Age‐related differences in laterality of cortical activations in swallowing publication-title: Dysphagia – volume: 11 start-page: 93 year: 1996 end-page: 98 article-title: A penetration‐aspiration scale publication-title: Dysphagia – volume: 7 start-page: 142 year: 1992 end-page: 147 article-title: Periventricular white matter changes and oropharyngeal swallowing in normal individuals publication-title: Dysphagia – volume: 107 start-page: 396 year: 1994 end-page: 402 article-title: Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows publication-title: Gastroenterology – volume: 24 start-page: 395 year: 2009 end-page: 413 article-title: Senescent swallowing: impact, strategies, and interventions publication-title: Nutr Clin Pract – volume: 111 start-page: 1183 year: 2001 end-page: 1191 article-title: Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem publication-title: Laryngoscope – volume: 14 start-page: 228 year: 1999 end-page: 232 article-title: Differentiation of normal and abnormal airway protection during swallowing using the penetration‐aspiration scale publication-title: Dysphagia – volume: 280 start-page: G531 year: 2001 end-page: G538 article-title: Swallow‐related cerebral cortical activity maps are not specific to deglutition publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 65 start-page: 1247 year: 2011 end-page: 1252 article-title: Simultaneous dynamic and functional MRI scanning (SimulScan) of natural swallows publication-title: Magn Reson Med – volume: 266 start-page: G972 year: 1994 end-page: G977 article-title: Influence of aging on oral‐pharyngeal bolus transit and clearance during swallowing: scintigraphic study publication-title: Am J Physiol – year: 2003 – volume: 95 start-page: 52 year: 1988 end-page: 62 article-title: Upper esophageal sphincter function during deglutition publication-title: Gastroenterology – volume: 50 start-page: M257 year: 1995 end-page: M262 article-title: Age effects on lingual pressure generation as a risk factor for dysphagia publication-title: J Gerontol A Biol Sci Med Sci – volume: 140 start-page: 280 year: 2001 end-page: 289 article-title: Parallel cortical networks for volitional control of swallowing in humans publication-title: Exp Brain Res – volume: 176 start-page: 12 year: 2007 end-page: 22 article-title: Cerebral cortical processing of swallowing in older adults publication-title: Exp Brain Res – volume: 21 start-page: 563 year: 2007 end-page: 573 article-title: Swallowing disorders publication-title: Best Pract Res Clin Gastroenterol – volume: 53 start-page: 1483 year: 2005 end-page: 1489 article-title: The effects of lingual exercise on swallowing in older adults publication-title: J Am Geriatr Soc – volume: 102 start-page: 109 year: 1992 end-page: 116 article-title: Age‐related changes in oral sensation publication-title: Laryngoscope – volume: 3 start-page: 142 year: 2002 end-page: 151 article-title: What does fMRI tell us about neuronal activity? publication-title: Nat Rev Neurosci – volume: 6 start-page: 147 year: 1991 end-page: 164 article-title: Neuropharmacologic correlates of deglutition: lessons from fictive swallowing publication-title: Dysphagia – volume: 89 start-page: 5675 year: 1992 end-page: 5679 article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 195 year: 1993 end-page: 202 article-title: The role of the cerebral cortex in swallowing publication-title: Dysphagia – volume: 3 start-page: 1 year: 1996 end-page: 13 article-title: Neuroanatomy and neurophysiology: implications for swallowing publication-title: Top Stroke Rehabil – volume: 20 start-page: 1520 year: 1999 end-page: 1526 article-title: Lateralization of cortical function in swallowing: a functional MR imaging study publication-title: AJNR Am J Neuroradiol – volume: 92 start-page: 2428 year: 2004 end-page: 2443 article-title: Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study publication-title: J Neurophysiol – volume: 2 start-page: 633 year: 2000 end-page: 660 article-title: Magnetic resonance studies of brain function and neurochemistry publication-title: Annu Rev Biomed Eng – volume: 51 start-page: S276 year: 2008 end-page: S300 article-title: Swallowing and dysphagia rehabilitation: translating principles of neural plasticity into clinically oriented evidence publication-title: J Speech Lang Hear Res – volume: 32 start-page: 730 year: 2011 end-page: 743 article-title: Reduced somatosensory activations in swallowing with age publication-title: Hum Brain Mapp – volume: 85 start-page: 938 year: 2001 end-page: 950 article-title: Cerebral cortical representation of automatic and volitional swallowing in humans publication-title: J Neurophysiol – year: 1978 – volume: 120 start-page: 2153 year: 2010 end-page: 2159 article-title: Cortical activation during swallowing rehabilitation maneuvers: a functional MRI study of healthy controls publication-title: Laryngoscope – volume: 30 start-page: 3209 year: 2009 end-page: 3226 article-title: Neural activation of swallowing and swallowing‐related tasks in healthy young adults: an attempt to separate the components of deglutition publication-title: Hum Brain Mapp – volume: 28 start-page: 97 year: 1980 end-page: 103 article-title: Aging and mastication: changes in performance and in the swallowing threshold with natural dentition publication-title: Am Geriatr Soc – volume: 19 start-page: 1185 year: 2010 end-page: 1197 article-title: Early deficits in cortical control of swallowing in Alzheimer's disease publication-title: J Alzheimers Dis – ident: e_1_2_11_14_2 doi: 10.1152/ajpgi.2001.280.4.G531 – ident: e_1_2_11_24_2 doi: 10.1073/pnas.89.12.5675 – ident: e_1_2_11_8_2 doi: 10.1007/BF02406275 – ident: e_1_2_11_44_2 doi: 10.1016/0016-5085(92)90013-O – ident: e_1_2_11_17_2 doi: 10.1007/s00455-002-0088-x – ident: e_1_2_11_54_2 doi: 10.1016/j.bpg.2007.03.006 – ident: e_1_2_11_30_2 doi: 10.1109/MEMB.2006.1607665 – volume-title: Introduction to biomedical imaging: IEEE Press Series on Biomedical Engineering year: 2003 ident: e_1_2_11_31_2 – ident: e_1_2_11_55_2 doi: 10.1044/1092-4388(2008/021) – ident: e_1_2_11_7_2 doi: 10.1152/physrev.2001.81.2.929 – ident: e_1_2_11_27_2 doi: 10.1146/annurev.biophys.27.1.447 – ident: e_1_2_11_33_2 doi: 10.1016/S0166-2236(02)00039-5 – ident: e_1_2_11_46_2 doi: 10.1111/j.1532-5415.1980.tb00240.x – ident: e_1_2_11_10_2 doi: 10.1007/BF02493452 – ident: e_1_2_11_56_2 doi: 10.1002/lary.21125 – ident: e_1_2_11_18_2 doi: 10.1152/jn.01144.2003 – ident: e_1_2_11_43_2 doi: 10.1177/0884533609332005 – ident: e_1_2_11_60_2 doi: 10.1111/j.1532-5415.2005.53467.x – ident: e_1_2_11_26_2 doi: 10.1002/mrm.1910250220 – ident: e_1_2_11_34_2 doi: 10.1038/nrn1246 – ident: e_1_2_11_41_2 doi: 10.1002/mrm.22824 – ident: e_1_2_11_38_2 doi: 10.1007/s00221-006-0592-6 – volume: 266 start-page: G972 year: 1994 ident: e_1_2_11_47_2 article-title: Influence of aging on oral‐pharyngeal bolus transit and clearance during swallowing: scintigraphic study publication-title: Am J Physiol – ident: e_1_2_11_49_2 doi: 10.1288/00005537-199202000-00001 – ident: e_1_2_11_20_2 doi: 10.1016/j.neuroimage.2008.10.012 – ident: e_1_2_11_5_2 doi: 10.1007/BF02407121 – ident: e_1_2_11_36_2 doi: 10.1016/S1388-2457(03)00237-2 – ident: e_1_2_11_51_2 doi: 10.1016/S0002-9343(97)00327-6 – ident: e_1_2_11_16_2 doi: 10.1152/jn.2001.85.2.938 – ident: e_1_2_11_22_2 doi: 10.1152/ajpgi.1999.277.1.G219 – ident: e_1_2_11_39_2 doi: 10.1007/s002210100813 – ident: e_1_2_11_25_2 doi: 10.1073/pnas.89.13.5951 – volume: 85 start-page: 610 year: 1990 ident: e_1_2_11_9_2 article-title: Dysphagia as the sole manifestation of bilateral strokes publication-title: Am J Gastroenterol – ident: e_1_2_11_12_2 doi: 10.1007/PL00009529 – ident: e_1_2_11_11_2 doi: 10.1007/BF02493446 – volume: 3 start-page: 1 year: 1996 ident: e_1_2_11_4_2 article-title: Neuroanatomy and neurophysiology: implications for swallowing publication-title: Top Stroke Rehabil doi: 10.1080/10749357.1996.11754118 – ident: e_1_2_11_48_2 doi: 10.1016/0016-5085(94)90164-3 – ident: e_1_2_11_52_2 doi: 10.1136/jnnp.2009.176214 – ident: e_1_2_11_15_2 doi: 10.1152/ajpgi.2001.280.3.G354 – ident: e_1_2_11_57_2 doi: 10.2209/tdcpublication.50.169 – ident: e_1_2_11_2_2 doi: 10.1016/0016-5085(88)90290-9 – ident: e_1_2_11_42_2 doi: 10.1093/gerona/60.3.391 – volume: 20 start-page: 1520 year: 1999 ident: e_1_2_11_13_2 article-title: Lateralization of cortical function in swallowing: a functional MR imaging study publication-title: AJNR Am J Neuroradiol – volume: 22 start-page: 265 year: 1990 ident: e_1_2_11_61_2 article-title: The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults publication-title: Med Sci Sports Exerc – ident: e_1_2_11_37_2 doi: 10.1097/00005537-200107000-00010 – ident: e_1_2_11_21_2 doi: 10.1002/hbm.20743 – ident: e_1_2_11_53_2 doi: 10.3233/JAD-2010-1316 – ident: e_1_2_11_28_2 doi: 10.1002/mrm.1910140108 – ident: e_1_2_11_29_2 doi: 10.1038/nrn730 – ident: e_1_2_11_58_2 doi: 10.1152/ajpgi.00161.2010 – ident: e_1_2_11_3_2 doi: 10.1007/978-1-4757-1682-5 – ident: e_1_2_11_23_2 doi: 10.1007/s00455-009-9250-z – ident: e_1_2_11_50_2 doi: 10.1093/gerona/60.1.109 – ident: e_1_2_11_32_2 doi: 10.1146/annurev.bioeng.2.1.633 – ident: e_1_2_11_6_2 doi: 10.1007/BF02493518 – ident: e_1_2_11_62_2 doi: 10.1007/BF00417897 – ident: e_1_2_11_63_2 doi: 10.1007/PL00009610 – ident: e_1_2_11_35_2 doi: 10.1007/BF01354538 – ident: e_1_2_11_59_2 doi: 10.1044/1092-4388(2008/018) – ident: e_1_2_11_40_2 doi: 10.1002/hbm.21062 – ident: e_1_2_11_19_2 doi: 10.1007/s00221-004-2048-1 – ident: e_1_2_11_45_2 doi: 10.1093/gerona/50A.5.M257 |
SSID | ssj0003642 |
Score | 2.2739396 |
Snippet | Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | S14 |
SubjectTerms | Brain Ischemia - diagnosis Brain Stem Chronic Disease Cranial Nerves Deglutition Deglutition Disorders - etiology Deglutition Disorders - rehabilitation Dysphagia fMRI Functional magnetic resonance imaging Head Humans Infarction, Middle Cerebral Artery - complications Infarction, Middle Cerebral Artery - diagnosis Infarction, Middle Cerebral Artery - rehabilitation Magnetic Resonance Imaging Male Middle Aged Muscles Neck Nerve Net Neuraxis Neuroimaging Neuronal Plasticity Neurophysiology neuroplasticity Plasticity (functional) Plasticity (neural) sensorimotor system swallowing Treatment Outcome |
Title | Functional MRI of swallowing: From neurophysiology to neuroplasticity |
URI | https://api.istex.fr/ark:/67375/WNG-H19RWF2S-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhed.21903 https://www.ncbi.nlm.nih.gov/pubmed/21901779 https://www.proquest.com/docview/1323812590 https://www.proquest.com/docview/893980663 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heuHSh0rb9CUXVVUvWRLHcWJ6qsqGpRIctkVwqGT5FVUCNtVuVhR-PWNnE0QFUsUtsSaKPZ7JfB5PPgN8FKXLKdc8NsJlMeO2jFWBjie4cnWZF8Ion-84OOSTI_b9JD9Zgy_9vzAdP8SQcPOeEb7X3sGVXmzfkIb-dnaE7haYPtOMe9783ekNdRS2dDudLPP5FdazCiV0e3jyVix65NX69y6geRu3hsBTPYFffZe7epPT0bLVI3P1D5vjA8f0FB6vACn52lnQM1hzs-cwrjDcdVlCcjDdJ01NFhd-i_4CI90OqebNOQlMmCExEjLzpG1WTYjHfal2e7kJR9X457dJvDpwITYMQ1lcG2oLXSYmoxj3OSts7rJUZQj6aM1r4UqjTC4YTUyZe553yzXepdYJprV12QtYnzUz9wpIZvKUJzWznoxGownUSjnELtomwpSmiOBzr3ppVmzk_lCMM9nxKFOJupBBFxFsDaJ_OgqOu4Q-hfkbJNT81NesFbk8PtyTk1RMjyv6Q1YRfOgnWKIn-e0RNXPNciFxXY7wBZeDSQTkHhlEd6L0KC2Cl51xDC_03UiLQuDIwhTf31c5Ge-Gi9f_L_oGNmhffZi-hfV2vnTvEA61-n2w-2uZjwP0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QEuPMQrlIJBCHHJNnEcJ664INiQQncPS6v2gqz4EVUqbKptVi38-o6dTaqiVkLckmii2GNP5vPM-DPAW5HblHLFQy1sEjJu8rDK0PAEr2ydp5nQlYt3TKa8PGBfj9KjNfjQ74Xp-CGGgJuzDP-_dgbuAtLbV6yhx9aM0N4c1eeGz885SDS7Io9KOOtynSxxERbW8wpFdHt49Zo32nCKvbgJal5Hrt71FPfhR9_oruLkZLRs1Uj_-YvP8X979QDurTAp-dhNooewZuePYFygx-sChWQy2yVNTc7OXZb-HJ3dDikWzS_iyTB9bMQH50nbrB4hJHfV2u3vx3BQjPc_leHqzIVQM_RmYa2pyVQe6YSi6-csM6lN4ipB3EdrXgub60qngtFI56mjejdc4V1srGBKGZs8gfV5M7fPgCQ6jXlUM-P4aBTOgrqqLMIXZSKhc50F8L7XvdQrQnJ3LsZP2VEpU4m6kF4XAbwZRE87Fo6bhN75ARwkqsWJK1vLUnk4_SLLWMwOC_pdFgG87kdYojG5DEk1t83yTOLSHBEMrgijAMgtMgjwRO6AWgBPu9kxfNA1I84ygT3zY3x7W2U5_uwvnv-76Cu4U-5P9uTe7vTbJtylfTFi_ALW28XSbiE6atVLbwSX2ecIEg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UFsQXL9RLvHUUEV-yTSaTSUafxG7cql1ktbQPwjC3IFQ3ZZulrb_eM5NNSqUF8S0JJ2TmzJx835w5-QLwUpQup1zz2AiXxYzbMlYFBp7gytVlXgijfL5jb8on--zjYX64Bm_7b2E6fYgh4eYjI7yvfYAf23r7QjT0h7MjDDev9LnBOMKkZ0SzC-2ojLNuq5NlPsHCelmhhG4Pt14Cow3v17OrmOZl4hqQp7oN3_s2dwUnR6Nlq0fm919yjv_ZqTtwa8VIybtuCt2FNTffhHGFeNelCcnebJc0NTk59Xv0pwh1b0i1aH6RIIUZMiMhNU_aZnUJCbmv1W7P78F-Nf72fhKv_rgQG4ZYFteG2kKXickoAj9nhc1dlqoMWR-teS1caZTJBaOJKXMv9G65xrPUOsG0ti67D-vzZu4eAslMnvKkZtar0WicA7VSDsmLtokwpSkieN27XpqVHLn_K8ZP2QkpU4m-kMEXEbwYTI87DY6rjF6F8Rss1OLIF60VuTyYfpCTVMwOKvpVVhE87wdYYij5_RE1d83yROLCHPkLrgeTCMg1NkjvROlpWgQPuskxPNA3Iy0KgT0LQ3x9W-VkvBMOHv276Rbc-LJTyc-700-P4SbtKxHTJ7DeLpbuKVKjVj8LIfAHvO4GwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+MRI+of+swallowing%3A+From+neurophysiology+to+neuroplasticity%3F&rft.jtitle=Head+%26+neck&rft.au=Malandraki%2C+Georgia+A&rft.au=Johnson%2C+Sterling&rft.au=Robbins%2C+Joanne&rft.date=2011-10-01&rft.issn=1097-0347&rft.volume=33&rft.issue=S1&rft.spage=S14&rft.epage=S20&rft_id=info:doi/10.1002%2Fhed.21903&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-3074&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-3074&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-3074&client=summon |