Functional MRI of swallowing: From neurophysiology to neuroplasticity

Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathway...

Full description

Saved in:
Bibliographic Details
Published inHead & neck Vol. 33; no. S1; pp. S14 - S20
Main Authors Malandraki, Georgia A., Johnson, Sterling, Robbins, JoAnne
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2011
Subjects
Online AccessGet full text
ISSN1043-3074
1097-0347
1097-0347
DOI10.1002/hed.21903

Cover

Abstract Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre‐posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. © 2011 Wiley Periodicals, Inc. Head Neck, 2011
AbstractList Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre‐posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. © 2011 Wiley Periodicals, Inc. Head Neck, 2011
Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre‐posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. © 2011 Wiley Periodicals, Inc. Head Neck , 2011
Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre-posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice.
Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre-posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice.Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre-posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice.
Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption of any of these anatomic or functional components can lead to swallowing disorders (also known as dysphagia). Understanding the neural pathways that govern swallowing is necessary in diagnosing and treating patients with dysphagia. Functional MRI (fMRI) is a prevalent and effective neuroimaging method that has been used to study the complex neurophysiologic control of swallowing in vivo. This article presents a summary of the research studies that have used fMRI to study the neural control of swallowing in normal subjects and dysphagic patients, and to investigate the effects of swallowing treatments on neuroplasticity. Methodologic challenges and caveats are discussed, and a case study of a pre-posttreatment paradigm is presented to highlight potential future directions of fMRI applications in swallowing research and clinical practice. ? 2011 Wiley Periodicals, Inc. Head Neck, 2011
Author Malandraki, Georgia A.
Robbins, JoAnne
Johnson, Sterling
Author_xml – sequence: 1
  givenname: Georgia A.
  surname: Malandraki
  fullname: Malandraki, Georgia A.
  email: malandraki@tc.columbia.edu
  organization: Department of Biobehavioral Sciences, Program of Speech and Language Pathology, Teachers College, Columbia University, New York, New York
– sequence: 2
  givenname: Sterling
  surname: Johnson
  fullname: Johnson, Sterling
  organization: Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
– sequence: 3
  givenname: JoAnne
  surname: Robbins
  fullname: Robbins, JoAnne
  organization: Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21901779$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URNuFA38A5QYc0toex465VWXTrVRAKqAeLcdxWoM3XuxE2_z7Juy2ByR6mg8978zonWN00IXOIvSW4BOCMT29s80JJRLDC3REsBQ5BiYO5pxBDliwQ3Sc0i-MMXBGX6HDGSZCyCO0rIbO9C502mdfri-z0GZpq70PW9fdfsqqGNZZZ4cYNndjcsGH2zHrw77ldeqdcf34Gr1stU_2zT4u0M9q-eN8lV99u7g8P7vKDQMMeWtoI-oSG6AloZyJprBANBS8oC1vpS2NNoVkFJuy4EBZw-upIo2VrK4bCwv0fjd3E8OfwaZerV0y1nvd2TAkVUqQJeYcJvLDsyQBCtMNxWTaAr3bo0O9to3aRLfWcVSPJk3Axx1gYkgp2vYJIVjND1DTA_7i897Tf9jJHz0b3Eft_HOKrfN2_P9otVp-flTkO4VLvb1_Uuj4W3EBolA3Xy_Uisjrm4p-VxU8APzOpFg
CitedBy_id crossref_primary_10_1055_s_0042_1759612
crossref_primary_10_18273_revmed_v36n1_2023005
crossref_primary_10_1007_s00455_024_10730_1
crossref_primary_10_1007_s00455_020_10223_x
crossref_primary_10_1111_jebm_12242
crossref_primary_10_1044_2020_JSLHR_20_00171
crossref_primary_10_1007_s00455_017_9794_2
crossref_primary_10_1002_phy2_239
crossref_primary_10_1007_s00455_022_10516_3
crossref_primary_10_1007_s00455_017_9810_6
crossref_primary_10_1007_s00455_017_9816_0
crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_09_051
crossref_primary_10_4103_1673_5374_153701
crossref_primary_10_1016_j_jstrokecerebrovasdis_2015_08_037
crossref_primary_10_1590_S2317_64312015000200001471
crossref_primary_10_3389_fnagi_2022_912691
crossref_primary_10_1007_s00455_023_10613_x
crossref_primary_10_1044_2023_PERSP_23_00123
crossref_primary_10_1007_s00455_023_10572_3
crossref_primary_10_1007_s10072_021_05654_9
crossref_primary_10_1007_s40141_021_00334_3
crossref_primary_10_1007_s40141_013_0025_y
crossref_primary_10_1111_ene_12670
crossref_primary_10_1007_s00455_022_10426_4
crossref_primary_10_1590_0004_282x20180005
crossref_primary_10_11138_oi_v17i1_98
crossref_primary_10_3389_fnins_2018_00488
crossref_primary_10_1002_hed_21902
crossref_primary_10_3389_fnhum_2021_628424
crossref_primary_10_1109_MSP_2018_2875863
crossref_primary_10_1044_2019_AJSLP_19_00088
crossref_primary_10_1590_1678_775720140132
crossref_primary_10_1016_j_jvoice_2017_03_010
crossref_primary_10_1016_j_jpg_2013_11_004
crossref_primary_10_1111_joor_13274
crossref_primary_10_1016_j_jns_2014_05_064
crossref_primary_10_3390_brainsci12060803
crossref_primary_10_1016_j_biomaterials_2018_05_016
crossref_primary_10_1016_j_dcn_2024_101481
crossref_primary_10_1007_s00455_022_10460_2
crossref_primary_10_3389_fneur_2023_1279452
crossref_primary_10_1016_j_physbeh_2015_09_026
crossref_primary_10_3389_fnhum_2023_1077234
crossref_primary_10_1016_j_jstrokecerebrovasdis_2018_11_013
crossref_primary_10_1073_pnas_1907393117
crossref_primary_10_1159_000531265
crossref_primary_10_1080_10749357_2019_1628464
crossref_primary_10_3390_jcm11185480
crossref_primary_10_3389_fnins_2020_00226
crossref_primary_10_3389_fneur_2024_1346522
crossref_primary_10_1016_j_exger_2018_11_007
crossref_primary_10_1044_persp1_SIG13_48
crossref_primary_10_1088_1741_2560_12_5_051001
crossref_primary_10_1007_s40141_015_0078_1
crossref_primary_10_1044_2023_JSLHR_23_00059
Cites_doi 10.1152/ajpgi.2001.280.4.G531
10.1073/pnas.89.12.5675
10.1007/BF02406275
10.1016/0016-5085(92)90013-O
10.1007/s00455-002-0088-x
10.1016/j.bpg.2007.03.006
10.1109/MEMB.2006.1607665
10.1044/1092-4388(2008/021)
10.1152/physrev.2001.81.2.929
10.1146/annurev.biophys.27.1.447
10.1016/S0166-2236(02)00039-5
10.1111/j.1532-5415.1980.tb00240.x
10.1007/BF02493452
10.1002/lary.21125
10.1152/jn.01144.2003
10.1177/0884533609332005
10.1111/j.1532-5415.2005.53467.x
10.1002/mrm.1910250220
10.1038/nrn1246
10.1002/mrm.22824
10.1007/s00221-006-0592-6
10.1288/00005537-199202000-00001
10.1016/j.neuroimage.2008.10.012
10.1007/BF02407121
10.1016/S1388-2457(03)00237-2
10.1016/S0002-9343(97)00327-6
10.1152/jn.2001.85.2.938
10.1152/ajpgi.1999.277.1.G219
10.1007/s002210100813
10.1073/pnas.89.13.5951
10.1007/PL00009529
10.1007/BF02493446
10.1080/10749357.1996.11754118
10.1016/0016-5085(94)90164-3
10.1136/jnnp.2009.176214
10.1152/ajpgi.2001.280.3.G354
10.2209/tdcpublication.50.169
10.1016/0016-5085(88)90290-9
10.1093/gerona/60.3.391
10.1097/00005537-200107000-00010
10.1002/hbm.20743
10.3233/JAD-2010-1316
10.1002/mrm.1910140108
10.1038/nrn730
10.1152/ajpgi.00161.2010
10.1007/978-1-4757-1682-5
10.1007/s00455-009-9250-z
10.1093/gerona/60.1.109
10.1146/annurev.bioeng.2.1.633
10.1007/BF02493518
10.1007/BF00417897
10.1007/PL00009610
10.1007/BF01354538
10.1044/1092-4388(2008/018)
10.1002/hbm.21062
10.1007/s00221-004-2048-1
10.1093/gerona/50A.5.M257
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1002/hed.21903
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1097-0347
EndPage S20
ExternalDocumentID 21901779
10_1002_hed_21903
HED21903
ark_67375_WNG_H19RWF2S_F
Genre miscellaneous
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Case Reports
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: P30 HD003352
– fundername: NIA NIH HHS
  grantid: P50 AG033514
– fundername: NIDCD NIH HHS
  grantid: R13 DC009556
– fundername: NIDCD NIH HHS
  grantid: #1R13DC009556-01A1S1
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIACR
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DUUFO
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
0R~
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWO
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c4303-fc2d7b80c32812647d5e31a35652f6f9e8cac59420c856324d6b9421de94bbde3
IEDL.DBID DR2
ISSN 1043-3074
1097-0347
IngestDate Fri Jul 11 07:19:07 EDT 2025
Fri Jul 11 07:20:12 EDT 2025
Wed Feb 19 02:36:32 EST 2025
Tue Jul 01 03:27:44 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
Wed Jan 22 16:52:08 EST 2025
Sun Sep 21 06:19:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4303-fc2d7b80c32812647d5e31a35652f6f9e8cac59420c856324d6b9421de94bbde3
Notes Disclaimer: The contents do not represent the views of the Department of Veterans Affairs or the United States Government.
istex:F660E71F208E614B7E1F19BCB56764427E12591C
ArticleID:HED21903
Proceedings of the Integrative Neural Systems Underlying Vital Aerodigestive Tract Functions Conference, June 17-19, 2010
ark:/67375/WNG-H19RWF2S-F
Contract grant sponsor: Supported in part by the Department of Venterans affiars, Veterans Health Administration, Office of Research and Development, Rehabilitation Research and Development service, VA Merit Grant C4796R. This is GRECC manuscript #2011-09. This Supplement was jointly supported by funds from the National Institutes for Health (NIDCD - National Institute on Deafness and Other Communication Disorders, Grant #1R13DC009556-01A1S1) and the Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health.
Contract grant sponsor: Supported in part by the Department of Venterans affiars, Veterans Health Administration, Office of Research and Development, Rehabilitation Research and Development service, VA Merit Grant C4796R. This is GRECC manuscript #2011–09. This Supplement was jointly supported by funds from the National Institutes for Health (NIDCD – National Institute on Deafness and Other Communication Disorders, Grant #1R13DC009556‐01A1S1) and the Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health.
Proceedings of the Integrative Neural Systems Underlying Vital Aerodigestive Tract Functions Conference, June 17–19, 2010
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Case Study-2
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hed.21903
PMID 21901779
PQID 1323812590
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_893980663
proquest_miscellaneous_1323812590
pubmed_primary_21901779
crossref_primary_10_1002_hed_21903
crossref_citationtrail_10_1002_hed_21903
wiley_primary_10_1002_hed_21903_HED21903
istex_primary_ark_67375_WNG_H19RWF2S_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10
October 2011
2011-10-00
2011-Oct
20111001
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Head & neck
PublicationTitleAlternate Head Neck
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14: 68-78.
Logemann JA. Swallowing disorders. Best Pract Res Clin Gastroenterol 2007; 21: 563-573.
Martin R, Barr A, MacIntosh B, et al. Cerebral cortical processing of swallowing in older adults. Exp Brain Res 2007; 176: 12-22.
Babaei A, Kern M, Antonik S, et al. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol Gastrointest Liver Physiol 2010; 299: G422-G429.
Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia 1993; 8: 195-202.
Aviv JE. Effects of aging on sensitivity of the pharyngeal and supraglottic areas. Am J Med 1997; 103: 74S-76S.
Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia 2003; 18: 71-77.
Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia 1996; 11: 93-98.
Ogawa S, Menon RS, Kim SG, Ugurbil K. On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 1998; 27: 447-474.
Robbins J, Levine R, Wood J, Roecker EB, Luschei E. Age effects on lingual pressure generation as a risk factor for dysphagia. J Gerontol A Biol Sci Med Sci 1995; 50: M257-M262.
Mosier KM, Liu WC, Maldjian JA, Shah R, Modi B. Lateralization of cortical function in swallowing: a functional MR imaging study. AJNR Am J Neuroradiol 1999; 20: 1520-1526.
Kern M, Birn R, Jaradeh S, et al. Swallow-related cerebral cortical activity maps are not specific to deglutition. Am J Physiol Gastrointest Liver Physiol 2001; 280: G531-G538.
Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 2001; 81: 929-969.
Robbins JA, Levine RL. Swallowing after unilateral stroke of the cerebral cortex: preliminary experience. Dysphagia 1988; 3: 11-17.
Cook IJ, Weltman MD, Wallace K, et al. Influence of aging on oral-pharyngeal bolus transit and clearance during swallowing: scintigraphic study. Am J Physiol 1994; 266: G972-G977.
Humbert IA, McLaren DG, Kosmatka K, et al. Early deficits in cortical control of swallowing in Alzheimer's disease. J Alzheimers Dis 2010; 19: 1185-1197.
D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 2003; 4: 863-872.
Paine T, Conway C, Malandraki GA, Sutton BP. Simultaneous dynamic and functional MRI scanning (SimulScan) of natural swallows. Magn Reson Med 2011; 65: 1247-1252.
Robbins J, Hamilton JW, Lof GL, Kempster GB. Oropharyngeal swallowing in normal adults of different ages. Gastroenterology 1992; 103: 823-829.
Robbins J, Butler SG, Daniels SK, et al. Swallowing and dysphagia rehabilitation: translating principles of neural plasticity into clinically oriented evidence. J Speech Lang Hear Res 2008; 51: S276-S300.
Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med 1992; 25: 390-397.
Hamdy S, Mikulis DJ, Crawley A, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol 1999; 277: G219-G225.
Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res 2008; 51: S225-S239.
[No authors listed] American College of Sports Medicine position stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med Sci Sports Exerc 1990; 22: 265-274.
Ney DM, Weiss JM, Kind AJ, Robbins J. Senescent swallowing: impact, strategies, and interventions. Nutr Clin Pract 2009; 24: 395-413.
Toogood JA, Barr AM, Stevens TK, Gati JS, Menon RS, Martin RE. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) "Go, No-Go" study. Exp Brain Res 2005; 161: 81-90.
Miller AJ. Neurophysiological basis of swallowing. Dysphagia 1986; 1: 91-100.
Bieger D. Neuropharmacologic correlates of deglutition: lessons from fictive swallowing. Dysphagia 1991; 6: 147-164.
Kawai T, Watanabe Y, Tonogi M, et al. Visual and auditory stimuli associated with swallowing: an FMRI study. Bull Tokyo Dent Coll 2009; 50: 169-181.
Robbins J, Gangnon RE, Theis SM, Kays SA, Heewitt AL, Hind JA. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc 2005; 53: 1483-1489.
Li S, Luo C, Yu B, et al. Functional magnetic resonance imaging study on dysphagia after unilateral hemispheric stroke: a preliminary study. J Neurol Neurosurg Psychiatry 2009; 80: 1320-1329.
Calhoun KH, Gibson B, Hartley L, Minton J, Hokanson JA. Age-related changes in oral sensation. Laryngoscope 1992; 102: 109-116.
Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89: 5675-5679.
Daniels SK, Foundas AL. The role of the insular cortex in dysphagia. Dysphagia 1997; 12: 146-156.
Martin RE, MacIntosh BJ, Smith RC, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 2004; 92: 2428-2443.
Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol 2001; 280: G354-G360.
Malandraki GA, Sutton BP, Perlman AL, Karampinos DC. Reduced somatosensory activations in swallowing with age. Hum Brain Mapp 2011; 32: 730-743.
Ugurbil K, Adriany G, Andersen P, et al. Magnetic resonance studies of brain function and neurochemistry. Annu Rev Biomed Eng 2000; 2: 633-660.
Leslie P, Drinnan MJ, Ford GA, Wilson JA. Swallow respiratory patterns and aging: presbyphagia or dysphagia? J Gerontol A Biol Sci Med Sci 2005; 60: 391-395.
Pekar JJ. A brief introduction to functional MRI. IEEE Eng Med Biol Mag 2006; 25: 24-26.
Shaker R, Ren J, Zamir Z, Sarna A, Liu J, Sui Z. Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows. Gastroenterology 1994; 107: 396-402.
Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol 2001; 85: 938-950.
Malandraki GA, Sutton BP, Perlman AL, Karampinos DC. Age-related differences in laterality of cortical activations in swallowing. Dysphagia 2010; 25: 238-249.
Robbins J, Coyle J, Roecker E, Rosenbek J, Wood J. Differentiation of normal and abnormal airway protection during swallowing using the penetration-aspiration scale. Dysphagia 1999; 14: 228-232.
Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002; 3: 142-151.
Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol 2003; 114: 2226-2244.
Webb AG. Introduction to biomedical imaging: IEEE Press Series on Biomedical Engineering. Wiley-IEEE Press, 2003.
Humbert IA, Fitzgerald ME, McLaren DG, et al. Neurophysiology of swallowing: effects of age and bolus type. Neuroimage 2009; 44: 982-991.
Celifarco A, Gerard G, Faegenburg D, Burakoff R. Dysphagia as the sole manifestation of bilateral strokes. Am J Gastroenterol 1990; 85: 610-613.
Hartnick CJ, Rudolph C, Willging JP, Holland SK. Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope 2001; 111: 1183-1191.
Feldman RS, Kapur KK, Alman JE, Chauncey HH. Aging and mastication: changes in performance and in the swallowing threshold with natural dentition. Am Geriatr Soc 1980; 28: 97-103.
Malandraki GA, Sutton BP, Perlman AL, Karampinos DC, Conway C. Neural activation of swallowing and swallowing-related tasks in healthy young adults: an attempt to separate the components of deglutition. Hum Brain Mapp 2009; 30: 3209-3226.
Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology 1988; 95: 52-62.
Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992; 89: 5951-5955.
Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res 2001; 140: 280-289.
Fukunaga A, Uematsu H, Sugimoto K. Influences of aging on taste perception and oral somatic sensation. J Gerontol A Biol Sci Med Sci 2005; 60: 109-113.
Alberts MJ, Horner J, Gray L, Brazer SR. Aspiration after stroke: lesion analysis by brain MRI. Dysphagia 1992; 7: 170-173.
Levine R, Robbins JA, Maser A. Periventricular white matter changes and oropharyngeal swallowing in normal individuals. Dysphagia 1992; 7: 142-147.
Ugurbil K, Toth L, Kim DS. How accurate is magnetic resonance imaging of brain function? Trends Neurosci 2003; 26: 108-114.
Peck KK, Branski RC, Lazarus C, et al. Cortical activation during swallowing rehabilitation maneuvers: a functional MRI study of healthy controls. Laryngoscope 2010; 120: 2153-2159.
Perlman AL. Neuroanatomy and neurophysiology: implications for swallowing. Top Stroke Rehabil 1996; 3: 1-13.
Dubner R, Sessle B, Storey A. The neural basis of oral and facial function. New York: Plenum, 1978.
2009; 44
1993; 8
2001; 140
1990; 14
2009; 80
2010; 19
2000; 2
2003; 18
2005; 60
2003; 114
2001; 85
1978
1994; 266
1990; 85
1992; 7
1997; 103
1986; 1
2010; 25
2009; 50
2007; 176
2006; 25
1997; 12
1999; 14
2003; 4
2011; 65
2007; 21
1994; 107
1996; 3
1992; 89
1998; 27
1980; 28
2009; 24
1995; 50
2001; 280
1992; 102
1992; 103
2002; 3
2011; 32
2010; 120
1999; 20
1988; 95
2003
2008; 51
1991; 6
1996; 11
2001; 111
2001; 81
1988; 3
2005; 161
2009; 30
1990; 22
2004; 92
2010; 299
2003; 26
2005; 53
1992; 25
1999; 277
e_1_2_11_30_2
e_1_2_11_55_2
e_1_2_11_57_2
e_1_2_11_34_2
e_1_2_11_51_2
e_1_2_11_11_2
e_1_2_11_32_2
e_1_2_11_53_2
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_48_2
e_1_2_11_29_2
e_1_2_11_60_2
e_1_2_11_20_2
e_1_2_11_43_2
e_1_2_11_45_2
e_1_2_11_24_2
e_1_2_11_62_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_41_2
e_1_2_11_17_2
Cook IJ (e_1_2_11_47_2) 1994; 266
e_1_2_11_15_2
e_1_2_11_36_2
e_1_2_11_59_2
e_1_2_11_19_2
e_1_2_11_38_2
Webb AG (e_1_2_11_31_2) 2003
e_1_2_11_54_2
e_1_2_11_56_2
e_1_2_11_35_2
e_1_2_11_50_2
e_1_2_11_12_2
e_1_2_11_33_2
e_1_2_11_52_2
e_1_2_11_10_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_49_2
Celifarco A (e_1_2_11_9_2) 1990; 85
[No authors listed] American College of Sports Medicine position stand (e_1_2_11_61_2) 1990; 22
Mosier KM (e_1_2_11_13_2) 1999; 20
e_1_2_11_44_2
e_1_2_11_46_2
Perlman AL (e_1_2_11_4_2) 1996; 3
e_1_2_11_23_2
e_1_2_11_40_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_42_2
e_1_2_11_63_2
e_1_2_11_16_2
e_1_2_11_14_2
e_1_2_11_58_2
e_1_2_11_37_2
e_1_2_11_18_2
e_1_2_11_39_2
References_xml – reference: [No authors listed] American College of Sports Medicine position stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med Sci Sports Exerc 1990; 22: 265-274.
– reference: D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 2003; 4: 863-872.
– reference: Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res 2008; 51: S225-S239.
– reference: Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med 1992; 25: 390-397.
– reference: Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 2001; 81: 929-969.
– reference: Humbert IA, Fitzgerald ME, McLaren DG, et al. Neurophysiology of swallowing: effects of age and bolus type. Neuroimage 2009; 44: 982-991.
– reference: Miller AJ. Neurophysiological basis of swallowing. Dysphagia 1986; 1: 91-100.
– reference: Robbins J, Butler SG, Daniels SK, et al. Swallowing and dysphagia rehabilitation: translating principles of neural plasticity into clinically oriented evidence. J Speech Lang Hear Res 2008; 51: S276-S300.
– reference: Alberts MJ, Horner J, Gray L, Brazer SR. Aspiration after stroke: lesion analysis by brain MRI. Dysphagia 1992; 7: 170-173.
– reference: Ney DM, Weiss JM, Kind AJ, Robbins J. Senescent swallowing: impact, strategies, and interventions. Nutr Clin Pract 2009; 24: 395-413.
– reference: Ugurbil K, Adriany G, Andersen P, et al. Magnetic resonance studies of brain function and neurochemistry. Annu Rev Biomed Eng 2000; 2: 633-660.
– reference: Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002; 3: 142-151.
– reference: Aviv JE. Effects of aging on sensitivity of the pharyngeal and supraglottic areas. Am J Med 1997; 103: 74S-76S.
– reference: Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14: 68-78.
– reference: Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89: 5675-5679.
– reference: Logemann JA. Swallowing disorders. Best Pract Res Clin Gastroenterol 2007; 21: 563-573.
– reference: Feldman RS, Kapur KK, Alman JE, Chauncey HH. Aging and mastication: changes in performance and in the swallowing threshold with natural dentition. Am Geriatr Soc 1980; 28: 97-103.
– reference: Martin RE, MacIntosh BJ, Smith RC, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 2004; 92: 2428-2443.
– reference: Mosier KM, Liu WC, Maldjian JA, Shah R, Modi B. Lateralization of cortical function in swallowing: a functional MR imaging study. AJNR Am J Neuroradiol 1999; 20: 1520-1526.
– reference: Leslie P, Drinnan MJ, Ford GA, Wilson JA. Swallow respiratory patterns and aging: presbyphagia or dysphagia? J Gerontol A Biol Sci Med Sci 2005; 60: 391-395.
– reference: Kern MK, Jaradeh S, Arndorfer RC, Shaker R. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol 2001; 280: G354-G360.
– reference: Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia 1996; 11: 93-98.
– reference: Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology 1988; 95: 52-62.
– reference: Kern M, Birn R, Jaradeh S, et al. Swallow-related cerebral cortical activity maps are not specific to deglutition. Am J Physiol Gastrointest Liver Physiol 2001; 280: G531-G538.
– reference: Bieger D. Neuropharmacologic correlates of deglutition: lessons from fictive swallowing. Dysphagia 1991; 6: 147-164.
– reference: Ogawa S, Menon RS, Kim SG, Ugurbil K. On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 1998; 27: 447-474.
– reference: Babaei A, Kern M, Antonik S, et al. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol Gastrointest Liver Physiol 2010; 299: G422-G429.
– reference: Fukunaga A, Uematsu H, Sugimoto K. Influences of aging on taste perception and oral somatic sensation. J Gerontol A Biol Sci Med Sci 2005; 60: 109-113.
– reference: Pekar JJ. A brief introduction to functional MRI. IEEE Eng Med Biol Mag 2006; 25: 24-26.
– reference: Martin R, Barr A, MacIntosh B, et al. Cerebral cortical processing of swallowing in older adults. Exp Brain Res 2007; 176: 12-22.
– reference: Hartnick CJ, Rudolph C, Willging JP, Holland SK. Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope 2001; 111: 1183-1191.
– reference: Robbins J, Levine R, Wood J, Roecker EB, Luschei E. Age effects on lingual pressure generation as a risk factor for dysphagia. J Gerontol A Biol Sci Med Sci 1995; 50: M257-M262.
– reference: Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia 1993; 8: 195-202.
– reference: Calhoun KH, Gibson B, Hartley L, Minton J, Hokanson JA. Age-related changes in oral sensation. Laryngoscope 1992; 102: 109-116.
– reference: Levine R, Robbins JA, Maser A. Periventricular white matter changes and oropharyngeal swallowing in normal individuals. Dysphagia 1992; 7: 142-147.
– reference: Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol 2003; 114: 2226-2244.
– reference: Mosier K, Bereznaya I. Parallel cortical networks for volitional control of swallowing in humans. Exp Brain Res 2001; 140: 280-289.
– reference: Malandraki GA, Sutton BP, Perlman AL, Karampinos DC, Conway C. Neural activation of swallowing and swallowing-related tasks in healthy young adults: an attempt to separate the components of deglutition. Hum Brain Mapp 2009; 30: 3209-3226.
– reference: Kawai T, Watanabe Y, Tonogi M, et al. Visual and auditory stimuli associated with swallowing: an FMRI study. Bull Tokyo Dent Coll 2009; 50: 169-181.
– reference: Toogood JA, Barr AM, Stevens TK, Gati JS, Menon RS, Martin RE. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) "Go, No-Go" study. Exp Brain Res 2005; 161: 81-90.
– reference: Dubner R, Sessle B, Storey A. The neural basis of oral and facial function. New York: Plenum, 1978.
– reference: Robbins JA, Levine RL. Swallowing after unilateral stroke of the cerebral cortex: preliminary experience. Dysphagia 1988; 3: 11-17.
– reference: Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol 2001; 85: 938-950.
– reference: Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia 2003; 18: 71-77.
– reference: Hamdy S, Mikulis DJ, Crawley A, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol 1999; 277: G219-G225.
– reference: Perlman AL. Neuroanatomy and neurophysiology: implications for swallowing. Top Stroke Rehabil 1996; 3: 1-13.
– reference: Daniels SK, Foundas AL. The role of the insular cortex in dysphagia. Dysphagia 1997; 12: 146-156.
– reference: Webb AG. Introduction to biomedical imaging: IEEE Press Series on Biomedical Engineering. Wiley-IEEE Press, 2003.
– reference: Cook IJ, Weltman MD, Wallace K, et al. Influence of aging on oral-pharyngeal bolus transit and clearance during swallowing: scintigraphic study. Am J Physiol 1994; 266: G972-G977.
– reference: Li S, Luo C, Yu B, et al. Functional magnetic resonance imaging study on dysphagia after unilateral hemispheric stroke: a preliminary study. J Neurol Neurosurg Psychiatry 2009; 80: 1320-1329.
– reference: Robbins J, Gangnon RE, Theis SM, Kays SA, Heewitt AL, Hind JA. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc 2005; 53: 1483-1489.
– reference: Malandraki GA, Sutton BP, Perlman AL, Karampinos DC. Reduced somatosensory activations in swallowing with age. Hum Brain Mapp 2011; 32: 730-743.
– reference: Peck KK, Branski RC, Lazarus C, et al. Cortical activation during swallowing rehabilitation maneuvers: a functional MRI study of healthy controls. Laryngoscope 2010; 120: 2153-2159.
– reference: Ugurbil K, Toth L, Kim DS. How accurate is magnetic resonance imaging of brain function? Trends Neurosci 2003; 26: 108-114.
– reference: Paine T, Conway C, Malandraki GA, Sutton BP. Simultaneous dynamic and functional MRI scanning (SimulScan) of natural swallows. Magn Reson Med 2011; 65: 1247-1252.
– reference: Malandraki GA, Sutton BP, Perlman AL, Karampinos DC. Age-related differences in laterality of cortical activations in swallowing. Dysphagia 2010; 25: 238-249.
– reference: Shaker R, Ren J, Zamir Z, Sarna A, Liu J, Sui Z. Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows. Gastroenterology 1994; 107: 396-402.
– reference: Humbert IA, McLaren DG, Kosmatka K, et al. Early deficits in cortical control of swallowing in Alzheimer's disease. J Alzheimers Dis 2010; 19: 1185-1197.
– reference: Robbins J, Coyle J, Roecker E, Rosenbek J, Wood J. Differentiation of normal and abnormal airway protection during swallowing using the penetration-aspiration scale. Dysphagia 1999; 14: 228-232.
– reference: Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992; 89: 5951-5955.
– reference: Robbins J, Hamilton JW, Lof GL, Kempster GB. Oropharyngeal swallowing in normal adults of different ages. Gastroenterology 1992; 103: 823-829.
– reference: Celifarco A, Gerard G, Faegenburg D, Burakoff R. Dysphagia as the sole manifestation of bilateral strokes. Am J Gastroenterol 1990; 85: 610-613.
– volume: 25
  start-page: 24
  year: 2006
  end-page: 26
  article-title: A brief introduction to functional MRI
  publication-title: IEEE Eng Med Biol Mag
– volume: 114
  start-page: 2226
  year: 2003
  end-page: 2244
  article-title: Neurophysiology of swallowing
  publication-title: Clin Neurophysiol
– volume: 25
  start-page: 390
  year: 1992
  end-page: 397
  article-title: Time course EPI of human brain function during task activation
  publication-title: Magn Reson Med
– volume: 60
  start-page: 391
  year: 2005
  end-page: 395
  article-title: Swallow respiratory patterns and aging: presbyphagia or dysphagia?
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 60
  start-page: 109
  year: 2005
  end-page: 113
  article-title: Influences of aging on taste perception and oral somatic sensation
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 80
  start-page: 1320
  year: 2009
  end-page: 1329
  article-title: Functional magnetic resonance imaging study on dysphagia after unilateral hemispheric stroke: a preliminary study
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 1
  start-page: 91
  year: 1986
  end-page: 100
  article-title: Neurophysiological basis of swallowing
  publication-title: Dysphagia
– volume: 3
  start-page: 11
  year: 1988
  end-page: 17
  article-title: Swallowing after unilateral stroke of the cerebral cortex: preliminary experience
  publication-title: Dysphagia
– volume: 280
  start-page: G354
  year: 2001
  end-page: G360
  article-title: Cerebral cortical representation of reflexive and volitional swallowing in humans
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 14
  start-page: 68
  year: 1990
  end-page: 78
  article-title: Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields
  publication-title: Magn Reson Med
– volume: 277
  start-page: G219
  year: 1999
  end-page: G225
  article-title: Cortical activation during human volitional swallowing: an event‐related fMRI study
  publication-title: Am J Physiol
– volume: 85
  start-page: 610
  year: 1990
  end-page: 613
  article-title: Dysphagia as the sole manifestation of bilateral strokes
  publication-title: Am J Gastroenterol
– volume: 44
  start-page: 982
  year: 2009
  end-page: 991
  article-title: Neurophysiology of swallowing: effects of age and bolus type
  publication-title: Neuroimage
– volume: 22
  start-page: 265
  year: 1990
  end-page: 274
  article-title: The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults
  publication-title: Med Sci Sports Exerc
– volume: 103
  start-page: 823
  year: 1992
  end-page: 829
  article-title: Oropharyngeal swallowing in normal adults of different ages
  publication-title: Gastroenterology
– volume: 299
  start-page: G422
  year: 2010
  end-page: G429
  article-title: Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 89
  start-page: 5951
  year: 1992
  end-page: 5955
  article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging
  publication-title: Proc Natl Acad Sci U S A
– volume: 161
  start-page: 81
  year: 2005
  end-page: 90
  article-title: Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) “Go, No‐Go” study
  publication-title: Exp Brain Res
– volume: 27
  start-page: 447
  year: 1998
  end-page: 474
  article-title: On the characteristics of functional magnetic resonance imaging of the brain
  publication-title: Annu Rev Biophys Biomol Struct
– volume: 4
  start-page: 863
  year: 2003
  end-page: 872
  article-title: Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging
  publication-title: Nat Rev Neurosci
– volume: 18
  start-page: 71
  year: 2003
  end-page: 77
  article-title: Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging
  publication-title: Dysphagia
– volume: 50
  start-page: 169
  year: 2009
  end-page: 181
  article-title: Visual and auditory stimuli associated with swallowing: an FMRI study
  publication-title: Bull Tokyo Dent Coll
– volume: 81
  start-page: 929
  year: 2001
  end-page: 969
  article-title: Brain stem control of swallowing: neuronal network and cellular mechanisms
  publication-title: Physiol Rev
– volume: 7
  start-page: 170
  year: 1992
  end-page: 173
  article-title: Aspiration after stroke: lesion analysis by brain MRI
  publication-title: Dysphagia
– volume: 26
  start-page: 108
  year: 2003
  end-page: 114
  article-title: How accurate is magnetic resonance imaging of brain function?
  publication-title: Trends Neurosci
– volume: 12
  start-page: 146
  year: 1997
  end-page: 156
  article-title: The role of the insular cortex in dysphagia
  publication-title: Dysphagia
– volume: 103
  start-page: 74S
  year: 1997
  end-page: 76S
  article-title: Effects of aging on sensitivity of the pharyngeal and supraglottic areas
  publication-title: Am J Med
– volume: 51
  start-page: S225
  year: 2008
  end-page: S239
  article-title: Principles of experience‐dependent neural plasticity: implications for rehabilitation after brain damage
  publication-title: J Speech Lang Hear Res
– volume: 25
  start-page: 238
  year: 2010
  end-page: 249
  article-title: Age‐related differences in laterality of cortical activations in swallowing
  publication-title: Dysphagia
– volume: 11
  start-page: 93
  year: 1996
  end-page: 98
  article-title: A penetration‐aspiration scale
  publication-title: Dysphagia
– volume: 7
  start-page: 142
  year: 1992
  end-page: 147
  article-title: Periventricular white matter changes and oropharyngeal swallowing in normal individuals
  publication-title: Dysphagia
– volume: 107
  start-page: 396
  year: 1994
  end-page: 402
  article-title: Effect of aging, position, and temperature on the threshold volume triggering pharyngeal swallows
  publication-title: Gastroenterology
– volume: 24
  start-page: 395
  year: 2009
  end-page: 413
  article-title: Senescent swallowing: impact, strategies, and interventions
  publication-title: Nutr Clin Pract
– volume: 111
  start-page: 1183
  year: 2001
  end-page: 1191
  article-title: Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem
  publication-title: Laryngoscope
– volume: 14
  start-page: 228
  year: 1999
  end-page: 232
  article-title: Differentiation of normal and abnormal airway protection during swallowing using the penetration‐aspiration scale
  publication-title: Dysphagia
– volume: 280
  start-page: G531
  year: 2001
  end-page: G538
  article-title: Swallow‐related cerebral cortical activity maps are not specific to deglutition
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 65
  start-page: 1247
  year: 2011
  end-page: 1252
  article-title: Simultaneous dynamic and functional MRI scanning (SimulScan) of natural swallows
  publication-title: Magn Reson Med
– volume: 266
  start-page: G972
  year: 1994
  end-page: G977
  article-title: Influence of aging on oral‐pharyngeal bolus transit and clearance during swallowing: scintigraphic study
  publication-title: Am J Physiol
– year: 2003
– volume: 95
  start-page: 52
  year: 1988
  end-page: 62
  article-title: Upper esophageal sphincter function during deglutition
  publication-title: Gastroenterology
– volume: 50
  start-page: M257
  year: 1995
  end-page: M262
  article-title: Age effects on lingual pressure generation as a risk factor for dysphagia
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 140
  start-page: 280
  year: 2001
  end-page: 289
  article-title: Parallel cortical networks for volitional control of swallowing in humans
  publication-title: Exp Brain Res
– volume: 176
  start-page: 12
  year: 2007
  end-page: 22
  article-title: Cerebral cortical processing of swallowing in older adults
  publication-title: Exp Brain Res
– volume: 21
  start-page: 563
  year: 2007
  end-page: 573
  article-title: Swallowing disorders
  publication-title: Best Pract Res Clin Gastroenterol
– volume: 53
  start-page: 1483
  year: 2005
  end-page: 1489
  article-title: The effects of lingual exercise on swallowing in older adults
  publication-title: J Am Geriatr Soc
– volume: 102
  start-page: 109
  year: 1992
  end-page: 116
  article-title: Age‐related changes in oral sensation
  publication-title: Laryngoscope
– volume: 3
  start-page: 142
  year: 2002
  end-page: 151
  article-title: What does fMRI tell us about neuronal activity?
  publication-title: Nat Rev Neurosci
– volume: 6
  start-page: 147
  year: 1991
  end-page: 164
  article-title: Neuropharmacologic correlates of deglutition: lessons from fictive swallowing
  publication-title: Dysphagia
– volume: 89
  start-page: 5675
  year: 1992
  end-page: 5679
  article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 195
  year: 1993
  end-page: 202
  article-title: The role of the cerebral cortex in swallowing
  publication-title: Dysphagia
– volume: 3
  start-page: 1
  year: 1996
  end-page: 13
  article-title: Neuroanatomy and neurophysiology: implications for swallowing
  publication-title: Top Stroke Rehabil
– volume: 20
  start-page: 1520
  year: 1999
  end-page: 1526
  article-title: Lateralization of cortical function in swallowing: a functional MR imaging study
  publication-title: AJNR Am J Neuroradiol
– volume: 92
  start-page: 2428
  year: 2004
  end-page: 2443
  article-title: Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study
  publication-title: J Neurophysiol
– volume: 2
  start-page: 633
  year: 2000
  end-page: 660
  article-title: Magnetic resonance studies of brain function and neurochemistry
  publication-title: Annu Rev Biomed Eng
– volume: 51
  start-page: S276
  year: 2008
  end-page: S300
  article-title: Swallowing and dysphagia rehabilitation: translating principles of neural plasticity into clinically oriented evidence
  publication-title: J Speech Lang Hear Res
– volume: 32
  start-page: 730
  year: 2011
  end-page: 743
  article-title: Reduced somatosensory activations in swallowing with age
  publication-title: Hum Brain Mapp
– volume: 85
  start-page: 938
  year: 2001
  end-page: 950
  article-title: Cerebral cortical representation of automatic and volitional swallowing in humans
  publication-title: J Neurophysiol
– year: 1978
– volume: 120
  start-page: 2153
  year: 2010
  end-page: 2159
  article-title: Cortical activation during swallowing rehabilitation maneuvers: a functional MRI study of healthy controls
  publication-title: Laryngoscope
– volume: 30
  start-page: 3209
  year: 2009
  end-page: 3226
  article-title: Neural activation of swallowing and swallowing‐related tasks in healthy young adults: an attempt to separate the components of deglutition
  publication-title: Hum Brain Mapp
– volume: 28
  start-page: 97
  year: 1980
  end-page: 103
  article-title: Aging and mastication: changes in performance and in the swallowing threshold with natural dentition
  publication-title: Am Geriatr Soc
– volume: 19
  start-page: 1185
  year: 2010
  end-page: 1197
  article-title: Early deficits in cortical control of swallowing in Alzheimer's disease
  publication-title: J Alzheimers Dis
– ident: e_1_2_11_14_2
  doi: 10.1152/ajpgi.2001.280.4.G531
– ident: e_1_2_11_24_2
  doi: 10.1073/pnas.89.12.5675
– ident: e_1_2_11_8_2
  doi: 10.1007/BF02406275
– ident: e_1_2_11_44_2
  doi: 10.1016/0016-5085(92)90013-O
– ident: e_1_2_11_17_2
  doi: 10.1007/s00455-002-0088-x
– ident: e_1_2_11_54_2
  doi: 10.1016/j.bpg.2007.03.006
– ident: e_1_2_11_30_2
  doi: 10.1109/MEMB.2006.1607665
– volume-title: Introduction to biomedical imaging: IEEE Press Series on Biomedical Engineering
  year: 2003
  ident: e_1_2_11_31_2
– ident: e_1_2_11_55_2
  doi: 10.1044/1092-4388(2008/021)
– ident: e_1_2_11_7_2
  doi: 10.1152/physrev.2001.81.2.929
– ident: e_1_2_11_27_2
  doi: 10.1146/annurev.biophys.27.1.447
– ident: e_1_2_11_33_2
  doi: 10.1016/S0166-2236(02)00039-5
– ident: e_1_2_11_46_2
  doi: 10.1111/j.1532-5415.1980.tb00240.x
– ident: e_1_2_11_10_2
  doi: 10.1007/BF02493452
– ident: e_1_2_11_56_2
  doi: 10.1002/lary.21125
– ident: e_1_2_11_18_2
  doi: 10.1152/jn.01144.2003
– ident: e_1_2_11_43_2
  doi: 10.1177/0884533609332005
– ident: e_1_2_11_60_2
  doi: 10.1111/j.1532-5415.2005.53467.x
– ident: e_1_2_11_26_2
  doi: 10.1002/mrm.1910250220
– ident: e_1_2_11_34_2
  doi: 10.1038/nrn1246
– ident: e_1_2_11_41_2
  doi: 10.1002/mrm.22824
– ident: e_1_2_11_38_2
  doi: 10.1007/s00221-006-0592-6
– volume: 266
  start-page: G972
  year: 1994
  ident: e_1_2_11_47_2
  article-title: Influence of aging on oral‐pharyngeal bolus transit and clearance during swallowing: scintigraphic study
  publication-title: Am J Physiol
– ident: e_1_2_11_49_2
  doi: 10.1288/00005537-199202000-00001
– ident: e_1_2_11_20_2
  doi: 10.1016/j.neuroimage.2008.10.012
– ident: e_1_2_11_5_2
  doi: 10.1007/BF02407121
– ident: e_1_2_11_36_2
  doi: 10.1016/S1388-2457(03)00237-2
– ident: e_1_2_11_51_2
  doi: 10.1016/S0002-9343(97)00327-6
– ident: e_1_2_11_16_2
  doi: 10.1152/jn.2001.85.2.938
– ident: e_1_2_11_22_2
  doi: 10.1152/ajpgi.1999.277.1.G219
– ident: e_1_2_11_39_2
  doi: 10.1007/s002210100813
– ident: e_1_2_11_25_2
  doi: 10.1073/pnas.89.13.5951
– volume: 85
  start-page: 610
  year: 1990
  ident: e_1_2_11_9_2
  article-title: Dysphagia as the sole manifestation of bilateral strokes
  publication-title: Am J Gastroenterol
– ident: e_1_2_11_12_2
  doi: 10.1007/PL00009529
– ident: e_1_2_11_11_2
  doi: 10.1007/BF02493446
– volume: 3
  start-page: 1
  year: 1996
  ident: e_1_2_11_4_2
  article-title: Neuroanatomy and neurophysiology: implications for swallowing
  publication-title: Top Stroke Rehabil
  doi: 10.1080/10749357.1996.11754118
– ident: e_1_2_11_48_2
  doi: 10.1016/0016-5085(94)90164-3
– ident: e_1_2_11_52_2
  doi: 10.1136/jnnp.2009.176214
– ident: e_1_2_11_15_2
  doi: 10.1152/ajpgi.2001.280.3.G354
– ident: e_1_2_11_57_2
  doi: 10.2209/tdcpublication.50.169
– ident: e_1_2_11_2_2
  doi: 10.1016/0016-5085(88)90290-9
– ident: e_1_2_11_42_2
  doi: 10.1093/gerona/60.3.391
– volume: 20
  start-page: 1520
  year: 1999
  ident: e_1_2_11_13_2
  article-title: Lateralization of cortical function in swallowing: a functional MR imaging study
  publication-title: AJNR Am J Neuroradiol
– volume: 22
  start-page: 265
  year: 1990
  ident: e_1_2_11_61_2
  article-title: The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults
  publication-title: Med Sci Sports Exerc
– ident: e_1_2_11_37_2
  doi: 10.1097/00005537-200107000-00010
– ident: e_1_2_11_21_2
  doi: 10.1002/hbm.20743
– ident: e_1_2_11_53_2
  doi: 10.3233/JAD-2010-1316
– ident: e_1_2_11_28_2
  doi: 10.1002/mrm.1910140108
– ident: e_1_2_11_29_2
  doi: 10.1038/nrn730
– ident: e_1_2_11_58_2
  doi: 10.1152/ajpgi.00161.2010
– ident: e_1_2_11_3_2
  doi: 10.1007/978-1-4757-1682-5
– ident: e_1_2_11_23_2
  doi: 10.1007/s00455-009-9250-z
– ident: e_1_2_11_50_2
  doi: 10.1093/gerona/60.1.109
– ident: e_1_2_11_32_2
  doi: 10.1146/annurev.bioeng.2.1.633
– ident: e_1_2_11_6_2
  doi: 10.1007/BF02493518
– ident: e_1_2_11_62_2
  doi: 10.1007/BF00417897
– ident: e_1_2_11_63_2
  doi: 10.1007/PL00009610
– ident: e_1_2_11_35_2
  doi: 10.1007/BF01354538
– ident: e_1_2_11_59_2
  doi: 10.1044/1092-4388(2008/018)
– ident: e_1_2_11_40_2
  doi: 10.1002/hbm.21062
– ident: e_1_2_11_19_2
  doi: 10.1007/s00221-004-2048-1
– ident: e_1_2_11_45_2
  doi: 10.1093/gerona/50A.5.M257
SSID ssj0003642
Score 2.2739396
Snippet Swallowing is a complex neurogenic sensorimotor process involving all levels of the neuraxis and a vast number of muscles and anatomic structures. Disruption...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S14
SubjectTerms Brain Ischemia - diagnosis
Brain Stem
Chronic Disease
Cranial Nerves
Deglutition
Deglutition Disorders - etiology
Deglutition Disorders - rehabilitation
Dysphagia
fMRI
Functional magnetic resonance imaging
Head
Humans
Infarction, Middle Cerebral Artery - complications
Infarction, Middle Cerebral Artery - diagnosis
Infarction, Middle Cerebral Artery - rehabilitation
Magnetic Resonance Imaging
Male
Middle Aged
Muscles
Neck
Nerve Net
Neuraxis
Neuroimaging
Neuronal Plasticity
Neurophysiology
neuroplasticity
Plasticity (functional)
Plasticity (neural)
sensorimotor system
swallowing
Treatment Outcome
Title Functional MRI of swallowing: From neurophysiology to neuroplasticity
URI https://api.istex.fr/ark:/67375/WNG-H19RWF2S-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhed.21903
https://www.ncbi.nlm.nih.gov/pubmed/21901779
https://www.proquest.com/docview/1323812590
https://www.proquest.com/docview/893980663
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heuHSh0rb9CUXVVUvWRLHcWJ6qsqGpRIctkVwqGT5FVUCNtVuVhR-PWNnE0QFUsUtsSaKPZ7JfB5PPgN8FKXLKdc8NsJlMeO2jFWBjie4cnWZF8Ion-84OOSTI_b9JD9Zgy_9vzAdP8SQcPOeEb7X3sGVXmzfkIb-dnaE7haYPtOMe9783ekNdRS2dDudLPP5FdazCiV0e3jyVix65NX69y6geRu3hsBTPYFffZe7epPT0bLVI3P1D5vjA8f0FB6vACn52lnQM1hzs-cwrjDcdVlCcjDdJ01NFhd-i_4CI90OqebNOQlMmCExEjLzpG1WTYjHfal2e7kJR9X457dJvDpwITYMQ1lcG2oLXSYmoxj3OSts7rJUZQj6aM1r4UqjTC4YTUyZe553yzXepdYJprV12QtYnzUz9wpIZvKUJzWznoxGownUSjnELtomwpSmiOBzr3ppVmzk_lCMM9nxKFOJupBBFxFsDaJ_OgqOu4Q-hfkbJNT81NesFbk8PtyTk1RMjyv6Q1YRfOgnWKIn-e0RNXPNciFxXY7wBZeDSQTkHhlEd6L0KC2Cl51xDC_03UiLQuDIwhTf31c5Ge-Gi9f_L_oGNmhffZi-hfV2vnTvEA61-n2w-2uZjwP0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QEuPMQrlIJBCHHJNnEcJ664INiQQncPS6v2gqz4EVUqbKptVi38-o6dTaqiVkLckmii2GNP5vPM-DPAW5HblHLFQy1sEjJu8rDK0PAEr2ydp5nQlYt3TKa8PGBfj9KjNfjQ74Xp-CGGgJuzDP-_dgbuAtLbV6yhx9aM0N4c1eeGz885SDS7Io9KOOtynSxxERbW8wpFdHt49Zo32nCKvbgJal5Hrt71FPfhR9_oruLkZLRs1Uj_-YvP8X979QDurTAp-dhNooewZuePYFygx-sChWQy2yVNTc7OXZb-HJ3dDikWzS_iyTB9bMQH50nbrB4hJHfV2u3vx3BQjPc_leHqzIVQM_RmYa2pyVQe6YSi6-csM6lN4ipB3EdrXgub60qngtFI56mjejdc4V1srGBKGZs8gfV5M7fPgCQ6jXlUM-P4aBTOgrqqLMIXZSKhc50F8L7XvdQrQnJ3LsZP2VEpU4m6kF4XAbwZRE87Fo6bhN75ARwkqsWJK1vLUnk4_SLLWMwOC_pdFgG87kdYojG5DEk1t83yTOLSHBEMrgijAMgtMgjwRO6AWgBPu9kxfNA1I84ygT3zY3x7W2U5_uwvnv-76Cu4U-5P9uTe7vTbJtylfTFi_ALW28XSbiE6atVLbwSX2ecIEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UFsQXL9RLvHUUEV-yTSaTSUafxG7cql1ktbQPwjC3IFQ3ZZulrb_eM5NNSqUF8S0JJ2TmzJx835w5-QLwUpQup1zz2AiXxYzbMlYFBp7gytVlXgijfL5jb8on--zjYX64Bm_7b2E6fYgh4eYjI7yvfYAf23r7QjT0h7MjDDev9LnBOMKkZ0SzC-2ojLNuq5NlPsHCelmhhG4Pt14Cow3v17OrmOZl4hqQp7oN3_s2dwUnR6Nlq0fm919yjv_ZqTtwa8VIybtuCt2FNTffhHGFeNelCcnebJc0NTk59Xv0pwh1b0i1aH6RIIUZMiMhNU_aZnUJCbmv1W7P78F-Nf72fhKv_rgQG4ZYFteG2kKXickoAj9nhc1dlqoMWR-teS1caZTJBaOJKXMv9G65xrPUOsG0ti67D-vzZu4eAslMnvKkZtar0WicA7VSDsmLtokwpSkieN27XpqVHLn_K8ZP2QkpU4m-kMEXEbwYTI87DY6rjF6F8Rss1OLIF60VuTyYfpCTVMwOKvpVVhE87wdYYij5_RE1d83yROLCHPkLrgeTCMg1NkjvROlpWgQPuskxPNA3Iy0KgT0LQ3x9W-VkvBMOHv276Rbc-LJTyc-700-P4SbtKxHTJ7DeLpbuKVKjVj8LIfAHvO4GwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+MRI+of+swallowing%3A+From+neurophysiology+to+neuroplasticity%3F&rft.jtitle=Head+%26+neck&rft.au=Malandraki%2C+Georgia+A&rft.au=Johnson%2C+Sterling&rft.au=Robbins%2C+Joanne&rft.date=2011-10-01&rft.issn=1097-0347&rft.volume=33&rft.issue=S1&rft.spage=S14&rft.epage=S20&rft_id=info:doi/10.1002%2Fhed.21903&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-3074&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-3074&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-3074&client=summon