Self-assembly of thiolate-protected silver coordination polymers regulated by POMs

Two polyoxometalate (POM)-based thiolate-protected silver coordination polymers were obtained using different Lindquist-type POM precursors under the same conditions. [Ag 10 (S t Bu) 6 (CH 3 CN) 8 (Mo 6 O 19 ) 2 ·2CH 3 CN] n (abbreviated as Ag 10 -Mo 6 ) was observed to feature chain-like structures...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 2; pp. 1944 - 1948
Main Authors Li, Ya-Hui, Wang, Zhao-Yang, Ma, Bing, Xu, Hong, Zang, Shuang-Quan, Mak, Thomas C. W
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.05.2020
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/d0nr00342e

Cover

Abstract Two polyoxometalate (POM)-based thiolate-protected silver coordination polymers were obtained using different Lindquist-type POM precursors under the same conditions. [Ag 10 (S t Bu) 6 (CH 3 CN) 8 (Mo 6 O 19 ) 2 ·2CH 3 CN] n (abbreviated as Ag 10 -Mo 6 ) was observed to feature chain-like structures containing Ag 10 clusters linked by [Mo 6 O 19 ] 2− anions through Ag-O bonds and to exhibit unprecedented green photoluminescence at room temperature. Interestingly, [Ag 18 (S t Bu) 12 (CH 3 CN) 5 (Mo 6 O 19 ) 2 ·Mo 6 O 19 ·2CH 3 CN] n (abbreviated as Ag 18 -Mo 6 ) was found to contain 20-membered cycle-Ag 10 S 10 each with a diameter of approximately 11.382 Å and constructed from alternating silver and sulfur atoms and interconnected into an elegant Ag-S sheet by interstitial the Ag 3 S t Bu and AgCH 3 CN motifs, and to also contain [Mo 6 O 19 ] 2− counter ions filling in the spaces made by the cycle-Ag 10 S 10 and strengthening the structure by forming Ag-O bonds. Such a stacking structure for thiolate-protected silver compounds has not been previously reported. The thiolate-protected silver coordination polymers connected by Lindquist-type POM shows good stability. The chain-like Ag 10 -Mo 6 exhibits green photoluminescence. Two-dimensional Ag 18 -Mo 6 was observed to contain a unique 20-membered cycle-Ag 10 S 10 .
AbstractList Two polyoxometalate (POM)-based thiolate-protected silver coordination polymers were obtained using different Lindquist-type POM precursors under the same conditions. [Ag10(StBu)6(CH3CN)8(Mo6O19)2·2CH3CN]n (abbreviated as Ag10-Mo6) was observed to feature chain-like structures containing Ag10 clusters linked by [Mo6O19]2- anions through Ag-O bonds and to exhibit unprecedented green photoluminescence at room temperature. Interestingly, [Ag18(StBu)12(CH3CN)5(Mo6O19)2·Mo6O19·2CH3CN]n (abbreviated as Ag18-Mo6) was found to contain 20-membered cycle-Ag10S10 each with a diameter of approximately 11.382 Å and constructed from alternating silver and sulfur atoms and interconnected into an elegant Ag-S sheet by interstitial the Ag3StBu and AgCH3CN motifs, and to also contain [Mo6O19]2- counter ions filling in the spaces made by the cycle-Ag10S10 and strengthening the structure by forming Ag-O bonds. Such a stacking structure for thiolate-protected silver compounds has not been previously reported.Two polyoxometalate (POM)-based thiolate-protected silver coordination polymers were obtained using different Lindquist-type POM precursors under the same conditions. [Ag10(StBu)6(CH3CN)8(Mo6O19)2·2CH3CN]n (abbreviated as Ag10-Mo6) was observed to feature chain-like structures containing Ag10 clusters linked by [Mo6O19]2- anions through Ag-O bonds and to exhibit unprecedented green photoluminescence at room temperature. Interestingly, [Ag18(StBu)12(CH3CN)5(Mo6O19)2·Mo6O19·2CH3CN]n (abbreviated as Ag18-Mo6) was found to contain 20-membered cycle-Ag10S10 each with a diameter of approximately 11.382 Å and constructed from alternating silver and sulfur atoms and interconnected into an elegant Ag-S sheet by interstitial the Ag3StBu and AgCH3CN motifs, and to also contain [Mo6O19]2- counter ions filling in the spaces made by the cycle-Ag10S10 and strengthening the structure by forming Ag-O bonds. Such a stacking structure for thiolate-protected silver compounds has not been previously reported.
Two polyoxometalate (POM)-based thiolate-protected silver coordination polymers were obtained using different Lindquist-type POM precursors under the same conditions. [Ag10(StBu)6(CH3CN)8(Mo6O19)2·2CH3CN]n (abbreviated as Ag10-Mo6) was observed to feature chain-like structures containing Ag10 clusters linked by [Mo6O19]2− anions through Ag–O bonds and to exhibit unprecedented green photoluminescence at room temperature. Interestingly, [Ag18(StBu)12(CH3CN)5(Mo6O19)2·Mo6O19·2CH3CN]n (abbreviated as Ag18-Mo6) was found to contain 20-membered cycle-Ag10S10 each with a diameter of approximately 11.382 Å and constructed from alternating silver and sulfur atoms and interconnected into an elegant Ag–S sheet by interstitial the Ag3StBu and AgCH3CN motifs, and to also contain [Mo6O19]2− counter ions filling in the spaces made by the cycle-Ag10S10 and strengthening the structure by forming Ag–O bonds. Such a stacking structure for thiolate-protected silver compounds has not been previously reported.
Two polyoxometalate (POM)-based thiolate-protected silver coordination polymers were obtained using different Lindquist-type POM precursors under the same conditions. [Ag10(StBu)6(CH3CN)8(Mo6O19)2·2CH3CN]n (abbreviated as Ag10-Mo6) was observed to feature chain-like structures containing Ag10 clusters linked by [Mo6O19]2- anions through Ag-O bonds and to exhibit unprecedented green photoluminescence at room temperature. Interestingly, [Ag18(StBu)12(CH3CN)5(Mo6O19)2·Mo6O19·2CH3CN]n (abbreviated as Ag18-Mo6) was found to contain 20-membered cycle-Ag10S10 each with a diameter of approximately 11.382 Å and constructed from alternating silver and sulfur atoms and interconnected into an elegant Ag-S sheet by interstitial the Ag3StBu and AgCH3CN motifs, and to also contain [Mo6O19]2- counter ions filling in the spaces made by the cycle-Ag10S10 and strengthening the structure by forming Ag-O bonds. Such a stacking structure for thiolate-protected silver compounds has not been previously reported.
Two polyoxometalate (POM)-based thiolate-protected silver coordination polymers were obtained using different Lindquist-type POM precursors under the same conditions. [Ag 10 (S t Bu) 6 (CH 3 CN) 8 (Mo 6 O 19 ) 2 ·2CH 3 CN] n (abbreviated as Ag10-Mo6 ) was observed to feature chain-like structures containing Ag 10 clusters linked by [Mo 6 O 19 ] 2− anions through Ag–O bonds and to exhibit unprecedented green photoluminescence at room temperature. Interestingly, [Ag 18 (S t Bu) 12 (CH 3 CN) 5 (Mo 6 O 19 ) 2 ·Mo 6 O 19 ·2CH 3 CN] n (abbreviated as Ag18-Mo6 ) was found to contain 20-membered cycle-Ag 10 S 10 each with a diameter of approximately 11.382 Å and constructed from alternating silver and sulfur atoms and interconnected into an elegant Ag–S sheet by interstitial the Ag 3 S t Bu and AgCH 3 CN motifs, and to also contain [Mo 6 O 19 ] 2− counter ions filling in the spaces made by the cycle-Ag 10 S 10 and strengthening the structure by forming Ag–O bonds. Such a stacking structure for thiolate-protected silver compounds has not been previously reported.
Two polyoxometalate (POM)-based thiolate-protected silver coordination polymers were obtained using different Lindquist-type POM precursors under the same conditions. [Ag 10 (S t Bu) 6 (CH 3 CN) 8 (Mo 6 O 19 ) 2 ·2CH 3 CN] n (abbreviated as Ag 10 -Mo 6 ) was observed to feature chain-like structures containing Ag 10 clusters linked by [Mo 6 O 19 ] 2− anions through Ag-O bonds and to exhibit unprecedented green photoluminescence at room temperature. Interestingly, [Ag 18 (S t Bu) 12 (CH 3 CN) 5 (Mo 6 O 19 ) 2 ·Mo 6 O 19 ·2CH 3 CN] n (abbreviated as Ag 18 -Mo 6 ) was found to contain 20-membered cycle-Ag 10 S 10 each with a diameter of approximately 11.382 Å and constructed from alternating silver and sulfur atoms and interconnected into an elegant Ag-S sheet by interstitial the Ag 3 S t Bu and AgCH 3 CN motifs, and to also contain [Mo 6 O 19 ] 2− counter ions filling in the spaces made by the cycle-Ag 10 S 10 and strengthening the structure by forming Ag-O bonds. Such a stacking structure for thiolate-protected silver compounds has not been previously reported. The thiolate-protected silver coordination polymers connected by Lindquist-type POM shows good stability. The chain-like Ag 10 -Mo 6 exhibits green photoluminescence. Two-dimensional Ag 18 -Mo 6 was observed to contain a unique 20-membered cycle-Ag 10 S 10 .
Author Zang, Shuang-Quan
Wang, Zhao-Yang
Xu, Hong
Mak, Thomas C. W
Ma, Bing
Li, Ya-Hui
AuthorAffiliation Laboratoire d'ElectrochimieMoléculaire
Department of Chemistry and Center of Novel Functional Molecules
CNRS
Université de Paris
The Chinese University of Hong Kong
Green Catalysis Center
and College of Chemistry
Zhengzhou University
AuthorAffiliation_xml – name: Zhengzhou University
– name: The Chinese University of Hong Kong
– name: Université de Paris
– name: Laboratoire d'ElectrochimieMoléculaire
– name: Green Catalysis Center
– name: CNRS
– name: Department of Chemistry and Center of Novel Functional Molecules
– name: and College of Chemistry
Author_xml – sequence: 1
  givenname: Ya-Hui
  surname: Li
  fullname: Li, Ya-Hui
– sequence: 2
  givenname: Zhao-Yang
  surname: Wang
  fullname: Wang, Zhao-Yang
– sequence: 3
  givenname: Bing
  surname: Ma
  fullname: Ma, Bing
– sequence: 4
  givenname: Hong
  surname: Xu
  fullname: Xu, Hong
– sequence: 5
  givenname: Shuang-Quan
  surname: Zang
  fullname: Zang, Shuang-Quan
– sequence: 6
  givenname: Thomas C. W
  surname: Mak
  fullname: Mak, Thomas C. W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32400793$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9LHDEQx0NR6q--9L2y0pcibM0mueT2UaxW4ayi7XPIj0m7kt2cSVa4_97cnVoQ8WmGmc8MM9_vDtoYwgAIfW7w9wbT9sjiIWJMGYEPaJtghmtKBdl4yTnbQjsp3WHMW8rpR7RFCcNYtHQb3dyCd7VKCXrtF1VwVf7XBa8y1PMYMpgMtkqdf4BYmRCi7QaVuzBU8-AXPcRURfg7Lnlb6UV1fXWZ9tCmUz7Bp6e4i_6cnf4-Oa9nVz8vTo5ntWGkzbWbMK6FYI5pxUqimGtATwWwCVNTZlrHqLKTSSlRwwVuhNUac8Is4dxoTXfRt_Xecuj9CCnLvksGvFcDhDHJ8iNhtG2aaUG_vkLvwhiHct2SEoSLImSh9p-oUfdg5Tx2vYoL-axWAfAaMDGkFMFJ0-WVHDmqzssGy6Uh8gf-dbMy5LSMHL4aed76JvxlDcdkXrj_7pb-wXt9ObeOPgJuFZ98
CitedBy_id crossref_primary_10_1021_acs_cgd_2c00744
crossref_primary_10_1016_j_fuproc_2022_107635
crossref_primary_10_1039_D0DT02003F
crossref_primary_10_1039_D3DT02935B
crossref_primary_10_1016_j_colsurfa_2023_131147
crossref_primary_10_1021_acs_inorgchem_4c00114
crossref_primary_10_2139_ssrn_4165281
crossref_primary_10_1039_D2TC05148F
crossref_primary_10_1016_j_fuel_2022_126050
crossref_primary_10_1039_D1NJ01910D
crossref_primary_10_26599_POM_2022_9140010
crossref_primary_10_1021_acs_inorgchem_0c02570
crossref_primary_10_1039_D2CS00876A
crossref_primary_10_1002_chem_202004055
crossref_primary_10_1016_j_ccr_2022_214785
crossref_primary_10_1039_D2QI02002E
crossref_primary_10_1016_j_catcom_2022_106524
crossref_primary_10_1039_D4QI02258K
crossref_primary_10_1002_smll_202404290
crossref_primary_10_1002_asia_202200072
crossref_primary_10_1039_D1DT01111A
Cites_doi 10.1021/ja506773d
10.1007/s11426-018-9387-7
10.1039/b110900f
10.1002/anie.201511765
10.1021/ja01157a151
10.1021/jacs.9b10569
10.1021/ic00162a042
10.1039/C4DT00866A
10.1002/anie.200906815
10.1021/jacs.8b09162
10.1021/acs.accounts.7b00197
10.1002/anie.201405936
10.1021/ja907900b
10.1039/C5DT02972D
10.1039/c3cc49290g
10.1038/s41467-018-06755-4
10.1016/j.ccr.2017.10.025
10.1039/C2CC37347E
10.1021/jacs.6b11681
10.1021/jacs.8b09750
10.1039/C9NR05913J
10.1039/c2cc32321d
10.1039/C6NR09632H
10.1021/ic50191a021
10.1021/jacs.7b05243
10.1021/acs.accounts.8b00371
10.1002/anie.201911170
10.1002/chem.201805808
10.1021/acs.inorgchem.8b00702
10.1039/C8SC05666H
10.1039/C8SC03396J
10.1039/C5NR00171D
10.1002/ejic.201800744
10.1038/ncomms12809
10.1039/C3CS60404G
10.1038/s41467-018-03136-9
10.1021/acs.accounts.5b00007
10.1021/acs.accounts.8b00445
10.1021/jacs.7b07926
10.1039/C9NR04045E
10.1002/anie.201001104
10.1039/C6CC00524A
10.1002/zaac.201100113
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0nr00342e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 1948
ExternalDocumentID 32400793
10_1039_D0NR00342E
d0nr00342e
Genre Journal Article
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c429t-f546b774f4ba4b77a4f1eb87e454a84c9f43ad55b873c67017dbb0624d266cbb3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 09:36:19 EDT 2025
Mon Jun 30 02:30:00 EDT 2025
Mon Jul 21 05:47:47 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Tue Jul 01 01:13:55 EDT 2025
Sat Jan 08 03:56:20 EST 2022
Wed Nov 11 00:26:54 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-f546b774f4ba4b77a4f1eb87e454a84c9f43ad55b873c67017dbb0624d266cbb3
Notes Electronic supplementary information (ESI) available. CCDC
10.1039/d0nr00342e
For ESI and crystallographic data in CIF or other electronic format see DOI
1950501
and
1950498
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4316-2937
0000-0002-6728-0559
PMID 32400793
PQID 2407267103
PQPubID 2047485
PageCount 5
ParticipantIDs crossref_citationtrail_10_1039_D0NR00342E
pubmed_primary_32400793
proquest_miscellaneous_2402439118
rsc_primary_d0nr00342e
crossref_primary_10_1039_D0NR00342E
proquest_journals_2407267103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-28
PublicationDateYYYYMMDD 2020-05-28
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yan (D0NR00342E-(cit2)/*[position()=1]) 2018; 51
Su (D0NR00342E-(cit32)/*[position()=1]) 2019; 10
Wang (D0NR00342E-(cit42)/*[position()=1]) 2019; 25
Filowitz (D0NR00342E-(cit35)/*[position()=1]) 1979; 18
Wang (D0NR00342E-(cit33)/*[position()=1]) 2019; 11
Jiang (D0NR00342E-(cit21)/*[position()=1]) 2014; 50
Liu (D0NR00342E-(cit27)/*[position()=1]) 2016; 55
Mullikan (D0NR00342E-(cit40)/*[position()=1]) 1950; 72
Boskovic (D0NR00342E-(cit14)/*[position()=1]) 2017; 50
Yonesato (D0NR00342E-(cit23)/*[position()=1]) 2019; 141
Xie (D0NR00342E-(cit28)/*[position()=1]) 2019; 2019
Zhou (D0NR00342E-(cit22)/*[position()=1]) 2012; 48
Wang (D0NR00342E-(cit41)/*[position()=1]) 2014; 43
Unoura (D0NR00342E-(cit43)/*[position()=1]) 1983; 22
Li (D0NR00342E-(cit34)/*[position()=1]) 2017; 9
Chai (D0NR00342E-(cit10)/*[position()=1]) 2018; 140
Liu (D0NR00342E-(cit20)/*[position()=1]) 2016; 52
Xuan (D0NR00342E-(cit13)/*[position()=1]) 2019; 141
Zhang (D0NR00342E-(cit15)/*[position()=1]) 2019; 378
Gruber (D0NR00342E-(cit26)/*[position()=1]) 2010; 49
Li (D0NR00342E-(cit38)/*[position()=1]) 2018; 62
Qiao (D0NR00342E-(cit18)/*[position()=1]) 2010; 49
Zhan (D0NR00342E-(cit24)/*[position()=1]) 2019; 58
Wang (D0NR00342E-(cit30)/*[position()=1]) 2018; 9
Bhattarai (D0NR00342E-(cit1)/*[position()=1]) 2018; 51
Du (D0NR00342E-(cit5)/*[position()=1]) 2017; 139
Yang (D0NR00342E-(cit3)/*[position()=1]) 2013; 49
Jin (D0NR00342E-(cit39)/*[position()=1]) 2002
Ren (D0NR00342E-(cit8)/*[position()=1]) 2017; 139
Gao (D0NR00342E-(cit17)/*[position()=1]) 2009; 131
Wang (D0NR00342E-(cit31)/*[position()=1]) 2019; 10
Qu (D0NR00342E-(cit7)/*[position()=1]) 2017; 139
Wang (D0NR00342E-(cit11)/*[position()=1]) 2015; 48
Chen (D0NR00342E-(cit16)/*[position()=1]) 2019; 11
Liu (D0NR00342E-(cit4)/*[position()=1]) 2018; 9
Du (D0NR00342E-(cit12)/*[position()=1]) 2014; 43
Tamari (D0NR00342E-(cit25)/*[position()=1]) 2015; 44
Schmidbaur (D0NR00342E-(cit37)/*[position()=1]) 2015; 54
Yang (D0NR00342E-(cit9)/*[position()=1]) 2016; 7
Yan (D0NR00342E-(cit19)/*[position()=1]) 2018; 57
Jin (D0NR00342E-(cit6)/*[position()=1]) 2014; 136
Gruber (D0NR00342E-(cit29)/*[position()=1]) 2011; 637
Huang (D0NR00342E-(cit36)/*[position()=1]) 2015; 7
References_xml – volume: 136
  start-page: 15559
  year: 2014
  ident: D0NR00342E-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506773d
– volume: 62
  start-page: 331
  year: 2018
  ident: D0NR00342E-(cit38)/*[position()=1]
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-018-9387-7
– start-page: 600
  year: 2002
  ident: D0NR00342E-(cit39)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b110900f
– volume: 55
  start-page: 3699
  year: 2016
  ident: D0NR00342E-(cit27)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201511765
– volume: 72
  start-page: 600
  year: 1950
  ident: D0NR00342E-(cit40)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01157a151
– volume: 141
  start-page: 19550
  year: 2019
  ident: D0NR00342E-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10569
– volume: 22
  start-page: 2963
  year: 1983
  ident: D0NR00342E-(cit43)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00162a042
– volume: 43
  start-page: 13178
  year: 2014
  ident: D0NR00342E-(cit41)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT00866A
– volume: 49
  start-page: 1765
  year: 2010
  ident: D0NR00342E-(cit18)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906815
– volume: 140
  start-page: 15582
  year: 2018
  ident: D0NR00342E-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09162
– volume: 50
  start-page: 2205
  year: 2017
  ident: D0NR00342E-(cit14)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00197
– volume: 54
  start-page: 746
  year: 2015
  ident: D0NR00342E-(cit37)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201405936
– volume: 131
  start-page: 18257
  year: 2009
  ident: D0NR00342E-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907900b
– volume: 44
  start-page: 19056
  year: 2015
  ident: D0NR00342E-(cit25)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT02972D
– volume: 50
  start-page: 2353
  year: 2014
  ident: D0NR00342E-(cit21)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc49290g
– volume: 9
  start-page: 4407
  year: 2018
  ident: D0NR00342E-(cit30)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06755-4
– volume: 378
  start-page: 395
  year: 2019
  ident: D0NR00342E-(cit15)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.10.025
– volume: 49
  start-page: 300
  year: 2013
  ident: D0NR00342E-(cit3)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC37347E
– volume: 139
  start-page: 1618
  year: 2017
  ident: D0NR00342E-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11681
– volume: 141
  start-page: 1242
  year: 2019
  ident: D0NR00342E-(cit13)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09750
– volume: 11
  start-page: 22270
  year: 2019
  ident: D0NR00342E-(cit16)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR05913J
– volume: 48
  start-page: 5844
  year: 2012
  ident: D0NR00342E-(cit22)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc32321d
– volume: 9
  start-page: 3601
  year: 2017
  ident: D0NR00342E-(cit34)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR09632H
– volume: 18
  start-page: 93
  year: 1979
  ident: D0NR00342E-(cit35)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50191a021
– volume: 139
  start-page: 12346
  year: 2017
  ident: D0NR00342E-(cit7)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05243
– volume: 51
  start-page: 3084
  year: 2018
  ident: D0NR00342E-(cit2)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00371
– volume: 58
  start-page: 17282
  year: 2019
  ident: D0NR00342E-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911170
– volume: 25
  start-page: 3376
  year: 2019
  ident: D0NR00342E-(cit42)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201805808
– volume: 57
  start-page: 4828
  year: 2018
  ident: D0NR00342E-(cit19)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b00702
– volume: 10
  start-page: 4862
  year: 2019
  ident: D0NR00342E-(cit31)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05666H
– volume: 10
  start-page: 564
  year: 2019
  ident: D0NR00342E-(cit32)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03396J
– volume: 7
  start-page: 7151
  year: 2015
  ident: D0NR00342E-(cit36)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR00171D
– volume: 2019
  start-page: 496
  year: 2019
  ident: D0NR00342E-(cit28)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201800744
– volume: 7
  start-page: 12809
  year: 2016
  ident: D0NR00342E-(cit9)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12809
– volume: 43
  start-page: 4615
  year: 2014
  ident: D0NR00342E-(cit12)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60404G
– volume: 9
  start-page: 744
  year: 2018
  ident: D0NR00342E-(cit4)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03136-9
– volume: 48
  start-page: 1570
  year: 2015
  ident: D0NR00342E-(cit11)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00007
– volume: 51
  start-page: 3104
  year: 2018
  ident: D0NR00342E-(cit1)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00445
– volume: 139
  start-page: 13288
  year: 2017
  ident: D0NR00342E-(cit8)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07926
– volume: 11
  start-page: 10927
  year: 2019
  ident: D0NR00342E-(cit33)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR04045E
– volume: 49
  start-page: 4924
  year: 2010
  ident: D0NR00342E-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201001104
– volume: 52
  start-page: 3801
  year: 2016
  ident: D0NR00342E-(cit20)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00524A
– volume: 637
  start-page: 1676
  year: 2011
  ident: D0NR00342E-(cit29)/*[position()=1]
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.201100113
SSID ssj0069363
Score 2.4395125
Snippet Two polyoxometalate (POM)-based thiolate-protected silver coordination polymers were obtained using different Lindquist-type POM precursors under the same...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1944
SubjectTerms Bonding strength
Chemical bonds
Coordination polymers
Crystallography
Photoluminescence
Polyoxometallates
Room temperature
Self-assembly
Silver compounds
Title Self-assembly of thiolate-protected silver coordination polymers regulated by POMs
URI https://www.ncbi.nlm.nih.gov/pubmed/32400793
https://www.proquest.com/docview/2407267103
https://www.proquest.com/docview/2402439118
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ED4lVIKcgILqhKSWzndaxgqwUtW1Sy0pZLZCeOiLQk1W72sPx6xnZeVXMoXKJo4sSRP3v8zdieQeg9F2BXMc5txpXrRjoMhpQQNgl55gqX8CDTu3wX_mzJvq68VZ8EUZ8uqcVp-mf0XMn_oAoywFWdkv0HZLuPggDuAV-4AsJwvRPGP-Q6t4H9yt9ivTer_QWYqrW0m_ALwCa3hdr7fJJWYGUWxvWnMjPslb_6ZGMy0RsW-v3i23bIVUHxVluAsIN-rlf-r7g92xW9I94oi5-_eGVf8WYe1C5u3XWKXrLa6XmuaiSNq4HoVXIy0I5EbT-k1OTaOZUjslalkkHXIc5AQbpgTrJR1e1QFfk0c8qNDkso-wmqXZRfXCTny_k8iaer-D46IEHgehN0cDaNv8zb2dePqM6e1_1WG5KWRh_7b98kIbcsC-AZmzb_i-YZ8WP0qDEQ8JlB-wm6J8un6OEgbOQzdHkDd1zl-Dbu2OCOh7jjFnfc4Y7FHivcn6Pl-TT-NLOb3Bh2CgyitnOP-QKoe84EZ3DDWe5KEQaSeYyHLI1yRnnmeSCiqR-A3s2EcHzCMmBkqRD0EE3KqpQvEfYiP8sp9yWjAZPc4xG8EdEcqGwIrwUW-tA2VpI2geNV_pJ1ojcw0Cj57CwudcNOLfSuK3ttwqWMljpu2zxphtM20aH6fCC81EJvu8eg7NQKFi9ltdNliDoq7oYWemGw6qpRkSVVtEcLHQJ4nbgH3UJH4w-S6yw_ukOdr9CDflQco0m92cnXQElr8abphX8Bl6SLrw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembly+of+thiolate-protected+silver+coordination+polymers+regulated+by+POMs&rft.jtitle=Nanoscale&rft.au=Li%2C+Ya-Hui&rft.au=Wang%2C+Zhao-Yang&rft.au=Ma%2C+Bing&rft.au=Xu%2C+Hong&rft.date=2020-05-28&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=12&rft.issue=20&rft.spage=10944&rft_id=info:doi/10.1039%2Fd0nr00342e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon