Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy

The objective of image segmentation is to extract meaningful objects. A meaningful segmentation selects the proper threshold values to optimize a criterion using entropy. The conventional multilevel thresholding methods are efficient for bi-level thresholding. However, they are computationally expen...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 41; no. 7; pp. 3538 - 3560
Main Authors Bhandari, Ashish Kumar, Singh, Vineet Kumar, Kumar, Anil, Singh, Girish Kumar
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.06.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2013.10.059

Cover

Abstract The objective of image segmentation is to extract meaningful objects. A meaningful segmentation selects the proper threshold values to optimize a criterion using entropy. The conventional multilevel thresholding methods are efficient for bi-level thresholding. However, they are computationally expensive when extended to multilevel thresholding since they exhaustively search the optimal thresholds to optimize the objective functions. To overcome this problem, two successful swarm-intelligence-based global optimization algorithms, cuckoo search (CS) algorithm and wind driven optimization (WDO) for multilevel thresholding using Kapur’s entropy has been employed. For this purpose, best solution as fitness function is achieved through CS and WDO algorithm using Kapur’s entropy for optimal multilevel thresholding. A new approach of CS and WDO algorithm is used for selection of optimal threshold value. This algorithm is used to obtain the best solution or best fitness value from the initial random threshold values, and to evaluate the quality of a solution, correlation function is used. Experimental results have been examined on standard set of satellite images using various numbers of thresholds. The results based on Kapur’s entropy reveal that CS, ELR-CS and WDO method can be accurately and efficiently used in multilevel thresholding problem.
AbstractList The objective of image segmentation is to extract meaningful objects. A meaningful segmentation selects the proper threshold values to optimize a criterion using entropy. The conventional multilevel thresholding methods are efficient for bi-level thresholding. However, they are computationally expensive when extended to multilevel thresholding since they exhaustively search the optimal thresholds to optimize the objective functions. To overcome this problem, two successful swarm-intelligence-based global optimization algorithms, cuckoo search (CS) algorithm and wind driven optimization (WDO) for multilevel thresholding using Kapur's entropy has been employed. For this purpose, best solution as fitness function is achieved through CS and WDO algorithm using Kapur's entropy for optimal multilevel thresholding. A new approach of CS and WDO algorithm is used for selection of optimal threshold value. This algorithm is used to obtain the best solution or best fitness value from the initial random threshold values, and to evaluate the quality of a solution, correlation function is used. Experimental results have been examined on standard set of satellite images using various numbers of thresholds. The results based on Kapur's entropy reveal that CS, ELR-CS and WDO method can be accurately and efficiently used in multilevel thresholding problem.
Author Singh, Girish Kumar
Singh, Vineet Kumar
Bhandari, Ashish Kumar
Kumar, Anil
Author_xml – sequence: 1
  givenname: Ashish Kumar
  surname: Bhandari
  fullname: Bhandari, Ashish Kumar
  email: bhandari.iiitj@gmail.com
  organization: Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482011, Madhya Pradesh, India
– sequence: 2
  givenname: Vineet Kumar
  surname: Singh
  fullname: Singh, Vineet Kumar
  email: viiitdmj@gmail.com
  organization: Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482011, Madhya Pradesh, India
– sequence: 3
  givenname: Anil
  surname: Kumar
  fullname: Kumar, Anil
  email: anilkdee@gmail.com
  organization: Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482011, Madhya Pradesh, India
– sequence: 4
  givenname: Girish Kumar
  surname: Singh
  fullname: Singh, Girish Kumar
  email: gksngfee@gmail.com
  organization: Department of Electrical Engineering, Indian Institute Technology Roorkee, Uttrakhand 247667, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28319065$$DView record in Pascal Francis
BookMark eNqFkr2O1DAUhSO0SMwuvACVGySaDP6J40SiQSP-xEo0UFuOcz3jIbGD7cxqqHiIbfb1eBIcZWkodgtfS1ffOZaPzmVx4byDonhJ8JZgUr85biHeqC3FhOXFFvP2SbEhjWBlLVp2UWxwy0VZEVE9Ky5jPGJMBMZiU9zuZv3DexRBBX1Aatj7YNNhRMr16Mbm0Qd7Aof8lOxof6lkvUOditCjmOb-jLxBUSUYBpsA2VHtIZvtR3BpZY0PaJyHZAc4wYDSIUA8-KG3bo_muMwvaprDn993EWVR8NP5efHUqCHCi_v7qvj-4f233afy-uvHz7t316WuaJtKqOvGNJWCFpOKc9IBrzijRjFTU0EZMy3F-XBaMQodEYbXXSdAYC1oZxp2Vbxefafgf84Qkxxt1PkryoGfo8wZEdwQ3pLH0VqQ_Dqu68dRzghmFaeL66t7VEWtBhOU0zbKKeQcw1nShpEW1zxzzcrp4GMMYKS2a7wpKDtIguVSA3mUSw3kUoNll2uQpfQ_6T_3B0VvVxHk9E8WgozagtPQ2wA6yd7bh-R_AWVQ0To
CitedBy_id crossref_primary_10_1016_j_asej_2016_04_005
crossref_primary_10_1016_j_engappai_2023_106006
crossref_primary_10_4018_IJOCI_301560
crossref_primary_10_1016_j_tourman_2015_07_005
crossref_primary_10_1007_s12065_017_0152_y
crossref_primary_10_1007_s00521_019_04104_0
crossref_primary_10_1109_ACCESS_2020_3005452
crossref_primary_10_1007_s11633_017_1091_x
crossref_primary_10_1016_j_neucom_2017_02_040
crossref_primary_10_1177_0161734620956897
crossref_primary_10_1007_s00371_023_02993_w
crossref_primary_10_1007_s11042_020_10189_w
crossref_primary_10_3390_rs11080942
crossref_primary_10_1016_j_asoc_2016_07_016
crossref_primary_10_1007_s11042_020_10432_4
crossref_primary_10_1016_j_egypro_2016_12_150
crossref_primary_10_1016_j_eswa_2017_04_029
crossref_primary_10_1007_s10044_024_01218_7
crossref_primary_10_1016_j_eswa_2021_114845
crossref_primary_10_1049_iet_ipr_2018_6150
crossref_primary_10_1016_j_eswa_2017_04_023
crossref_primary_10_1109_ACCESS_2019_2896673
crossref_primary_10_1080_03772063_2021_1946434
crossref_primary_10_56294_saludcyt2023408
crossref_primary_10_1109_TCBB_2021_3104734
crossref_primary_10_1007_s10489_022_04064_4
crossref_primary_10_1007_s11045_015_0353_4
crossref_primary_10_1061__ASCE_CP_1943_5487_0001036
crossref_primary_10_1117_1_JEI_27_6_063008
crossref_primary_10_1016_j_asoc_2016_11_011
crossref_primary_10_1016_j_eswa_2021_115003
crossref_primary_10_1016_j_eswa_2016_02_024
crossref_primary_10_1016_j_eswa_2021_116145
crossref_primary_10_1109_TIM_2020_2976279
crossref_primary_10_1007_s00521_020_05013_3
crossref_primary_10_1016_j_eswa_2019_01_075
crossref_primary_10_1371_journal_pone_0271692
crossref_primary_10_2174_1573405617666211126154101
crossref_primary_10_1016_j_eswa_2014_03_021
crossref_primary_10_1007_s00521_024_09524_1
crossref_primary_10_1007_s13198_024_02422_8
crossref_primary_10_1007_s40031_022_00740_8
crossref_primary_10_1016_j_ijepes_2014_12_063
crossref_primary_10_1016_j_engappai_2018_01_005
crossref_primary_10_1049_iet_spr_2018_5073
crossref_primary_10_1371_journal_pone_0136140
crossref_primary_10_1007_s10489_017_0927_y
crossref_primary_10_3390_diagnostics13081422
crossref_primary_10_1007_s40998_019_00251_1
crossref_primary_10_3390_app10020689
crossref_primary_10_1016_j_jestch_2016_05_013
crossref_primary_10_1007_s11042_016_3891_3
crossref_primary_10_1051_ro_2017076
crossref_primary_10_1007_s11277_020_07247_9
crossref_primary_10_1016_j_eswa_2017_08_029
crossref_primary_10_1016_j_asoc_2017_02_034
crossref_primary_10_1016_j_swevo_2020_100751
crossref_primary_10_1007_s00521_022_07922_x
crossref_primary_10_1007_s11042_020_10467_7
crossref_primary_10_3934_mbe_2021155
crossref_primary_10_1007_s11042_019_7515_6
crossref_primary_10_1016_j_bspc_2017_08_009
crossref_primary_10_1142_S0218539320500084
crossref_primary_10_1109_ACCESS_2019_2908653
crossref_primary_10_1007_s11042_020_09310_w
crossref_primary_10_1007_s00521_023_08658_y
crossref_primary_10_1007_s11042_019_08117_8
crossref_primary_10_1016_j_eswa_2016_02_048
crossref_primary_10_1016_j_eswa_2020_113201
crossref_primary_10_1016_j_bspc_2022_104350
crossref_primary_10_1007_s12524_019_01005_6
crossref_primary_10_1007_s11831_019_09334_y
crossref_primary_10_1007_s12517_014_1714_2
crossref_primary_10_1016_j_eswa_2015_04_055
crossref_primary_10_1007_s00521_020_04989_2
crossref_primary_10_1109_TMAG_2017_2750543
crossref_primary_10_3390_e21030318
crossref_primary_10_1155_2021_6036410
crossref_primary_10_1155_2014_943403
crossref_primary_10_1016_j_eswa_2015_07_025
crossref_primary_10_1142_S0219467821500522
crossref_primary_10_1016_j_asoc_2021_107196
crossref_primary_10_1007_s13369_021_05774_6
crossref_primary_10_1007_s11227_021_04281_7
crossref_primary_10_1016_j_neucom_2015_09_079
crossref_primary_10_1016_j_advengsoft_2021_103031
crossref_primary_10_1155_2018_8395193
crossref_primary_10_48084_etasr_7713
crossref_primary_10_1016_j_infrared_2019_03_010
crossref_primary_10_1016_j_eswa_2020_114426
crossref_primary_10_1016_j_eswa_2021_114766
crossref_primary_10_1007_s00521_018_3771_z
crossref_primary_10_1007_s12517_020_05798_6
crossref_primary_10_1007_s00034_020_01349_2
crossref_primary_10_1016_j_heliyon_2022_e09399
crossref_primary_10_1016_j_eswa_2020_113210
crossref_primary_10_1038_s41377_024_01734_5
crossref_primary_10_1016_j_isatra_2014_04_007
crossref_primary_10_1155_2015_374873
crossref_primary_10_3390_diagnostics13162684
crossref_primary_10_1016_j_amc_2014_04_103
crossref_primary_10_3390_sym11050716
crossref_primary_10_1016_j_comcom_2020_12_026
crossref_primary_10_1142_S0218001420540300
crossref_primary_10_4018_IJAMC_2018010104
crossref_primary_10_1007_s11045_014_0310_7
crossref_primary_10_1007_s00500_019_03844_4
crossref_primary_10_1007_s10462_022_10157_w
crossref_primary_10_1016_j_eswa_2016_06_044
crossref_primary_10_1109_ACCESS_2018_2837062
crossref_primary_10_1109_ACCESS_2019_2944981
crossref_primary_10_1016_j_aeue_2014_11_012
crossref_primary_10_1007_s00034_015_0008_6
crossref_primary_10_1016_j_eswa_2021_114636
crossref_primary_10_1155_2019_5982410
crossref_primary_10_1007_s11042_023_15175_6
crossref_primary_10_1016_j_asoc_2017_08_039
crossref_primary_10_1016_j_eswa_2021_114633
crossref_primary_10_1007_s42235_023_00416_z
crossref_primary_10_1007_s00521_016_2464_8
crossref_primary_10_1007_s00521_018_3512_3
crossref_primary_10_1007_s42235_023_00332_2
crossref_primary_10_1007_s00371_022_02430_4
crossref_primary_10_1016_j_eswa_2015_03_028
crossref_primary_10_1016_j_cie_2017_01_006
crossref_primary_10_1016_j_apm_2017_02_015
crossref_primary_10_1155_2014_857254
crossref_primary_10_1016_j_compbiomed_2018_09_015
crossref_primary_10_1016_j_asoc_2019_105857
crossref_primary_10_1007_s11042_019_7506_7
crossref_primary_10_1016_j_asoc_2020_106243
crossref_primary_10_1080_01969722_2017_1285162
crossref_primary_10_1109_ACCESS_2019_2921545
crossref_primary_10_1177_1729881421996136
crossref_primary_10_1016_j_compag_2022_107488
crossref_primary_10_1007_s12530_023_09552_7
crossref_primary_10_1007_s00521_021_06858_y
crossref_primary_10_1007_s12665_015_5058_3
crossref_primary_10_17341_gazimmfd_727811
crossref_primary_10_1016_j_asej_2016_06_007
crossref_primary_10_1038_s41598_024_63538_2
crossref_primary_10_1007_s11042_019_08195_8
crossref_primary_10_1007_s12530_022_09460_2
crossref_primary_10_1007_s11831_020_09429_x
crossref_primary_10_1007_s42235_020_0056_x
crossref_primary_10_1016_j_optlaseng_2024_108154
crossref_primary_10_1007_s10044_018_0695_2
crossref_primary_10_1007_s00500_019_03992_7
crossref_primary_10_1016_j_eswa_2016_04_018
crossref_primary_10_1016_j_eswa_2017_06_021
crossref_primary_10_1016_j_jksuci_2020_05_001
crossref_primary_10_1016_j_compeleceng_2017_08_008
crossref_primary_10_1007_s12652_021_03001_6
crossref_primary_10_1007_s00500_023_08925_z
crossref_primary_10_1007_s10489_016_0855_2
crossref_primary_10_1155_2015_389630
crossref_primary_10_1080_0952813X_2015_1020518
crossref_primary_10_1007_s12145_019_00380_5
crossref_primary_10_1016_j_cie_2019_106040
crossref_primary_10_3390_math12060854
crossref_primary_10_1016_j_asoc_2020_106063
crossref_primary_10_1016_j_jksuci_2020_10_030
crossref_primary_10_1016_j_asoc_2019_105515
crossref_primary_10_1016_j_isatra_2015_05_015
crossref_primary_10_1016_j_neucom_2018_09_034
crossref_primary_10_1007_s00521_019_04210_z
crossref_primary_10_1007_s13204_021_02163_1
crossref_primary_10_1016_j_cose_2014_09_002
crossref_primary_10_1016_j_autcon_2024_105393
crossref_primary_10_1016_j_knosys_2018_12_008
crossref_primary_10_1016_j_asoc_2018_10_019
crossref_primary_10_1016_j_neucom_2019_06_112
crossref_primary_10_1155_2019_9517568
crossref_primary_10_1007_s11831_023_09939_4
crossref_primary_10_1109_TFUZZ_2019_2930028
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_1093_comjnl_bxz149
crossref_primary_10_1155_2022_9454344
crossref_primary_10_1016_j_aeue_2015_05_006
crossref_primary_10_1109_ACCESS_2019_2903345
crossref_primary_10_1007_s10586_024_04601_5
crossref_primary_10_3390_math11051136
crossref_primary_10_1016_j_chemolab_2023_105043
crossref_primary_10_1007_s00034_018_0993_3
crossref_primary_10_1007_s12652_019_01258_6
crossref_primary_10_1002_ima_22235
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_3390_e20040296
crossref_primary_10_1016_j_solener_2017_08_006
crossref_primary_10_1007_s11042_022_13551_2
crossref_primary_10_1007_s00521_020_04984_7
crossref_primary_10_1007_s11227_021_03706_7
crossref_primary_10_1016_j_matpr_2020_12_1064
crossref_primary_10_3390_math9192363
crossref_primary_10_1007_s00500_021_05956_2
crossref_primary_10_1007_s11042_022_14008_2
crossref_primary_10_1007_s11042_020_09851_0
crossref_primary_10_1016_j_asoc_2016_09_008
crossref_primary_10_1016_j_inffus_2024_102608
crossref_primary_10_1155_2016_3196958
crossref_primary_10_1016_j_asoc_2020_106147
crossref_primary_10_1049_sil2_12148
crossref_primary_10_1016_j_eswa_2018_08_045
crossref_primary_10_1080_15325008_2018_1488895
crossref_primary_10_3390_e21040398
crossref_primary_10_1109_TSMC_2018_2859429
crossref_primary_10_1007_s00500_023_09614_7
crossref_primary_10_1007_s11554_018_00848_5
crossref_primary_10_1007_s11042_023_15129_y
crossref_primary_10_1109_ACCESS_2024_3449998
crossref_primary_10_4018_IJFSA_2019100103
crossref_primary_10_1016_j_eswa_2019_07_037
crossref_primary_10_1080_21642583_2019_1681033
crossref_primary_10_1080_08839514_2018_1530869
crossref_primary_10_1016_j_eswa_2019_07_035
crossref_primary_10_1016_j_bspc_2023_105208
crossref_primary_10_1080_09720502_2020_1731976
crossref_primary_10_1007_s10489_018_1355_3
crossref_primary_10_1016_j_asoc_2020_106157
crossref_primary_10_1016_j_dt_2017_01_001
crossref_primary_10_1007_s11042_019_08114_x
crossref_primary_10_1109_TCYB_2016_2517140
crossref_primary_10_1016_j_jestch_2020_07_007
crossref_primary_10_1109_JPHOTOV_2017_2769000
crossref_primary_10_1016_j_advengsoft_2022_103283
crossref_primary_10_1016_j_asoc_2016_05_040
crossref_primary_10_1016_j_eswa_2021_115106
crossref_primary_10_1155_2015_146410
crossref_primary_10_1016_j_swevo_2021_100907
crossref_primary_10_1080_00207454_2021_1901696
crossref_primary_10_3103_S014641161603007X
crossref_primary_10_1007_s00500_021_06036_1
crossref_primary_10_1007_s00500_017_2794_1
crossref_primary_10_1007_s11042_020_09664_1
crossref_primary_10_1016_j_eswa_2015_11_001
crossref_primary_10_1016_j_asoc_2017_07_053
crossref_primary_10_1007_s11042_018_5637_x
crossref_primary_10_1016_j_measurement_2018_08_007
crossref_primary_10_1007_s11042_021_10909_w
crossref_primary_10_3390_s18051393
crossref_primary_10_1007_s11042_020_08931_5
crossref_primary_10_1007_s13198_024_02696_y
crossref_primary_10_1007_s00500_017_2733_1
crossref_primary_10_1016_j_ijepes_2014_10_015
crossref_primary_10_1007_s11760_017_1170_z
crossref_primary_10_1016_j_asoc_2020_106526
crossref_primary_10_1109_ACCESS_2019_2908718
crossref_primary_10_1007_s00521_019_04381_9
crossref_primary_10_1007_s12652_020_01777_7
crossref_primary_10_1016_j_dsp_2021_103203
crossref_primary_10_1109_ACCESS_2019_2916568
crossref_primary_10_1016_j_eswa_2016_08_068
crossref_primary_10_1007_s11045_019_00633_y
crossref_primary_10_1016_j_asoc_2019_04_002
crossref_primary_10_1155_2016_1476838
crossref_primary_10_1007_s11042_022_12001_3
crossref_primary_10_1142_S0218213016500305
crossref_primary_10_3233_JIFS_179615
crossref_primary_10_1016_j_eswa_2015_11_016
crossref_primary_10_1016_j_neunet_2017_10_009
crossref_primary_10_1109_TSMC_2019_2916876
crossref_primary_10_34133_research_0442
crossref_primary_10_1007_s00500_019_04315_6
crossref_primary_10_1016_j_eswa_2014_10_040
crossref_primary_10_1016_j_eswa_2020_113506
crossref_primary_10_3390_computers14030086
crossref_primary_10_1007_s11042_018_6066_6
crossref_primary_10_1088_1742_6596_1982_1_012076
crossref_primary_10_1016_j_postharvbio_2024_113121
crossref_primary_10_1109_LGRS_2020_3046308
crossref_primary_10_1080_18756891_2016_1256577
crossref_primary_10_1007_s11042_024_19332_3
crossref_primary_10_1016_j_ins_2020_05_033
crossref_primary_10_1016_j_aci_2017_05_003
crossref_primary_10_1080_15481603_2023_2262833
crossref_primary_10_1007_s00521_017_2837_7
crossref_primary_10_1007_s11042_018_7034_x
crossref_primary_10_1016_j_bspc_2024_106631
crossref_primary_10_1016_j_irbm_2019_04_007
crossref_primary_10_4018_IJAMC_2017100104
crossref_primary_10_1016_j_eswa_2023_121218
crossref_primary_10_1016_j_asoc_2019_105570
crossref_primary_10_1007_s12145_019_00417_9
crossref_primary_10_1016_j_engappai_2021_104293
crossref_primary_10_1007_s00500_016_2062_9
crossref_primary_10_1016_j_cogsys_2020_04_001
crossref_primary_10_1007_s42235_022_00295_w
crossref_primary_10_1016_j_precisioneng_2021_07_013
crossref_primary_10_1080_10106049_2015_1076060
crossref_primary_10_1016_j_eswa_2014_09_049
crossref_primary_10_1016_j_eswa_2014_09_043
crossref_primary_10_3390_min15030300
crossref_primary_10_1016_j_eswa_2017_11_044
crossref_primary_10_1016_j_eswa_2016_10_066
crossref_primary_10_1117_1_JEI_31_5_051420
crossref_primary_10_3390_app5041457
crossref_primary_10_1007_s11042_022_13671_9
crossref_primary_10_1016_j_eswa_2016_03_032
crossref_primary_10_1016_j_jksuci_2017_12_011
crossref_primary_10_1016_j_ast_2019_03_054
crossref_primary_10_4018_IJEOE_2018040101
crossref_primary_10_1016_j_asoc_2016_10_032
Cites_doi 10.1109/LAWP.2011.2178224
10.4324/9780203268643
10.1016/j.patrec.2008.10.003
10.1016/j.asoc.2012.03.072
10.1007/978-3-642-16527-6_40
10.1016/j.patrec.2006.11.007
10.1016/j.eswa.2013.07.060
10.1007/s00366-011-0241-y
10.1016/j.swevo.2013.02.001
10.1109/TAP.2004.823969
10.1016/j.camwa.2011.11.010
10.1016/j.eswa.2012.04.078
10.1109/TSMC.1979.4310076
10.1117/1.1631315
10.1016/0734-189X(85)90133-1
10.1016/j.eswa.2009.12.050
10.3390/e13040841
10.1016/j.eswa.2007.01.002
10.1016/j.eswa.2011.06.004
10.1016/0031-3203(86)90030-0
10.1016/j.neucom.2011.03.010
10.1007/s10489-011-0330-z
10.1109/CEC.2001.934374
10.1016/j.imavis.2011.06.003
10.1016/S0165-1684(98)00167-4
10.1016/j.engappai.2009.09.011
10.1504/IJMMNO.2010.035430
10.1016/j.cviu.2007.09.001
10.1016/j.eswa.2012.05.055
10.1016/j.asoc.2011.05.008
10.1049/iet-spr.2013.0139
10.1109/TIP.2003.819861
10.1016/S0167-8655(03)00166-1
10.11591/telkomnika.v11i9.3273
10.1016/0734-189X(85)90125-2
10.1109/APS.2011.5997139
10.1109/TAP.2013.2238654
10.1109/APS.2010.5562213
10.1016/j.sigpro.2012.07.010
10.1016/j.chaos.2011.06.004
10.1049/iet-spr.2011.0298
10.4236/jilsa.2010.23016
10.1016/j.amc.2006.06.057
10.1016/j.measurement.2013.09.031
10.1016/j.cnsns.2012.06.009
10.1016/j.patcog.2012.09.015
10.1109/TIP.2011.2109730
10.1109/ICNN.1995.488968
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2013.10.059
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 3560
ExternalDocumentID 28319065
10_1016_j_eswa_2013_10_059
S0957417413008919
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
BNPGV
IQODW
SSH
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c429t-e668f84ae9014551be54532fa3f627233f920f9252432eb17f56bb7e70c72bf83
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Oct 02 06:58:26 EDT 2025
Sun Sep 28 02:01:47 EDT 2025
Wed Oct 01 13:35:29 EDT 2025
Wed Apr 02 07:18:31 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Wed Oct 01 03:51:41 EDT 2025
Fri Feb 23 02:29:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Kapur’s entropy
Image segmentation
Multilevel thresholding
Wind driven optimization
Swarm intelligence
Cuckoo search algorithm
Particle swarm optimization
Artificial life
Image processing
Threshold detection
Entropy
Correlation function
Threshold function
Threshold
Probabilistic approach
Initial value problem
Space remote sensing
Parasite
Global optimum
Standards
Search algorithm
Experimental result
Kapur's entropy
Quality control
Heuristic method
Objective function
Artificial intelligence
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-e668f84ae9014551be54532fa3f627233f920f9252432eb17f56bb7e70c72bf83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1531034521
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_1701081591
proquest_miscellaneous_1671545066
proquest_miscellaneous_1531034521
pascalfrancis_primary_28319065
crossref_citationtrail_10_1016_j_eswa_2013_10_059
crossref_primary_10_1016_j_eswa_2013_10_059
elsevier_sciencedirect_doi_10_1016_j_eswa_2013_10_059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sathya, Kayalvizhi (b0250) 2011; 74
Gandomi, Yang, Alavi (b0070) 2013; 29
Hammouche, Diaf, Siarry (b0100) 2010; 23
Yang, Deb (b0310) 2010; 1
Civicioglu, Besdok (b0045) 2013
Kumar, Bhandari, Padhy (b0155) 2012; 6
Kumar, Kumar, Sharma, Pant (b0160) 2013
Xue, Titterington (b0295) 2011; 29
Agrawal, Panda, Bhuyan, Panigrahi (b0005) 2013; 11
Walton, Hassan, Morgan, Brown (b0290) 2011; 44
Dirami, Hammouchea, Diaf, Siarry (b0060) 2013; 93
Yin (b0320) 1999; 72
Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: developments, applications and resources. In
Horng, Jiang (b0125) 2010; 6320
Huang, Wang (b0135) 2009; 30
Gandomi, Yang, Talatahari, Deb (b0080) 2012; 63
Otsu (b0195) 1979; 9
Ghamisi, Couceiro, Benediktsson, Ferreira (b0085) 2012; 39
Zhang, Wu (b0330) 2011; 13
(Vol. 4, pp. 210–214). NABIC: Coimbatore.
Ghamisi, Couceiro, Martins, Benediktsson (b0090) 2013
.
Ahrens, C. D. (2007). Meteorology today: an introduction to weather, climate, and the environment, Cengage, Learning.
Rajabioun (b0215) 2011; 11
Robinson, Rahmat-Samii (b0225) 2004; 52
Yang (b0300) 2010
Lin, Lei, Xuanqin, David Zhang (b0175) 2011; 20
Panda, Agrawal, Bhuyan (b0200) 2013; 40
Horng (b0120) 2013; 11
Sathya, Kayalvizhi (b0240) 2011; 24
Hammouche, Diaf, Siarry (b0095) 2008; 109
Tao, Jin, Liu (b0265) 2007; 28
Cuevas, Sencion, Zaldivar, Perez-Cisneros, Sossa (b0050) 2012; 37
Horng (b0110) 2010; 37
Bayraktar, Z., Komurcu, M., & Werner, D. H. (2010). Wind driven optimization (WDO): A novel nature-inspired optimization algorithm and its application to electromagnetics. In
Gandomi, Yang, Talatahari, Alavi (b0075) 2013; 18
Bayraktar, Turpin, Werner (b0035) 2011; 10
Liao, Chen, Chung (b0165) 2001; 17
(Vol. 2, pp. 728–732).
Yin (b0325) 2007; 184
Penga, Zhang, Zhang (b0210) 2013; 46
Tao, Tian, Liu (b0270) 2003; 24
Thompson, R. D. (2002). Atmospheric processes and systems, Routledge Chicago.
Tsai (b0280) 1985; 29
Payne, Sorenson, Klitz (b0205) 2005; Vol. 15
Wallace, Hobbs (b0285) 2006; Vol. 92
(Vol. 1, pp. 81–86).
Liao, Chung, Chen (b0170) 2001; 17
(pp. 1–4).
Sathya, Kayalvizhi (b0245) 2011; 38
Maitra, Chatterjee (b0180) 2008; 34
Akay (b0015) 2013; 13
Yang, X. S., & Deb, S. (2009). Cuckoo search via levey flights. In
Sathya, Kayalvizhi (b0235) 2010; 2
Ye, Z., Zheng, Z., Yu, X., & Ning, X. (2005). Automatic threshold selection based on ant colony optimization algorithm. In
Manikandan, Ramar, Iruthayarajan, Srinivasagan (b0185) 2014; 47
Soni, Bhandari, Kumar, Singh (b0260) 2013; 7
(Vol. 4, 1942–1948).
Riehl (b0220) 1978
Horng (b0115) 2011; 38
Kittler, Illingworth (b0150) 1986; 19
Kapur, Sahoo, Wong (b0140) 1985; 29
Zhou, Alan, Hamid, Eero (b0335) 2004; 13
Bayraktar, Komurcu, Bossard, Werner (b0030) 2013; 61
Melo-Pinto, Couto, Bustince, Barrenechea, Pagola, Fernandez (b0190) 2013; 40
Bayraktar, Z., Komurcu, M., Jiang, Z. H., Werner, D. H., & Werner, P. L. (2011). Stub-loaded inverted-F antenna synthesis via wind driven optimization. In
(pp. 2920–2923).
Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In
Sezgin, Sankur (b0255) 2004; 13
Haupt, Haupt (b0105) 2004
Cuevas, Sención-Echauri, Zaldivar, Pérez (b0055) 2013; Vol. 38
Bhandari, Kumar, Padhy (b0040) 2011; 55
Sathya, Kayalvizhi (b0230) 2010; 7
Penga (10.1016/j.eswa.2013.10.059_b0210) 2013; 46
Panda (10.1016/j.eswa.2013.10.059_b0200) 2013; 40
Akay (10.1016/j.eswa.2013.10.059_b0015) 2013; 13
Melo-Pinto (10.1016/j.eswa.2013.10.059_b0190) 2013; 40
Civicioglu (10.1016/j.eswa.2013.10.059_b0045) 2013
Liao (10.1016/j.eswa.2013.10.059_b0170) 2001; 17
Sezgin (10.1016/j.eswa.2013.10.059_b0255) 2004; 13
Gandomi (10.1016/j.eswa.2013.10.059_b0080) 2012; 63
Manikandan (10.1016/j.eswa.2013.10.059_b0185) 2014; 47
Sathya (10.1016/j.eswa.2013.10.059_b0250) 2011; 74
10.1016/j.eswa.2013.10.059_b0065
10.1016/j.eswa.2013.10.059_b0020
Huang (10.1016/j.eswa.2013.10.059_b0135) 2009; 30
Cuevas (10.1016/j.eswa.2013.10.059_b0055) 2013; Vol. 38
Gandomi (10.1016/j.eswa.2013.10.059_b0070) 2013; 29
Yang (10.1016/j.eswa.2013.10.059_b0300) 2010
10.1016/j.eswa.2013.10.059_b0305
Horng (10.1016/j.eswa.2013.10.059_b0125) 2010; 6320
Agrawal (10.1016/j.eswa.2013.10.059_b0005) 2013; 11
Ghamisi (10.1016/j.eswa.2013.10.059_b0085) 2012; 39
10.1016/j.eswa.2013.10.059_b0025
10.1016/j.eswa.2013.10.059_b0145
Sathya (10.1016/j.eswa.2013.10.059_b0245) 2011; 38
Wallace (10.1016/j.eswa.2013.10.059_b0285) 2006; Vol. 92
Payne (10.1016/j.eswa.2013.10.059_b0205) 2005; Vol. 15
Liao (10.1016/j.eswa.2013.10.059_b0165) 2001; 17
Bhandari (10.1016/j.eswa.2013.10.059_b0040) 2011; 55
Lin (10.1016/j.eswa.2013.10.059_b0175) 2011; 20
Soni (10.1016/j.eswa.2013.10.059_b0260) 2013; 7
Otsu (10.1016/j.eswa.2013.10.059_b0195) 1979; 9
Rajabioun (10.1016/j.eswa.2013.10.059_b0215) 2011; 11
Ghamisi (10.1016/j.eswa.2013.10.059_b0090) 2013
Kittler (10.1016/j.eswa.2013.10.059_b0150) 1986; 19
Yin (10.1016/j.eswa.2013.10.059_b0320) 1999; 72
Kapur (10.1016/j.eswa.2013.10.059_b0140) 1985; 29
10.1016/j.eswa.2013.10.059_b0275
Zhang (10.1016/j.eswa.2013.10.059_b0330) 2011; 13
Zhou (10.1016/j.eswa.2013.10.059_b0335) 2004; 13
Kumar (10.1016/j.eswa.2013.10.059_b0160) 2013
10.1016/j.eswa.2013.10.059_b0315
Riehl (10.1016/j.eswa.2013.10.059_b0220) 1978
Bayraktar (10.1016/j.eswa.2013.10.059_b0035) 2011; 10
Hammouche (10.1016/j.eswa.2013.10.059_b0100) 2010; 23
Horng (10.1016/j.eswa.2013.10.059_b0115) 2011; 38
Tsai (10.1016/j.eswa.2013.10.059_b0280) 1985; 29
Tao (10.1016/j.eswa.2013.10.059_b0270) 2003; 24
Dirami (10.1016/j.eswa.2013.10.059_b0060) 2013; 93
Yang (10.1016/j.eswa.2013.10.059_b0310) 2010; 1
Tao (10.1016/j.eswa.2013.10.059_b0265) 2007; 28
Bayraktar (10.1016/j.eswa.2013.10.059_b0030) 2013; 61
Maitra (10.1016/j.eswa.2013.10.059_b0180) 2008; 34
Walton (10.1016/j.eswa.2013.10.059_b0290) 2011; 44
Hammouche (10.1016/j.eswa.2013.10.059_b0095) 2008; 109
Robinson (10.1016/j.eswa.2013.10.059_b0225) 2004; 52
Yin (10.1016/j.eswa.2013.10.059_b0325) 2007; 184
Sathya (10.1016/j.eswa.2013.10.059_b0240) 2011; 24
Xue (10.1016/j.eswa.2013.10.059_b0295) 2011; 29
Gandomi (10.1016/j.eswa.2013.10.059_b0075) 2013; 18
Horng (10.1016/j.eswa.2013.10.059_b0110) 2010; 37
10.1016/j.eswa.2013.10.059_b0010
10.1016/j.eswa.2013.10.059_b0130
Kumar (10.1016/j.eswa.2013.10.059_b0155) 2012; 6
Sathya (10.1016/j.eswa.2013.10.059_b0235) 2010; 2
Haupt (10.1016/j.eswa.2013.10.059_b0105) 2004
Sathya (10.1016/j.eswa.2013.10.059_b0230) 2010; 7
Horng (10.1016/j.eswa.2013.10.059_b0120) 2013; 11
Cuevas (10.1016/j.eswa.2013.10.059_b0050) 2012; 37
References_xml – start-page: 1
  year: 2013
  end-page: 12
  ident: b0160
  article-title: Bi-level thresholding using PSO, artificial Bee colony and MRLDE embedded with Otsu method
  publication-title: Memetic Computing
– volume: 93
  start-page: 139
  year: 2013
  end-page: 153
  ident: b0060
  article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method
  publication-title: Signal Processing
– volume: 24
  start-page: 595
  year: 2011
  end-page: 615
  ident: b0240
  article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
  publication-title: Expert Systems with Applications
– reference: Bayraktar, Z., Komurcu, M., & Werner, D. H. (2010). Wind driven optimization (WDO): A novel nature-inspired optimization algorithm and its application to electromagnetics. In
– volume: 38
  start-page: 13785
  year: 2011
  end-page: 13791
  ident: b0115
  article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
  publication-title: Expert Systems with Applications
– volume: 109
  start-page: 163
  year: 2008
  end-page: 175
  ident: b0095
  article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation
  publication-title: Computer Vision and Image Understanding
– volume: 2
  start-page: 126
  year: 2010
  end-page: 138
  ident: b0235
  article-title: A new multilevel thresholding method using swarm intelligence algorithm for image segmentation
  publication-title: Journal of Intelligent Learning Systems and Applications
– volume: 38
  start-page: 15549
  year: 2011
  end-page: 15564
  ident: b0245
  article-title: Optimal multilevel thresholding using bacterial foraging algorithm
  publication-title: Expert Systems with Applications
– volume: 6320
  start-page: 318
  year: 2010
  end-page: 325
  ident: b0125
  article-title: Multilevel image thresholding selection using the artificial bee colony algorithm
  publication-title: Artificial Intelligence and Computational Intelligence
– volume: 17
  start-page: 713
  year: 2001
  end-page: 727
  ident: b0165
  article-title: A fast algorithm for multilevel thresholding
  publication-title: Journal of Information Science and Engineering
– volume: 52
  start-page: 397
  year: 2004
  end-page: 407
  ident: b0225
  article-title: Particle swarm optimization in electromagnetics
  publication-title: IEEE Transactions Antennas Propagation
– reference: (Vol. 2, pp. 728–732).
– volume: 47
  start-page: 558
  year: 2014
  end-page: 568
  ident: b0185
  article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm
  publication-title: Measurement
– reference: (Vol. 1, pp. 81–86).
– volume: 39
  start-page: 12407
  year: 2012
  end-page: 12417
  ident: b0085
  article-title: An efficient method for segmentation of images based on fractional calculus and natural selection
  publication-title: Expert Systems with Applications
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b0195
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems Man and Cybernetics SMC
– volume: 28
  start-page: 788
  year: 2007
  end-page: 796
  ident: b0265
  article-title: Object segmentation using ant colony optimization algorithm and fuzzy entropy
  publication-title: Pattern Recognition Letters
– reference: Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In
– reference: Yang, X. S., & Deb, S. (2009). Cuckoo search via levey flights. In
– volume: Vol. 38
  start-page: 965
  year: 2013
  end-page: 990
  ident: b0055
  article-title: Image segmentation using artificial Bee colony optimization
  publication-title: Handbook of optimization
– volume: 17
  start-page: 713
  year: 2001
  end-page: 727
  ident: b0170
  article-title: A fast algorithm for multilevel thresholding
  publication-title: Journal of Information Science and Engineering
– volume: 29
  start-page: 631
  year: 2011
  end-page: 637
  ident: b0295
  article-title: Median-based image thresholding
  publication-title: Image and Vision Computing
– reference: Thompson, R. D. (2002). Atmospheric processes and systems, Routledge Chicago.
– start-page: 1
  year: 2013
  end-page: 13
  ident: b0090
  article-title: Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 40
  start-page: 7617
  year: 2013
  end-page: 7628
  ident: b0200
  article-title: Edge magnitude based multilevel thresholding using cuckoo search technique
  publication-title: Expert Systems with Applications
– reference: (pp. 2920–2923).
– volume: 10
  start-page: 1563
  year: 2011
  end-page: 1566
  ident: b0035
  article-title: Nature-inspired optimization of high-impedance metasurfaces with ultra-small interwoven unit cells
  publication-title: IEEE Antennas and Wireless Propagation Letters
– volume: 24
  start-page: 3069
  year: 2003
  end-page: 3078
  ident: b0270
  article-title: Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm
  publication-title: Pattern Recognition Letters
– volume: 11
  start-page: 5508
  year: 2011
  end-page: 5518
  ident: b0215
  article-title: Cuckoo optimization algorithm
  publication-title: Applied Soft Computing
– volume: 40
  start-page: 15
  year: 2013
  end-page: 26
  ident: b0190
  article-title: Image segmentation using Atanassov’s intuitionistic fuzzy sets
  publication-title: Expert Systems with Applications
– volume: 29
  start-page: 377
  year: 1985
  end-page: 393
  ident: b0280
  article-title: Moment-preserving thresholding: A new approach
  publication-title: Computer Vision Graphics and Image Processing
– volume: 6
  start-page: 617
  year: 2012
  end-page: 625
  ident: b0155
  article-title: Improved normalised difference vegetation index method based on discrete cosine transform and singular value decomposition for satellite image processing
  publication-title: IET Signal Processing
– volume: 7
  start-page: 720
  year: 2013
  end-page: 730
  ident: b0260
  article-title: Improved sub-band adaptive thresholding function for denoising of satellite image based on evolutionary algorithms
  publication-title: IET Signal Processing
– volume: 55
  start-page: 35
  year: 2011
  end-page: 41
  ident: b0040
  article-title: Enhancement of low contrast satellite images using discrete cosine transform and singular value decomposition
  publication-title: World Academy of Science, Engineering and Technology
– volume: 11
  start-page: 5229
  year: 2013
  end-page: 5236
  ident: b0120
  article-title: Multilevel minimum cross entropy image thresholding using artificial bee colony algorithm
  publication-title: TELKOMNIKA Indonesian Journal of Electrical Engineering
– volume: 1
  start-page: 330
  year: 2010
  end-page: 343
  ident: b0310
  article-title: Engineering optimization by cuckoo search
  publication-title: International Journal of Mathematical Modelling & Numerical Optimization
– volume: Vol. 15
  year: 2005
  ident: b0205
  publication-title: The cuckoos
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b0335
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
– year: 2004
  ident: b0105
  article-title: Practical genetic algorithms
– volume: 23
  start-page: 676
  year: 2010
  end-page: 688
  ident: b0100
  article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem’
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 13
  start-page: 146
  year: 2004
  end-page: 165
  ident: b0255
  article-title: Survey over image thresholding techniques and quantitative performance evaluation
  publication-title: Journal of Electronic Imaging
– volume: 72
  start-page: 85
  year: 1999
  end-page: 95
  ident: b0320
  article-title: A fast scheme for multilevel thresholding using genetic algorithms
  publication-title: Signal Processing
– reference: (Vol. 4, pp. 210–214). NABIC: Coimbatore.
– start-page: 1
  year: 2013
  end-page: 32
  ident: b0045
  article-title: A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms
  publication-title: Artificial Intelligence Review
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: b0070
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Engineering with Computers
– volume: 20
  start-page: 2378
  year: 2011
  end-page: 2386
  ident: b0175
  article-title: FSIM: A feature similarity index for image quality assessment
  publication-title: IEEE Transactions on Image Processing
– volume: 46
  start-page: 1020
  year: 2013
  end-page: 1038
  ident: b0210
  article-title: A survey of graph theoretical approaches to image segmentation
  publication-title: Pattern Recognition
– reference: Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: developments, applications and resources. In
– volume: 37
  start-page: 321
  year: 2012
  end-page: 336
  ident: b0050
  article-title: A multi-threshold segmentation approach based on artificial bee colony optimization
  publication-title: Applied Intelligence
– volume: 30
  start-page: 275
  year: 2009
  end-page: 284
  ident: b0135
  article-title: Optimal multi-level thresholding using a two-stage Otsu optimization approach
  publication-title: Pattern Recognition Letters
– volume: 13
  start-page: 3066
  year: 2013
  end-page: 3091
  ident: b0015
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Applied Soft Computing
– reference: Bayraktar, Z., Komurcu, M., Jiang, Z. H., Werner, D. H., & Werner, P. L. (2011). Stub-loaded inverted-F antenna synthesis via wind driven optimization. In
– volume: 18
  start-page: 89
  year: 2013
  end-page: 98
  ident: b0075
  article-title: Firefly algorithm with chaos
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– reference: (pp. 1–4).
– volume: 184
  start-page: 503
  year: 2007
  end-page: 513
  ident: b0325
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
– year: 2010
  ident: b0300
  article-title: Nature-inspired metaheuristic algorithms
– volume: Vol. 92
  year: 2006
  ident: b0285
  publication-title: Atmospheric science: An introductory survey
– reference: .
– reference: Ye, Z., Zheng, Z., Yu, X., & Ning, X. (2005). Automatic threshold selection based on ant colony optimization algorithm. In
– volume: 34
  start-page: 1341
  year: 2008
  end-page: 1350
  ident: b0180
  article-title: A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 336
  year: 2010
  end-page: 343
  ident: b0230
  article-title: Optimum multi level image thresholding based on Tsallis entropy method with bacterial foraging algorithm
  publication-title: International Journal of Computer Science
– volume: 44
  start-page: 710
  year: 2011
  end-page: 718
  ident: b0290
  article-title: Modified cuckoo search: A new gradient free optimization algorithm
  publication-title: Chaos, Solitons & Fractals
– volume: 11
  start-page: 16
  year: 2013
  end-page: 30
  ident: b0005
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm and Evolutionary Computation
– reference: (Vol. 4, 1942–1948).
– volume: 63
  start-page: 191
  year: 2012
  end-page: 200
  ident: b0080
  article-title: Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization
  publication-title: Computers & Mathematics with Applications
– volume: 13
  start-page: 841
  year: 2011
  end-page: 859
  ident: b0330
  article-title: Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach
  publication-title: Entropy
– volume: 61
  start-page: 2745
  year: 2013
  end-page: 2757
  ident: b0030
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: 37
  start-page: 4580
  year: 2010
  end-page: 4592
  ident: b0110
  article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization
  publication-title: Expert Systems with Applications
– volume: 74
  start-page: 2299
  year: 2011
  end-page: 2313
  ident: b0250
  article-title: Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm
  publication-title: Neurocomputing
– reference: Ahrens, C. D. (2007). Meteorology today: an introduction to weather, climate, and the environment, Cengage, Learning.
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: b0140
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision Graphics Image Processing
– volume: 19
  start-page: 41
  year: 1986
  end-page: 47
  ident: b0150
  article-title: Minimum error thresholding
  publication-title: Pattern Recognition
– year: 1978
  ident: b0220
  article-title: Introduction to the atmosphere
– volume: 10
  start-page: 1563
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0035
  article-title: Nature-inspired optimization of high-impedance metasurfaces with ultra-small interwoven unit cells
  publication-title: IEEE Antennas and Wireless Propagation Letters
  doi: 10.1109/LAWP.2011.2178224
– volume: 17
  start-page: 713
  issue: 5
  year: 2001
  ident: 10.1016/j.eswa.2013.10.059_b0165
  article-title: A fast algorithm for multilevel thresholding
  publication-title: Journal of Information Science and Engineering
– ident: 10.1016/j.eswa.2013.10.059_b0275
  doi: 10.4324/9780203268643
– volume: 30
  start-page: 275
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2013.10.059_b0135
  article-title: Optimal multi-level thresholding using a two-stage Otsu optimization approach
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.10.003
– volume: 13
  start-page: 3066
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0015
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.03.072
– volume: 6320
  start-page: 318
  year: 2010
  ident: 10.1016/j.eswa.2013.10.059_b0125
  article-title: Multilevel image thresholding selection using the artificial bee colony algorithm
  publication-title: Artificial Intelligence and Computational Intelligence
  doi: 10.1007/978-3-642-16527-6_40
– volume: 28
  start-page: 788
  issue: 7
  year: 2007
  ident: 10.1016/j.eswa.2013.10.059_b0265
  article-title: Object segmentation using ant colony optimization algorithm and fuzzy entropy
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2006.11.007
– volume: 40
  start-page: 7617
  issue: 18
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0200
  article-title: Edge magnitude based multilevel thresholding using cuckoo search technique
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.07.060
– year: 2010
  ident: 10.1016/j.eswa.2013.10.059_b0300
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0070
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-011-0241-y
– volume: 24
  start-page: 595
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0240
  article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 16
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0005
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2013.02.001
– volume: 52
  start-page: 397
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2013.10.059_b0225
  article-title: Particle swarm optimization in electromagnetics
  publication-title: IEEE Transactions Antennas Propagation
  doi: 10.1109/TAP.2004.823969
– volume: 63
  start-page: 191
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2013.10.059_b0080
  article-title: Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2011.11.010
– volume: 39
  start-page: 12407
  issue: 16
  year: 2012
  ident: 10.1016/j.eswa.2013.10.059_b0085
  article-title: An efficient method for segmentation of images based on fractional calculus and natural selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.04.078
– year: 2004
  ident: 10.1016/j.eswa.2013.10.059_b0105
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.eswa.2013.10.059_b0195
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems Man and Cybernetics SMC
  doi: 10.1109/TSMC.1979.4310076
– volume: 13
  start-page: 146
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2013.10.059_b0255
  article-title: Survey over image thresholding techniques and quantitative performance evaluation
  publication-title: Journal of Electronic Imaging
  doi: 10.1117/1.1631315
– ident: 10.1016/j.eswa.2013.10.059_b0010
– volume: 29
  start-page: 377
  year: 1985
  ident: 10.1016/j.eswa.2013.10.059_b0280
  article-title: Moment-preserving thresholding: A new approach
  publication-title: Computer Vision Graphics and Image Processing
  doi: 10.1016/0734-189X(85)90133-1
– volume: 37
  start-page: 4580
  year: 2010
  ident: 10.1016/j.eswa.2013.10.059_b0110
  article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.12.050
– volume: 13
  start-page: 841
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0330
  article-title: Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach
  publication-title: Entropy
  doi: 10.3390/e13040841
– volume: 34
  start-page: 1341
  year: 2008
  ident: 10.1016/j.eswa.2013.10.059_b0180
  article-title: A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.01.002
– volume: 38
  start-page: 15549
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0245
  article-title: Optimal multilevel thresholding using bacterial foraging algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.06.004
– volume: 19
  start-page: 41
  year: 1986
  ident: 10.1016/j.eswa.2013.10.059_b0150
  article-title: Minimum error thresholding
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(86)90030-0
– volume: 74
  start-page: 2299
  issue: 14–15
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0250
  article-title: Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.010
– volume: 37
  start-page: 321
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2013.10.059_b0050
  article-title: A multi-threshold segmentation approach based on artificial bee colony optimization
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-011-0330-z
– ident: 10.1016/j.eswa.2013.10.059_b0065
  doi: 10.1109/CEC.2001.934374
– volume: 7
  start-page: 336
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2013.10.059_b0230
  article-title: Optimum multi level image thresholding based on Tsallis entropy method with bacterial foraging algorithm
  publication-title: International Journal of Computer Science
– volume: 29
  start-page: 631
  issue: 9
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0295
  article-title: Median-based image thresholding
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2011.06.003
– volume: 38
  start-page: 13785
  issue: 11
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0115
  article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
  publication-title: Expert Systems with Applications
– volume: 72
  start-page: 85
  year: 1999
  ident: 10.1016/j.eswa.2013.10.059_b0320
  article-title: A fast scheme for multilevel thresholding using genetic algorithms
  publication-title: Signal Processing
  doi: 10.1016/S0165-1684(98)00167-4
– volume: 55
  start-page: 35
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0040
  article-title: Enhancement of low contrast satellite images using discrete cosine transform and singular value decomposition
  publication-title: World Academy of Science, Engineering and Technology
– volume: 23
  start-page: 676
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2013.10.059_b0100
  article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem’
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2009.09.011
– volume: 17
  start-page: 713
  year: 2001
  ident: 10.1016/j.eswa.2013.10.059_b0170
  article-title: A fast algorithm for multilevel thresholding
  publication-title: Journal of Information Science and Engineering
– ident: 10.1016/j.eswa.2013.10.059_b0130
– volume: 1
  start-page: 330
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2013.10.059_b0310
  article-title: Engineering optimization by cuckoo search
  publication-title: International Journal of Mathematical Modelling & Numerical Optimization
  doi: 10.1504/IJMMNO.2010.035430
– volume: 109
  start-page: 163
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2013.10.059_b0095
  article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2007.09.001
– volume: 40
  start-page: 15
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0190
  article-title: Image segmentation using Atanassov’s intuitionistic fuzzy sets
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.05.055
– volume: 11
  start-page: 5508
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0215
  article-title: Cuckoo optimization algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.05.008
– volume: 7
  start-page: 720
  issue: 8
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0260
  article-title: Improved sub-band adaptive thresholding function for denoising of satellite image based on evolutionary algorithms
  publication-title: IET Signal Processing
  doi: 10.1049/iet-spr.2013.0139
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.eswa.2013.10.059_b0335
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0045
  article-title: A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms
  publication-title: Artificial Intelligence Review
– volume: 24
  start-page: 3069
  issue: 16
  year: 2003
  ident: 10.1016/j.eswa.2013.10.059_b0270
  article-title: Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(03)00166-1
– start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0160
  article-title: Bi-level thresholding using PSO, artificial Bee colony and MRLDE embedded with Otsu method
  publication-title: Memetic Computing
– volume: 11
  start-page: 5229
  issue: 9
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0120
  article-title: Multilevel minimum cross entropy image thresholding using artificial bee colony algorithm
  publication-title: TELKOMNIKA Indonesian Journal of Electrical Engineering
  doi: 10.11591/telkomnika.v11i9.3273
– volume: Vol. 15
  year: 2005
  ident: 10.1016/j.eswa.2013.10.059_b0205
– volume: 29
  start-page: 273
  year: 1985
  ident: 10.1016/j.eswa.2013.10.059_b0140
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision Graphics Image Processing
  doi: 10.1016/0734-189X(85)90125-2
– start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0090
  article-title: Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– ident: 10.1016/j.eswa.2013.10.059_b0025
  doi: 10.1109/APS.2011.5997139
– year: 1978
  ident: 10.1016/j.eswa.2013.10.059_b0220
– volume: 61
  start-page: 2745
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0030
  article-title: The wind driven optimization technique and its application in electromagnetics
  publication-title: IEEE Transactions on Antennas and Propagation
  doi: 10.1109/TAP.2013.2238654
– ident: 10.1016/j.eswa.2013.10.059_b0020
  doi: 10.1109/APS.2010.5562213
– volume: 93
  start-page: 139
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0060
  article-title: Fast multilevel thresholding for image segmentation through a multiphase level set method
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2012.07.010
– volume: 44
  start-page: 710
  issue: 9
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0290
  article-title: Modified cuckoo search: A new gradient free optimization algorithm
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2011.06.004
– volume: 6
  start-page: 617
  issue: 7
  year: 2012
  ident: 10.1016/j.eswa.2013.10.059_b0155
  article-title: Improved normalised difference vegetation index method based on discrete cosine transform and singular value decomposition for satellite image processing
  publication-title: IET Signal Processing
  doi: 10.1049/iet-spr.2011.0298
– volume: 2
  start-page: 126
  year: 2010
  ident: 10.1016/j.eswa.2013.10.059_b0235
  article-title: A new multilevel thresholding method using swarm intelligence algorithm for image segmentation
  publication-title: Journal of Intelligent Learning Systems and Applications
  doi: 10.4236/jilsa.2010.23016
– ident: 10.1016/j.eswa.2013.10.059_b0305
– volume: 184
  start-page: 503
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2013.10.059_b0325
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.06.057
– volume: 47
  start-page: 558
  year: 2014
  ident: 10.1016/j.eswa.2013.10.059_b0185
  article-title: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.031
– volume: 18
  start-page: 89
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0075
  article-title: Firefly algorithm with chaos
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.06.009
– volume: 46
  start-page: 1020
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0210
  article-title: A survey of graph theoretical approaches to image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.09.015
– volume: 20
  start-page: 2378
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2013.10.059_b0175
  article-title: FSIM: A feature similarity index for image quality assessment
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2109730
– volume: Vol. 92
  year: 2006
  ident: 10.1016/j.eswa.2013.10.059_b0285
– volume: Vol. 38
  start-page: 965
  year: 2013
  ident: 10.1016/j.eswa.2013.10.059_b0055
  article-title: Image segmentation using artificial Bee colony optimization
– ident: 10.1016/j.eswa.2013.10.059_b0145
  doi: 10.1109/ICNN.1995.488968
– ident: 10.1016/j.eswa.2013.10.059_b0315
SSID ssj0017007
Score 2.5909758
Snippet The objective of image segmentation is to extract meaningful objects. A meaningful segmentation selects the proper threshold values to optimize a criterion...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3538
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Cuckoo search algorithm
Earth, ocean, space
Entropy
Exact sciences and technology
External geophysics
Image segmentation
Kapur’s entropy
Mathematical analysis
Mathematical models
Mathematical programming
Multilevel
Multilevel thresholding
Operational research and scientific management
Operational research. Management science
Optimization
Particle swarm optimization
Pattern recognition. Digital image processing. Computational geometry
Remote sensing, photointerpretation
Satellite imagery
Searching
Swarm intelligence
Theoretical computing
Thresholds
Wind driven optimization
Title Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy
URI https://dx.doi.org/10.1016/j.eswa.2013.10.059
https://www.proquest.com/docview/1531034521
https://www.proquest.com/docview/1671545066
https://www.proquest.com/docview/1701081591
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWywUJ8UaURzVI3FC2sR3HyXFVsSqs2AustLfITpxSaJOoSbXigvgRXPh7_BJmEqfSCtQDhxwSOS97PPMl_uYbxl5znhY5tzZQWudBpBIXJDgxAl4Iq3SqrLaU4PzhIl5cRu-v1NURm4-5MESr9L5_8Om9t_ZHZr43Z81qNfuI4ADDoSYvHCZpL_0ZRZqqGJx839M8SH5OD3p7OqDWPnFm4Hi59pq0h7g8IYYX6ZX-OzjdaUyLXVYOtS7-ctt9LDq7z-56EAmnw3M-YEeuesjujQUawM_XR-znfJd_rWsYzBnMellvV93nDZiqgGv8GodiS94OanQcG5-RCRTYCuh1Z6EuoTW9aGfnYLVB54MXW258wlIFCHmh5ySuiXwEHVpG6xe0gCj1Szg3zW77-8evFug_ct18e8wuz95-mi8CX4YhyDFYdYGL46RMIuNoxRUBlnWIuqQojSxjoYWUZSpC3JSIpEDXr0sVW6udDnMtbJnIJ-y4qiv3lEHYq92nWmmZRzlBG66MRUxU5KUojJowPvZ_lnuNciqVsc5GMtqXjMYsozGjYzhmE_Zmf04zKHQcbK3GYc1u2FmGIeTgedMbNrC_Fb1Dijhuwl6NRpHhDKVlF1O5etdmGFN4KCPESQfaxJqwLOK_A200fjsnCD_5s_98iefsNu5FA9PtBTvutjv3EjFVZ6f9pJmyW6fvzhcXfwATOCSN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtswECSC9NACRd9F3Ue6BXorFIuUKErHwkjgNo9LEyA3gZQox60tCZaMoJciH5FLf69fkl2JMhC08KEHX2TKtsjl7NCcHTL2kfMkz7gxnlQq80IZWy_GieHxXBipEmmUoQLnk9Noeh5-vZAXO2wy1MKQrNJhf4_pHVq7K2PXm-N6Ph9_Q3KA6VARCvtxQtaf90IpFK3A9n9tdB7kP6d6wz3lUXNXOdOLvGxzReZDPNgniRcZlv47Oz2sdYN9VvSHXfyF210yOnzCHjkWCZ_7H_qU7djyGXs8nNAAbsI-ZzeTdfajqqCPZ9CLWbWat5dL0GUOV7gch3xFcAcVIsfSlWQCZbYcOuNZqApodOfa2VqYLxF98MNmS1exVAJyXuhEiQtSH0GLodG4HS0gTf0MjnS9Xv25_t0A_ZFc1T9fsPPDg7PJ1HPnMHgZZqvWs1EUF3GoLW25IsMyFmlXIAodFJFQIgiKRPj4kiIMBGK_KmRkjLLKz5QwRRy8ZLtlVdpXDPzO7j5RUgVZmBG34VIbJEV5VohcyxHjQ_-nmTMpp7MyFumgRvue0pilNGZ0DcdsxD5t7ql7i46treUwrOmdQEsxh2y9b-9ODGy-ip4hQSI3Yh-GoEhxitK-iy5ttW5STCrcDzA2-ZY2kSIyiwRwSxuFi-cY-Sd__Z8P8Z7dn56dHKfHX06P3rAH-E7Yy97est12tbbvkGC1Zq-bQLeZ1iYi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cuckoo+search+algorithm+and+wind+driven+optimization+based+study+of+satellite+image+segmentation+for+multilevel+thresholding+using+Kapur%27s+entropy&rft.jtitle=Expert+systems+with+applications&rft.au=Bhandari%2C+Ashish+Kumar&rft.au=Singh%2C+Vineet+Kumar&rft.au=Kumar%2C+Anil&rft.au=Singh%2C+Girish+Kumar&rft.date=2014-06-01&rft.issn=0957-4174&rft.volume=41&rft.issue=7&rft.spage=3538&rft.epage=3560&rft_id=info:doi/10.1016%2Fj.eswa.2013.10.059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon