Physics Perception in Sloshing Scenes With Guaranteed Thermodynamic Consistency
Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) t...
Saved in:
| Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 2; pp. 2136 - 2150 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-8828 1939-3539 2160-9292 2160-9292 1939-3539 |
| DOI | 10.1109/TPAMI.2022.3160100 |
Cover
| Abstract | Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time. |
|---|---|
| AbstractList | Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time. Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time.Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time. |
| Author | Moya, Beatriz Chinesta, Francisco Gonzalez, David Badias, Alberto Cueto, Elias |
| Author_xml | – sequence: 1 givenname: Beatriz surname: Moya fullname: Moya, Beatriz email: beam@unizar.es organization: Aragon Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain – sequence: 2 givenname: Alberto orcidid: 0000-0001-7639-6767 surname: Badias fullname: Badias, Alberto email: alberto.badias@upm.es organization: Polytechnic University of Madrid, Madrid, Spain – sequence: 3 givenname: David orcidid: 0000-0003-3003-5856 surname: Gonzalez fullname: Gonzalez, David email: gonzal@unizar.es organization: Aragon Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain – sequence: 4 givenname: Francisco orcidid: 0000-0002-6272-3429 surname: Chinesta fullname: Chinesta, Francisco email: francisco.chinesta@ensam.eu organization: ESI Group Chair, PIMM Lab, Arts et Métiers Institute of Technology, Paris, France – sequence: 5 givenname: Elias orcidid: 0000-0003-1017-4381 surname: Cueto fullname: Cueto, Elias email: ecueto@unizar.es organization: Aragon Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35316181$$D View this record in MEDLINE/PubMed https://hal.science/hal-04094265$$DView record in HAL |
| BookMark | eNptkV2L1DAUhoOsuLOrf0BBCt7oRcd8NW0uh8H9gJEd2BEvQ5qe2ixtOiat0n-_GTuOMHjV0DxPkvc9V-jC9Q4QekvwkhAsP--2q6_3S4opXTIiMMH4BVrQuEollfQCLTARNC0KWlyiqxCeMCY8w-wVumRZFEhBFuhh20zBmpBswRvYD7Z3iXXJY9uHxrofyaMBByH5bocmuR21124AqJJdA77rq8npzppk3btgwwDOTK_Ry1q3Ad4cv9fo282X3fou3Tzc3q9Xm9RwKoe00nlBKOdFITSUpQFdA9OmZoxnQgDnQlalMDUuOadGlxjrnPO4GROUJVTsGrH53NHt9fRbt63ae9tpPymC1aEeNezj49ShHnWsJ1qfZqvR__heW3W32qjDP8yx5FRkv0hkP87s3vc_RwiD6mww0LbaQT8GRQWnjDGcFRH9cIY-9aN3Mb-iuSAs5yQXkXp_pMayg-p0_99hRKCYAeP7EDzUythBH0YyeG3bU7A_cz8PRs_U8zb-K72bJQsAJ0HmTMpcsmfuSLW4 |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_cma_2024_117458 crossref_primary_10_1016_j_cma_2024_117144 crossref_primary_10_1016_j_cma_2024_117210 crossref_primary_10_1016_j_est_2023_110016 crossref_primary_10_1016_j_engappai_2025_110108 crossref_primary_10_1007_s11831_023_10033_y crossref_primary_10_1016_j_rineng_2024_102295 |
| Cites_doi | 10.1007/978-0-387-31439-6_534 10.1016/j.cma.2021.113816 10.1177/0278364917734052 10.1007/s11831-020-09404-6 10.1162/089976698300017467 10.1016/j.taml.2020.01.031 10.1007/s00466-019-01705-3 10.3115/v1/D14-1179 10.1162/neco.1997.9.8.1735 10.1007/s00466-017-1440-1 10.1109/ICRA.2017.7989247 10.1007/978-3-319-41217-7_17 10.1017/s0956792521000139 10.36884/jafm.13.05.30909 10.1103/physrevlett.126.180604 10.1109/CVPR.2018.00472 10.1073/pnas.1306572110 10.1016/j.jcp.2020.109913 10.1016/j.cma.2021.113763 10.1145/3326362 10.1098/rspa.2020.0097 10.1038/nature14539 10.1103/physrevfluids.6.114402 10.1088/0034-4885/29/1/306 10.1103/PhysRevLett.83.4542 10.1103/PhysRevLett.126.036401 10.1007/978-3-030-77957-3_16 10.1371/journal.pone.0234569 10.1109/ICCV.2015.123 10.1007/s00161-018-0677-z 10.3390/e21121165 10.1063/5.0030137 10.1109/IROS.2016.7759326 10.1007/978-3-540-39895-0_3 10.1061/(ASCE)EM.1943-7889.0001947 10.1103/physreve.56.6620 10.1146/annurev.aa.30.090192.002551 10.1016/j.jcp.2020.109339 10.1016/j.jcp.2020.109950 10.1038/s42256-019-0077-5 10.1103/PhysRevFluids.4.103907 10.1016/j.jcp.2020.110079 10.1146/annurev-control-072220-093055 10.1371/journal.pcbi.1007210 10.1109/LRA.2021.3095269 10.1016/j.cma.2019.112789 10.1016/S0895-7177(00)00240-5 10.1063/1.5128231 10.2514/1.J058462 10.1016/j.jcp.2020.109982 10.1109/TNNLS.2022.3148734 10.1111/cgf.13620 10.1109/34.232073 10.1109/LRA.2020.2969931 10.1109/TRO.2017.2705103 10.1038/s41467-018-07210-0 10.1007/s00162-020-00520-4 10.1111/cgf.13619 10.1016/j.neunet.2020.08.017 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 1XC VOOES ADTOC UNPAY |
| DOI | 10.1109/TPAMI.2022.3160100 |
| DatabaseName | Accès Toulouse INP et ENVT - IEEE Xplore ASPP 2005 IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: Consulter via IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 2150 |
| ExternalDocumentID | oai:sam.ensam.eu:10985/24796 oai:HAL:hal-04094265v1 35316181 10_1109_TPAMI_2022_3160100 9739979 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Regional Government of Aragon and the European Social Fund – fundername: Spanish Ministry of Economy and Competitiveness grantid: PID2020-113463RB-C31 – fundername: Research Group T88 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c429t-da781244886aebbceafe3acf334566e4469db6cf0b442cab00a744345145bbed3 |
| IEDL.DBID | RIE |
| ISSN | 0162-8828 1939-3539 2160-9292 |
| IngestDate | Sun Oct 26 04:15:03 EDT 2025 Tue Oct 14 20:42:06 EDT 2025 Wed Oct 01 14:55:06 EDT 2025 Sun Jun 29 12:53:32 EDT 2025 Thu Apr 03 07:03:20 EDT 2025 Wed Oct 01 02:24:10 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Wed Aug 27 02:54:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | sloshing thermodynamics-aware deep learning Physics perception GENERIC |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-da781244886aebbceafe3acf334566e4469db6cf0b442cab00a744345145bbed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1017-4381 0000-0001-7639-6767 0000-0002-6272-3429 0000-0003-3003-5856 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10985/24796 |
| PMID | 35316181 |
| PQID | 2761374176 |
| PQPubID | 85458 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1109_tpami_2022_3160100 hal_primary_oai_HAL_hal_04094265v1 crossref_primary_10_1109_TPAMI_2022_3160100 proquest_journals_2761374176 pubmed_primary_35316181 crossref_citationtrail_10_1109_TPAMI_2022_3160100 ieee_primary_9739979 proquest_miscellaneous_2642333058 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref56 ref15 ref14 ref58 ref52 ref11 ref10 ref54 Raissi (ref6) 2017 ref17 ref19 ref18 Li (ref48) Hesthaven (ref30) 2020 Erichson (ref65) 2019 ref51 ref50 Schenck (ref53) 2016 ref46 Qi (ref79) 2017 ref47 Course (ref9) 2021 ref44 ref43 ref8 ref7 Battaglia (ref16) 2018 ref3 ref5 Tompson (ref41) ref81 ref40 ref80 ref35 ref34 Greydanus (ref57) ref37 Ng (ref66) 2011; 72 ref36 ref31 ref75 ref74 ref33 ref77 ref32 ref76 ref2 ref1 Schenck (ref4) ref39 ref38 Toth (ref59) 2019 ref70 Smith (ref72) 2009 ref73 Eppel (ref55) 2016 ref24 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref21 Zhong (ref60) 2019 ref28 ref27 Chung (ref71) 2014 ref29 Pascanu (ref68) Wu (ref49) ref62 Anders Grunnet-Jepsen (ref78) Sanchez-Gonzalez (ref45) ref61 Miyanawala (ref42) 2017 |
| References_xml | – ident: ref52 doi: 10.1007/978-0-387-31439-6_534 – year: 2016 ident: ref53 article-title: Detection and tracking of liquids with fully convolutional networks – year: 2017 ident: ref42 article-title: An efficient deep learning technique for the navier-stokes equations: Application to unsteady wake flow dynamics – ident: ref28 doi: 10.1016/j.cma.2021.113816 – ident: ref50 doi: 10.1177/0278364917734052 – ident: ref13 doi: 10.1007/s11831-020-09404-6 – ident: ref75 doi: 10.1162/089976698300017467 – ident: ref22 doi: 10.1016/j.taml.2020.01.031 – start-page: 127 volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst. ident: ref49 article-title: Galileo: Perceiving physical object properties by integrating a physics engine with deep learning – year: 2016 ident: ref55 article-title: Tracing liquid level and material boundaries in transparent vessels using the graph cut computer vision approach – ident: ref37 doi: 10.1007/s00466-019-01705-3 – ident: ref69 doi: 10.3115/v1/D14-1179 – ident: ref70 doi: 10.1162/neco.1997.9.8.1735 – ident: ref33 doi: 10.1007/s00466-017-1440-1 – year: 2019 ident: ref65 article-title: Physics-informed autoencoders for lyapunov-stable fluid flow prediction – ident: ref17 doi: 10.1109/ICRA.2017.7989247 – ident: ref10 doi: 10.1007/978-3-319-41217-7_17 – ident: ref67 doi: 10.1017/s0956792521000139 – ident: ref11 doi: 10.36884/jafm.13.05.30909 – ident: ref8 doi: 10.1103/physrevlett.126.180604 – start-page: 3424 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref41 article-title: Accelerating eulerian fluid simulation with convolutional networks – ident: ref81 doi: 10.1109/CVPR.2018.00472 – year: 2019 ident: ref60 article-title: Symplectic ODE-net: Learning hamiltonian dynamics with control – ident: ref3 doi: 10.1073/pnas.1306572110 – ident: ref7 doi: 10.1016/j.jcp.2020.109913 – ident: ref38 doi: 10.1016/j.cma.2021.113763 – ident: ref80 doi: 10.1145/3326362 – ident: ref23 doi: 10.1098/rspa.2020.0097 – ident: ref25 doi: 10.1038/nature14539 – ident: ref32 doi: 10.1103/physrevfluids.6.114402 – start-page: 5927 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref48 article-title: Visual grounding of learned physical models – ident: ref62 doi: 10.1088/0034-4885/29/1/306 – ident: ref63 doi: 10.1103/PhysRevLett.83.4542 – ident: ref5 doi: 10.1103/PhysRevLett.126.036401 – year: 2021 ident: ref9 article-title: Weak form generalized hamiltonian learning – ident: ref31 doi: 10.1007/978-3-030-77957-3_16 – ident: ref14 doi: 10.1371/journal.pone.0234569 – ident: ref73 doi: 10.1109/ICCV.2015.123 – ident: ref34 doi: 10.1007/s00161-018-0677-z – ident: ref36 doi: 10.3390/e21121165 – ident: ref43 doi: 10.1063/5.0030137 – start-page: 1310 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref68 article-title: On the difficulty of training recurrent neural networks – ident: ref54 doi: 10.1109/IROS.2016.7759326 – ident: ref61 doi: 10.1007/978-3-540-39895-0_3 – ident: ref20 doi: 10.1061/(ASCE)EM.1943-7889.0001947 – ident: ref15 doi: 10.1103/physreve.56.6620 – ident: ref51 doi: 10.1146/annurev.aa.30.090192.002551 – volume-title: ABAQUS/Standard Users Manual, Version 6.9 year: 2009 ident: ref72 – ident: ref24 doi: 10.1016/j.jcp.2020.109339 – ident: ref39 doi: 10.1016/j.jcp.2020.109950 – ident: ref26 doi: 10.1038/s42256-019-0077-5 – year: 2019 ident: ref59 article-title: Hamiltonian generative networks – ident: ref21 doi: 10.1103/PhysRevFluids.4.103907 – ident: ref47 doi: 10.1016/j.jcp.2020.110079 – ident: ref1 doi: 10.1146/annurev-control-072220-093055 – start-page: 8459 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref45 article-title: Learning to simulate complex physics with graph networks – ident: ref2 doi: 10.1371/journal.pcbi.1007210 – ident: ref18 doi: 10.1109/LRA.2021.3095269 – ident: ref46 doi: 10.1016/j.cma.2019.112789 – ident: ref74 doi: 10.1016/S0895-7177(00)00240-5 – year: 2017 ident: ref79 article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space – ident: ref56 doi: 10.1063/1.5128231 – start-page: 15 379 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref57 article-title: Hamiltonian neural networks – ident: ref64 doi: 10.2514/1.J058462 – year: 2014 ident: ref71 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – ident: ref35 doi: 10.1016/j.jcp.2020.109982 – ident: ref29 doi: 10.1109/TNNLS.2022.3148734 – volume: 72 start-page: 1 issue: 2011 year: 2011 ident: ref66 article-title: Sparse autoencoder publication-title: CS294A Lecture Notes – year: 2020 ident: ref30 article-title: Rank-adaptive structure-preserving reduced basis methods for hamiltonian systems – ident: ref44 doi: 10.1111/cgf.13620 – year: 2017 ident: ref6 article-title: Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations – ident: ref76 doi: 10.1109/34.232073 – year: 2018 ident: ref16 article-title: Relational inductive biases, deep learning, and graph networks – ident: ref19 doi: 10.1109/LRA.2020.2969931 – ident: ref77 doi: 10.1109/TRO.2017.2705103 – ident: ref27 doi: 10.1038/s41467-018-07210-0 – ident: ref12 doi: 10.1007/s00162-020-00520-4 – ident: ref40 doi: 10.1111/cgf.13619 – start-page: 317 volume-title: Proc. Conf. Robot Learn. ident: ref4 article-title: SPNets: Differentiable fluid dynamics for deep neural networks – ident: ref58 doi: 10.1016/j.neunet.2020.08.017 – ident: ref78 article-title: Depth post-processing for intel realsense™ depth camera d400 series |
| SSID | ssj0014503 |
| Score | 2.5024157 |
| Snippet | Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy... |
| SourceID | unpaywall hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2136 |
| SubjectTerms | Algorithms Artificial neural networks Augmented reality Computer Science Computer vision Deep learning Engineering Sciences Fluids mechanics Free surfaces GENERIC Heuristic algorithms Image reconstruction Liquids Machine Learning Manifolds Mechanics Modeling and Simulation Neural networks Perception Physics perception Real time Real-time systems Recurrent neural networks sloshing Thermodynamics thermodynamics-aware deep learning Vision systems |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ7A8aA8iIJoFc1qfNNC293uto8XAzmN4CVyEZ-a3e5uIJ69C9fTwF_P7PYHIGriU9PutM1mvul-007nA3ijrFAJz2zIVGxCphkNVVRmoZTW9d9HxPhizMMjPpqwjyfpyQp0-oS_tReIozxL9xImcr4KazxFuj2AtcnRePit6dmN0Zx5_VTkIXlIU68clsQ8CnHZT7qfZKJ8r547PR3M9BPMUl0SEt1aiFZPXRmk11f5E9Vch3vLai4vfsnp9Mbyc7Bx_RNPU3XyfXdZq93y8m5Px7_P7CE8aMknGTZoeQQrptqEjU7YgbRxvgnrN7oUbsFnXyVaLsi4L4IhZxX5Mp3511d4mntekq9n9SlxiHO-MpogAM9_zHSjeE-8MOjCEfSLxzA52D9-PwpbHYawxNWqDrUUngZkGZdGqdJIa6gsLaXIvrjBhDLXipc2UowlpcRAloIxHIxZqpTRdBsG1awyT4EoEWlrLU-U1kjkmFQKt3hRGwuqrQog7pxSlG2TcqeVMS18shLlxfF4ePihcI4sWkcG8LY_Z9606Pin9Wv0dW_oumuPhp8KdyxyuW7C059xAFsOCr1VLpDHiTyAnQ4aRRvqiyIRyIiQlwkewKt-GIPUfXmRlZkt0QazPErx0ZoF8KSBVH9tBK0TLcB7vusxdmceHr635vHs_8yfw33cpU29-Q4M6vOleYF0qlYv24C6AlduFMk priority: 102 providerName: Unpaywall |
| Title | Physics Perception in Sloshing Scenes With Guaranteed Thermodynamic Consistency |
| URI | https://ieeexplore.ieee.org/document/9739979 https://www.ncbi.nlm.nih.gov/pubmed/35316181 https://www.proquest.com/docview/2761374176 https://www.proquest.com/docview/2642333058 https://hal.science/hal-04094265 http://hdl.handle.net/10985/24796 |
| UnpaywallVersion | submittedVersion |
| Volume | 45 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: Consulter via IEEE Xplore customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB015QA9UGgpGEq1IG7Uqe111vYxQlQBkRKJRpSTtZ9qRGpHjQ0Kv57Z9YdaqBCnWPHY8uq98b7xzs4AvBEmERFLjR-LUPuxiqkvApn6nBtbfx8Z45Ixp2dsMo8_XowutuC43wujtXbJZ3poD91aviplbT-VnWQJTqdJNoBBkrJmr1a_YhCPXBdkVDDo4RhGdBtkguzkfDaefsBQMIowQrUBiG3_RpF8LEzDW_PR4NJmQ7o2K3cpzh24XxcrvvnJl8sbs9DpLky752-ST74P60oM5a8_Sjv-7wAfwcNWjpJxw5_HsKWLPdjtWj2Q1vP3YOdG3cJ9-OzyRuWazPq0GLIoyJdl6T5o4WX2DUq-LqpLYjlo0dOKICWvr0q1KfjVQhLXKnRtJfvmCcxP35-_m_htZwZf4vxV-YonThikKeNaCKm50ZRLQynqMaYxxMyUYNIEIo4jydG1eRLHeBJhEkIregDbRVnoZ0BEEihjDIuEUijtYi4E_uJNTZhQZYQHYYdPLtuy5bZ7xjJ34UuQ5Q7e3MKbt_B68La_ZtUU7fin9WuEvTe09bYn40-5_S-w0W_ERj9CD_YtXL1Vi5QHhx1L8tb513mUoEZCpZYwD171p9Ft7VoML3RZow3GfZTiyzb14GnDrv7eHTU9OO7p9tc4qhVidWscz-9-xBfwAK1ok2l-CNvVda1fopCqxJHzoCO4Nz-bjb_9BmDBF-0 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615VB6oNDyCBQwiBvNNomd13GFqLawWyqxFb1FfqortsmqmwUtv56x81ALFeKUKLGjWN838TfxeAbgnTCpiJLM-EyE2meKUV8EMvM5Nzb_PjLGBWNOTpPROft0EV9swGG_F0Zr7YLP9MCeurV8VcmV_VV2lKc4nab5JtyLGWNxs1urXzNgsauDjBoGbRwdiW6LTJAfTc-GkxN0BqMIfVTrgtgCcBTpl4RZeGtG2ry08ZCu0MpdmnMHtlflgq9_8vn8xjx0vAuTbgRN-Mn3waoWA_nrj-SO_zvEh_CgFaRk2DDoEWzocg92u2IPpLX9Pdi5kblwH764yFG5JGd9YAyZleTrvHK_tLCb_YaSb7P6klgWWvy0IkjK66tKrUt-NZPEFQtdWtG-fgznxx-nH0Z-W5vBlziD1b7iqZMGWZZwLYTU3GjKpaEUFVmi0cnMlUikCQRjkeRo3DxlDG8iTEJoRZ_AVlmV-hkQkQbKGJNEQikUd4wLgUd8qAlTqozwIOzwKWSbuNzWz5gXzoEJ8sLBW1h4ixZeD973fRZN2o5_tn6LsPcNbcbt0XBc2GuB9X-jJP4RerBv4epbtUh5cNCxpGjNf1lEKaok1Gpp4sGb_jYarl2N4aWuVtgGPT9K8XObefC0YVf_7I6aHhz2dPtrHPUCsbo1jud3v-Jr2B5NJ-NifHL6-QXcxx60iTs_gK36eqVfoqyqxStnTb8BWOgZig |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ7A8aA8iIJoFc1qfNNC293uto8XAzmN4CVyEZ-a3e5uIJ69C9fTwF_P7PYHIGriU9PutM1mvul-007nA3ijrFAJz2zIVGxCphkNVVRmoZTW9d9HxPhizMMjPpqwjyfpyQp0-oS_tReIozxL9xImcr4KazxFuj2AtcnRePit6dmN0Zx5_VTkIXlIU68clsQ8CnHZT7qfZKJ8r547PR3M9BPMUl0SEt1aiFZPXRmk11f5E9Vch3vLai4vfsnp9Mbyc7Bx_RNPU3XyfXdZq93y8m5Px7_P7CE8aMknGTZoeQQrptqEjU7YgbRxvgnrN7oUbsFnXyVaLsi4L4IhZxX5Mp3511d4mntekq9n9SlxiHO-MpogAM9_zHSjeE-8MOjCEfSLxzA52D9-PwpbHYawxNWqDrUUngZkGZdGqdJIa6gsLaXIvrjBhDLXipc2UowlpcRAloIxHIxZqpTRdBsG1awyT4EoEWlrLU-U1kjkmFQKt3hRGwuqrQog7pxSlG2TcqeVMS18shLlxfF4ePihcI4sWkcG8LY_Z9606Pin9Wv0dW_oumuPhp8KdyxyuW7C059xAFsOCr1VLpDHiTyAnQ4aRRvqiyIRyIiQlwkewKt-GIPUfXmRlZkt0QazPErx0ZoF8KSBVH9tBK0TLcB7vusxdmceHr635vHs_8yfw33cpU29-Q4M6vOleYF0qlYv24C6AlduFMk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+Perception+in+Sloshing+Scenes+With+Guaranteed+Thermodynamic+Consistency&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Moya%2C+Beatriz&rft.au=Badias%2C+Alberto&rft.au=Gonzalez%2C+David&rft.au=Chinesta%2C+Francisco&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=45&rft.issue=2&rft.spage=2136&rft.epage=2150&rft_id=info:doi/10.1109%2FTPAMI.2022.3160100&rft_id=info%3Apmid%2F35316181&rft.externalDocID=9739979 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |