Physics Perception in Sloshing Scenes With Guaranteed Thermodynamic Consistency

Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 2; pp. 2136 - 2150
Main Authors Moya, Beatriz, Badias, Alberto, Gonzalez, David, Chinesta, Francisco, Cueto, Elias
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
2160-9292
1939-3539
DOI10.1109/TPAMI.2022.3160100

Cover

Abstract Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time.
AbstractList Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time.
Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time
Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time.Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time.
Author Moya, Beatriz
Chinesta, Francisco
Gonzalez, David
Badias, Alberto
Cueto, Elias
Author_xml – sequence: 1
  givenname: Beatriz
  surname: Moya
  fullname: Moya, Beatriz
  email: beam@unizar.es
  organization: Aragon Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
– sequence: 2
  givenname: Alberto
  orcidid: 0000-0001-7639-6767
  surname: Badias
  fullname: Badias, Alberto
  email: alberto.badias@upm.es
  organization: Polytechnic University of Madrid, Madrid, Spain
– sequence: 3
  givenname: David
  orcidid: 0000-0003-3003-5856
  surname: Gonzalez
  fullname: Gonzalez, David
  email: gonzal@unizar.es
  organization: Aragon Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
– sequence: 4
  givenname: Francisco
  orcidid: 0000-0002-6272-3429
  surname: Chinesta
  fullname: Chinesta, Francisco
  email: francisco.chinesta@ensam.eu
  organization: ESI Group Chair, PIMM Lab, Arts et Métiers Institute of Technology, Paris, France
– sequence: 5
  givenname: Elias
  orcidid: 0000-0003-1017-4381
  surname: Cueto
  fullname: Cueto, Elias
  email: ecueto@unizar.es
  organization: Aragon Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35316181$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04094265$$DView record in HAL
BookMark eNptkV2L1DAUhoOsuLOrf0BBCt7oRcd8NW0uh8H9gJEd2BEvQ5qe2ixtOiat0n-_GTuOMHjV0DxPkvc9V-jC9Q4QekvwkhAsP--2q6_3S4opXTIiMMH4BVrQuEollfQCLTARNC0KWlyiqxCeMCY8w-wVumRZFEhBFuhh20zBmpBswRvYD7Z3iXXJY9uHxrofyaMBByH5bocmuR21124AqJJdA77rq8npzppk3btgwwDOTK_Ry1q3Ad4cv9fo282X3fou3Tzc3q9Xm9RwKoe00nlBKOdFITSUpQFdA9OmZoxnQgDnQlalMDUuOadGlxjrnPO4GROUJVTsGrH53NHt9fRbt63ae9tpPymC1aEeNezj49ShHnWsJ1qfZqvR__heW3W32qjDP8yx5FRkv0hkP87s3vc_RwiD6mww0LbaQT8GRQWnjDGcFRH9cIY-9aN3Mb-iuSAs5yQXkXp_pMayg-p0_99hRKCYAeP7EDzUythBH0YyeG3bU7A_cz8PRs_U8zb-K72bJQsAJ0HmTMpcsmfuSLW4
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_cma_2024_117458
crossref_primary_10_1016_j_cma_2024_117144
crossref_primary_10_1016_j_cma_2024_117210
crossref_primary_10_1016_j_est_2023_110016
crossref_primary_10_1016_j_engappai_2025_110108
crossref_primary_10_1007_s11831_023_10033_y
crossref_primary_10_1016_j_rineng_2024_102295
Cites_doi 10.1007/978-0-387-31439-6_534
10.1016/j.cma.2021.113816
10.1177/0278364917734052
10.1007/s11831-020-09404-6
10.1162/089976698300017467
10.1016/j.taml.2020.01.031
10.1007/s00466-019-01705-3
10.3115/v1/D14-1179
10.1162/neco.1997.9.8.1735
10.1007/s00466-017-1440-1
10.1109/ICRA.2017.7989247
10.1007/978-3-319-41217-7_17
10.1017/s0956792521000139
10.36884/jafm.13.05.30909
10.1103/physrevlett.126.180604
10.1109/CVPR.2018.00472
10.1073/pnas.1306572110
10.1016/j.jcp.2020.109913
10.1016/j.cma.2021.113763
10.1145/3326362
10.1098/rspa.2020.0097
10.1038/nature14539
10.1103/physrevfluids.6.114402
10.1088/0034-4885/29/1/306
10.1103/PhysRevLett.83.4542
10.1103/PhysRevLett.126.036401
10.1007/978-3-030-77957-3_16
10.1371/journal.pone.0234569
10.1109/ICCV.2015.123
10.1007/s00161-018-0677-z
10.3390/e21121165
10.1063/5.0030137
10.1109/IROS.2016.7759326
10.1007/978-3-540-39895-0_3
10.1061/(ASCE)EM.1943-7889.0001947
10.1103/physreve.56.6620
10.1146/annurev.aa.30.090192.002551
10.1016/j.jcp.2020.109339
10.1016/j.jcp.2020.109950
10.1038/s42256-019-0077-5
10.1103/PhysRevFluids.4.103907
10.1016/j.jcp.2020.110079
10.1146/annurev-control-072220-093055
10.1371/journal.pcbi.1007210
10.1109/LRA.2021.3095269
10.1016/j.cma.2019.112789
10.1016/S0895-7177(00)00240-5
10.1063/1.5128231
10.2514/1.J058462
10.1016/j.jcp.2020.109982
10.1109/TNNLS.2022.3148734
10.1111/cgf.13620
10.1109/34.232073
10.1109/LRA.2020.2969931
10.1109/TRO.2017.2705103
10.1038/s41467-018-07210-0
10.1007/s00162-020-00520-4
10.1111/cgf.13619
10.1016/j.neunet.2020.08.017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
ADTOC
UNPAY
DOI 10.1109/TPAMI.2022.3160100
DatabaseName Accès Toulouse INP et ENVT - IEEE Xplore ASPP 2005
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: Consulter via IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2150
ExternalDocumentID oai:sam.ensam.eu:10985/24796
oai:HAL:hal-04094265v1
35316181
10_1109_TPAMI_2022_3160100
9739979
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Regional Government of Aragon and the European Social Fund
– fundername: Spanish Ministry of Economy and Competitiveness
  grantid: PID2020-113463RB-C31
– fundername: Research Group T88
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c429t-da781244886aebbceafe3acf334566e4469db6cf0b442cab00a744345145bbed3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
2160-9292
IngestDate Sun Oct 26 04:15:03 EDT 2025
Tue Oct 14 20:42:06 EDT 2025
Wed Oct 01 14:55:06 EDT 2025
Sun Jun 29 12:53:32 EDT 2025
Thu Apr 03 07:03:20 EDT 2025
Wed Oct 01 02:24:10 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Wed Aug 27 02:54:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords sloshing
thermodynamics-aware deep learning
Physics perception
GENERIC
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-da781244886aebbceafe3acf334566e4469db6cf0b442cab00a744345145bbed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1017-4381
0000-0001-7639-6767
0000-0002-6272-3429
0000-0003-3003-5856
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10985/24796
PMID 35316181
PQID 2761374176
PQPubID 85458
PageCount 15
ParticipantIDs unpaywall_primary_10_1109_tpami_2022_3160100
hal_primary_oai_HAL_hal_04094265v1
crossref_primary_10_1109_TPAMI_2022_3160100
proquest_journals_2761374176
pubmed_primary_35316181
crossref_citationtrail_10_1109_TPAMI_2022_3160100
ieee_primary_9739979
proquest_miscellaneous_2642333058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref56
ref15
ref14
ref58
ref52
ref11
ref10
ref54
Raissi (ref6) 2017
ref17
ref19
ref18
Li (ref48)
Hesthaven (ref30) 2020
Erichson (ref65) 2019
ref51
ref50
Schenck (ref53) 2016
ref46
Qi (ref79) 2017
ref47
Course (ref9) 2021
ref44
ref43
ref8
ref7
Battaglia (ref16) 2018
ref3
ref5
Tompson (ref41)
ref81
ref40
ref80
ref35
ref34
Greydanus (ref57)
ref37
Ng (ref66) 2011; 72
ref36
ref31
ref75
ref74
ref33
ref77
ref32
ref76
ref2
ref1
Schenck (ref4)
ref39
ref38
Toth (ref59) 2019
ref70
Smith (ref72) 2009
ref73
Eppel (ref55) 2016
ref24
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref21
Zhong (ref60) 2019
ref28
ref27
Chung (ref71) 2014
ref29
Pascanu (ref68)
Wu (ref49)
ref62
Anders Grunnet-Jepsen (ref78)
Sanchez-Gonzalez (ref45)
ref61
Miyanawala (ref42) 2017
References_xml – ident: ref52
  doi: 10.1007/978-0-387-31439-6_534
– year: 2016
  ident: ref53
  article-title: Detection and tracking of liquids with fully convolutional networks
– year: 2017
  ident: ref42
  article-title: An efficient deep learning technique for the navier-stokes equations: Application to unsteady wake flow dynamics
– ident: ref28
  doi: 10.1016/j.cma.2021.113816
– ident: ref50
  doi: 10.1177/0278364917734052
– ident: ref13
  doi: 10.1007/s11831-020-09404-6
– ident: ref75
  doi: 10.1162/089976698300017467
– ident: ref22
  doi: 10.1016/j.taml.2020.01.031
– start-page: 127
  volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst.
  ident: ref49
  article-title: Galileo: Perceiving physical object properties by integrating a physics engine with deep learning
– year: 2016
  ident: ref55
  article-title: Tracing liquid level and material boundaries in transparent vessels using the graph cut computer vision approach
– ident: ref37
  doi: 10.1007/s00466-019-01705-3
– ident: ref69
  doi: 10.3115/v1/D14-1179
– ident: ref70
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref33
  doi: 10.1007/s00466-017-1440-1
– year: 2019
  ident: ref65
  article-title: Physics-informed autoencoders for lyapunov-stable fluid flow prediction
– ident: ref17
  doi: 10.1109/ICRA.2017.7989247
– ident: ref10
  doi: 10.1007/978-3-319-41217-7_17
– ident: ref67
  doi: 10.1017/s0956792521000139
– ident: ref11
  doi: 10.36884/jafm.13.05.30909
– ident: ref8
  doi: 10.1103/physrevlett.126.180604
– start-page: 3424
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref41
  article-title: Accelerating eulerian fluid simulation with convolutional networks
– ident: ref81
  doi: 10.1109/CVPR.2018.00472
– year: 2019
  ident: ref60
  article-title: Symplectic ODE-net: Learning hamiltonian dynamics with control
– ident: ref3
  doi: 10.1073/pnas.1306572110
– ident: ref7
  doi: 10.1016/j.jcp.2020.109913
– ident: ref38
  doi: 10.1016/j.cma.2021.113763
– ident: ref80
  doi: 10.1145/3326362
– ident: ref23
  doi: 10.1098/rspa.2020.0097
– ident: ref25
  doi: 10.1038/nature14539
– ident: ref32
  doi: 10.1103/physrevfluids.6.114402
– start-page: 5927
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref48
  article-title: Visual grounding of learned physical models
– ident: ref62
  doi: 10.1088/0034-4885/29/1/306
– ident: ref63
  doi: 10.1103/PhysRevLett.83.4542
– ident: ref5
  doi: 10.1103/PhysRevLett.126.036401
– year: 2021
  ident: ref9
  article-title: Weak form generalized hamiltonian learning
– ident: ref31
  doi: 10.1007/978-3-030-77957-3_16
– ident: ref14
  doi: 10.1371/journal.pone.0234569
– ident: ref73
  doi: 10.1109/ICCV.2015.123
– ident: ref34
  doi: 10.1007/s00161-018-0677-z
– ident: ref36
  doi: 10.3390/e21121165
– ident: ref43
  doi: 10.1063/5.0030137
– start-page: 1310
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref68
  article-title: On the difficulty of training recurrent neural networks
– ident: ref54
  doi: 10.1109/IROS.2016.7759326
– ident: ref61
  doi: 10.1007/978-3-540-39895-0_3
– ident: ref20
  doi: 10.1061/(ASCE)EM.1943-7889.0001947
– ident: ref15
  doi: 10.1103/physreve.56.6620
– ident: ref51
  doi: 10.1146/annurev.aa.30.090192.002551
– volume-title: ABAQUS/Standard Users Manual, Version 6.9
  year: 2009
  ident: ref72
– ident: ref24
  doi: 10.1016/j.jcp.2020.109339
– ident: ref39
  doi: 10.1016/j.jcp.2020.109950
– ident: ref26
  doi: 10.1038/s42256-019-0077-5
– year: 2019
  ident: ref59
  article-title: Hamiltonian generative networks
– ident: ref21
  doi: 10.1103/PhysRevFluids.4.103907
– ident: ref47
  doi: 10.1016/j.jcp.2020.110079
– ident: ref1
  doi: 10.1146/annurev-control-072220-093055
– start-page: 8459
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref45
  article-title: Learning to simulate complex physics with graph networks
– ident: ref2
  doi: 10.1371/journal.pcbi.1007210
– ident: ref18
  doi: 10.1109/LRA.2021.3095269
– ident: ref46
  doi: 10.1016/j.cma.2019.112789
– ident: ref74
  doi: 10.1016/S0895-7177(00)00240-5
– year: 2017
  ident: ref79
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– ident: ref56
  doi: 10.1063/1.5128231
– start-page: 15 379
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref57
  article-title: Hamiltonian neural networks
– ident: ref64
  doi: 10.2514/1.J058462
– year: 2014
  ident: ref71
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– ident: ref35
  doi: 10.1016/j.jcp.2020.109982
– ident: ref29
  doi: 10.1109/TNNLS.2022.3148734
– volume: 72
  start-page: 1
  issue: 2011
  year: 2011
  ident: ref66
  article-title: Sparse autoencoder
  publication-title: CS294A Lecture Notes
– year: 2020
  ident: ref30
  article-title: Rank-adaptive structure-preserving reduced basis methods for hamiltonian systems
– ident: ref44
  doi: 10.1111/cgf.13620
– year: 2017
  ident: ref6
  article-title: Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations
– ident: ref76
  doi: 10.1109/34.232073
– year: 2018
  ident: ref16
  article-title: Relational inductive biases, deep learning, and graph networks
– ident: ref19
  doi: 10.1109/LRA.2020.2969931
– ident: ref77
  doi: 10.1109/TRO.2017.2705103
– ident: ref27
  doi: 10.1038/s41467-018-07210-0
– ident: ref12
  doi: 10.1007/s00162-020-00520-4
– ident: ref40
  doi: 10.1111/cgf.13619
– start-page: 317
  volume-title: Proc. Conf. Robot Learn.
  ident: ref4
  article-title: SPNets: Differentiable fluid dynamics for deep neural networks
– ident: ref58
  doi: 10.1016/j.neunet.2020.08.017
– ident: ref78
  article-title: Depth post-processing for intel realsense™ depth camera d400 series
SSID ssj0014503
Score 2.5024157
Snippet Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy...
SourceID unpaywall
hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2136
SubjectTerms Algorithms
Artificial neural networks
Augmented reality
Computer Science
Computer vision
Deep learning
Engineering Sciences
Fluids mechanics
Free surfaces
GENERIC
Heuristic algorithms
Image reconstruction
Liquids
Machine Learning
Manifolds
Mechanics
Modeling and Simulation
Neural networks
Perception
Physics perception
Real time
Real-time systems
Recurrent neural networks
sloshing
Thermodynamics
thermodynamics-aware deep learning
Vision systems
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ7A8aA8iIJoFc1qfNNC293uto8XAzmN4CVyEZ-a3e5uIJ69C9fTwF_P7PYHIGriU9PutM1mvul-007nA3ijrFAJz2zIVGxCphkNVVRmoZTW9d9HxPhizMMjPpqwjyfpyQp0-oS_tReIozxL9xImcr4KazxFuj2AtcnRePit6dmN0Zx5_VTkIXlIU68clsQ8CnHZT7qfZKJ8r547PR3M9BPMUl0SEt1aiFZPXRmk11f5E9Vch3vLai4vfsnp9Mbyc7Bx_RNPU3XyfXdZq93y8m5Px7_P7CE8aMknGTZoeQQrptqEjU7YgbRxvgnrN7oUbsFnXyVaLsi4L4IhZxX5Mp3511d4mntekq9n9SlxiHO-MpogAM9_zHSjeE-8MOjCEfSLxzA52D9-PwpbHYawxNWqDrUUngZkGZdGqdJIa6gsLaXIvrjBhDLXipc2UowlpcRAloIxHIxZqpTRdBsG1awyT4EoEWlrLU-U1kjkmFQKt3hRGwuqrQog7pxSlG2TcqeVMS18shLlxfF4ePihcI4sWkcG8LY_Z9606Pin9Wv0dW_oumuPhp8KdyxyuW7C059xAFsOCr1VLpDHiTyAnQ4aRRvqiyIRyIiQlwkewKt-GIPUfXmRlZkt0QazPErx0ZoF8KSBVH9tBK0TLcB7vusxdmceHr635vHs_8yfw33cpU29-Q4M6vOleYF0qlYv24C6AlduFMk
  priority: 102
  providerName: Unpaywall
Title Physics Perception in Sloshing Scenes With Guaranteed Thermodynamic Consistency
URI https://ieeexplore.ieee.org/document/9739979
https://www.ncbi.nlm.nih.gov/pubmed/35316181
https://www.proquest.com/docview/2761374176
https://www.proquest.com/docview/2642333058
https://hal.science/hal-04094265
http://hdl.handle.net/10985/24796
UnpaywallVersion submittedVersion
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: Consulter via IEEE Xplore
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB015QA9UGgpGEq1IG7Uqe111vYxQlQBkRKJRpSTtZ9qRGpHjQ0Kv57Z9YdaqBCnWPHY8uq98b7xzs4AvBEmERFLjR-LUPuxiqkvApn6nBtbfx8Z45Ixp2dsMo8_XowutuC43wujtXbJZ3poD91aviplbT-VnWQJTqdJNoBBkrJmr1a_YhCPXBdkVDDo4RhGdBtkguzkfDaefsBQMIowQrUBiG3_RpF8LEzDW_PR4NJmQ7o2K3cpzh24XxcrvvnJl8sbs9DpLky752-ST74P60oM5a8_Sjv-7wAfwcNWjpJxw5_HsKWLPdjtWj2Q1vP3YOdG3cJ9-OzyRuWazPq0GLIoyJdl6T5o4WX2DUq-LqpLYjlo0dOKICWvr0q1KfjVQhLXKnRtJfvmCcxP35-_m_htZwZf4vxV-YonThikKeNaCKm50ZRLQynqMaYxxMyUYNIEIo4jydG1eRLHeBJhEkIregDbRVnoZ0BEEihjDIuEUijtYi4E_uJNTZhQZYQHYYdPLtuy5bZ7xjJ34UuQ5Q7e3MKbt_B68La_ZtUU7fin9WuEvTe09bYn40-5_S-w0W_ERj9CD_YtXL1Vi5QHhx1L8tb513mUoEZCpZYwD171p9Ft7VoML3RZow3GfZTiyzb14GnDrv7eHTU9OO7p9tc4qhVidWscz-9-xBfwAK1ok2l-CNvVda1fopCqxJHzoCO4Nz-bjb_9BmDBF-0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615VB6oNDyCBQwiBvNNomd13GFqLawWyqxFb1FfqortsmqmwUtv56x81ALFeKUKLGjWN838TfxeAbgnTCpiJLM-EyE2meKUV8EMvM5Nzb_PjLGBWNOTpPROft0EV9swGG_F0Zr7YLP9MCeurV8VcmV_VV2lKc4nab5JtyLGWNxs1urXzNgsauDjBoGbRwdiW6LTJAfTc-GkxN0BqMIfVTrgtgCcBTpl4RZeGtG2ry08ZCu0MpdmnMHtlflgq9_8vn8xjx0vAuTbgRN-Mn3waoWA_nrj-SO_zvEh_CgFaRk2DDoEWzocg92u2IPpLX9Pdi5kblwH764yFG5JGd9YAyZleTrvHK_tLCb_YaSb7P6klgWWvy0IkjK66tKrUt-NZPEFQtdWtG-fgznxx-nH0Z-W5vBlziD1b7iqZMGWZZwLYTU3GjKpaEUFVmi0cnMlUikCQRjkeRo3DxlDG8iTEJoRZ_AVlmV-hkQkQbKGJNEQikUd4wLgUd8qAlTqozwIOzwKWSbuNzWz5gXzoEJ8sLBW1h4ixZeD973fRZN2o5_tn6LsPcNbcbt0XBc2GuB9X-jJP4RerBv4epbtUh5cNCxpGjNf1lEKaok1Gpp4sGb_jYarl2N4aWuVtgGPT9K8XObefC0YVf_7I6aHhz2dPtrHPUCsbo1jud3v-Jr2B5NJ-NifHL6-QXcxx60iTs_gK36eqVfoqyqxStnTb8BWOgZig
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ7A8aA8iIJoFc1qfNNC293uto8XAzmN4CVyEZ-a3e5uIJ69C9fTwF_P7PYHIGriU9PutM1mvul-007nA3ijrFAJz2zIVGxCphkNVVRmoZTW9d9HxPhizMMjPpqwjyfpyQp0-oS_tReIozxL9xImcr4KazxFuj2AtcnRePit6dmN0Zx5_VTkIXlIU68clsQ8CnHZT7qfZKJ8r547PR3M9BPMUl0SEt1aiFZPXRmk11f5E9Vch3vLai4vfsnp9Mbyc7Bx_RNPU3XyfXdZq93y8m5Px7_P7CE8aMknGTZoeQQrptqEjU7YgbRxvgnrN7oUbsFnXyVaLsi4L4IhZxX5Mp3511d4mntekq9n9SlxiHO-MpogAM9_zHSjeE-8MOjCEfSLxzA52D9-PwpbHYawxNWqDrUUngZkGZdGqdJIa6gsLaXIvrjBhDLXipc2UowlpcRAloIxHIxZqpTRdBsG1awyT4EoEWlrLU-U1kjkmFQKt3hRGwuqrQog7pxSlG2TcqeVMS18shLlxfF4ePihcI4sWkcG8LY_Z9606Pin9Wv0dW_oumuPhp8KdyxyuW7C059xAFsOCr1VLpDHiTyAnQ4aRRvqiyIRyIiQlwkewKt-GIPUfXmRlZkt0QazPErx0ZoF8KSBVH9tBK0TLcB7vusxdmceHr635vHs_8yfw33cpU29-Q4M6vOleYF0qlYv24C6AlduFMk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+Perception+in+Sloshing+Scenes+With+Guaranteed+Thermodynamic+Consistency&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Moya%2C+Beatriz&rft.au=Badias%2C+Alberto&rft.au=Gonzalez%2C+David&rft.au=Chinesta%2C+Francisco&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=45&rft.issue=2&rft.spage=2136&rft.epage=2150&rft_id=info:doi/10.1109%2FTPAMI.2022.3160100&rft_id=info%3Apmid%2F35316181&rft.externalDocID=9739979
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon