Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB–PET longitudinal study
Amyloid-β deposition in Alzheimer's disease is thought to start while individuals are still cognitively unimpaired and it is hypothesized that after an early phase of fast accumulation, a plateau is reached by the time of cognitive decline. However, few longitudinal Pittsburgh compound B-positr...
Saved in:
Published in | Brain (London, England : 1878) Vol. 135; no. 7; pp. 2126 - 2139 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.07.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/aws125 |
Cover
Abstract | Amyloid-β deposition in Alzheimer's disease is thought to start while individuals are still cognitively unimpaired and it is hypothesized that after an early phase of fast accumulation, a plateau is reached by the time of cognitive decline. However, few longitudinal Pittsburgh compound B-positron emission tomography studies have tested this hypothesis, and with conflicting results. The purpose of this work is to further our understanding of the dynamics of amyloid-β deposition in a large longitudinal cohort. A total of 32 patients with Alzheimer's disease, 49 subjects with mild cognitive impairment and 103 healthy controls underwent two Pittsburgh compound B-positron emission tomography scans 18 months apart. For each participant, a parametric map of Pittsburgh compound B-positron emission tomography rate of change was created [(follow-up scan - baseline scan)/follow-up duration] and entered in a voxelwise three-way analysis of covariance, with clinical status (healthy controls, mild cognitive impairment or Alzheimer's disease), disease progression (clinical conversion from healthy controls to mild cognitive impairment or Alzheimer's disease, or from mild cognitive impairment to Alzheimer's disease) and Pittsburgh compound B status (positive versus negative) as independent factors. Only a significant effect of the Pittsburgh compound B status was found: both Pittsburgh compound B-positive and -negative subjects showed a significant increase in amyloid-β deposition, with this increase being significantly higher in Pittsburgh compound B-positive individuals. This finding suggests either that Pittsburgh compound B-negative individuals have slower rates of amyloid-β accumulation than positive, or that the proportion of individuals showing significant increase in amyloid-β deposition, termed 'Pittsburgh compound B accumulators', is higher within the Pittsburgh compound B-positive group than within the Pittsburgh compound B-negative group. The bimodal distribution of the individual rates of neocortical amyloid-β accumulation observed support the existence of 'Pittsburgh compound B non-accumulators' and 'Pittsburgh compound B accumulators' and different clustering analyses led to a consistent threshold to separate these two subgroups (0.014-0.022 standardized uptake value ratio(pons)/year). The voxelwise three-way analysis of covariance was thus recomputed with the 'Pittsburgh compound B accumulators' only and the results were almost unchanged, with the Pittsburgh compound B-positive group showing higher accumulation than the Pittsburgh compound B-negative group. Finally, a significant negative correlation was found between Pittsburgh compound B rate of change and Pittsburgh compound B baseline burden, but only in the Pittsburgh compound B-positive group (r= -0.24; P=0.025). Higher rates of amyloid-β deposition are associated with higher amyloid-β burden suggesting that amyloid-β deposition does not reach a plateau when cognitive impairments manifest but is instead an ongoing process present even at the Alzheimer's disease stage. amyloid-β accumulation also seems to slow down at the latest stages of the process, i.e. in participants with the highest amyloid burden. Furthermore, this study identified the existence of Pittsburgh compound 'accumulators' and 'non-accumulators', notably within the Pittsburgh compound B-negative group, which may be a relevant concept for future studies. |
---|---|
AbstractList | Amyloid-β deposition in Alzheimer's disease is thought to start while individuals are still cognitively unimpaired and it is hypothesized that after an early phase of fast accumulation, a plateau is reached by the time of cognitive decline. However, few longitudinal Pittsburgh compound B-positron emission tomography studies have tested this hypothesis, and with conflicting results. The purpose of this work is to further our understanding of the dynamics of amyloid-β deposition in a large longitudinal cohort. A total of 32 patients with Alzheimer's disease, 49 subjects with mild cognitive impairment and 103 healthy controls underwent two Pittsburgh compound B-positron emission tomography scans 18 months apart. For each participant, a parametric map of Pittsburgh compound B-positron emission tomography rate of change was created [(follow-up scan - baseline scan)/follow-up duration] and entered in a voxelwise three-way analysis of covariance, with clinical status (healthy controls, mild cognitive impairment or Alzheimer's disease), disease progression (clinical conversion from healthy controls to mild cognitive impairment or Alzheimer's disease, or from mild cognitive impairment to Alzheimer's disease) and Pittsburgh compound B status (positive versus negative) as independent factors. Only a significant effect of the Pittsburgh compound B status was found: both Pittsburgh compound B-positive and -negative subjects showed a significant increase in amyloid-β deposition, with this increase being significantly higher in Pittsburgh compound B-positive individuals. This finding suggests either that Pittsburgh compound B-negative individuals have slower rates of amyloid-β accumulation than positive, or that the proportion of individuals showing significant increase in amyloid-β deposition, termed 'Pittsburgh compound B accumulators', is higher within the Pittsburgh compound B-positive group than within the Pittsburgh compound B-negative group. The bimodal distribution of the individual rates of neocortical amyloid-β accumulation observed support the existence of 'Pittsburgh compound B non-accumulators' and 'Pittsburgh compound B accumulators' and different clustering analyses led to a consistent threshold to separate these two subgroups (0.014-0.022 standardized uptake value ratio(pons)/year). The voxelwise three-way analysis of covariance was thus recomputed with the 'Pittsburgh compound B accumulators' only and the results were almost unchanged, with the Pittsburgh compound B-positive group showing higher accumulation than the Pittsburgh compound B-negative group. Finally, a significant negative correlation was found between Pittsburgh compound B rate of change and Pittsburgh compound B baseline burden, but only in the Pittsburgh compound B-positive group (r= -0.24; P=0.025). Higher rates of amyloid-β deposition are associated with higher amyloid-β burden suggesting that amyloid-β deposition does not reach a plateau when cognitive impairments manifest but is instead an ongoing process present even at the Alzheimer's disease stage. amyloid-β accumulation also seems to slow down at the latest stages of the process, i.e. in participants with the highest amyloid burden. Furthermore, this study identified the existence of Pittsburgh compound 'accumulators' and 'non-accumulators', notably within the Pittsburgh compound B-negative group, which may be a relevant concept for future studies.Amyloid-β deposition in Alzheimer's disease is thought to start while individuals are still cognitively unimpaired and it is hypothesized that after an early phase of fast accumulation, a plateau is reached by the time of cognitive decline. However, few longitudinal Pittsburgh compound B-positron emission tomography studies have tested this hypothesis, and with conflicting results. The purpose of this work is to further our understanding of the dynamics of amyloid-β deposition in a large longitudinal cohort. A total of 32 patients with Alzheimer's disease, 49 subjects with mild cognitive impairment and 103 healthy controls underwent two Pittsburgh compound B-positron emission tomography scans 18 months apart. For each participant, a parametric map of Pittsburgh compound B-positron emission tomography rate of change was created [(follow-up scan - baseline scan)/follow-up duration] and entered in a voxelwise three-way analysis of covariance, with clinical status (healthy controls, mild cognitive impairment or Alzheimer's disease), disease progression (clinical conversion from healthy controls to mild cognitive impairment or Alzheimer's disease, or from mild cognitive impairment to Alzheimer's disease) and Pittsburgh compound B status (positive versus negative) as independent factors. Only a significant effect of the Pittsburgh compound B status was found: both Pittsburgh compound B-positive and -negative subjects showed a significant increase in amyloid-β deposition, with this increase being significantly higher in Pittsburgh compound B-positive individuals. This finding suggests either that Pittsburgh compound B-negative individuals have slower rates of amyloid-β accumulation than positive, or that the proportion of individuals showing significant increase in amyloid-β deposition, termed 'Pittsburgh compound B accumulators', is higher within the Pittsburgh compound B-positive group than within the Pittsburgh compound B-negative group. The bimodal distribution of the individual rates of neocortical amyloid-β accumulation observed support the existence of 'Pittsburgh compound B non-accumulators' and 'Pittsburgh compound B accumulators' and different clustering analyses led to a consistent threshold to separate these two subgroups (0.014-0.022 standardized uptake value ratio(pons)/year). The voxelwise three-way analysis of covariance was thus recomputed with the 'Pittsburgh compound B accumulators' only and the results were almost unchanged, with the Pittsburgh compound B-positive group showing higher accumulation than the Pittsburgh compound B-negative group. Finally, a significant negative correlation was found between Pittsburgh compound B rate of change and Pittsburgh compound B baseline burden, but only in the Pittsburgh compound B-positive group (r= -0.24; P=0.025). Higher rates of amyloid-β deposition are associated with higher amyloid-β burden suggesting that amyloid-β deposition does not reach a plateau when cognitive impairments manifest but is instead an ongoing process present even at the Alzheimer's disease stage. amyloid-β accumulation also seems to slow down at the latest stages of the process, i.e. in participants with the highest amyloid burden. Furthermore, this study identified the existence of Pittsburgh compound 'accumulators' and 'non-accumulators', notably within the Pittsburgh compound B-negative group, which may be a relevant concept for future studies. Amyloid-β deposition in Alzheimer's disease is thought to start while individuals are still cognitively unimpaired and it is hypothesized that after an early phase of fast accumulation, a plateau is reached by the time of cognitive decline. However, few longitudinal Pittsburgh compound B-positron emission tomography studies have tested this hypothesis, and with conflicting results. The purpose of this work is to further our understanding of the dynamics of amyloid-β deposition in a large longitudinal cohort. A total of 32 patients with Alzheimer's disease, 49 subjects with mild cognitive impairment and 103 healthy controls underwent two Pittsburgh compound B-positron emission tomography scans 18 months apart. For each participant, a parametric map of Pittsburgh compound B-positron emission tomography rate of change was created [(follow-up scan - baseline scan)/follow-up duration] and entered in a voxelwise three-way analysis of covariance, with clinical status (healthy controls, mild cognitive impairment or Alzheimer's disease), disease progression (clinical conversion from healthy controls to mild cognitive impairment or Alzheimer's disease, or from mild cognitive impairment to Alzheimer's disease) and Pittsburgh compound B status (positive versus negative) as independent factors. Only a significant effect of the Pittsburgh compound B status was found: both Pittsburgh compound B-positive and -negative subjects showed a significant increase in amyloid-β deposition, with this increase being significantly higher in Pittsburgh compound B-positive individuals. This finding suggests either that Pittsburgh compound B-negative individuals have slower rates of amyloid-β accumulation than positive, or that the proportion of individuals showing significant increase in amyloid-β deposition, termed 'Pittsburgh compound B accumulators', is higher within the Pittsburgh compound B-positive group than within the Pittsburgh compound B-negative group. The bimodal distribution of the individual rates of neocortical amyloid-β accumulation observed support the existence of 'Pittsburgh compound B non-accumulators' and 'Pittsburgh compound B accumulators' and different clustering analyses led to a consistent threshold to separate these two subgroups (0.014-0.022 standardized uptake value ratio(pons)/year). The voxelwise three-way analysis of covariance was thus recomputed with the 'Pittsburgh compound B accumulators' only and the results were almost unchanged, with the Pittsburgh compound B-positive group showing higher accumulation than the Pittsburgh compound B-negative group. Finally, a significant negative correlation was found between Pittsburgh compound B rate of change and Pittsburgh compound B baseline burden, but only in the Pittsburgh compound B-positive group (r= -0.24; P=0.025). Higher rates of amyloid-β deposition are associated with higher amyloid-β burden suggesting that amyloid-β deposition does not reach a plateau when cognitive impairments manifest but is instead an ongoing process present even at the Alzheimer's disease stage. amyloid-β accumulation also seems to slow down at the latest stages of the process, i.e. in participants with the highest amyloid burden. Furthermore, this study identified the existence of Pittsburgh compound 'accumulators' and 'non-accumulators', notably within the Pittsburgh compound B-negative group, which may be a relevant concept for future studies. Amyloid- beta deposition in Alzheimer's disease is thought to start while individuals are still cognitively unimpaired and it is hypothesized that after an early phase of fast accumulation, a plateau is reached by the time of cognitive decline. However, few longitudinal Pittsburgh compound B-positron emission tomography studies have tested this hypothesis, and with conflicting results. The purpose of this work is to further our understanding of the dynamics of amyloid- beta deposition in a large longitudinal cohort. A total of 32 patients with Alzheimer's disease, 49 subjects with mild cognitive impairment and 103 healthy controls underwent two Pittsburgh compound B-positron emission tomography scans 18 months apart. For each participant, a parametric map of Pittsburgh compound B-positron emission tomography rate of change was created [(follow-up scan - baseline scan)/follow-up duration] and entered in a voxelwise three-way analysis of covariance, with clinical status (healthy controls, mild cognitive impairment or Alzheimer's disease), disease progression (clinical conversion from healthy controls to mild cognitive impairment or Alzheimer's disease, or from mild cognitive impairment to Alzheimer's disease) and Pittsburgh compound B status (positive versus negative) as independent factors. Only a significant effect of the Pittsburgh compound B status was found: both Pittsburgh compound B-positive and -negative subjects showed a significant increase in amyloid- beta deposition, with this increase being significantly higher in Pittsburgh compound B-positive individuals. This finding suggests either that Pittsburgh compound B-negative individuals have slower rates of amyloid- beta accumulation than positive, or that the proportion of individuals showing significant increase in amyloid- beta deposition, termed 'Pittsburgh compound B accumulators', is higher within the Pittsburgh compound B-positive group than within the Pittsburgh compound B-negative group. The bimodal distribution of the individual rates of neocortical amyloid- beta accumulation observed support the existence of 'Pittsburgh compound B non-accumulators' and 'Pittsburgh compound B accumulators' and different clustering analyses led to a consistent threshold to separate these two subgroups (0.014-0.022 standardized uptake value ratio sub(pons)/year). The voxelwise three-way analysis of covariance was thus recomputed with the 'Pittsburgh compound B accumulators' only and the results were almost unchanged, with the Pittsburgh compound B-positive group showing higher accumulation than the Pittsburgh compound B-negative group. Finally, a significant negative correlation was found between Pittsburgh compound B rate of change and Pittsburgh compound B baseline burden, but only in the Pittsburgh compound B-positive group (r = -0.24; P = 0.025). Higher rates of amyloid- beta deposition are associated with higher amyloid- beta burden suggesting that amyloid- beta deposition does not reach a plateau when cognitive impairments manifest but is instead an ongoing process present even at the Alzheimer's disease stage. amyloid- beta accumulation also seems to slow down at the latest stages of the process, i.e. in participants with the highest amyloid burden. Furthermore, this study identified the existence of Pittsburgh compound 'accumulators' and 'non-accumulators', notably within the Pittsburgh compound B-negative group, which may be a relevant concept for future studies. |
Author | Rowe, Christopher C. Bourgeat, Pierrick Salvado, Olivier Martins, Ralph N. Grassiot, Blandine Masters, Colin L. Ellis, Kathryn A. Ames, David Villain, Nicolas Chételat, Gaël Villemagne, Victor L. Eustache, Francis Jones, Gareth |
Author_xml | – sequence: 1 givenname: Nicolas surname: Villain fullname: Villain, Nicolas – sequence: 2 givenname: Gaël surname: Chételat fullname: Chételat, Gaël – sequence: 3 givenname: Blandine surname: Grassiot fullname: Grassiot, Blandine – sequence: 4 givenname: Pierrick surname: Bourgeat fullname: Bourgeat, Pierrick – sequence: 5 givenname: Gareth surname: Jones fullname: Jones, Gareth – sequence: 6 givenname: Kathryn A. surname: Ellis fullname: Ellis, Kathryn A. – sequence: 7 givenname: David surname: Ames fullname: Ames, David – sequence: 8 givenname: Ralph N. surname: Martins fullname: Martins, Ralph N. – sequence: 9 givenname: Francis surname: Eustache fullname: Eustache, Francis – sequence: 10 givenname: Olivier surname: Salvado fullname: Salvado, Olivier – sequence: 11 givenname: Colin L. surname: Masters fullname: Masters, Colin L. – sequence: 12 givenname: Christopher C. surname: Rowe fullname: Rowe, Christopher C. – sequence: 13 givenname: Victor L. surname: Villemagne fullname: Villemagne, Victor L. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26068088$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22628162$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-00707688$$DView record in HAL |
BookMark | eNqF0s1uEzEQAGALFdEfuHFGviBx6FLbu-t4uaVVoUiRqFA5W157NjHy2sHepCynvgMnJJ6CB-Eh-iQ4JG0vSJz8o8_j0cwcoj0fPCD0nJLXlDTlSRuV9SfqOlFWP0IHtOKkYLTme-iAEMIL0dRkHx2m9JkQWpWMP0H7jHEmKGcH6OdHmNvglcNm9Kq3OuHQYdWPLlhT_P6FDSxDskM22Hq8AOWGxYjBGYhuPMa9dQbrMPeZrAHbfqls7MEPWHmDp-7bAmwP8fbmR8LGJlAJ3mCF1-EruOt8xpf29Pbm--X5FXbBz-2wMnaTTcqb8Sl63CmX4NluPUKf3p5fnV0Usw_v3p9NZ4WuWDMUWkCpm66FagJVVdbEVA0TNTeCi7oRup3kO14aoZkWba2hopOu5RpYA6yuVHmEjrdxF8rJZbS9iqMMysqL6UxanyD2kpAJmXAh1jTzV1u-jOHLCtIge5s0OKc8hFWSucoVoZw0_P-UlDUlmdaZvtjRVduDuc_jrlcZvNwBlbRyXVRe2_TgOOGCCJEd2zodQ0oROqntoDYdHPKouPyn3AyO_Ds4cjs4DyW4f3QX95_8D0LpysQ |
CitedBy_id | crossref_primary_10_1093_brain_awad330 crossref_primary_10_1016_j_neurobiolaging_2020_05_008 crossref_primary_10_1093_cercor_bhad380 crossref_primary_10_1186_s13195_018_0438_z crossref_primary_10_3233_JAD_171145 crossref_primary_10_1001_jamanetworkopen_2019_16439 crossref_primary_10_2967_jnumed_119_235879 crossref_primary_10_1111_jnc_14680 crossref_primary_10_1016_S1474_4422_18_30043_7 crossref_primary_10_1021_ml4000707 crossref_primary_10_1016_j_nicl_2013_03_014 crossref_primary_10_1016_j_remn_2018_03_004 crossref_primary_10_1016_j_neurobiolaging_2013_09_012 crossref_primary_10_1016_S1474_4422_20_30314_8 crossref_primary_10_1016_j_neurobiolaging_2015_10_025 crossref_primary_10_2967_jnumed_113_129221 crossref_primary_10_1162_netn_a_00395 crossref_primary_10_3233_JAD_181198 crossref_primary_10_1016_j_neurobiolaging_2017_09_011 crossref_primary_10_3389_fnagi_2021_705030 crossref_primary_10_1093_brain_aww015 crossref_primary_10_2967_jnumed_115_171678 crossref_primary_10_1038_nm_3734 crossref_primary_10_1016_S1474_4422_15_00323_3 crossref_primary_10_1007_s00259_017_3666_8 crossref_primary_10_1016_j_jneumeth_2014_01_033 crossref_primary_10_1002_brb3_3232 crossref_primary_10_1186_s13195_020_00721_3 crossref_primary_10_1016_j_neurobiolaging_2013_05_006 crossref_primary_10_1007_s00401_013_1185_7 crossref_primary_10_1016_j_pneurobio_2014_02_004 crossref_primary_10_1093_braincomms_fcaa007 crossref_primary_10_1016_j_mad_2021_111434 crossref_primary_10_1109_JSTSP_2016_2600400 crossref_primary_10_1007_s11910_014_0498_9 crossref_primary_10_1016_S1474_4422_22_00408_2 crossref_primary_10_1007_s00259_020_04773_3 crossref_primary_10_1016_j_neurobiolaging_2014_05_040 crossref_primary_10_1016_j_neuroimage_2016_04_001 crossref_primary_10_1515_revneuro_2021_0135 crossref_primary_10_1016_j_neuroimage_2023_120146 crossref_primary_10_1016_j_pscychresns_2018_11_003 crossref_primary_10_1177_13872877251324222 crossref_primary_10_1038_s12276_021_00719_3 crossref_primary_10_1002_alz_13136 crossref_primary_10_1007_s00401_013_1151_4 crossref_primary_10_1016_j_arr_2016_01_004 crossref_primary_10_1097_CM9_0000000000001496 crossref_primary_10_1016_j_jalz_2013_01_002 crossref_primary_10_1038_nrneurol_2018_9 crossref_primary_10_1016_j_bbadis_2014_06_029 crossref_primary_10_1016_j_neuroimage_2016_08_056 crossref_primary_10_1097_WNF_0000000000000308 crossref_primary_10_1186_s40035_021_00269_8 crossref_primary_10_2139_ssrn_4160777 crossref_primary_10_1186_s13195_014_0062_5 crossref_primary_10_1016_j_nicl_2013_02_006 crossref_primary_10_1016_j_bbadis_2023_166729 crossref_primary_10_1016_j_nicl_2017_04_019 crossref_primary_10_1016_j_lpm_2022_104121 crossref_primary_10_1016_j_nicl_2023_103321 crossref_primary_10_1016_j_neuron_2013_12_003 crossref_primary_10_1093_brain_awt195 crossref_primary_10_2967_jnumed_114_149302 crossref_primary_10_1093_brain_awv135 crossref_primary_10_1016_S1474_4422_13_70044_9 crossref_primary_10_3389_fnagi_2018_00067 crossref_primary_10_1126_scitranslmed_aaf2362 crossref_primary_10_1016_S1474_4422_21_00066_1 crossref_primary_10_14283_jpad_2021_70 crossref_primary_10_1007_s11604_021_01132_6 crossref_primary_10_1155_2014_785039 crossref_primary_10_1097_WAD_0000000000000330 crossref_primary_10_2967_jnumed_113_120618 crossref_primary_10_1038_s41467_017_02416_0 crossref_primary_10_3389_fninf_2024_1348113 crossref_primary_10_1007_s10072_016_2477_1 crossref_primary_10_1016_S1474_4422_14_70194_2 crossref_primary_10_3233_JAD_179920 crossref_primary_10_3390_diagnostics12061357 crossref_primary_10_1148_radiol_2020200028 crossref_primary_10_1007_s00259_014_2704_z crossref_primary_10_1016_j_neurobiolaging_2013_09_029 crossref_primary_10_1212_WNL_0000000000009216 crossref_primary_10_3174_ajnr_A3847 crossref_primary_10_1002_alz_12748 crossref_primary_10_1177_20592043211010152 crossref_primary_10_3233_JAD_200694 crossref_primary_10_1016_j_biopsych_2019_12_021 crossref_primary_10_1186_s13024_022_00523_1 crossref_primary_10_1007_s40336_015_0110_6 crossref_primary_10_1016_j_ejps_2023_106421 crossref_primary_10_1212_WNL_0000000000011524 crossref_primary_10_1016_j_neurobiolaging_2017_06_005 crossref_primary_10_1016_j_neuint_2025_105947 crossref_primary_10_1038_s41467_017_01150_x crossref_primary_10_2217_nmt_14_53 crossref_primary_10_1111_bpa_12127 crossref_primary_10_1038_s41467_019_12921_z crossref_primary_10_3389_fnhum_2017_00380 crossref_primary_10_21833_ijaas_2021_05_013 crossref_primary_10_1016_S1474_4422_12_70227_2 crossref_primary_10_3233_JAD_170096 crossref_primary_10_1093_braincomms_fcaa177 crossref_primary_10_1038_s41583_023_00731_8 crossref_primary_10_14283_jpad_2021_21 crossref_primary_10_1016_j_jalz_2018_02_018 crossref_primary_10_1523_JNEUROSCI_0485_18_2018 crossref_primary_10_20935_AcadMed6134 crossref_primary_10_2967_jnumed_117_194720 crossref_primary_10_1016_j_neurobiolaging_2024_03_007 crossref_primary_10_1136_jnnp_2018_319122 crossref_primary_10_1016_j_mcn_2018_12_004 crossref_primary_10_1016_j_remnie_2018_04_003 crossref_primary_10_3233_JAD_160528 crossref_primary_10_1212_01_wnl_0000435556_21319_e4 crossref_primary_10_1001_jamaneurol_2024_2619 crossref_primary_10_3389_fnagi_2022_788567 crossref_primary_10_1016_j_neuropsychologia_2015_06_008 crossref_primary_10_1016_j_jocn_2019_07_004 crossref_primary_10_1002_14651858_CD010386_pub2 crossref_primary_10_1111_ene_12398 crossref_primary_10_1590_0004_282x_anp_2022_s138 crossref_primary_10_1212_WNL_0000000000000977 crossref_primary_10_1016_j_jalz_2018_09_001 crossref_primary_10_3389_fneur_2021_805135 crossref_primary_10_1093_brain_awt142 crossref_primary_10_1093_brain_awt146 crossref_primary_10_1093_brain_awt145 crossref_primary_10_3233_JAD_170591 crossref_primary_10_2967_jnumed_116_187351 crossref_primary_10_3233_JAD_220908 crossref_primary_10_1016_j_nicl_2014_11_015 crossref_primary_10_1177_0271678X221142139 crossref_primary_10_1016_j_nbd_2015_07_016 crossref_primary_10_1038_s41380_022_01886_z crossref_primary_10_1038_nrneurol_2015_251 crossref_primary_10_2967_jnumed_116_176115 crossref_primary_10_1002_alz_13761 crossref_primary_10_3233_ADR_240019 crossref_primary_10_1212_WNL_0000000000207920 crossref_primary_10_3390_brainsci11091180 crossref_primary_10_1016_j_jalz_2018_05_013 crossref_primary_10_17340_jkna_2019_1_1 crossref_primary_10_1186_s13195_017_0306_2 crossref_primary_10_1186_2051_5960_2_30 crossref_primary_10_3233_JAD_161074 crossref_primary_10_1002_psp4_12876 crossref_primary_10_1111_pcn_12326 crossref_primary_10_2139_ssrn_3869111 crossref_primary_10_1016_j_neurobiolaging_2017_07_004 crossref_primary_10_1002_alz_13654 crossref_primary_10_1016_j_neurobiolaging_2015_04_011 crossref_primary_10_1093_gerona_glw022 crossref_primary_10_3389_fnagi_2022_886778 crossref_primary_10_1016_j_jneuroim_2014_05_005 crossref_primary_10_1016_j_phrs_2022_106227 crossref_primary_10_1017_S0317167100015547 crossref_primary_10_3109_09540261_2013_870136 crossref_primary_10_1016_j_dadm_2017_11_003 crossref_primary_10_1016_j_jalz_2016_08_005 crossref_primary_10_1016_j_nicl_2019_101800 crossref_primary_10_1093_brain_awy244 crossref_primary_10_1016_j_dadm_2014_11_005 crossref_primary_10_3389_fnins_2017_00281 crossref_primary_10_1093_brain_awx279 crossref_primary_10_1212_WNL_0000000000000386 crossref_primary_10_1007_s00406_023_01701_y crossref_primary_10_3233_JAD_170261 crossref_primary_10_1038_s41583_018_0067_3 crossref_primary_10_1016_j_parkreldis_2013_03_009 crossref_primary_10_3390_ijms19123702 crossref_primary_10_2217_bmm_2017_0433 crossref_primary_10_2967_jnumed_121_263255 crossref_primary_10_1212_WNL_0000000000004733 crossref_primary_10_3389_fnagi_2023_1259190 crossref_primary_10_1016_j_nbas_2023_100074 crossref_primary_10_1021_acs_jproteome_1c00630 crossref_primary_10_3389_fnagi_2017_00362 crossref_primary_10_1016_j_mcna_2012_12_017 crossref_primary_10_1186_s12987_025_00635_y crossref_primary_10_1186_s13550_015_0090_6 crossref_primary_10_1212_WNL_0000000000006469 crossref_primary_10_2967_jnumed_112_113654 crossref_primary_10_1016_j_jad_2020_05_097 crossref_primary_10_1053_j_semnuclmed_2016_09_006 crossref_primary_10_1002_hbm_25121 crossref_primary_10_1093_brain_awt127 crossref_primary_10_2217_bmm_12_56 crossref_primary_10_3233_JAD_201156 crossref_primary_10_1053_j_semnuclmed_2020_12_005 crossref_primary_10_1007_s00259_012_2237_2 crossref_primary_10_1186_s13195_017_0299_x crossref_primary_10_1073_pnas_1317918110 crossref_primary_10_1093_brain_awx046 |
Cites_doi | 10.1136/jnnp.2008.171496 10.1212/WNL.0b013e3181b23564 10.1093/brain/awq383 10.1001/archneurol.2010.357 10.1093/brain/awq349 10.3233/JAD-2011-0043 10.2967/jnumed.106.037556 10.1212/01.WNL.0000115115.98960.37 10.1001/archneurol.2011.77 10.1001/archneur.56.3.303 10.1212/WNL.0b013e3181bacf1b 10.1016/j.neuroimage.2008.02.056 10.1093/brain/awn016 10.1016/j.jalz.2011.03.003 10.1016/j.neurobiolaging.2010.06.015 10.1002/ana.22248 10.1016/j.tins.2011.05.005 10.1016/j.jalz.2011.05.585 10.1126/scitranslmed.3002609 10.1001/archneur.63.5.665 10.1093/brain/awq277 10.1002/ana.21345 10.1016/S1474-4422(10)70043-0 10.1093/brain/awp062 10.1016/j.biopsych.2010.05.013 10.1038/nrneurol.2009.215 10.1016/S1474-4422(09)70330-8 10.1126/science.1072994 10.1016/S0002-9440(10)64573-7 10.1007/s00401-009-0532-1 10.1212/WNL.0b013e318212015e 10.1001/archneur.64.3.431 10.1038/nrd3505 10.1001/archneur.56.6.673 10.1001/archneur.65.10.noc80013 10.1097/NEN.0b013e3181919a48 10.1001/archneurol.2009.269 10.1212/WNL.0b013e3181d3e3e9 10.1016/j.neurobiolaging.2010.04.007 10.1212/WNL.0b013e3181c7da8e 10.1212/WNL.34.7.939 10.1006/nimg.2001.0978 10.1038/nature08538 10.1093/brain/awl178 10.1212/01.WNL.0000129697.01779.0A 10.1007/s12035-008-8019-y 10.1016/j.jalz.2010.03.003 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M 10.1016/j.jalz.2010.03.006 10.1212/WNL.0b013e318246d67a 10.1016/S1474-4422(09)70299-6 10.1016/j.neuroimage.2011.07.098 10.1259/bjr/78981552 10.1001/archneur.65.11.1509 10.1002/ana.20009 10.1016/j.jalz.2010.03.007 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | AIBL Research Group |
CorporateAuthor_xml | – name: AIBL Research Group |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 1XC VOOES |
DOI | 10.1093/brain/aws125 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2139 |
ExternalDocumentID | oai_HAL_inserm_00707688v1 22628162 26068088 10_1093_brain_aws125 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ AAYXX ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 1XC VOOES |
ID | FETCH-LOGICAL-c429t-c8e3c9fbe47e44350d492856d868598cb735063d8c2c8b5ce417fb6ce29e254a3 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Fri Sep 12 12:49:29 EDT 2025 Thu Jul 10 18:29:29 EDT 2025 Fri Jul 11 05:02:56 EDT 2025 Mon Jul 21 05:52:28 EDT 2025 Mon Jul 21 09:14:45 EDT 2025 Tue Jul 01 00:46:05 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Human Nervous system diseases Cognitive disorder Alzheimer disease Ageing Pittsburgh compound B Cerebral disorder amyloid-β imaging Central nervous system disease longitudinal imaging normal ageing Degenerative disease Amyloid mild cognitive impairment Elderly Positron emission tomography Alzheimer's disease Emission tomography amyloid-b imaging positron emission tomography |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c429t-c8e3c9fbe47e44350d492856d868598cb735063d8c2c8b5ce417fb6ce29e254a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ORCID | 0000-0002-4889-7932 |
OpenAccessLink | https://inserm.hal.science/inserm-00707688 |
PMID | 22628162 |
PQID | 1035106095 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_inserm_00707688v1 proquest_miscellaneous_1434016096 proquest_miscellaneous_1035106095 pubmed_primary_22628162 pascalfrancis_primary_26068088 crossref_citationtrail_10_1093_brain_aws125 crossref_primary_10_1093_brain_aws125 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-01 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2012 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Aisen ( key 20170624052752_aws125-B1) 2010; 6 Bacskai ( key 20170624052752_aws125-B6) 2007; 64 Ewers ( key 20170624052752_aws125-B14) 2011; 8 Leinonen ( key 20170624052752_aws125-B31) 2008; 65 McKhann ( key 20170624052752_aws125-B32) 1984; 34 Chételat ( key 20170624052752_aws125-B9) 2011; 134 Frisoni ( key 20170624052752_aws125-B15) 2010; 6 Sojkova ( key 20170624052752_aws125-B49) 2011; 68 Aizenstein ( key 20170624052752_aws125-B2) 2008; 65 Petersen ( key 20170624052752_aws125-B41) 2006; 63 Duyckaerts ( key 20170624052752_aws125-B12) 2009; 118 Wilke ( key 20170624052752_aws125-B59) 2008; 41 Burack ( key 20170624052752_aws125-B7) 2010; 74 Sperling ( key 20170624052752_aws125-B51) 2011; 3 Rowe ( key 20170624052752_aws125-B45) 2010; 31 Tzourio-Mazoyer ( key 20170624052752_aws125-B54) 2002; 15 Kadir ( key 20170624052752_aws125-B26) 2011; 134 Chételat ( key 20170624052752_aws125-B10) 2012; 78 Grimmer ( key 20170624052752_aws125-B16) 2010; 68 Alzheimer’s Disease International ( key 20170624052752_aws125-B4) 2010 Rinne ( key 20170624052752_aws125-B44) 2010; 9 Kadir ( key 20170624052752_aws125-B24) 2012; 33 Petersen ( key 20170624052752_aws125-B42) 1999; 56 Nelson ( key 20170624052752_aws125-B37) 2009; 68 Andreasen ( key 20170624052752_aws125-B5) 1999; 56 Villemagne ( key 20170624052752_aws125-B56) 2009; 80 Tiraboschi ( key 20170624052752_aws125-B53) 2004; 62 Drago ( key 20170624052752_aws125-B11) 2011; 26 McLean ( key 20170624052752_aws125-B33) 1999; 46 Talairach ( key 20170624052752_aws125-B52) 1988 Resnick ( key 20170624052752_aws125-B43) 2010; 74 Chételat ( key 20170624052752_aws125-B8) 2011; 7 Perrin ( key 20170624052752_aws125-B39) 2009; 461 Villemagne ( key 20170624052752_aws125-B55) 2008; 38 Alzheimer’s Disease International ( key 20170624052752_aws125-B3) 2009 Jack ( key 20170624052752_aws125-B22) 2010; 133 Hardy ( key 20170624052752_aws125-B17) 2002; 297 Weiner ( key 20170624052752_aws125-B58) 2010; 6 Ingelsson ( key 20170624052752_aws125-B19) 2004; 62 Jack ( key 20170624052752_aws125-B21) 2010; 9 Jagust ( key 20170624052752_aws125-B23) 2010; 6 Kadir ( key 20170624052752_aws125-B25) 2008; 63 Koivunen ( key 20170624052752_aws125-B29) 2011; 76 Engler ( key 20170624052752_aws125-B13) 2006; 129 Villemagne ( key 20170624052752_aws125-B57) 2011; 69 Scheinin ( key 20170624052752_aws125-B47) 2009; 73 Jack ( key 20170624052752_aws125-B20) 2009; 132 Morris ( key 20170624052752_aws125-B35) 2009; 66 Kudo ( key 20170624052752_aws125-B30) 2007; 48 Petersen ( key 20170624052752_aws125-B40) 2010; 9 Ikonomovic ( key 20170624052752_aws125-B18) 2008; 131 Mormino ( key 20170624052752_aws125-B34) 2012; 59 Karran ( key 20170624052752_aws125-B27) 2011; 10 Sperling ( key 20170624052752_aws125-B50) 2011; 7 Sojkova ( key 20170624052752_aws125-B48) 2011; 68 Klunk ( key 20170624052752_aws125-B28) 2004; 55 Mukaetova-Ladinska ( key 20170624052752_aws125-B36) 2000; 157 Okello ( key 20170624052752_aws125-B38) 2009; 73 Scahill ( key 20170624052752_aws125-B46) 2007; 80 |
References_xml | – volume: 80 start-page: 998 year: 2009 ident: key 20170624052752_aws125-B56 article-title: 11C-PiB PET studies in typical sporadic Creutzfeldt-Jakob disease publication-title: J Neurol Neurosurg Psychiatr doi: 10.1136/jnnp.2008.171496 – volume: 73 start-page: 754 year: 2009 ident: key 20170624052752_aws125-B38 article-title: Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study publication-title: Neurology doi: 10.1212/WNL.0b013e3181b23564 – volume: 134 start-page: 798 year: 2011 ident: key 20170624052752_aws125-B9 article-title: Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awq383 – volume: 68 start-page: 232 year: 2011 ident: key 20170624052752_aws125-B48 article-title: In vivo fibrillar beta-amyloid detected using [11C]PiB positron emission tomography and neuropathologic assessment in older adults publication-title: Arch Neurol doi: 10.1001/archneurol.2010.357 – volume: 134 start-page: 301 year: 2011 ident: key 20170624052752_aws125-B26 article-title: Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awq349 – volume: 26 start-page: 159 year: 2011 ident: key 20170624052752_aws125-B11 article-title: Disease tracking markers for Alzheimer’s disease at the prodromal (MCI) stage publication-title: J Alzheimers Dis doi: 10.3233/JAD-2011-0043 – volume: 48 start-page: 553 year: 2007 ident: key 20170624052752_aws125-B30 article-title: 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6- (2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients publication-title: J Nucleic Med doi: 10.2967/jnumed.106.037556 – volume: 62 start-page: 925 year: 2004 ident: key 20170624052752_aws125-B19 article-title: Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain publication-title: Neurology doi: 10.1212/01.WNL.0000115115.98960.37 – volume: 68 start-page: 644 year: 2011 ident: key 20170624052752_aws125-B49 article-title: Longitudinal patterns of β-amyloid deposition in nondemented older adults publication-title: Arch Neurol doi: 10.1001/archneurol.2011.77 – volume: 56 start-page: 303 year: 1999 ident: key 20170624052752_aws125-B42 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Arch Neurol doi: 10.1001/archneur.56.3.303 – volume: 73 start-page: 1186 year: 2009 ident: key 20170624052752_aws125-B47 article-title: Follow-up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls publication-title: Neurology doi: 10.1212/WNL.0b013e3181bacf1b – volume: 41 start-page: 903 year: 2008 ident: key 20170624052752_aws125-B59 article-title: Template-O-Matic: a toolbox for creating customized pediatric templates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.056 – volume: 131 start-page: 1630 year: 2008 ident: key 20170624052752_aws125-B18 article-title: Post-mortem correlates of in vivo PiB–PET amyloid imaging in a typical case of Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awn016 – volume: 7 start-page: 280 year: 2011 ident: key 20170624052752_aws125-B50 article-title: Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.003 – volume: 33 start-page: 198.e1 year: 2012 ident: key 20170624052752_aws125-B24 article-title: Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer’s disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.06.015 – volume: 69 start-page: 181 year: 2011 ident: key 20170624052752_aws125-B57 article-title: Longitudinal assessment of amyloid-β and cognition in aging and Alzheimer disease publication-title: Ann Neurol doi: 10.1002/ana.22248 – volume: 8 start-page: 430 year: 2011 ident: key 20170624052752_aws125-B14 article-title: Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia publication-title: Trends Neurosci doi: 10.1016/j.tins.2011.05.005 – volume: 7 start-page: S208 year: 2011 ident: key 20170624052752_aws125-B8 article-title: The effects of ApoE4 on the rate of atrophy and ABeta deposition in asymptomatic elderly publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.05.585 – volume-title: World Alzheimer Report 2010 year: 2010 ident: key 20170624052752_aws125-B4 – volume: 3 start-page: 111cm33 year: 2011 ident: key 20170624052752_aws125-B51 article-title: Testing the right target and right drug at the right stage publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002609 – volume: 63 start-page: 665 year: 2006 ident: key 20170624052752_aws125-B41 article-title: Neuropathologic features of amnestic mild cognitive impairment publication-title: Arch Neurol doi: 10.1001/archneur.63.5.665 – volume: 133 start-page: 3336 year: 2010 ident: key 20170624052752_aws125-B22 article-title: Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awq277 – volume: 63 start-page: 621 year: 2008 ident: key 20170624052752_aws125-B25 article-title: Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease publication-title: Ann Neurol doi: 10.1002/ana.21345 – volume: 9 start-page: 363 year: 2010 ident: key 20170624052752_aws125-B44 article-title: 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study publication-title: Lancet Neurol doi: 10.1016/S1474-4422(10)70043-0 – volume: 132 start-page: 1355 year: 2009 ident: key 20170624052752_aws125-B20 article-title: Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awp062 – volume: 68 start-page: 879 year: 2010 ident: key 20170624052752_aws125-B16 article-title: Progression of cerebral amyloid load is associated with the apolipoprotein E ε4 genotype in Alzheimer’s disease publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.05.013 – volume: 6 start-page: 67 year: 2010 ident: key 20170624052752_aws125-B15 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.215 – volume: 9 start-page: 4 year: 2010 ident: key 20170624052752_aws125-B40 article-title: Alzheimer’s disease: progress in prediction publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70330-8 – volume: 297 start-page: 353 year: 2002 ident: key 20170624052752_aws125-B17 article-title: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics publication-title: Science doi: 10.1126/science.1072994 – volume: 157 start-page: 623 year: 2000 ident: key 20170624052752_aws125-B36 article-title: Staging of cytoskeletal and beta-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)64573-7 – volume: 118 start-page: 5 year: 2009 ident: key 20170624052752_aws125-B12 article-title: Classification and basic pathology of Alzheimer disease publication-title: Acta Neuropathol doi: 10.1007/s00401-009-0532-1 – volume: 76 start-page: 1085 year: 2011 ident: key 20170624052752_aws125-B29 article-title: Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study publication-title: Neurology doi: 10.1212/WNL.0b013e318212015e – volume: 64 start-page: 431 year: 2007 ident: key 20170624052752_aws125-B6 article-title: Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report publication-title: Arch Neurol doi: 10.1001/archneur.64.3.431 – volume-title: Co-planar stereotaxic atlas of the human brain year: 1988 ident: key 20170624052752_aws125-B52 – volume: 10 start-page: 698 year: 2011 ident: key 20170624052752_aws125-B27 article-title: The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3505 – volume: 56 start-page: 673 year: 1999 ident: key 20170624052752_aws125-B5 article-title: Cerebrospinal fluid beta-amyloid(1-42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease publication-title: Arch Neurol doi: 10.1001/archneur.56.6.673 – volume: 65 start-page: 1304 year: 2008 ident: key 20170624052752_aws125-B31 article-title: Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh compound B publication-title: Arch Neurol doi: 10.1001/archneur.65.10.noc80013 – volume: 68 start-page: 1 year: 2009 ident: key 20170624052752_aws125-B37 article-title: Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship publication-title: J Neuropathol Exp Neurol doi: 10.1097/NEN.0b013e3181919a48 – volume: 66 start-page: 1469 year: 2009 ident: key 20170624052752_aws125-B35 article-title: Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease publication-title: Arch Neurol doi: 10.1001/archneurol.2009.269 – volume: 74 start-page: 807 year: 2010 ident: key 20170624052752_aws125-B43 article-title: Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB publication-title: Neurology doi: 10.1212/WNL.0b013e3181d3e3e9 – volume: 31 start-page: 1275 year: 2010 ident: key 20170624052752_aws125-B45 article-title: Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.04.007 – volume: 74 start-page: 77 year: 2010 ident: key 20170624052752_aws125-B7 article-title: In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia publication-title: Neurology doi: 10.1212/WNL.0b013e3181c7da8e – volume: 34 start-page: 939 year: 1984 ident: key 20170624052752_aws125-B32 article-title: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease publication-title: Neurology doi: 10.1212/WNL.34.7.939 – volume: 15 start-page: 273 year: 2002 ident: key 20170624052752_aws125-B54 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 461 start-page: 916 year: 2009 ident: key 20170624052752_aws125-B39 article-title: Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease publication-title: Nature doi: 10.1038/nature08538 – volume: 129 start-page: 2856 year: 2006 ident: key 20170624052752_aws125-B13 article-title: Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awl178 – volume: 62 start-page: 1984 year: 2004 ident: key 20170624052752_aws125-B53 article-title: The importance of neuritic plaques and tangles to the development and evolution of AD publication-title: Neurology doi: 10.1212/01.WNL.0000129697.01779.0A – volume: 38 start-page: 1 year: 2008 ident: key 20170624052752_aws125-B55 article-title: The ART of loss: Abeta imaging in the evaluation of Alzheimer’s disease and other dementias publication-title: Mol Neurobiol doi: 10.1007/s12035-008-8019-y – volume: 6 start-page: 221 year: 2010 ident: key 20170624052752_aws125-B23 article-title: The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2010.03.003 – volume: 46 start-page: 860 year: 1999 ident: key 20170624052752_aws125-B33 article-title: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease publication-title: Ann Neurol doi: 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M – volume: 6 start-page: 239 year: 2010 ident: key 20170624052752_aws125-B1 article-title: Clinical core of the alzheimer’s disease neuroimaging initiative: progress and plans publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2010.03.006 – volume: 78 start-page: 477 year: 2012 ident: key 20170624052752_aws125-B10 article-title: Accelerated cortical atrophy in cognitively normal elderly with high β-amyloid deposition publication-title: Neurology doi: 10.1212/WNL.0b013e318246d67a – volume-title: World Alzheimer Report 2009 year: 2009 ident: key 20170624052752_aws125-B3 – volume: 9 start-page: 119 year: 2010 ident: key 20170624052752_aws125-B21 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70299-6 – volume: 59 start-page: 1152 year: 2012 ident: key 20170624052752_aws125-B34 article-title: Not quite PIB-positive, not quite PIB-negative: slight PIB elevations in elderly normal control subjects are biologically relevant publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.098 – volume: 80 start-page: S92 issue: Spec No 2 year: 2007 ident: key 20170624052752_aws125-B46 article-title: Longitudinal imaging in dementia publication-title: Br J Radiol doi: 10.1259/bjr/78981552 – volume: 65 start-page: 1509 year: 2008 ident: key 20170624052752_aws125-B2 article-title: Frequent amyloid deposition without significant cognitive impairment among the elderly publication-title: Arch Neurol doi: 10.1001/archneur.65.11.1509 – volume: 55 start-page: 306 year: 2004 ident: key 20170624052752_aws125-B28 article-title: Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B publication-title: Ann Neurol doi: 10.1002/ana.20009 – volume: 6 start-page: 202 year: 2010 ident: key 20170624052752_aws125-B58 article-title: The Alzheimer’s disease neuroimaging initiative: progress report and future plans publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2010.03.007 |
SSID | ssj0014326 |
Score | 2.505475 |
Snippet | Amyloid-β deposition in Alzheimer's disease is thought to start while individuals are still cognitively unimpaired and it is hypothesized that after an early... Amyloid- beta deposition in Alzheimer's disease is thought to start while individuals are still cognitively unimpaired and it is hypothesized that after an... |
SourceID | hal proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2126 |
SubjectTerms | Aged Alzheimer Disease - diagnostic imaging Alzheimer Disease - metabolism Alzheimer Disease - psychology Amyloid beta-Peptides - metabolism Aniline Compounds Biological and medical sciences Brain Mapping - methods Carbon Radioisotopes Case-Control Studies Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - metabolism Cognitive Dysfunction - psychology Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Disease Progression Female Humans Life Sciences Longitudinal Studies Male Medical sciences Neocortex - metabolism Neurology Neurons and Cognition Neuropsychological Tests - statistics & numerical data Positron-Emission Tomography - methods Radiopharmaceuticals Thiazoles |
Title | Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB–PET longitudinal study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22628162 https://www.proquest.com/docview/1035106095 https://www.proquest.com/docview/1434016096 https://inserm.hal.science/inserm-00707688 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1rb9MwFLW6ISEkhHhTHpORqPhQsuXhOA7f2qpbhRiqUIf2LXISh0Zq06qPDfZL-B38kP0mrh9JWrEi4EtUOU6t9p7YN8655yD0xmNZxl03syh3iEUgw7Y4E9ziQeYHiesIWxWFnX6igzPy4dw_bzSuN1hL61V8mFzdWFfyP1GFNoirrJL9h8hWXwoN8BniC0eIMBz_KsafxVe9k5dqX3lFy-BTeAbPU6vV67e6rqS6Gl6W3NrQZY_f20Kac2uT6Wk-kZVtJYtIlk3mi4p63plcjUWuLFaCZfk6R1dIX8y-ickltLSHedca9kftyUy6H61T5bRVC9dW-kk8L260ENH7EixgG_sSX6QdkhY4UGjlVfLfG-u3-yvJ41P7-lw1dCuyyMmCS3KvOtmdqMKdmjwwk4Xg-sJhLnUpjS2A2fpwaposrFx6uibUtiBpoVvzudY_McAdrtrB1gStC_R_Wzm0qla8UL_smF8uHV2QvQGj-VThCBJWlzlmDdnW6i5P7aFbbhA4kmJ6cl5RjiA1dakpvoDhjtRgR3ooKUptLt7KkPbGkp97d86XcMtm2mtl98OQSopG99E98zSDOxqaD1BDFA_R7VPD13iEfpQIxSVC8SzDJUKvf-IanTgvsEEnNuh8hyU2cYVNXGMTQ1Bxhc23S2yQ-R5zXOESG1ziTVxihcvH6Oy4P-oNLOMFYiWQMa2shAkvCbNYkEAQSPHtlIQu82nKKPNDlsQBtFEvZYmbsNhPBHGCLJZ2d6FwfcK9J2i_mBXiGcLCCzPHTlICSxmJU0A3dbhtC-qkDiTLdhO1y_8_SoxQvvRrmUSasOFFKnCRDlwTtarecy0Qs6sfhLLqIlXdB52PUV7AfDSNlOoWZezCaaKDrWBXV7hU2eSwJnpdRj-CpUC-3-OFmK2XMKYHK6xUkPxDH-IRKSoZ0iZ6qqFTj2AA-HznmRfoTn0fvkT7q8VavIKkfBUfKKT_AmCS5co |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+dynamics+of+amyloid-%CE%B2+deposition+in+healthy+elderly%2C+mild+cognitive+impairment+and+Alzheimer%27s+disease%3A+a+voxelwise+PiB-PET+longitudinal+study&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Villain%2C+Nicolas&rft.au=Ch%C3%A9telat%2C+Ga%C3%ABl&rft.au=Grassiot%2C+Blandine&rft.au=Bourgeat%2C+Pierrick&rft.date=2012-07-01&rft.eissn=1460-2156&rft.volume=135&rft.issue=Pt+7&rft.spage=2126&rft_id=info:doi/10.1093%2Fbrain%2Faws125&rft_id=info%3Apmid%2F22628162&rft.externalDocID=22628162 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |