Automatic Diagnosis of Melanoma Based on EfficientNet and Patch Strategy

Melanoma is a fatal skin disease, and there are many challenging tasks in the detection of melanoma through neural network at this stage. We propose a new method for melanoma diagnosis based on EfficientNet and patch strategy. The diagnosis method has three stages of operation. First, Cyclegan is ap...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 16; no. 1; pp. 1 - 18
Main Authors Zou, Qingxu, Cheng, Jinyong, Liang, Zhenlu
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 19.05.2023
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1875-6883
1875-6891
1875-6883
DOI10.1007/s44196-023-00246-1

Cover

Abstract Melanoma is a fatal skin disease, and there are many challenging tasks in the detection of melanoma through neural network at this stage. We propose a new method for melanoma diagnosis based on EfficientNet and patch strategy. The diagnosis method has three stages of operation. First, Cyclegan is applied offline to synthesize the under-represented category samples from the over-represented category samples, and the original image and the synthesized samples are combined into a new training set to complete the conditional image synthesis task; second, we creatively propose the patch strategy and implement the patch algorithm, and apply the patch strategy offline to obtain the patch image of the newly merged training set; finally, the newly merged training set and the obtained patch image are sent to the classification network. Where, the model we proposed is composed of three parts: Basic Convolutional Neural Network, Auxiliary Convolutional Neural Network, and Fusion Convolutional Neural Network, and applies a weighted integration strategy. We evaluated the proposed method on the ISIC 2016 Skin Injury Challenge classification dataset. Experiments show that the patch strategy plays an important role in the field of melanoma classification, and the melanoma detection method proposed in this paper obtains an accuracy of 0.852 and an AUC value of 0.854 on the test set. This method can focus the attention of the classification network on the meaningful area of the skin lesion image through manual intervention, and can effectively solve the problem of category imbalance, thereby improving the performance of skin lesion classification.
AbstractList Melanoma is a fatal skin disease, and there are many challenging tasks in the detection of melanoma through neural network at this stage. We propose a new method for melanoma diagnosis based on EfficientNet and patch strategy. The diagnosis method has three stages of operation. First, Cyclegan is applied offline to synthesize the under-represented category samples from the over-represented category samples, and the original image and the synthesized samples are combined into a new training set to complete the conditional image synthesis task; second, we creatively propose the patch strategy and implement the patch algorithm, and apply the patch strategy offline to obtain the patch image of the newly merged training set; finally, the newly merged training set and the obtained patch image are sent to the classification network. Where, the model we proposed is composed of three parts: Basic Convolutional Neural Network, Auxiliary Convolutional Neural Network, and Fusion Convolutional Neural Network, and applies a weighted integration strategy. We evaluated the proposed method on the ISIC 2016 Skin Injury Challenge classification dataset. Experiments show that the patch strategy plays an important role in the field of melanoma classification, and the melanoma detection method proposed in this paper obtains an accuracy of 0.852 and an AUC value of 0.854 on the test set. This method can focus the attention of the classification network on the meaningful area of the skin lesion image through manual intervention, and can effectively solve the problem of category imbalance, thereby improving the performance of skin lesion classification.
Abstract Melanoma is a fatal skin disease, and there are many challenging tasks in the detection of melanoma through neural network at this stage. We propose a new method for melanoma diagnosis based on EfficientNet and patch strategy. The diagnosis method has three stages of operation. First, Cyclegan is applied offline to synthesize the under-represented category samples from the over-represented category samples, and the original image and the synthesized samples are combined into a new training set to complete the conditional image synthesis task; second, we creatively propose the patch strategy and implement the patch algorithm, and apply the patch strategy offline to obtain the patch image of the newly merged training set; finally, the newly merged training set and the obtained patch image are sent to the classification network. Where, the model we proposed is composed of three parts: Basic Convolutional Neural Network, Auxiliary Convolutional Neural Network, and Fusion Convolutional Neural Network, and applies a weighted integration strategy. We evaluated the proposed method on the ISIC 2016 Skin Injury Challenge classification dataset. Experiments show that the patch strategy plays an important role in the field of melanoma classification, and the melanoma detection method proposed in this paper obtains an accuracy of 0.852 and an AUC value of 0.854 on the test set. This method can focus the attention of the classification network on the meaningful area of the skin lesion image through manual intervention, and can effectively solve the problem of category imbalance, thereby improving the performance of skin lesion classification.
ArticleNumber 87
Author Zou, Qingxu
Cheng, Jinyong
Liang, Zhenlu
Author_xml – sequence: 1
  givenname: Qingxu
  surname: Zou
  fullname: Zou, Qingxu
  organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 2
  givenname: Jinyong
  surname: Cheng
  fullname: Cheng, Jinyong
  organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 3
  givenname: Zhenlu
  orcidid: 0000-0001-9960-0839
  surname: Liang
  fullname: Liang, Zhenlu
  email: lzl@qlu.edu.cn
  organization: School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences)
BookMark eNqNkU1vFSEYhYmpibX2D7gicT368nFnmGWttW1StUl1Td7h48rNFK7Ajbn_vthpauOicQMEznPgHF6Tg5iiI-Qtg_cMYPhQpGRj3wEXHQCXfcdekEOmhlXXKyUOnqxfkeNSNtBUTAJIeUguTnY13WINhn4KuI6phEKTp1_cjLEd0I9YnKUp0jPvgwku1q-uUoyWXmM1P-lNzVjdev-GvPQ4F3f8MB-RH5_Pvp9edFffzi9PT646I_lYO8O5E75vA_ZiEtasrLUeLQyiB4vcy5UCjoMS08SN9cYJi6hQummUHiZxRC4XX5two7c53GLe64RB32-kvNaYW5zZaQs4rhzrgQ9OWoXI1ChNq2kyk_JibF5i8drFLe5_4zw_GjLQf7rVS7e6Qfq-W80a9W6htjn92rlS9SbtcmyhtYCBD1ICk03FF5XJqZTs_P9Zq38gE2r7nBRby2F-Hn3IUto9ce3y31c9Q90BHnKrrA
CitedBy_id crossref_primary_10_1049_ipr2_13219
Cites_doi 10.1088/0031-9155/60/9/3415
10.1016/j.cosrev.2021.100379
10.1109/TMI.2019.2893944
10.1109/ISBI.2018.8363547
10.1016/j.compmedimag.2018.10.007
10.1007/978-3-030-01201-4_33
10.1109/ICCV.2017.244
10.1016/j.cmpb.2019.07.005
10.1162/089976600300015312
10.1109/JBHI.2020.2977013
10.1038/s41598-021-84593-z
10.1088/1361-6560/ab86d3
10.3390/s20247080
10.1109/BIBM49941.2020.9313451
10.3390/e22040484
10.1186/s12859-021-04082-y
10.1016/j.artmed.2020.101938
10.1001/archderm.1995.01690150050011
10.1007/978-3-319-68127-6_2
10.1186/s13640-019-0465-0
10.1155/2021/6671498
10.1007/978-3-030-20351-1_62
10.1109/42.918473
10.1049/rsn2.12089
10.1109/EMBC.2018.8512488
10.1016/j.media.2016.06.023
10.1016/j.media.2019.02.010
10.1016/j.cmpb.2021.106447
10.1016/j.compbiomed.2021.104540
10.1109/ACCESS.2021.3065701
10.1109/JBHI.2018.2824327
10.1038/nature21056
10.1109/CVPR.2017.632
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1007/s44196-023-00246-1
DatabaseName Springer Nature Open Access Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1875-6883
EndPage 18
ExternalDocumentID oai_doaj_org_article_d0a95e16027e4d8aa1894c023bcb8f39
10.1007/s44196-023-00246-1
10_1007_s44196_023_00246_1
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: 23170807
  funderid: http://dx.doi.org/10.13039/501100007129
– fundername: Key Research and Development Project of Shandong Province
  grantid: 2019JZZY020124
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HCIFZ
HZ~
J~4
K7-
O9-
OK1
PIMPY
RSV
SOJ
TFW
TR2
AASML
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADMSI
ADTOC
AHDSZ
H13
IL9
IPNFZ
M4Z
RIG
TDBHL
TFL
UNPAY
ID FETCH-LOGICAL-c429t-c22e3f62e3a63b3dc5dddfad07360da2f45802a783bb2cdfce3daa8a4eb94f0b3
IEDL.DBID DOA
ISSN 1875-6883
1875-6891
IngestDate Fri Oct 03 12:50:45 EDT 2025
Wed Oct 01 15:21:29 EDT 2025
Tue Oct 21 12:48:25 EDT 2025
Thu Apr 24 22:53:38 EDT 2025
Tue Jul 01 01:20:21 EDT 2025
Fri Feb 21 02:44:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Conditional image synthesis
Patch strategy
Fusion strategy
Melanoma
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-c22e3f62e3a63b3dc5dddfad07360da2f45802a783bb2cdfce3daa8a4eb94f0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9960-0839
OpenAccessLink https://doaj.org/article/d0a95e16027e4d8aa1894c023bcb8f39
PQID 3072744014
PQPubID 4869256
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_d0a95e16027e4d8aa1894c023bcb8f39
unpaywall_primary_10_1007_s44196_023_00246_1
proquest_journals_3072744014
crossref_primary_10_1007_s44196_023_00246_1
crossref_citationtrail_10_1007_s44196_023_00246_1
springer_journals_10_1007_s44196_023_00246_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-19
PublicationDateYYYYMMDD 2023-05-19
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-19
  day: 19
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References WuJSkin lesion classification using densely connected convolutional networks with attention residual learningSensors20202024708010.3390/s20247080
DingSDeep attention branch networks for skin lesion classificationComput. Methods Programs Biomed.202121210.1016/j.cmpb.2021.106447
Zhu, J.Y., Park, T., Isola, P., & Efros, A. A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE. (2017)
KazeminiaSBaurCKuijperAGANs for medical image analysis[J]Artif. Intell. Med.202010910.1016/j.artmed.2020.101938
Gutman, D. et al.: Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). (2016). Available: https://arxiv.org/abs/1605.01397
Isola, P., et al.: Image-to-image translation with conditional adversarial networks. IEEE Conf. Comput. Vis. Pattern Recogn. 22339–22366 (2016)
Devries, T., & Ramachandram, D.: Skin lesion classification using deep multi-scale convolutional neural networks (2017)
XiaoYActive jamming recognition based on bilinear EfficientNet and attention mechanismIET Radar Sonar Navigat202115995796810.1049/rsn2.12089
Bi, L., Kim, J., Ahn, E., & Feng, D.: Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks (2017)
Tan, M., and Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. (2019)
TangPGP-CNN-DTEL: global-part CNN model with data-transformed ensemble learning for skin lesion classificationIEEE J. Biomed. Health Inform.202010.1109/JBHI.2020.2977013
Jetley, S. , Lord, N. A. , Lee, N. , & Torr, P. H. S. . (2018). Learn To Pay Attention.
ZhangJXieYXiaYShenCAttention residual learning for skin lesion classificationIEEE Trans. Med. Imaging.201910.1109/TMI.2019.2893944
AbbasKAbbasiADongSApplication of network link prediction in drug discovery[J]BMC Bioinform.202122112110.1186/s12859-021-04082-y
Ha, Q., Liu, B., and Liu, F.: Identifying melanoma images using EfficientNet ensemble: winning solution to the siim-isic melanoma classification challenge. (2020)
Perez, F., et al.: Data augmentation for skin lesion analysis. ISIC Skin Image Analysis Workshop and Challenge @ MICCAI 2018 (2018)
ZhangJXieYWuQXiaYMedical image classification using synergic deep learningMed. Image Anal.201910.1016/j.media.2019.02.010
Wolterink J.M., Dinkla A.M., Savenije M, et al.: Deep MR to CT Synthesis using Unpaired Data[J]. arXiv e-prints, 2017
Codella, N., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., & Dusza, S.W., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic) (2017)
Díaz, I.G.: Incorporating the knowledge of dermatologists to convolutional neural networks for the diagnosis of skin lesions. IEEE J. Biomed. Health Inform. 547–559 (2017)
YanYKawaharaJHamarnehGMelanoma Recognition via Visual Attention2019ChamSpringer10.1007/978-3-030-20351-1_62
Goodfellow, I.: NIPS 2016 tutorial: generative adversarial networks. arXiv preprint arXiv:1701.00160, 2016. 2, 4, 5
Menegola, A., Tavares, J., Fornaciali, M., Lin, T.L., & Valle, E.: Recod titans at isic challenge 2017 (2017)
Matsunaga, K., Hamada, A., Minagawa, A., & Koga, H.: Image classification of melanoma, nevus and seborrheic keratosis by deep neural network ensemble (2017)
KawaharaJSeven-point checklist and skin lesion classification using multitask multimodal neural netsIEEE J. Biomed. Health Inform.20182353854610.1109/JBHI.2018.2824327
Zhu, J.Y., Park, T., Isola, P., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE 800–815 (2017)
HyvarinenAHoyerPMelBEmergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspacesNeural Comput.20001271705172010.1162/089976600300015312
Zunair, H., Hamza, A.B.: Melanoma detection using adversarial training and deep transfer learning[J]. 2020(13).
BalazsHSkin lesion classification with ensembles of deep convolutional neural networksJ. Biomed. Inform.201886S1532046418301618
AlmarazdamianJAPonomaryovVSadovnychiySCastillejosfernandezHMelanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measuresEntropy202022448410.3390/e22040484
Yang, X., et al.: Skin lesion analysis by multi-target deep neural networks. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) IEEE, 2018.
WeeseJLorenzCFour challenges in medical image analysis from an industrial perspectiveMed. Image Anal.201633444910.1016/j.media.2016.06.023
KimDHongBWUnsupervised feature elimination via generative adversarial networks: application to hair removal in melanoma classificationIEEE Access202110.1109/ACCESS.2021.3065701
NidaNIrtazaAHaroon YousafMA novel region-extreme convolutional neural network for melanoma malignancy recognitionMath. Prob. Eng.202110.1155/2021/6671498Article ID 6671498
YuLAutomated melanoma recognition in dermoscopy images via very deep residual networksIEEE Trans. Med. Imaging2016999941004
Gessert, N. , Sentker, T. , Madesta, F. , Schmitz, R. , & Schlaefer, A. . (2019). Skin lesion classification using cnns with patch-based attention and diagnosis-guided loss weighting. IEEE Trans. Biomed. Eng. PP(99), 1–1.
CodellaNCDeep learning ensembles for melanoma recognition in dermoscopy imagesIBM J. Res. Dev.2017614115
WolterinkJMDinklaAMSavenijeMSeevinckPRIgumIDeep MR to CT synthesis using unpaired data. International workshop on simulation and synthesis in medical imaging2017ChamSpringer
BinderMSchwarzMWinklerASteinerAPehambergerHEpiluminescence microscopy. a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologistsArch. Dermatol.1995131328629110.1001/archderm.1995.01690150050011
GansterHPinzAAutomated melanoma recognitionIEEE Trans. Med. Imaging200110.1109/42.918473
RonnebergerOFischerPBroxTU-Net: Convolutional Networks for Biomedical Image Segmentation2015Springer International Publishing
DongSWangPAbbasKA survey on deep learning and its applications[J]Comput. Sci. Rev.202140423335410.1016/j.cosrev.2021.1003791484.68205
Balch, C., Gershenwald, M., Jeffrey, E., Soong, S.-j., et al.: Final Version of 2009 AJCC melanoma staging and classification
ZunairHHamzaABMelanoma detection using adversarial training and deep transfer learningPhys. Med. Biol.202010.1088/1361-6560/ab86d3
de Bel, T., Hermsen, M., Kers, J., van der Laak, J., and Litjens, G.: Stain-transforming cycle-consistent generative adversarial networks for improved segmentation of renal histopathology. In Proc. International Conference on Medical Imaging with Deep Learning, vol. 102, pp. 151–163, (2018)
ZhaoZSunQYangHQiaoHWuDOCompression artifacts reduction by improved generative adversarial networksEURASIP J. Image Video Process.201910.1186/s13640-019-0465-0
Yx, A., Jw, B., and Zl, C.: Cancer diagnosis using generative adversarial networks based on deep learning from imbalanced data. Comput. Biol. Med. 104540–104540 (2021)
Song, J., Li, J., Ma, S., Tang, J., & Guo, F.: Melanoma Classification in Dermoscopy Images via Ensemble Learning on Deep Neural Network. 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE. (2020)
TangPEfficient skin lesion segmentation using separable-Unet with stochastic weight averagingComput. Methods Programs Biomed.201917828930110.1016/j.cmpb.2019.07.005
MahbodASchaeferGEllingerIEckerRPitiotAWangCFusing fine-tuned deep features for skin lesion classificationComput. Med. Imaging Graph.201971192910.1016/j.compmedimag.2018.10.007
SonHMAI-based localization and classification of skin disease with erythemaSci. Rep.20211115350535010.1038/s41598-021-84593-z
Ko, et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 115–118 (2017)
LiuZZerubiaJSkin image illumination modeling and chromophore identication for melanoma diagnosisPhys. Med. Biol.20156093415343110.1088/0031-9155/60/9/3415
246_CR37
HM Son (246_CR26) 2021; 11
246_CR38
246_CR35
246_CR34
J Weese (246_CR8) 2016; 33
J Zhang (246_CR5) 2019
Z Zhao (246_CR24) 2019
H Zunair (246_CR20) 2020
246_CR28
L Yu (246_CR49) 2016; 99
246_CR25
K Abbas (246_CR45) 2021; 22
A Hyvarinen (246_CR4) 2000; 12
246_CR23
P Tang (246_CR7) 2020
246_CR21
S Dong (246_CR46) 2021; 40
NC Codella (246_CR51) 2017; 61
246_CR19
246_CR17
246_CR18
246_CR15
D Kim (246_CR33) 2021
N Nida (246_CR52) 2021
246_CR16
246_CR13
H Balazs (246_CR12) 2018; 86
246_CR6
246_CR10
P Tang (246_CR29) 2019; 178
246_CR50
M Binder (246_CR2) 1995; 131
246_CR1
Z Liu (246_CR31) 2015; 60
J Wu (246_CR36) 2020; 20
Y Yan (246_CR9) 2019
JM Wolterink (246_CR22) 2017
246_CR48
246_CR47
246_CR44
J Zhang (246_CR11) 2019
246_CR42
246_CR40
S Kazeminia (246_CR41) 2020; 109
H Ganster (246_CR3) 2001
JA Almarazdamian (246_CR30) 2020; 22
A Mahbod (246_CR14) 2019; 71
O Ronneberger (246_CR43) 2015
Y Xiao (246_CR27) 2021; 15
S Ding (246_CR53) 2021; 212
246_CR39
J Kawahara (246_CR32) 2018; 23
References_xml – reference: KawaharaJSeven-point checklist and skin lesion classification using multitask multimodal neural netsIEEE J. Biomed. Health Inform.20182353854610.1109/JBHI.2018.2824327
– reference: DongSWangPAbbasKA survey on deep learning and its applications[J]Comput. Sci. Rev.202140423335410.1016/j.cosrev.2021.1003791484.68205
– reference: HyvarinenAHoyerPMelBEmergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspacesNeural Comput.20001271705172010.1162/089976600300015312
– reference: Isola, P., et al.: Image-to-image translation with conditional adversarial networks. IEEE Conf. Comput. Vis. Pattern Recogn. 22339–22366 (2016)
– reference: WuJSkin lesion classification using densely connected convolutional networks with attention residual learningSensors20202024708010.3390/s20247080
– reference: Zunair, H., Hamza, A.B.: Melanoma detection using adversarial training and deep transfer learning[J]. 2020(13).
– reference: Zhu, J.Y., Park, T., Isola, P., & Efros, A. A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE. (2017)
– reference: BinderMSchwarzMWinklerASteinerAPehambergerHEpiluminescence microscopy. a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologistsArch. Dermatol.1995131328629110.1001/archderm.1995.01690150050011
– reference: Menegola, A., Tavares, J., Fornaciali, M., Lin, T.L., & Valle, E.: Recod titans at isic challenge 2017 (2017)
– reference: CodellaNCDeep learning ensembles for melanoma recognition in dermoscopy imagesIBM J. Res. Dev.2017614115
– reference: Gessert, N. , Sentker, T. , Madesta, F. , Schmitz, R. , & Schlaefer, A. . (2019). Skin lesion classification using cnns with patch-based attention and diagnosis-guided loss weighting. IEEE Trans. Biomed. Eng. PP(99), 1–1.
– reference: Matsunaga, K., Hamada, A., Minagawa, A., & Koga, H.: Image classification of melanoma, nevus and seborrheic keratosis by deep neural network ensemble (2017)
– reference: GansterHPinzAAutomated melanoma recognitionIEEE Trans. Med. Imaging200110.1109/42.918473
– reference: Díaz, I.G.: Incorporating the knowledge of dermatologists to convolutional neural networks for the diagnosis of skin lesions. IEEE J. Biomed. Health Inform. 547–559 (2017)
– reference: ZhangJXieYWuQXiaYMedical image classification using synergic deep learningMed. Image Anal.201910.1016/j.media.2019.02.010
– reference: Goodfellow, I.: NIPS 2016 tutorial: generative adversarial networks. arXiv preprint arXiv:1701.00160, 2016. 2, 4, 5
– reference: Devries, T., & Ramachandram, D.: Skin lesion classification using deep multi-scale convolutional neural networks (2017)
– reference: ZhangJXieYXiaYShenCAttention residual learning for skin lesion classificationIEEE Trans. Med. Imaging.201910.1109/TMI.2019.2893944
– reference: NidaNIrtazaAHaroon YousafMA novel region-extreme convolutional neural network for melanoma malignancy recognitionMath. Prob. Eng.202110.1155/2021/6671498Article ID 6671498
– reference: SonHMAI-based localization and classification of skin disease with erythemaSci. Rep.20211115350535010.1038/s41598-021-84593-z
– reference: ZhaoZSunQYangHQiaoHWuDOCompression artifacts reduction by improved generative adversarial networksEURASIP J. Image Video Process.201910.1186/s13640-019-0465-0
– reference: Perez, F., et al.: Data augmentation for skin lesion analysis. ISIC Skin Image Analysis Workshop and Challenge @ MICCAI 2018 (2018)
– reference: KimDHongBWUnsupervised feature elimination via generative adversarial networks: application to hair removal in melanoma classificationIEEE Access202110.1109/ACCESS.2021.3065701
– reference: Balch, C., Gershenwald, M., Jeffrey, E., Soong, S.-j., et al.: Final Version of 2009 AJCC melanoma staging and classification
– reference: XiaoYActive jamming recognition based on bilinear EfficientNet and attention mechanismIET Radar Sonar Navigat202115995796810.1049/rsn2.12089
– reference: Song, J., Li, J., Ma, S., Tang, J., & Guo, F.: Melanoma Classification in Dermoscopy Images via Ensemble Learning on Deep Neural Network. 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE. (2020)
– reference: Wolterink J.M., Dinkla A.M., Savenije M, et al.: Deep MR to CT Synthesis using Unpaired Data[J]. arXiv e-prints, 2017
– reference: KazeminiaSBaurCKuijperAGANs for medical image analysis[J]Artif. Intell. Med.202010910.1016/j.artmed.2020.101938
– reference: Ha, Q., Liu, B., and Liu, F.: Identifying melanoma images using EfficientNet ensemble: winning solution to the siim-isic melanoma classification challenge. (2020)
– reference: AlmarazdamianJAPonomaryovVSadovnychiySCastillejosfernandezHMelanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measuresEntropy202022448410.3390/e22040484
– reference: Gutman, D. et al.: Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). (2016). Available: https://arxiv.org/abs/1605.01397
– reference: YanYKawaharaJHamarnehGMelanoma Recognition via Visual Attention2019ChamSpringer10.1007/978-3-030-20351-1_62
– reference: Bi, L., Kim, J., Ahn, E., & Feng, D.: Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks (2017)
– reference: ZunairHHamzaABMelanoma detection using adversarial training and deep transfer learningPhys. Med. Biol.202010.1088/1361-6560/ab86d3
– reference: de Bel, T., Hermsen, M., Kers, J., van der Laak, J., and Litjens, G.: Stain-transforming cycle-consistent generative adversarial networks for improved segmentation of renal histopathology. In Proc. International Conference on Medical Imaging with Deep Learning, vol. 102, pp. 151–163, (2018)
– reference: MahbodASchaeferGEllingerIEckerRPitiotAWangCFusing fine-tuned deep features for skin lesion classificationComput. Med. Imaging Graph.201971192910.1016/j.compmedimag.2018.10.007
– reference: Yx, A., Jw, B., and Zl, C.: Cancer diagnosis using generative adversarial networks based on deep learning from imbalanced data. Comput. Biol. Med. 104540–104540 (2021)
– reference: BalazsHSkin lesion classification with ensembles of deep convolutional neural networksJ. Biomed. Inform.201886S1532046418301618
– reference: Ko, et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 115–118 (2017)
– reference: RonnebergerOFischerPBroxTU-Net: Convolutional Networks for Biomedical Image Segmentation2015Springer International Publishing
– reference: Codella, N., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., & Dusza, S.W., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic) (2017)
– reference: Jetley, S. , Lord, N. A. , Lee, N. , & Torr, P. H. S. . (2018). Learn To Pay Attention.
– reference: YuLAutomated melanoma recognition in dermoscopy images via very deep residual networksIEEE Trans. Med. Imaging2016999941004
– reference: TangPEfficient skin lesion segmentation using separable-Unet with stochastic weight averagingComput. Methods Programs Biomed.201917828930110.1016/j.cmpb.2019.07.005
– reference: WeeseJLorenzCFour challenges in medical image analysis from an industrial perspectiveMed. Image Anal.201633444910.1016/j.media.2016.06.023
– reference: TangPGP-CNN-DTEL: global-part CNN model with data-transformed ensemble learning for skin lesion classificationIEEE J. Biomed. Health Inform.202010.1109/JBHI.2020.2977013
– reference: WolterinkJMDinklaAMSavenijeMSeevinckPRIgumIDeep MR to CT synthesis using unpaired data. International workshop on simulation and synthesis in medical imaging2017ChamSpringer
– reference: LiuZZerubiaJSkin image illumination modeling and chromophore identication for melanoma diagnosisPhys. Med. Biol.20156093415343110.1088/0031-9155/60/9/3415
– reference: DingSDeep attention branch networks for skin lesion classificationComput. Methods Programs Biomed.202121210.1016/j.cmpb.2021.106447
– reference: AbbasKAbbasiADongSApplication of network link prediction in drug discovery[J]BMC Bioinform.202122112110.1186/s12859-021-04082-y
– reference: Yang, X., et al.: Skin lesion analysis by multi-target deep neural networks. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) IEEE, 2018.
– reference: Zhu, J.Y., Park, T., Isola, P., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE 800–815 (2017)
– reference: Tan, M., and Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. (2019)
– volume: 99
  start-page: 994
  year: 2016
  ident: 246_CR49
  publication-title: IEEE Trans. Med. Imaging
– volume: 60
  start-page: 3415
  issue: 9
  year: 2015
  ident: 246_CR31
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/9/3415
– volume: 40
  year: 2021
  ident: 246_CR46
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100379
– ident: 246_CR48
– year: 2019
  ident: 246_CR5
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2019.2893944
– ident: 246_CR13
  doi: 10.1109/ISBI.2018.8363547
– ident: 246_CR21
– volume: 71
  start-page: 19
  year: 2019
  ident: 246_CR14
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2018.10.007
– ident: 246_CR16
– ident: 246_CR50
  doi: 10.1007/978-3-030-01201-4_33
– ident: 246_CR25
  doi: 10.1109/ICCV.2017.244
– volume: 178
  start-page: 289
  year: 2019
  ident: 246_CR29
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.07.005
– volume: 61
  start-page: 1
  issue: 4
  year: 2017
  ident: 246_CR51
  publication-title: IBM J. Res. Dev.
– volume: 12
  start-page: 1705
  issue: 7
  year: 2000
  ident: 246_CR4
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015312
– ident: 246_CR47
– year: 2020
  ident: 246_CR7
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2977013
– ident: 246_CR15
– ident: 246_CR39
  doi: 10.1109/ICCV.2017.244
– volume: 11
  start-page: 5350
  issue: 1
  year: 2021
  ident: 246_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84593-z
– year: 2020
  ident: 246_CR20
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab86d3
– volume: 20
  start-page: 7080
  issue: 24
  year: 2020
  ident: 246_CR36
  publication-title: Sensors
  doi: 10.3390/s20247080
– ident: 246_CR34
  doi: 10.1109/BIBM49941.2020.9313451
– ident: 246_CR40
  doi: 10.1088/1361-6560/ab86d3
– volume: 22
  start-page: 484
  issue: 4
  year: 2020
  ident: 246_CR30
  publication-title: Entropy
  doi: 10.3390/e22040484
– volume: 22
  start-page: 1
  issue: 1
  year: 2021
  ident: 246_CR45
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-021-04082-y
– volume: 86
  start-page: S15320464183016
  year: 2018
  ident: 246_CR12
  publication-title: J. Biomed. Inform.
– ident: 246_CR10
– volume-title: Deep MR to CT synthesis using unpaired data. International workshop on simulation and synthesis in medical imaging
  year: 2017
  ident: 246_CR22
– volume: 109
  year: 2020
  ident: 246_CR41
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101938
– volume: 131
  start-page: 286
  issue: 3
  year: 1995
  ident: 246_CR2
  publication-title: Arch. Dermatol.
  doi: 10.1001/archderm.1995.01690150050011
– volume-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  year: 2015
  ident: 246_CR43
– ident: 246_CR38
  doi: 10.1007/978-3-319-68127-6_2
– year: 2019
  ident: 246_CR24
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-019-0465-0
– year: 2021
  ident: 246_CR52
  publication-title: Math. Prob. Eng.
  doi: 10.1155/2021/6671498
– ident: 246_CR23
– ident: 246_CR18
– ident: 246_CR42
– volume-title: Melanoma Recognition via Visual Attention
  year: 2019
  ident: 246_CR9
  doi: 10.1007/978-3-030-20351-1_62
– year: 2001
  ident: 246_CR3
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.918473
– ident: 246_CR6
– volume: 15
  start-page: 957
  issue: 9
  year: 2021
  ident: 246_CR27
  publication-title: IET Radar Sonar Navigat
  doi: 10.1049/rsn2.12089
– ident: 246_CR35
  doi: 10.1109/EMBC.2018.8512488
– volume: 33
  start-page: 44
  year: 2016
  ident: 246_CR8
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.023
– ident: 246_CR28
– year: 2019
  ident: 246_CR11
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.02.010
– volume: 212
  year: 2021
  ident: 246_CR53
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106447
– ident: 246_CR19
  doi: 10.1016/j.compbiomed.2021.104540
– year: 2021
  ident: 246_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3065701
– ident: 246_CR17
– volume: 23
  start-page: 538
  year: 2018
  ident: 246_CR32
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2824327
– ident: 246_CR1
– ident: 246_CR37
  doi: 10.1038/nature21056
– ident: 246_CR44
  doi: 10.1109/CVPR.2017.632
SSID ssj0002140044
ssib050732782
Score 2.3416953
Snippet Melanoma is a fatal skin disease, and there are many challenging tasks in the detection of melanoma through neural network at this stage. We propose a new...
Abstract Melanoma is a fatal skin disease, and there are many challenging tasks in the detection of melanoma through neural network at this stage. We propose a...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Classification
Computational Intelligence
Conditional image synthesis
Control
Diagnosis
Engineering
Fusion strategy
Lesions
Mathematical Logic and Foundations
Mechatronics
Medical imaging
Melanoma
Neural networks
Patch strategy
Research Article
Robotics
Skin injuries
Synthesis
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hcoAeeBRQFwrygRu1FD_yOral1QqpFQcq9WbZHhuQVknVzQr13zPxOqGVUAWXKIofSmY8r9jzDcDHsmlQihB47arANWLNXVSaR0XhCBbO1QmO4fyiWl7qL1flVU4KW0-n3actyaSp52Q3MtzpwKzio2GpOMU8j8n_kGPBhpOc4zDqXynGdalzhszfh96zQgms_56HOW-K7sKTTXdtb3_Z1eqO3Tl7Ac-yw8iOthx-CY9CtwfPp2IMLMvmHuzeQRZ8BcujzdAnNFb2eXuY7uea9ZGdh5XtqIEdk_VC1nfsNGFIkOm5CAOzHbKvpJx_sIxae_saLs9Ov50seS6awD2ZloF7KYOKFV1spZxCXyJitEiiXBVoZdRlU0hbN8o56TH6oNDaxurgWh0Lp97ATtd3YR9YK1wpbIGu9hSluMKJWOggfT0-x1AuQExEND4jio-FLVZmxkJOhDdEeJMIb8QCPs1jrrd4Gg_2Ph55M_ccsbDTg_7mu8miZbCwbRlERQF20NhYK5pWe5rFeddE1S7gYOKsyQK6NqTaEjai0As4nLj9p_mhVzqcV8Q_fMHb_5v9HTyVdLf9x3MAO8PNJrwnr2dwH9Ii_w1ZLPa1
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UJ5ioSAfuFG3cewkznFLW62QuuqBlcopsj02IFbJqs2qan89juMEilAF4hJFthP5MZ5vRp75DPAukxJTZi0tdG6pQCyodlxQx707gonWRaBjOF3k86X4eJ6db8HRkAsTot2HI8k-p6FjaarbgzW6gzHxzYN4CJ7ltAOZnHp9g-4ebOeZt8gnsL1cnM0-d76WN8dpLgMbZ3wvWcyd-fOPbuFToPG_ZXuOx6UP4f6mXqvrK7Va_YJIJztgh7H0gSjf9zet3jc3v9E8_u9gH8OjaLKSWS9jT2DL1k9hZ7gOgkTt8Azms03bBAZYctQH8H27JI0jp3alal9BDj1iImlqchx4K3wPFrYlqkZy5gHhK4lMudfPYXly_OnDnMaLGqjxcNZSk6aWu9w_VM41R5MholPo1UeeoEqdyGSSqkJyrVODzliOSkklrC6FSzR_AZO6qe1LICXTGVMJ6sJ4z0gnmrlE2NQUXTnabApsWJ7KRBbz7jKNVTXyL4fpqvx0VWG6KjaF9-M3657D487Wh92qjy07_u1Q0Fx8qeJ2rjBRZWZZ7p16K1AqxWQpjP-LNlo6Xk5hd5CZKiqFy8qr08DHyMQU9oZl_1l9V5f2Rln7ixG8-rfmr-FBGoQro6zchUl7sbFvvKXV6rdxI_0A8-gcWg
  priority: 102
  providerName: Unpaywall
Title Automatic Diagnosis of Melanoma Based on EfficientNet and Patch Strategy
URI https://link.springer.com/article/10.1007/s44196-023-00246-1
https://www.proquest.com/docview/3072744014
https://link.springer.com/content/pdf/10.1007/s44196-023-00246-1.pdf
https://doaj.org/article/d0a95e16027e4d8aa1894c023bcb8f39
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050732782
  issn: 1875-6891
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: AAJSJ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: C6C
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: C24
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOQAHvhELZeUDN2rhryTOcbu0WiF11QMrlVNke2yBtMpWNKuq_762kw3bS-HAxQfbkezxs59H8bwB-FRojYJ7TytbeqoQK2qDVDTI6I4gs7bKcgxny3KxUt8uiou9VF_pTVgvD9wb7gsyUxeel9F98gq1MVzXykWmsc7qIHPoHtP1njOVzmDBEzbVECWTY-Ui7-f3tpImXiopv8NEWbD_zi1z_DH6FB5v20tzc23W6z3uOX0Bz4ZLI5n1g30JD3z7Cp7vEjKQYX--hsVs222yBiv52j-h-3VFNoGc-bVpYwM5jpyFZNOSk6wcEQln6TtiWiTn8Uj-SQat2ps3sDo9-T5f0CFVAnWRUDrqhPAylLEwpbQSXYGIwWDcwCVDI4IqNBOm0tJa4TA4L9EYbZS3tQrMyrdw0G5a_w5IzW3BDUNbueibWGZ5YMoLV6V69MUE-M5sjRt0xFM6i3UzKiBnUzfR1E02dcMn8Hn85rJX0bi393FajbFnUsDOFREXzYCL5m-4mMDhbi2bYVteNfFAy4qIXE3gaLe-f5rvG9LRiIF_mMH7_zGDD_BEZLgWlNeHcND93vqP8QbU2Sk8nAuVynI-zcCfwqPV8nz24xaK-QGO
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH5C7aH0wFJADBTwgRu1FC_ZjlNoNQydERKt1Jtl-9mANEqqTkao_x7H44RWQhVccvCm5C3-_OLnzwDv86pCzpyjpSkclYglNV5I6kUIRzAzpox0DItlMbuQ88v8Mh0KWw_Z7sOWZJypx8NuAbhjwqygPbAUNMQ8u32SVXDH3el0_m0-_lvhrLdMmc7I_L3zHRyKdP131pjjtug-7G2aK33zS69Wt5Dn9Ak8SktGMt3q-Ck8cM0BPB6uYyDJOw9g_xa34DOYTTddG_lYyadtOt3PNWk9WbiVbkIFOQ74haRtyElkkQjgs3Qd0Q2Sr2F6_kESb-3Nc7g4PTn_OKPp2gRqA7h01HLuhC_CQxfCCLQ5InqNwZmLDDX3Mq8yrstKGMMteusEal1p6UwtfWbEC9hp2sa9BFIzkzOdoSltiFNMZpjPpOO27MvR5RNggxCVTZzi_dUWKzWyIUfBqyB4FQWv2AQ-jH2utowa97Y-7nUztuzZsGNBe_1dJedSmOk6d6wIIbaTWGnNqlraMIqxpvKinsDhoFmVXHStwuQW2RGZnMDRoO0_1fe90tFoEf_wBa_-b_R3sDc7X5yps8_LL6_hIY8mm1NWH8JOd71xb8IaqDNvk8n_Bo6Z-zU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VINFyAEpbdVtofeitWMSPvI6wsNo-WHEoEjfL9thtpVWygqwq_n0db5IuEkL0koNfSubh8cQz3wB8SosCOXOO5iZzVCLm1HghqRfBHcHEmDzCMVzMsumV_HqdXq9l8cdo9_5KcpXT0KI0Vc3xAv3xkPgWjHgMnhW0NTIZDf7PpgzWra1hMM7Gw18WzloZlV22zMNT71mkCNx_77Q5XJBuw_NltdB3f_R8vmaDJnuw0x0eycmK2y_hmav2YbcvzEA6Pd2H7TWUwVcwPVk2dURmJWerwLrft6T25MLNdRU6yGmwZEjqipxHPIlAhplriK6QXIaN-hfpEGzvXsPV5PzHeEq7AgrUBjPTUMu5Ez4LD50JI9CmiOg1BrXOEtTcy7RIuM4LYQy36K0TqHWhpTOl9IkRb2Cjqiv3FkjJTMp0gia3wWMxiWE-kY7bvG1Hl46A9URUtkMXb4tczNWAixwJrwLhVSS8YiP4PMxZrLA1Hh192vJmGNniYseG-uan6tRMYaLL1LEsONtOYqE1K0ppwyrGmsKLcgQHPWdVp6y3KmxzESeRyREc9dz-1_3YKx0NEvGEL3j3f6t_hK3Ls4n6_mX27T284FFiU8rKA9hobpbuMByGGvMhyvtfvq_-Eg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UJ5ioSAfuFG3cewkznFLW62QuuqBlcopsj02IFbJqs2qan89juMEilAF4hJFthP5MZ5vRp75DPAukxJTZi0tdG6pQCyodlxQx707gonWRaBjOF3k86X4eJ6db8HRkAsTot2HI8k-p6FjaarbgzW6gzHxzYN4CJ7ltAOZnHp9g-4ebOeZt8gnsL1cnM0-d76WN8dpLgMbZ3wvWcyd-fOPbuFToPG_ZXuOx6UP4f6mXqvrK7Va_YJIJztgh7H0gSjf9zet3jc3v9E8_u9gH8OjaLKSWS9jT2DL1k9hZ7gOgkTt8Azms03bBAZYctQH8H27JI0jp3alal9BDj1iImlqchx4K3wPFrYlqkZy5gHhK4lMudfPYXly_OnDnMaLGqjxcNZSk6aWu9w_VM41R5MholPo1UeeoEqdyGSSqkJyrVODzliOSkklrC6FSzR_AZO6qe1LICXTGVMJ6sJ4z0gnmrlE2NQUXTnabApsWJ7KRBbz7jKNVTXyL4fpqvx0VWG6KjaF9-M3657D487Wh92qjy07_u1Q0Fx8qeJ2rjBRZWZZ7p16K1AqxWQpjP-LNlo6Xk5hd5CZKiqFy8qr08DHyMQU9oZl_1l9V5f2Rln7ixG8-rfmr-FBGoQro6zchUl7sbFvvKXV6rdxI_0A8-gcWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Diagnosis+of+Melanoma+Based+on+EfficientNet+and+Patch+Strategy&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Zou+Qingxu&rft.au=Cheng%2C+Jinyong&rft.au=Liang+Zhenlu&rft.date=2023-05-19&rft.pub=Springer+Nature+B.V&rft.issn=1875-6891&rft.eissn=1875-6883&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-023-00246-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon