Generic constraints handling techniques in constrained multi-criteria optimization and its application

•A nonequivalent relaxation approach is proposed.•An equivalent relaxation approach is proposed.•A two-phases based CHT is proposed by using the equivalent relaxation approach.•A three-phases based CHT is proposed by using the nonequivalent relaxation approach. This paper investigates the constraint...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of operational research Vol. 244; no. 2; pp. 576 - 591
Main Authors Liu, Linzhong, Mu, Haibo, Yang, Juhua
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 16.07.2015
Elsevier Sequoia S.A
Subjects
Online AccessGet full text
ISSN0377-2217
1872-6860
DOI10.1016/j.ejor.2015.01.051

Cover

Abstract •A nonequivalent relaxation approach is proposed.•An equivalent relaxation approach is proposed.•A two-phases based CHT is proposed by using the equivalent relaxation approach.•A three-phases based CHT is proposed by using the nonequivalent relaxation approach. This paper investigates the constraints handling technique (CHT) in algorithms of the constrained multi-criteria optimization problem (CMOP). The CHT is an important research topic in constrained multi-criteria optimization (MO). In this paper, two simple and practicable CHTs are proposed, where one is a nonequivalent relaxation approach which is much suitable for the constrained multi-criteria discrete optimization problem (MDOP), and the other is an equivalent relaxation approach for the general CMOP. By using these CHTs, a CMOP (i.e., the primal problem) can be transformed into an unconstrained multi-criteria optimization problem (MOP) (i.e., the relaxation problem). Based on the first CHT, it is theoretically proven that the efficient set of the primal CMOP is a subset of the strictly efficient set E¯ of the relaxation problem and can be extracted from E¯ by simply checking the dominance relation between the solutions in E¯. Follows from these theoretical results, a three-phase based idea is given to effectively utilize the existing algorithms for the unconstrained MDOP to solve the constrained MDOP. In the second CHT, the primal CMOP is equivalently transformed into an unconstrained MOP by a special relaxation approach. Based on such a CHT, it is proven that the primal problem and its relaxation problem have the same efficient set and, therefore, general CMOPs can be solved by utilizing any of the existing algorithms for the unconstrained MOPs. The implementing idea, say two-phase based idea, of the second CHT is illustrated by implanting a known MOEA. Finally, the two-phase based idea is applied to some of the early MOEAs and the application performances are comprehensively tested with some benchmarks of the CMOP.
AbstractList This paper investigates the constraints handling technique (CHT) in algorithms of the constrained multi-criteria optimization problem (CMOP). The CHT is an important research topic in constrained multi-criteria optimization (MO). In this paper, two simple and practicable CHTs are proposed, where one is a nonequivalent relaxation approach which is much suitable for the constrained multi-criteria discrete optimization problem (MDOP), and the other is an equivalent relaxation approach for the general CMOP. By using these CHTs, a CMOP (i.e., the primal problem) can be transformed into an unconstrained multi-criteria optimization problem (MOP) (i.e., the relaxation problem ). Based on the first CHT, it is theoretically proven that the efficient set of the primal CMOP is a subset of the strictly efficient set ... of the relaxation problem and can be extracted from ... by simply checking the dominance relation between the solutions in ... Follows from these theoretical results, a three-phase based idea is given to effectively utilize the existing algorithms for the unconstrained MDOP to solve the constrained MDOP. In the second CHT, the primal CMOP is equivalently transformed into an unconstrained MOP by a special relaxation approach. Based on such a CHT, it is proven that the primal problem and its relaxation problem have the same efficient set and, therefore, general CMOPs can be solved by utilizing any of the existing algorithms for the unconstrained MOPs. The implementing idea, say two-phase based idea, of the second CHT is illustrated by implanting a known MOEA. Finally, the two-phase based idea is applied to some of the early MOEAs and the application performances are comprehensively tested with some benchmarks of the CMOP. (ProQuest: ... denotes formulae/symbols omitted.)
•A nonequivalent relaxation approach is proposed.•An equivalent relaxation approach is proposed.•A two-phases based CHT is proposed by using the equivalent relaxation approach.•A three-phases based CHT is proposed by using the nonequivalent relaxation approach. This paper investigates the constraints handling technique (CHT) in algorithms of the constrained multi-criteria optimization problem (CMOP). The CHT is an important research topic in constrained multi-criteria optimization (MO). In this paper, two simple and practicable CHTs are proposed, where one is a nonequivalent relaxation approach which is much suitable for the constrained multi-criteria discrete optimization problem (MDOP), and the other is an equivalent relaxation approach for the general CMOP. By using these CHTs, a CMOP (i.e., the primal problem) can be transformed into an unconstrained multi-criteria optimization problem (MOP) (i.e., the relaxation problem). Based on the first CHT, it is theoretically proven that the efficient set of the primal CMOP is a subset of the strictly efficient set E¯ of the relaxation problem and can be extracted from E¯ by simply checking the dominance relation between the solutions in E¯. Follows from these theoretical results, a three-phase based idea is given to effectively utilize the existing algorithms for the unconstrained MDOP to solve the constrained MDOP. In the second CHT, the primal CMOP is equivalently transformed into an unconstrained MOP by a special relaxation approach. Based on such a CHT, it is proven that the primal problem and its relaxation problem have the same efficient set and, therefore, general CMOPs can be solved by utilizing any of the existing algorithms for the unconstrained MOPs. The implementing idea, say two-phase based idea, of the second CHT is illustrated by implanting a known MOEA. Finally, the two-phase based idea is applied to some of the early MOEAs and the application performances are comprehensively tested with some benchmarks of the CMOP.
Author Mu, Haibo
Yang, Juhua
Liu, Linzhong
Author_xml – sequence: 1
  givenname: Linzhong
  surname: Liu
  fullname: Liu, Linzhong
  email: liulinzhong@tsinghua.org.cn
– sequence: 2
  givenname: Haibo
  surname: Mu
  fullname: Mu, Haibo
– sequence: 3
  givenname: Juhua
  surname: Yang
  fullname: Yang, Juhua
BookMark eNp9kM1KxDAURoMoOI6-gKuC69YknTYR3IjoKAy40XXIJLd6SyepSUbQpzd1BMHFrMIN37k_54QcOu-AkHNGK0ZZe9lX0PtQccqairKKNuyAzJgUvGxlSw_JjNZClJwzcUxOYuwpzUnWzEi3BAcBTWG8iylodCkWb9rZAd1rkcC8OXzfQizQ_UXAFpvtkLA0AVOmdeHHhBv80gm9KzJdYG6jx3FA8_N3So46PUQ4-33n5OX-7vn2oVw9LR9vb1alWfCrVK5hzQXUVtQ1UBCM804sRM0WcpHrtW6YlNJ2QK0VIAV0nLe8W1vdSKrbTtZzcrHrOwY_rZ1U77fB5ZGKtW3TiJq3dU7xXcoEH2OATo0BNzp8KkbV5FP1avKpJp-KMpV9Zkj-gwymn-MmJ8N-9HqHQj79AyGoaBCcAYsBTFLW4z78G4lblds
CODEN EJORDT
CitedBy_id crossref_primary_10_1142_S0218001419590250
crossref_primary_10_3390_math12020276
crossref_primary_10_1007_s13198_017_0640_6
crossref_primary_10_1587_transinf_2019EDP7013
crossref_primary_10_1080_0305215X_2016_1141204
crossref_primary_10_1007_s11277_016_3350_5
crossref_primary_10_1051_matecconf_202235502008
crossref_primary_10_20965_jaciii_2019_p0229
Cites_doi 10.1109/4235.797969
10.1109/TEVC.2013.2281534
10.1016/j.asoc.2006.02.008
10.1109/TEVC.2003.810758
10.1162/106365600568167
10.1016/S0305-0548(99)00037-4
10.1016/j.asoc.2007.05.012
10.1109/3468.650319
10.1109/4235.996017
10.1109/TEVC.2004.836819
10.1016/j.asoc.2011.08.015
10.1162/evco.1994.2.3.221
10.1007/s00224-007-9096-4
10.1109/TEVC.2007.892759
10.1109/3468.650320
10.1109/TEVC.2006.872344
10.1109/TEVC.2007.900837
10.1090/S0002-9904-1943-07818-4
10.1162/evco.1996.4.1.1
10.1080/0305215X.2010.493937
10.1080/03052150108940926
10.1109/TEVC.2008.2009032
10.1016/j.swevo.2011.03.001
10.1109/TEVC.2013.2281535
10.1016/j.engappai.2006.03.003
10.1016/S0045-7825(01)00323-1
10.1016/j.cor.2012.03.013
10.1016/S1474-0346(02)00011-3
10.1162/evco.1995.3.1.1
10.1016/S0045-7825(99)00389-8
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Jul 16, 2015
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Jul 16, 2015
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejor.2015.01.051
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 591
ExternalDocumentID 3633686681
10_1016_j_ejor_2015_01_051
S0377221715000715
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
AAAKG
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c429t-beb27e3d733e0e7122f74731484e0eba51888dfe0dd7e87ef2262fbda580a6f83
IEDL.DBID .~1
ISSN 0377-2217
IngestDate Fri Jul 25 05:36:31 EDT 2025
Wed Oct 01 00:57:48 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Fri Feb 23 02:27:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Multi-criteria optimization (MO)
Multi-criteria optimization evolutionary algorithm (MOEA)
Constraints handling technique (CHT)
Evolutionary algorithm (EA)
Constraint programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-beb27e3d733e0e7122f74731484e0eba51888dfe0dd7e87ef2262fbda580a6f83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1665573263
PQPubID 45678
PageCount 16
ParticipantIDs proquest_journals_1665573263
crossref_primary_10_1016_j_ejor_2015_01_051
crossref_citationtrail_10_1016_j_ejor_2015_01_051
elsevier_sciencedirect_doi_10_1016_j_ejor_2015_01_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-16
PublicationDateYYYYMMDD 2015-07-16
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle European journal of operational research
PublicationYear 2015
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Das, Natarajan, Stevens, Koduru (bib0007) 2008; 8
Schott, J. R. (1995). Fault tolerant design using single and multi-criteria genetic algorithm optimization (Master thesis). Cambrige, MA:Massachusetts Institute of Technology.
Zitzler, Thiele, Laumanns, Fonseca, Fonseca (bib0048) 2003; 7
Cai, Wang (bib0002) 2006; 10
Skriver, Andersen (bib0033) 2000; 27
Ray, Tai, Chy (bib0031) 2001; 33
Veldhuizen, Lamont (bib0037) 1998
Liu, Mu (bib0025) 2012; 12
Zhang (bib0042) 2007; 7
Liu, Mu, Luo, Li (bib0026) 2012; 39
Zhang, Li (bib0040) 2007; 11
Bandyopadhyay, Saha, Maulik, Deb (bib0001) 2008; 12
Jain, Deb (bib0020) 2014; 18
Deb, Agrawal (bib0010) 1995; 9
Mezura-Montes, Coello Coello (bib0027) 2005; 9
Geng, Song, Wu, Liu (bib0018) 2009
Knowles, Corne (bib0022) 1999; 1
Srinivas, Deb (bib0034) 1995; 2
Knowles, Corne (bib0023) 2000; 8
Zitzler, Laumanns, Thiele (bib0045) 2001
Fonseca, Fleming (bib0015) 1998; 28
Zitzler, E. Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization: The strength Pareto approach (Ph.D. thesis). Zurich, Switzerland: Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology (ETH).
Garey, Johnson (bib0017) 1979
Deb, Jain (bib0011) 2014; 18
Veldhuizen, Lamont (bib0038) 1998
Zitzler, Kunzli (bib0044) 2004; 3242
Zitzler, Thiele (bib0047) 1999; 3
Zhou, Qu, Li, Zhao, Suganthan (bib0043) 2011; 1
Tsaggouris, Zaroliagis (bib0036) 2009; 45
Woldesenbet, Yen, Tessema (bib0039) 2009; 13
Fonseca, Fleming (bib0014) 1995; 3
Coello Coello, Montes (bib0004) 2002; 16
He, Wang (bib0019) 2007; 20
Zhang, Zhou, Zhao, Suganthan, Liu, Tiwari (bib0041) 2008
Coello Coello, Veldhuizen, Lamont (bib0005) 2002
Knowles, J. D. (2002). Local-search and hybrid evolutionary algorithms for Pareto optimization (Ph.D. thesis). University of Reading.
Coello Coello (bib0003) 2002; 191
Courant (bib0006) 1943; 49
Tanaka (bib0035) 1995; 2
Pareto (bib0029) 1897; 2
Deb, Pratap, Meyarivan (bib0013) 2001; 1993
Liu, Fernandez, Gao, Gielen (bib0024) 2009
Qu, Suganthan (bib0030) 2011; 43
Fonseca, Fleming (bib0016) 1998; 28
Deb (bib0009) 2001
Deb (bib0008) 2000; 186
Deb, Pratap, Agarwal, Meyarivan (bib0012) 2002; 6
Michalewicz, Schoenauer (bib0028) 1996; 4
Knowles (10.1016/j.ejor.2015.01.051_bib0022) 1999; 1
Pareto (10.1016/j.ejor.2015.01.051_sbref0028) 1897; 2
Fonseca (10.1016/j.ejor.2015.01.051_bib0016) 1998; 28
Zitzler (10.1016/j.ejor.2015.01.051_bib0047) 1999; 3
Das (10.1016/j.ejor.2015.01.051_bib0007) 2008; 8
Zhang (10.1016/j.ejor.2015.01.051_bib0040) 2007; 11
Skriver (10.1016/j.ejor.2015.01.051_bib0033) 2000; 27
Veldhuizen (10.1016/j.ejor.2015.01.051_bib0037) 1998
Zhang (10.1016/j.ejor.2015.01.051_bib0041) 2008
Cai (10.1016/j.ejor.2015.01.051_bib0002) 2006; 10
Fonseca (10.1016/j.ejor.2015.01.051_bib0014) 1995; 3
10.1016/j.ejor.2015.01.051_bib0032
Srinivas (10.1016/j.ejor.2015.01.051_bib0034) 1995; 2
Coello Coello (10.1016/j.ejor.2015.01.051_bib0004) 2002; 16
Zhang (10.1016/j.ejor.2015.01.051_bib0042) 2007; 7
Deb (10.1016/j.ejor.2015.01.051_bib0009) 2001
Michalewicz (10.1016/j.ejor.2015.01.051_bib0028) 1996; 4
Liu (10.1016/j.ejor.2015.01.051_bib0025) 2012; 12
Deb (10.1016/j.ejor.2015.01.051_bib0010) 1995; 9
Deb (10.1016/j.ejor.2015.01.051_bib0011) 2014; 18
Deb (10.1016/j.ejor.2015.01.051_bib0012) 2002; 6
Zitzler (10.1016/j.ejor.2015.01.051_bib0048) 2003; 7
Zitzler (10.1016/j.ejor.2015.01.051_bib0044) 2004; 3242
Veldhuizen (10.1016/j.ejor.2015.01.051_bib0038) 1998
Qu (10.1016/j.ejor.2015.01.051_bib0030) 2011; 43
Fonseca (10.1016/j.ejor.2015.01.051_bib0015) 1998; 28
Knowles (10.1016/j.ejor.2015.01.051_bib0023) 2000; 8
Woldesenbet (10.1016/j.ejor.2015.01.051_bib0039) 2009; 13
Deb (10.1016/j.ejor.2015.01.051_bib0008) 2000; 186
Deb (10.1016/j.ejor.2015.01.051_bib0013) 2001; 1993
10.1016/j.ejor.2015.01.051_bib0021
He (10.1016/j.ejor.2015.01.051_bib0019) 2007; 20
10.1016/j.ejor.2015.01.051_bib0046
Coello Coello (10.1016/j.ejor.2015.01.051_bib0003) 2002; 191
Bandyopadhyay (10.1016/j.ejor.2015.01.051_bib0001) 2008; 12
Tsaggouris (10.1016/j.ejor.2015.01.051_bib0036) 2009; 45
Garey (10.1016/j.ejor.2015.01.051_bib0017) 1979
Tanaka (10.1016/j.ejor.2015.01.051_bib0035) 1995; 2
Liu (10.1016/j.ejor.2015.01.051_bib0026) 2012; 39
Zitzler (10.1016/j.ejor.2015.01.051_bib0045) 2001
Courant (10.1016/j.ejor.2015.01.051_bib0006) 1943; 49
Ray (10.1016/j.ejor.2015.01.051_bib0031) 2001; 33
Mezura-Montes (10.1016/j.ejor.2015.01.051_bib0027) 2005; 9
Jain (10.1016/j.ejor.2015.01.051_bib0020) 2014; 18
Liu (10.1016/j.ejor.2015.01.051_bib0024) 2009
Zhou (10.1016/j.ejor.2015.01.051_bib0043) 2011; 1
Coello Coello (10.1016/j.ejor.2015.01.051_bib0005) 2002
Geng (10.1016/j.ejor.2015.01.051_bib0018) 2009
References_xml – start-page: 611
  year: 2009
  end-page: 614
  ident: bib0024
  article-title: A fuzzy selection based constrained handling method for multi-objective optimization of analog cells
  publication-title: European conference on circuit theory and design
– volume: 9
  start-page: 115
  year: 1995
  end-page: 148
  ident: bib0010
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex System
– volume: 28
  start-page: 26
  year: 1998
  end-page: 37
  ident: bib0015
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part I: A unified formulation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part A
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0012
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 9
  start-page: 1
  year: 2005
  end-page: 16
  ident: bib0027
  article-title: A simple multimembered evolution strategy to solve constrained optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 7
  start-page: 840
  year: 2007
  end-page: 857
  ident: bib0042
  article-title: Immune optimization algorithm for constrained nonlinear multiobjective optimization problems
  publication-title: Applied Soft Computing
– volume: 191
  start-page: 1245
  year: 2002
  end-page: 1287
  ident: bib0003
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 10
  start-page: 658
  year: 2006
  end-page: 675
  ident: bib0002
  article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 1998
  ident: bib0038
  publication-title: Multiobjective evolutionary algorithm research: A history and analysis
– year: 1979
  ident: bib0017
  publication-title: Computers and intractability: A guide to the theory of NP-completeness
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: bib0020
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE  Transactions on Evolutionary Computation
– year: 2008
  ident: bib0041
  publication-title: Multiobjective optimization test instances for the CEC-2009 special session and competition
– volume: 2
  start-page: 221
  year: 1995
  end-page: 248
  ident: bib0034
  article-title: Multiobjective optimization in genetic algorithms
  publication-title: Evolutionary Computation
– volume: 4
  start-page: 1
  year: 1996
  end-page: 32
  ident: bib0028
  article-title: Evolutionary algorithms for constrained parameter optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 49
  start-page: 1
  year: 1943
  end-page: 23
  ident: bib0006
  article-title: Variational methods for the solution of problems of equilibrium and vibrations
  publication-title: Bulletin of the American Mathematical Society
– volume: 27
  start-page: 507
  year: 2000
  end-page: 524
  ident: bib0033
  article-title: A label correcting approach for solving bicriterion shortest-path problems
  publication-title: Computers & Operations Research
– year: 2002
  ident: bib0005
  publication-title: Evolutionary algorithms for solving multi-objective problems
– volume: 13
  start-page: 514
  year: 2009
  end-page: 525
  ident: bib0039
  article-title: Constraint handling in multi-objective evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: bib0048
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 1993
  start-page: 284
  year: 2001
  end-page: 298
  ident: bib0013
  article-title: Constrained test problems for multi-objective evolutionary optimization
  publication-title: Evolutionary multi-criterion optimization
– reference: Schott, J. R. (1995). Fault tolerant design using single and multi-criteria genetic algorithm optimization (Master thesis). Cambrige, MA:Massachusetts Institute of Technology.
– volume: 2
  start-page: 1556
  year: 1995
  end-page: 1561
  ident: bib0035
  article-title: GA-based decision support system for multicriteria optimization
  publication-title: IEEEinternational conference on systems, man and cybernetics
– start-page: 221
  year: 1998
  end-page: 228
  ident: bib0037
  article-title: Evolutionary computation and convergence to a Pareto frontier
  publication-title: Lake breaking papers at the genetic programming 1998 conference
– volume: 12
  start-page: 269
  year: 2008
  end-page: 283
  ident: bib0001
  article-title: A simulated annealing-based multiobjective optimization algorithm: AMOSA
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 28
  start-page: 38
  year: 1998
  end-page: 47
  ident: bib0016
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part II: Application example
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part A
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib0047
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0040
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 2
  year: 1897
  ident: bib0029
  publication-title: Cours d’Économie Politique, Professé à L’Université de Lausanne
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0011
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEETransactions on Evolutionary Computation
– volume: 20
  start-page: 89
  year: 2007
  end-page: 99
  ident: bib0019
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 3
  start-page: 1
  year: 1995
  end-page: 16
  ident: bib0014
  article-title: An overview of evolutionary algorithms in multiobjective optimzation
  publication-title: Evolutionary Computation
– year: 2001
  ident: bib0009
  publication-title: Multiobjective optimization using evolutionary algorithms
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: bib0008
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 89
  year: 2009
  end-page: 93
  ident: bib0018
  article-title: A multi-objective constrained optimization algorithm based on infeasible individual stochastic binary modification
  publication-title: IEEE international conference on intelligent computing and intelligent systems
– volume: 8
  start-page: 149
  year: 2000
  end-page: 172
  ident: bib0023
  article-title: Approximating the nondominated front using the Pareto archived evolutionary strategy
  publication-title: Evolutionary Computation
– volume: 39
  start-page: 3119
  year: 2012
  end-page: 3135
  ident: bib0026
  article-title: A simulated annealing for multi-criteria network path problems
  publication-title: Computers & Operations Research
– volume: 1
  start-page: 32
  year: 2011
  end-page: 49
  ident: bib0043
  article-title: Multiobjective evolutionary algorithms: A survey of the state of the art
  publication-title: Swarm and Evolutionary Computation
– volume: 1
  start-page: 98
  year: 1999
  end-page: C105
  ident: bib0022
  article-title: The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimisation
  publication-title: Congress on evolutionary computation (CEC99)
– volume: 33
  start-page: 399
  year: 2001
  end-page: 424
  ident: bib0031
  article-title: Multiobjective design optimization by an evolutionary algorithm
  publication-title: Engineering Optimization
– volume: 43
  start-page: 403
  year: 2011
  end-page: 416
  ident: bib0030
  article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods
  publication-title: Engineering Optimization
– volume: 16
  start-page: 193
  year: 2002
  end-page: 203
  ident: bib0004
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Advanced Engineering Informatics
– volume: 45
  start-page: 162
  year: 2009
  end-page: 186
  ident: bib0036
  article-title: Multiobjective optimization: Improved FPTAS for shortest paths and non-linear objectives with applications
  publication-title: Theory of Computing Systems
– volume: 12
  start-page: 506
  year: 2012
  end-page: 512
  ident: bib0025
  article-title: An oriented spanning tree based genetic algorithm for multi-criteria shortest path problems
  publication-title: Applied Soft Computing
– reference: Knowles, J. D. (2002). Local-search and hybrid evolutionary algorithms for Pareto optimization (Ph.D. thesis). University of Reading.
– start-page: 95
  year: 2001
  end-page: 100
  ident: bib0045
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Evolutionary methods for design optimization and control with applications to industrial problems
– reference: Zitzler, E. Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization: The strength Pareto approach (Ph.D. thesis). Zurich, Switzerland: Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology (ETH).
– volume: 8
  start-page: 788
  year: 2008
  end-page: 797
  ident: bib0007
  article-title: Multi-objective and constrained optimization for DS-CDMA code design based on the clonal selection principle
  publication-title: Applied Soft Computing
– volume: 3242
  start-page: 832
  year: 2004
  end-page: 842
  ident: bib0044
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proceeding of 8th international conference on parallel problem solving from nature (PPSN VIII)
– ident: 10.1016/j.ejor.2015.01.051_bib0046
– ident: 10.1016/j.ejor.2015.01.051_bib0021
– volume: 3
  start-page: 257
  year: 1999
  ident: 10.1016/j.ejor.2015.01.051_bib0047
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.ejor.2015.01.051_bib0020
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE  Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281534
– year: 2002
  ident: 10.1016/j.ejor.2015.01.051_bib0005
– volume: 7
  start-page: 840
  year: 2007
  ident: 10.1016/j.ejor.2015.01.051_bib0042
  article-title: Immune optimization algorithm for constrained nonlinear multiobjective optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2006.02.008
– volume: 7
  start-page: 117
  year: 2003
  ident: 10.1016/j.ejor.2015.01.051_bib0048
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810758
– volume: 9
  start-page: 115
  year: 1995
  ident: 10.1016/j.ejor.2015.01.051_bib0010
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex System
– volume: 8
  start-page: 149
  year: 2000
  ident: 10.1016/j.ejor.2015.01.051_bib0023
  article-title: Approximating the nondominated front using the Pareto archived evolutionary strategy
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568167
– volume: 27
  start-page: 507
  year: 2000
  ident: 10.1016/j.ejor.2015.01.051_bib0033
  article-title: A label correcting approach for solving bicriterion shortest-path problems
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(99)00037-4
– volume: 2
  start-page: 1556
  year: 1995
  ident: 10.1016/j.ejor.2015.01.051_bib0035
  article-title: GA-based decision support system for multicriteria optimization
– volume: 8
  start-page: 788
  year: 2008
  ident: 10.1016/j.ejor.2015.01.051_bib0007
  article-title: Multi-objective and constrained optimization for DS-CDMA code design based on the clonal selection principle
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.05.012
– volume: 28
  start-page: 26
  year: 1998
  ident: 10.1016/j.ejor.2015.01.051_bib0015
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part I: A unified formulation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part A
  doi: 10.1109/3468.650319
– year: 2008
  ident: 10.1016/j.ejor.2015.01.051_bib0041
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.ejor.2015.01.051_bib0012
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 9
  start-page: 1
  year: 2005
  ident: 10.1016/j.ejor.2015.01.051_bib0027
  article-title: A simple multimembered evolution strategy to solve constrained optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.836819
– volume: 12
  start-page: 506
  year: 2012
  ident: 10.1016/j.ejor.2015.01.051_bib0025
  article-title: An oriented spanning tree based genetic algorithm for multi-criteria shortest path problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.08.015
– volume: 2
  start-page: 221
  year: 1995
  ident: 10.1016/j.ejor.2015.01.051_bib0034
  article-title: Multiobjective optimization in genetic algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– volume: 45
  start-page: 162
  year: 2009
  ident: 10.1016/j.ejor.2015.01.051_bib0036
  article-title: Multiobjective optimization: Improved FPTAS for shortest paths and non-linear objectives with applications
  publication-title: Theory of Computing Systems
  doi: 10.1007/s00224-007-9096-4
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.ejor.2015.01.051_bib0040
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 1993
  start-page: 284
  year: 2001
  ident: 10.1016/j.ejor.2015.01.051_bib0013
  article-title: Constrained test problems for multi-objective evolutionary optimization
– year: 1979
  ident: 10.1016/j.ejor.2015.01.051_bib0017
– volume: 28
  start-page: 38
  year: 1998
  ident: 10.1016/j.ejor.2015.01.051_bib0016
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part II: Application example
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part A
  doi: 10.1109/3468.650320
– volume: 10
  start-page: 658
  year: 2006
  ident: 10.1016/j.ejor.2015.01.051_bib0002
  article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2006.872344
– volume: 12
  start-page: 269
  year: 2008
  ident: 10.1016/j.ejor.2015.01.051_bib0001
  article-title: A simulated annealing-based multiobjective optimization algorithm: AMOSA
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.900837
– volume: 49
  start-page: 1
  year: 1943
  ident: 10.1016/j.ejor.2015.01.051_bib0006
  article-title: Variational methods for the solution of problems of equilibrium and vibrations
  publication-title: Bulletin of the American Mathematical Society
  doi: 10.1090/S0002-9904-1943-07818-4
– start-page: 221
  year: 1998
  ident: 10.1016/j.ejor.2015.01.051_bib0037
  article-title: Evolutionary computation and convergence to a Pareto frontier
– volume: 4
  start-page: 1
  year: 1996
  ident: 10.1016/j.ejor.2015.01.051_bib0028
  article-title: Evolutionary algorithms for constrained parameter optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1162/evco.1996.4.1.1
– volume: 43
  start-page: 403
  year: 2011
  ident: 10.1016/j.ejor.2015.01.051_bib0030
  article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2010.493937
– start-page: 95
  year: 2001
  ident: 10.1016/j.ejor.2015.01.051_bib0045
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
– volume: 33
  start-page: 399
  year: 2001
  ident: 10.1016/j.ejor.2015.01.051_bib0031
  article-title: Multiobjective design optimization by an evolutionary algorithm
  publication-title: Engineering Optimization
  doi: 10.1080/03052150108940926
– volume: 1
  start-page: 98
  year: 1999
  ident: 10.1016/j.ejor.2015.01.051_bib0022
  article-title: The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimisation
– volume: 13
  start-page: 514
  year: 2009
  ident: 10.1016/j.ejor.2015.01.051_bib0039
  article-title: Constraint handling in multi-objective evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.2009032
– volume: 1
  start-page: 32
  year: 2011
  ident: 10.1016/j.ejor.2015.01.051_bib0043
  article-title: Multiobjective evolutionary algorithms: A survey of the state of the art
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.03.001
– volume: 3242
  start-page: 832
  year: 2004
  ident: 10.1016/j.ejor.2015.01.051_bib0044
  article-title: Indicator-based selection in multiobjective search
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ejor.2015.01.051_bib0011
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEETransactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 20
  start-page: 89
  year: 2007
  ident: 10.1016/j.ejor.2015.01.051_bib0019
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2006.03.003
– volume: 191
  start-page: 1245
  year: 2002
  ident: 10.1016/j.ejor.2015.01.051_bib0003
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(01)00323-1
– volume: 39
  start-page: 3119
  year: 2012
  ident: 10.1016/j.ejor.2015.01.051_bib0026
  article-title: A simulated annealing for multi-criteria network path problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2012.03.013
– volume: 16
  start-page: 193
  year: 2002
  ident: 10.1016/j.ejor.2015.01.051_bib0004
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/S1474-0346(02)00011-3
– volume: 3
  start-page: 1
  year: 1995
  ident: 10.1016/j.ejor.2015.01.051_bib0014
  article-title: An overview of evolutionary algorithms in multiobjective optimzation
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1995.3.1.1
– year: 1998
  ident: 10.1016/j.ejor.2015.01.051_bib0038
– ident: 10.1016/j.ejor.2015.01.051_bib0032
– start-page: 89
  year: 2009
  ident: 10.1016/j.ejor.2015.01.051_bib0018
  article-title: A multi-objective constrained optimization algorithm based on infeasible individual stochastic binary modification
– year: 2001
  ident: 10.1016/j.ejor.2015.01.051_bib0009
– volume: 186
  start-page: 311
  year: 2000
  ident: 10.1016/j.ejor.2015.01.051_bib0008
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(99)00389-8
– start-page: 611
  year: 2009
  ident: 10.1016/j.ejor.2015.01.051_bib0024
  article-title: A fuzzy selection based constrained handling method for multi-objective optimization of analog cells
– volume: 2
  year: 1897
  ident: 10.1016/j.ejor.2015.01.051_sbref0028
SSID ssj0001515
Score 2.2110744
Snippet •A nonequivalent relaxation approach is proposed.•An equivalent relaxation approach is proposed.•A two-phases based CHT is proposed by using the equivalent...
This paper investigates the constraints handling technique (CHT) in algorithms of the constrained multi-criteria optimization problem (CMOP). The CHT is an...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 576
SubjectTerms Algorithms
Benchmarks
Constraint programming
Constraints handling technique (CHT)
Evolutionary algorithm (EA)
Mathematical problems
Multi-criteria optimization (MO)
Multi-criteria optimization evolutionary algorithm (MOEA)
Optimization
Optimization algorithms
Problem solving
Studies
Title Generic constraints handling techniques in constrained multi-criteria optimization and its application
URI https://dx.doi.org/10.1016/j.ejor.2015.01.051
https://www.proquest.com/docview/1665573263
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: ACRLP
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIKHN
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamISE48BggBgPlwA2VNU2TdkeEQAPELoDELeojkTpBN7Fy5bdjtykDJDhwbJtEbZz4sxv7M8CJCGSQhSbz_FFADoqyHloJ3ENoNDI1xA9DjuLdRI0fw5sn-dSBizYXhsIqne5vdHqtrd2doZvN4bwohve-QMsQLWoua6CkRPMwjKiKwdn7MsyDALs-SYgij1q7xJkmxstMZ8QJyhvqTsl_A6cfarrGnqst2HBGIztv3msbOqbswWobs96DzbY2A3NbtQfrX4gGd8DW7NJFxjIyB6kqRLVgNcECPmafPK4LVpTLJiZndbihh4qFGJ0TNkP98uISNxn2ZgUO8-UIfBcery4fLsaeq7DgZYhDlZeiXx0ZkUdCGN9EPAgsuhcCXaQQr9OE2Nri3Bo_zyMTR8aisRbYNE9k7CfKxmIPuuWsNPvAEGuzOEXnKSCCe2VHoeEiU5bbdBTmMuwDb6dWZ45-nD7mWbdxZlNN4tAkDu1zjeLow-lnn3lDvvFna9lKTH9bQhrR4c9-g1a82m3gheZKSYkLVYmDfw57CGt0Rf-BuRpAt3p9M0dowFTpcb1Cj2Hl_Pp2PPkAnrbwqQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VIvEYeBQQhQIe2FBoHMdOOiIEKq8utBKb1SS2FAQtomXlt3OXOG1BgoExiW0lPvu-7-LzZ4BTEcggDU3q-Z2AAhRlPWQJ3ENoNDIxpA9DgeJDT3UH4e2TfKrBZbUXhtIqne8vfXrhrd2dtuvN9luetx99gcwQGTWXBVDKJVgOZRBRBHb-Oc_zIMQulhKiyKPibudMmeRlnsckCspL7U7Jf0OnH366AJ_rLdhwrJFdlC-2DTUzasBKlbTegM3qcAbm5moD1heUBnfAFvLSecpS4oN0LMR0wgqFBXzMZkKuE5aP5kVMxop8Qw89C0k6D9kYHcyr27nJsDbLsZmFNfBdGFxf9S-7njtiwUsRiKZegoF1ZEQWCWF8E_EgsBhfCIyRQrxOhiTXFmfW-FkWmTgyFtlaYJNsKGN_qGws9qA-Go_MPjAE2zROMHoKSOFe2U5ouEiV5TbphJkMm8CrrtWp0x-nj3nRVaLZsyZzaDKH9rlGczThbFbnrVTf-LO0rCymv40hjfDwZ71WZV7tZvBEc6WkxJGqxME_mz2B1W7_4V7f3_TuDmGNntBPYa5aUJ--f5gjZDPT5LgYrV80B_I-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+constraints+handling+techniques+in+constrained+multi-criteria+optimization+and+its+application&rft.jtitle=European+journal+of+operational+research&rft.au=Liu%2C+Linzhong&rft.au=Mu%2C+Haibo&rft.au=Yang%2C+Juhua&rft.date=2015-07-16&rft.issn=0377-2217&rft.volume=244&rft.issue=2&rft.spage=576&rft.epage=591&rft_id=info:doi/10.1016%2Fj.ejor.2015.01.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2015_01_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon