Generic constraints handling techniques in constrained multi-criteria optimization and its application
•A nonequivalent relaxation approach is proposed.•An equivalent relaxation approach is proposed.•A two-phases based CHT is proposed by using the equivalent relaxation approach.•A three-phases based CHT is proposed by using the nonequivalent relaxation approach. This paper investigates the constraint...
        Saved in:
      
    
          | Published in | European journal of operational research Vol. 244; no. 2; pp. 576 - 591 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        16.07.2015
     Elsevier Sequoia S.A  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0377-2217 1872-6860  | 
| DOI | 10.1016/j.ejor.2015.01.051 | 
Cover
| Abstract | •A nonequivalent relaxation approach is proposed.•An equivalent relaxation approach is proposed.•A two-phases based CHT is proposed by using the equivalent relaxation approach.•A three-phases based CHT is proposed by using the nonequivalent relaxation approach.
This paper investigates the constraints handling technique (CHT) in algorithms of the constrained multi-criteria optimization problem (CMOP). The CHT is an important research topic in constrained multi-criteria optimization (MO). In this paper, two simple and practicable CHTs are proposed, where one is a nonequivalent relaxation approach which is much suitable for the constrained multi-criteria discrete optimization problem (MDOP), and the other is an equivalent relaxation approach for the general CMOP. By using these CHTs, a CMOP (i.e., the primal problem) can be transformed into an unconstrained multi-criteria optimization problem (MOP) (i.e., the relaxation problem). Based on the first CHT, it is theoretically proven that the efficient set of the primal CMOP is a subset of the strictly efficient set E¯ of the relaxation problem and can be extracted from E¯ by simply checking the dominance relation between the solutions in E¯. Follows from these theoretical results, a three-phase based idea is given to effectively utilize the existing algorithms for the unconstrained MDOP to solve the constrained MDOP. In the second CHT, the primal CMOP is equivalently transformed into an unconstrained MOP by a special relaxation approach. Based on such a CHT, it is proven that the primal problem and its relaxation problem have the same efficient set and, therefore, general CMOPs can be solved by utilizing any of the existing algorithms for the unconstrained MOPs. The implementing idea, say two-phase based idea, of the second CHT is illustrated by implanting a known MOEA. Finally, the two-phase based idea is applied to some of the early MOEAs and the application performances are comprehensively tested with some benchmarks of the CMOP. | 
    
|---|---|
| AbstractList | This paper investigates the constraints handling technique (CHT) in algorithms of the constrained multi-criteria optimization problem (CMOP). The CHT is an important research topic in constrained multi-criteria optimization (MO). In this paper, two simple and practicable CHTs are proposed, where one is a nonequivalent relaxation approach which is much suitable for the constrained multi-criteria discrete optimization problem (MDOP), and the other is an equivalent relaxation approach for the general CMOP. By using these CHTs, a CMOP (i.e., the primal problem) can be transformed into an unconstrained multi-criteria optimization problem (MOP) (i.e., the relaxation problem ). Based on the first CHT, it is theoretically proven that the efficient set of the primal CMOP is a subset of the strictly efficient set ... of the relaxation problem and can be extracted from ... by simply checking the dominance relation between the solutions in ... Follows from these theoretical results, a three-phase based idea is given to effectively utilize the existing algorithms for the unconstrained MDOP to solve the constrained MDOP. In the second CHT, the primal CMOP is equivalently transformed into an unconstrained MOP by a special relaxation approach. Based on such a CHT, it is proven that the primal problem and its relaxation problem have the same efficient set and, therefore, general CMOPs can be solved by utilizing any of the existing algorithms for the unconstrained MOPs. The implementing idea, say two-phase based idea, of the second CHT is illustrated by implanting a known MOEA. Finally, the two-phase based idea is applied to some of the early MOEAs and the application performances are comprehensively tested with some benchmarks of the CMOP. (ProQuest: ... denotes formulae/symbols omitted.) •A nonequivalent relaxation approach is proposed.•An equivalent relaxation approach is proposed.•A two-phases based CHT is proposed by using the equivalent relaxation approach.•A three-phases based CHT is proposed by using the nonequivalent relaxation approach. This paper investigates the constraints handling technique (CHT) in algorithms of the constrained multi-criteria optimization problem (CMOP). The CHT is an important research topic in constrained multi-criteria optimization (MO). In this paper, two simple and practicable CHTs are proposed, where one is a nonequivalent relaxation approach which is much suitable for the constrained multi-criteria discrete optimization problem (MDOP), and the other is an equivalent relaxation approach for the general CMOP. By using these CHTs, a CMOP (i.e., the primal problem) can be transformed into an unconstrained multi-criteria optimization problem (MOP) (i.e., the relaxation problem). Based on the first CHT, it is theoretically proven that the efficient set of the primal CMOP is a subset of the strictly efficient set E¯ of the relaxation problem and can be extracted from E¯ by simply checking the dominance relation between the solutions in E¯. Follows from these theoretical results, a three-phase based idea is given to effectively utilize the existing algorithms for the unconstrained MDOP to solve the constrained MDOP. In the second CHT, the primal CMOP is equivalently transformed into an unconstrained MOP by a special relaxation approach. Based on such a CHT, it is proven that the primal problem and its relaxation problem have the same efficient set and, therefore, general CMOPs can be solved by utilizing any of the existing algorithms for the unconstrained MOPs. The implementing idea, say two-phase based idea, of the second CHT is illustrated by implanting a known MOEA. Finally, the two-phase based idea is applied to some of the early MOEAs and the application performances are comprehensively tested with some benchmarks of the CMOP.  | 
    
| Author | Mu, Haibo Yang, Juhua Liu, Linzhong  | 
    
| Author_xml | – sequence: 1 givenname: Linzhong surname: Liu fullname: Liu, Linzhong email: liulinzhong@tsinghua.org.cn – sequence: 2 givenname: Haibo surname: Mu fullname: Mu, Haibo – sequence: 3 givenname: Juhua surname: Yang fullname: Yang, Juhua  | 
    
| BookMark | eNp9kM1KxDAURoMoOI6-gKuC69YknTYR3IjoKAy40XXIJLd6SyepSUbQpzd1BMHFrMIN37k_54QcOu-AkHNGK0ZZe9lX0PtQccqairKKNuyAzJgUvGxlSw_JjNZClJwzcUxOYuwpzUnWzEi3BAcBTWG8iylodCkWb9rZAd1rkcC8OXzfQizQ_UXAFpvtkLA0AVOmdeHHhBv80gm9KzJdYG6jx3FA8_N3So46PUQ4-33n5OX-7vn2oVw9LR9vb1alWfCrVK5hzQXUVtQ1UBCM804sRM0WcpHrtW6YlNJ2QK0VIAV0nLe8W1vdSKrbTtZzcrHrOwY_rZ1U77fB5ZGKtW3TiJq3dU7xXcoEH2OATo0BNzp8KkbV5FP1avKpJp-KMpV9Zkj-gwymn-MmJ8N-9HqHQj79AyGoaBCcAYsBTFLW4z78G4lblds | 
    
| CODEN | EJORDT | 
    
| CitedBy_id | crossref_primary_10_1142_S0218001419590250 crossref_primary_10_3390_math12020276 crossref_primary_10_1007_s13198_017_0640_6 crossref_primary_10_1587_transinf_2019EDP7013 crossref_primary_10_1080_0305215X_2016_1141204 crossref_primary_10_1007_s11277_016_3350_5 crossref_primary_10_1051_matecconf_202235502008 crossref_primary_10_20965_jaciii_2019_p0229  | 
    
| Cites_doi | 10.1109/4235.797969 10.1109/TEVC.2013.2281534 10.1016/j.asoc.2006.02.008 10.1109/TEVC.2003.810758 10.1162/106365600568167 10.1016/S0305-0548(99)00037-4 10.1016/j.asoc.2007.05.012 10.1109/3468.650319 10.1109/4235.996017 10.1109/TEVC.2004.836819 10.1016/j.asoc.2011.08.015 10.1162/evco.1994.2.3.221 10.1007/s00224-007-9096-4 10.1109/TEVC.2007.892759 10.1109/3468.650320 10.1109/TEVC.2006.872344 10.1109/TEVC.2007.900837 10.1090/S0002-9904-1943-07818-4 10.1162/evco.1996.4.1.1 10.1080/0305215X.2010.493937 10.1080/03052150108940926 10.1109/TEVC.2008.2009032 10.1016/j.swevo.2011.03.001 10.1109/TEVC.2013.2281535 10.1016/j.engappai.2006.03.003 10.1016/S0045-7825(01)00323-1 10.1016/j.cor.2012.03.013 10.1016/S1474-0346(02)00011-3 10.1162/evco.1995.3.1.1 10.1016/S0045-7825(99)00389-8  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Elsevier B.V. Copyright Elsevier Sequoia S.A. Jul 16, 2015  | 
    
| Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright Elsevier Sequoia S.A. Jul 16, 2015  | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.ejor.2015.01.051 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science Business  | 
    
| EISSN | 1872-6860 | 
    
| EndPage | 591 | 
    
| ExternalDocumentID | 3633686681 10_1016_j_ejor_2015_01_051 S0377221715000715  | 
    
| Genre | Feature | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ AAAKG AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS FR3 JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c429t-beb27e3d733e0e7122f74731484e0eba51888dfe0dd7e87ef2262fbda580a6f83 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0377-2217 | 
    
| IngestDate | Fri Jul 25 05:36:31 EDT 2025 Wed Oct 01 00:57:48 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Fri Feb 23 02:27:40 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Multi-criteria optimization (MO) Multi-criteria optimization evolutionary algorithm (MOEA) Constraints handling technique (CHT) Evolutionary algorithm (EA) Constraint programming  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c429t-beb27e3d733e0e7122f74731484e0eba51888dfe0dd7e87ef2262fbda580a6f83 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14  | 
    
| PQID | 1665573263 | 
    
| PQPubID | 45678 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_1665573263 crossref_primary_10_1016_j_ejor_2015_01_051 crossref_citationtrail_10_1016_j_ejor_2015_01_051 elsevier_sciencedirect_doi_10_1016_j_ejor_2015_01_051  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-07-16 | 
    
| PublicationDateYYYYMMDD | 2015-07-16 | 
    
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-16 day: 16  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | European journal of operational research | 
    
| PublicationYear | 2015 | 
    
| Publisher | Elsevier B.V Elsevier Sequoia S.A  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Sequoia S.A  | 
    
| References | Das, Natarajan, Stevens, Koduru (bib0007) 2008; 8 Schott, J. R. (1995). Fault tolerant design using single and multi-criteria genetic algorithm optimization (Master thesis). Cambrige, MA:Massachusetts Institute of Technology. Zitzler, Thiele, Laumanns, Fonseca, Fonseca (bib0048) 2003; 7 Cai, Wang (bib0002) 2006; 10 Skriver, Andersen (bib0033) 2000; 27 Ray, Tai, Chy (bib0031) 2001; 33 Veldhuizen, Lamont (bib0037) 1998 Liu, Mu (bib0025) 2012; 12 Zhang (bib0042) 2007; 7 Liu, Mu, Luo, Li (bib0026) 2012; 39 Zhang, Li (bib0040) 2007; 11 Bandyopadhyay, Saha, Maulik, Deb (bib0001) 2008; 12 Jain, Deb (bib0020) 2014; 18 Deb, Agrawal (bib0010) 1995; 9 Mezura-Montes, Coello Coello (bib0027) 2005; 9 Geng, Song, Wu, Liu (bib0018) 2009 Knowles, Corne (bib0022) 1999; 1 Srinivas, Deb (bib0034) 1995; 2 Knowles, Corne (bib0023) 2000; 8 Zitzler, Laumanns, Thiele (bib0045) 2001 Fonseca, Fleming (bib0015) 1998; 28 Zitzler, E. Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization: The strength Pareto approach (Ph.D. thesis). Zurich, Switzerland: Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology (ETH). Garey, Johnson (bib0017) 1979 Deb, Jain (bib0011) 2014; 18 Veldhuizen, Lamont (bib0038) 1998 Zitzler, Kunzli (bib0044) 2004; 3242 Zitzler, Thiele (bib0047) 1999; 3 Zhou, Qu, Li, Zhao, Suganthan (bib0043) 2011; 1 Tsaggouris, Zaroliagis (bib0036) 2009; 45 Woldesenbet, Yen, Tessema (bib0039) 2009; 13 Fonseca, Fleming (bib0014) 1995; 3 Coello Coello, Montes (bib0004) 2002; 16 He, Wang (bib0019) 2007; 20 Zhang, Zhou, Zhao, Suganthan, Liu, Tiwari (bib0041) 2008 Coello Coello, Veldhuizen, Lamont (bib0005) 2002 Knowles, J. D. (2002). Local-search and hybrid evolutionary algorithms for Pareto optimization (Ph.D. thesis). University of Reading. Coello Coello (bib0003) 2002; 191 Courant (bib0006) 1943; 49 Tanaka (bib0035) 1995; 2 Pareto (bib0029) 1897; 2 Deb, Pratap, Meyarivan (bib0013) 2001; 1993 Liu, Fernandez, Gao, Gielen (bib0024) 2009 Qu, Suganthan (bib0030) 2011; 43 Fonseca, Fleming (bib0016) 1998; 28 Deb (bib0009) 2001 Deb (bib0008) 2000; 186 Deb, Pratap, Agarwal, Meyarivan (bib0012) 2002; 6 Michalewicz, Schoenauer (bib0028) 1996; 4 Knowles (10.1016/j.ejor.2015.01.051_bib0022) 1999; 1 Pareto (10.1016/j.ejor.2015.01.051_sbref0028) 1897; 2 Fonseca (10.1016/j.ejor.2015.01.051_bib0016) 1998; 28 Zitzler (10.1016/j.ejor.2015.01.051_bib0047) 1999; 3 Das (10.1016/j.ejor.2015.01.051_bib0007) 2008; 8 Zhang (10.1016/j.ejor.2015.01.051_bib0040) 2007; 11 Skriver (10.1016/j.ejor.2015.01.051_bib0033) 2000; 27 Veldhuizen (10.1016/j.ejor.2015.01.051_bib0037) 1998 Zhang (10.1016/j.ejor.2015.01.051_bib0041) 2008 Cai (10.1016/j.ejor.2015.01.051_bib0002) 2006; 10 Fonseca (10.1016/j.ejor.2015.01.051_bib0014) 1995; 3 10.1016/j.ejor.2015.01.051_bib0032 Srinivas (10.1016/j.ejor.2015.01.051_bib0034) 1995; 2 Coello Coello (10.1016/j.ejor.2015.01.051_bib0004) 2002; 16 Zhang (10.1016/j.ejor.2015.01.051_bib0042) 2007; 7 Deb (10.1016/j.ejor.2015.01.051_bib0009) 2001 Michalewicz (10.1016/j.ejor.2015.01.051_bib0028) 1996; 4 Liu (10.1016/j.ejor.2015.01.051_bib0025) 2012; 12 Deb (10.1016/j.ejor.2015.01.051_bib0010) 1995; 9 Deb (10.1016/j.ejor.2015.01.051_bib0011) 2014; 18 Deb (10.1016/j.ejor.2015.01.051_bib0012) 2002; 6 Zitzler (10.1016/j.ejor.2015.01.051_bib0048) 2003; 7 Zitzler (10.1016/j.ejor.2015.01.051_bib0044) 2004; 3242 Veldhuizen (10.1016/j.ejor.2015.01.051_bib0038) 1998 Qu (10.1016/j.ejor.2015.01.051_bib0030) 2011; 43 Fonseca (10.1016/j.ejor.2015.01.051_bib0015) 1998; 28 Knowles (10.1016/j.ejor.2015.01.051_bib0023) 2000; 8 Woldesenbet (10.1016/j.ejor.2015.01.051_bib0039) 2009; 13 Deb (10.1016/j.ejor.2015.01.051_bib0008) 2000; 186 Deb (10.1016/j.ejor.2015.01.051_bib0013) 2001; 1993 10.1016/j.ejor.2015.01.051_bib0021 He (10.1016/j.ejor.2015.01.051_bib0019) 2007; 20 10.1016/j.ejor.2015.01.051_bib0046 Coello Coello (10.1016/j.ejor.2015.01.051_bib0003) 2002; 191 Bandyopadhyay (10.1016/j.ejor.2015.01.051_bib0001) 2008; 12 Tsaggouris (10.1016/j.ejor.2015.01.051_bib0036) 2009; 45 Garey (10.1016/j.ejor.2015.01.051_bib0017) 1979 Tanaka (10.1016/j.ejor.2015.01.051_bib0035) 1995; 2 Liu (10.1016/j.ejor.2015.01.051_bib0026) 2012; 39 Zitzler (10.1016/j.ejor.2015.01.051_bib0045) 2001 Courant (10.1016/j.ejor.2015.01.051_bib0006) 1943; 49 Ray (10.1016/j.ejor.2015.01.051_bib0031) 2001; 33 Mezura-Montes (10.1016/j.ejor.2015.01.051_bib0027) 2005; 9 Jain (10.1016/j.ejor.2015.01.051_bib0020) 2014; 18 Liu (10.1016/j.ejor.2015.01.051_bib0024) 2009 Zhou (10.1016/j.ejor.2015.01.051_bib0043) 2011; 1 Coello Coello (10.1016/j.ejor.2015.01.051_bib0005) 2002 Geng (10.1016/j.ejor.2015.01.051_bib0018) 2009  | 
    
| References_xml | – start-page: 611 year: 2009 end-page: 614 ident: bib0024 article-title: A fuzzy selection based constrained handling method for multi-objective optimization of analog cells publication-title: European conference on circuit theory and design – volume: 9 start-page: 115 year: 1995 end-page: 148 ident: bib0010 article-title: Simulated binary crossover for continuous search space publication-title: Complex System – volume: 28 start-page: 26 year: 1998 end-page: 37 ident: bib0015 article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part I: A unified formulation publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part A – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0012 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – volume: 9 start-page: 1 year: 2005 end-page: 16 ident: bib0027 article-title: A simple multimembered evolution strategy to solve constrained optimization problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 7 start-page: 840 year: 2007 end-page: 857 ident: bib0042 article-title: Immune optimization algorithm for constrained nonlinear multiobjective optimization problems publication-title: Applied Soft Computing – volume: 191 start-page: 1245 year: 2002 end-page: 1287 ident: bib0003 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 10 start-page: 658 year: 2006 end-page: 675 ident: bib0002 article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization publication-title: IEEE Transactions on Evolutionary Computation – year: 1998 ident: bib0038 publication-title: Multiobjective evolutionary algorithm research: A history and analysis – year: 1979 ident: bib0017 publication-title: Computers and intractability: A guide to the theory of NP-completeness – volume: 18 start-page: 602 year: 2014 end-page: 622 ident: bib0020 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach publication-title: IEEE Transactions on Evolutionary Computation – year: 2008 ident: bib0041 publication-title: Multiobjective optimization test instances for the CEC-2009 special session and competition – volume: 2 start-page: 221 year: 1995 end-page: 248 ident: bib0034 article-title: Multiobjective optimization in genetic algorithms publication-title: Evolutionary Computation – volume: 4 start-page: 1 year: 1996 end-page: 32 ident: bib0028 article-title: Evolutionary algorithms for constrained parameter optimization problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 49 start-page: 1 year: 1943 end-page: 23 ident: bib0006 article-title: Variational methods for the solution of problems of equilibrium and vibrations publication-title: Bulletin of the American Mathematical Society – volume: 27 start-page: 507 year: 2000 end-page: 524 ident: bib0033 article-title: A label correcting approach for solving bicriterion shortest-path problems publication-title: Computers & Operations Research – year: 2002 ident: bib0005 publication-title: Evolutionary algorithms for solving multi-objective problems – volume: 13 start-page: 514 year: 2009 end-page: 525 ident: bib0039 article-title: Constraint handling in multi-objective evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 7 start-page: 117 year: 2003 end-page: 132 ident: bib0048 article-title: Performance assessment of multiobjective optimizers: An analysis and review publication-title: IEEE Transactions on Evolutionary Computation – volume: 1993 start-page: 284 year: 2001 end-page: 298 ident: bib0013 article-title: Constrained test problems for multi-objective evolutionary optimization publication-title: Evolutionary multi-criterion optimization – reference: Schott, J. R. (1995). Fault tolerant design using single and multi-criteria genetic algorithm optimization (Master thesis). Cambrige, MA:Massachusetts Institute of Technology. – volume: 2 start-page: 1556 year: 1995 end-page: 1561 ident: bib0035 article-title: GA-based decision support system for multicriteria optimization publication-title: IEEEinternational conference on systems, man and cybernetics – start-page: 221 year: 1998 end-page: 228 ident: bib0037 article-title: Evolutionary computation and convergence to a Pareto frontier publication-title: Lake breaking papers at the genetic programming 1998 conference – volume: 12 start-page: 269 year: 2008 end-page: 283 ident: bib0001 article-title: A simulated annealing-based multiobjective optimization algorithm: AMOSA publication-title: IEEE Transactions on Evolutionary Computation – volume: 28 start-page: 38 year: 1998 end-page: 47 ident: bib0016 article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part II: Application example publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part A – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: bib0047 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib0040 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation – volume: 2 year: 1897 ident: bib0029 publication-title: Cours d’Économie Politique, Professé à L’Université de Lausanne – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib0011 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints publication-title: IEEETransactions on Evolutionary Computation – volume: 20 start-page: 89 year: 2007 end-page: 99 ident: bib0019 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Engineering Applications of Artificial Intelligence – volume: 3 start-page: 1 year: 1995 end-page: 16 ident: bib0014 article-title: An overview of evolutionary algorithms in multiobjective optimzation publication-title: Evolutionary Computation – year: 2001 ident: bib0009 publication-title: Multiobjective optimization using evolutionary algorithms – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: bib0008 article-title: An efficient constraint handling method for genetic algorithms publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 89 year: 2009 end-page: 93 ident: bib0018 article-title: A multi-objective constrained optimization algorithm based on infeasible individual stochastic binary modification publication-title: IEEE international conference on intelligent computing and intelligent systems – volume: 8 start-page: 149 year: 2000 end-page: 172 ident: bib0023 article-title: Approximating the nondominated front using the Pareto archived evolutionary strategy publication-title: Evolutionary Computation – volume: 39 start-page: 3119 year: 2012 end-page: 3135 ident: bib0026 article-title: A simulated annealing for multi-criteria network path problems publication-title: Computers & Operations Research – volume: 1 start-page: 32 year: 2011 end-page: 49 ident: bib0043 article-title: Multiobjective evolutionary algorithms: A survey of the state of the art publication-title: Swarm and Evolutionary Computation – volume: 1 start-page: 98 year: 1999 end-page: C105 ident: bib0022 article-title: The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimisation publication-title: Congress on evolutionary computation (CEC99) – volume: 33 start-page: 399 year: 2001 end-page: 424 ident: bib0031 article-title: Multiobjective design optimization by an evolutionary algorithm publication-title: Engineering Optimization – volume: 43 start-page: 403 year: 2011 end-page: 416 ident: bib0030 article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods publication-title: Engineering Optimization – volume: 16 start-page: 193 year: 2002 end-page: 203 ident: bib0004 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Advanced Engineering Informatics – volume: 45 start-page: 162 year: 2009 end-page: 186 ident: bib0036 article-title: Multiobjective optimization: Improved FPTAS for shortest paths and non-linear objectives with applications publication-title: Theory of Computing Systems – volume: 12 start-page: 506 year: 2012 end-page: 512 ident: bib0025 article-title: An oriented spanning tree based genetic algorithm for multi-criteria shortest path problems publication-title: Applied Soft Computing – reference: Knowles, J. D. (2002). Local-search and hybrid evolutionary algorithms for Pareto optimization (Ph.D. thesis). University of Reading. – start-page: 95 year: 2001 end-page: 100 ident: bib0045 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization publication-title: Evolutionary methods for design optimization and control with applications to industrial problems – reference: Zitzler, E. Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization: The strength Pareto approach (Ph.D. thesis). Zurich, Switzerland: Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology (ETH). – volume: 8 start-page: 788 year: 2008 end-page: 797 ident: bib0007 article-title: Multi-objective and constrained optimization for DS-CDMA code design based on the clonal selection principle publication-title: Applied Soft Computing – volume: 3242 start-page: 832 year: 2004 end-page: 842 ident: bib0044 article-title: Indicator-based selection in multiobjective search publication-title: Proceeding of 8th international conference on parallel problem solving from nature (PPSN VIII) – ident: 10.1016/j.ejor.2015.01.051_bib0046 – ident: 10.1016/j.ejor.2015.01.051_bib0021 – volume: 3 start-page: 257 year: 1999 ident: 10.1016/j.ejor.2015.01.051_bib0047 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – volume: 18 start-page: 602 issue: 4 year: 2014 ident: 10.1016/j.ejor.2015.01.051_bib0020 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281534 – year: 2002 ident: 10.1016/j.ejor.2015.01.051_bib0005 – volume: 7 start-page: 840 year: 2007 ident: 10.1016/j.ejor.2015.01.051_bib0042 article-title: Immune optimization algorithm for constrained nonlinear multiobjective optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2006.02.008 – volume: 7 start-page: 117 year: 2003 ident: 10.1016/j.ejor.2015.01.051_bib0048 article-title: Performance assessment of multiobjective optimizers: An analysis and review publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2003.810758 – volume: 9 start-page: 115 year: 1995 ident: 10.1016/j.ejor.2015.01.051_bib0010 article-title: Simulated binary crossover for continuous search space publication-title: Complex System – volume: 8 start-page: 149 year: 2000 ident: 10.1016/j.ejor.2015.01.051_bib0023 article-title: Approximating the nondominated front using the Pareto archived evolutionary strategy publication-title: Evolutionary Computation doi: 10.1162/106365600568167 – volume: 27 start-page: 507 year: 2000 ident: 10.1016/j.ejor.2015.01.051_bib0033 article-title: A label correcting approach for solving bicriterion shortest-path problems publication-title: Computers & Operations Research doi: 10.1016/S0305-0548(99)00037-4 – volume: 2 start-page: 1556 year: 1995 ident: 10.1016/j.ejor.2015.01.051_bib0035 article-title: GA-based decision support system for multicriteria optimization – volume: 8 start-page: 788 year: 2008 ident: 10.1016/j.ejor.2015.01.051_bib0007 article-title: Multi-objective and constrained optimization for DS-CDMA code design based on the clonal selection principle publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.05.012 – volume: 28 start-page: 26 year: 1998 ident: 10.1016/j.ejor.2015.01.051_bib0015 article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part I: A unified formulation publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part A doi: 10.1109/3468.650319 – year: 2008 ident: 10.1016/j.ejor.2015.01.051_bib0041 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.ejor.2015.01.051_bib0012 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 9 start-page: 1 year: 2005 ident: 10.1016/j.ejor.2015.01.051_bib0027 article-title: A simple multimembered evolution strategy to solve constrained optimization problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.836819 – volume: 12 start-page: 506 year: 2012 ident: 10.1016/j.ejor.2015.01.051_bib0025 article-title: An oriented spanning tree based genetic algorithm for multi-criteria shortest path problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.08.015 – volume: 2 start-page: 221 year: 1995 ident: 10.1016/j.ejor.2015.01.051_bib0034 article-title: Multiobjective optimization in genetic algorithms publication-title: Evolutionary Computation doi: 10.1162/evco.1994.2.3.221 – volume: 45 start-page: 162 year: 2009 ident: 10.1016/j.ejor.2015.01.051_bib0036 article-title: Multiobjective optimization: Improved FPTAS for shortest paths and non-linear objectives with applications publication-title: Theory of Computing Systems doi: 10.1007/s00224-007-9096-4 – volume: 11 start-page: 712 year: 2007 ident: 10.1016/j.ejor.2015.01.051_bib0040 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.892759 – volume: 1993 start-page: 284 year: 2001 ident: 10.1016/j.ejor.2015.01.051_bib0013 article-title: Constrained test problems for multi-objective evolutionary optimization – year: 1979 ident: 10.1016/j.ejor.2015.01.051_bib0017 – volume: 28 start-page: 38 year: 1998 ident: 10.1016/j.ejor.2015.01.051_bib0016 article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part II: Application example publication-title: IEEE Transactions on Systems, Man, and Cybernetics–Part A doi: 10.1109/3468.650320 – volume: 10 start-page: 658 year: 2006 ident: 10.1016/j.ejor.2015.01.051_bib0002 article-title: A multiobjective optimization-based evolutionary algorithm for constrained optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2006.872344 – volume: 12 start-page: 269 year: 2008 ident: 10.1016/j.ejor.2015.01.051_bib0001 article-title: A simulated annealing-based multiobjective optimization algorithm: AMOSA publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.900837 – volume: 49 start-page: 1 year: 1943 ident: 10.1016/j.ejor.2015.01.051_bib0006 article-title: Variational methods for the solution of problems of equilibrium and vibrations publication-title: Bulletin of the American Mathematical Society doi: 10.1090/S0002-9904-1943-07818-4 – start-page: 221 year: 1998 ident: 10.1016/j.ejor.2015.01.051_bib0037 article-title: Evolutionary computation and convergence to a Pareto frontier – volume: 4 start-page: 1 year: 1996 ident: 10.1016/j.ejor.2015.01.051_bib0028 article-title: Evolutionary algorithms for constrained parameter optimization problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1162/evco.1996.4.1.1 – volume: 43 start-page: 403 year: 2011 ident: 10.1016/j.ejor.2015.01.051_bib0030 article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods publication-title: Engineering Optimization doi: 10.1080/0305215X.2010.493937 – start-page: 95 year: 2001 ident: 10.1016/j.ejor.2015.01.051_bib0045 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization – volume: 33 start-page: 399 year: 2001 ident: 10.1016/j.ejor.2015.01.051_bib0031 article-title: Multiobjective design optimization by an evolutionary algorithm publication-title: Engineering Optimization doi: 10.1080/03052150108940926 – volume: 1 start-page: 98 year: 1999 ident: 10.1016/j.ejor.2015.01.051_bib0022 article-title: The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimisation – volume: 13 start-page: 514 year: 2009 ident: 10.1016/j.ejor.2015.01.051_bib0039 article-title: Constraint handling in multi-objective evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.2009032 – volume: 1 start-page: 32 year: 2011 ident: 10.1016/j.ejor.2015.01.051_bib0043 article-title: Multiobjective evolutionary algorithms: A survey of the state of the art publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.03.001 – volume: 3242 start-page: 832 year: 2004 ident: 10.1016/j.ejor.2015.01.051_bib0044 article-title: Indicator-based selection in multiobjective search – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.ejor.2015.01.051_bib0011 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints publication-title: IEEETransactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281535 – volume: 20 start-page: 89 year: 2007 ident: 10.1016/j.ejor.2015.01.051_bib0019 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2006.03.003 – volume: 191 start-page: 1245 year: 2002 ident: 10.1016/j.ejor.2015.01.051_bib0003 article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(01)00323-1 – volume: 39 start-page: 3119 year: 2012 ident: 10.1016/j.ejor.2015.01.051_bib0026 article-title: A simulated annealing for multi-criteria network path problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2012.03.013 – volume: 16 start-page: 193 year: 2002 ident: 10.1016/j.ejor.2015.01.051_bib0004 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Advanced Engineering Informatics doi: 10.1016/S1474-0346(02)00011-3 – volume: 3 start-page: 1 year: 1995 ident: 10.1016/j.ejor.2015.01.051_bib0014 article-title: An overview of evolutionary algorithms in multiobjective optimzation publication-title: Evolutionary Computation doi: 10.1162/evco.1995.3.1.1 – year: 1998 ident: 10.1016/j.ejor.2015.01.051_bib0038 – ident: 10.1016/j.ejor.2015.01.051_bib0032 – start-page: 89 year: 2009 ident: 10.1016/j.ejor.2015.01.051_bib0018 article-title: A multi-objective constrained optimization algorithm based on infeasible individual stochastic binary modification – year: 2001 ident: 10.1016/j.ejor.2015.01.051_bib0009 – volume: 186 start-page: 311 year: 2000 ident: 10.1016/j.ejor.2015.01.051_bib0008 article-title: An efficient constraint handling method for genetic algorithms publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(99)00389-8 – start-page: 611 year: 2009 ident: 10.1016/j.ejor.2015.01.051_bib0024 article-title: A fuzzy selection based constrained handling method for multi-objective optimization of analog cells – volume: 2 year: 1897 ident: 10.1016/j.ejor.2015.01.051_sbref0028  | 
    
| SSID | ssj0001515 | 
    
| Score | 2.2110744 | 
    
| Snippet | •A nonequivalent relaxation approach is proposed.•An equivalent relaxation approach is proposed.•A two-phases based CHT is proposed by using the equivalent... This paper investigates the constraints handling technique (CHT) in algorithms of the constrained multi-criteria optimization problem (CMOP). The CHT is an...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 576 | 
    
| SubjectTerms | Algorithms Benchmarks Constraint programming Constraints handling technique (CHT) Evolutionary algorithm (EA) Mathematical problems Multi-criteria optimization (MO) Multi-criteria optimization evolutionary algorithm (MOEA) Optimization Optimization algorithms Problem solving Studies  | 
    
| Title | Generic constraints handling techniques in constrained multi-criteria optimization and its application | 
    
| URI | https://dx.doi.org/10.1016/j.ejor.2015.01.051 https://www.proquest.com/docview/1665573263  | 
    
| Volume | 244 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: ACRLP dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIKHN dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamISE48BggBgPlwA2VNU2TdkeEQAPELoDELeojkTpBN7Fy5bdjtykDJDhwbJtEbZz4sxv7M8CJCGSQhSbz_FFADoqyHloJ3ENoNDI1xA9DjuLdRI0fw5sn-dSBizYXhsIqne5vdHqtrd2doZvN4bwohve-QMsQLWoua6CkRPMwjKiKwdn7MsyDALs-SYgij1q7xJkmxstMZ8QJyhvqTsl_A6cfarrGnqst2HBGIztv3msbOqbswWobs96DzbY2A3NbtQfrX4gGd8DW7NJFxjIyB6kqRLVgNcECPmafPK4LVpTLJiZndbihh4qFGJ0TNkP98uISNxn2ZgUO8-UIfBcery4fLsaeq7DgZYhDlZeiXx0ZkUdCGN9EPAgsuhcCXaQQr9OE2Nri3Bo_zyMTR8aisRbYNE9k7CfKxmIPuuWsNPvAEGuzOEXnKSCCe2VHoeEiU5bbdBTmMuwDb6dWZ45-nD7mWbdxZlNN4tAkDu1zjeLow-lnn3lDvvFna9lKTH9bQhrR4c9-g1a82m3gheZKSYkLVYmDfw57CGt0Rf-BuRpAt3p9M0dowFTpcb1Cj2Hl_Pp2PPkAnrbwqQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VIvEYeBQQhQIe2FBoHMdOOiIEKq8utBKb1SS2FAQtomXlt3OXOG1BgoExiW0lPvu-7-LzZ4BTEcggDU3q-Z2AAhRlPWQJ3ENoNDIxpA9DgeJDT3UH4e2TfKrBZbUXhtIqne8vfXrhrd2dtuvN9luetx99gcwQGTWXBVDKJVgOZRBRBHb-Oc_zIMQulhKiyKPibudMmeRlnsckCspL7U7Jf0OnH366AJ_rLdhwrJFdlC-2DTUzasBKlbTegM3qcAbm5moD1heUBnfAFvLSecpS4oN0LMR0wgqFBXzMZkKuE5aP5kVMxop8Qw89C0k6D9kYHcyr27nJsDbLsZmFNfBdGFxf9S-7njtiwUsRiKZegoF1ZEQWCWF8E_EgsBhfCIyRQrxOhiTXFmfW-FkWmTgyFtlaYJNsKGN_qGws9qA-Go_MPjAE2zROMHoKSOFe2U5ouEiV5TbphJkMm8CrrtWp0x-nj3nRVaLZsyZzaDKH9rlGczThbFbnrVTf-LO0rCymv40hjfDwZ71WZV7tZvBEc6WkxJGqxME_mz2B1W7_4V7f3_TuDmGNntBPYa5aUJ--f5gjZDPT5LgYrV80B_I- | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+constraints+handling+techniques+in+constrained+multi-criteria+optimization+and+its+application&rft.jtitle=European+journal+of+operational+research&rft.au=Liu%2C+Linzhong&rft.au=Mu%2C+Haibo&rft.au=Yang%2C+Juhua&rft.date=2015-07-16&rft.issn=0377-2217&rft.volume=244&rft.issue=2&rft.spage=576&rft.epage=591&rft_id=info:doi/10.1016%2Fj.ejor.2015.01.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2015_01_051 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |