An Energy-Aware Runtime Management of Multi-Core Sensory Swarms

In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 17; no. 9; p. 1955
Main Authors Kim , Sungchan, Yang, Hoeseok
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.08.2017
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s17091955

Cover

Abstract In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.
AbstractList In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.
In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.
Author Yang, Hoeseok
Kim , Sungchan
AuthorAffiliation 1 Division of Computer Science and Engineering, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea; s.kim@chonbuk.ac.kr
2 Department of Electrical and Computer Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Korea
AuthorAffiliation_xml – name: 1 Division of Computer Science and Engineering, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea; s.kim@chonbuk.ac.kr
– name: 2 Department of Electrical and Computer Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Korea
Author_xml – sequence: 1
  givenname: Sungchan
  surname: Kim 
  fullname: Kim , Sungchan
– sequence: 2
  givenname: Hoeseok
  orcidid: 0000-0002-7929-7470
  surname: Yang
  fullname: Yang, Hoeseok
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28837094$$D View this record in MEDLINE/PubMed
BookMark eNpdkktP3DAURq0KVB7tgj-AIrFpF6F-Pzag0YhSJBAStGvLztwMGSU22Emr-fc1DB1BV7bs46PP994DtBNiAISOCD5lzOBvmShsiBHiA9onnPJaU4p33uz30EHOK4wpY0x_RHtUa1ae8H10PgvVRYC0XNezPy5BdTeFsRugunHBLWGAMFaxrW6mfuzqeSzAPYQc07q6L_iQP6Hd1vUZPr-uh-jX94uf8x_19e3l1Xx2XTecmrF2jBovADMtlect0V44KQxfCFBKM6w1F6qh2rNWKmIkE0p44oj0HkRh2CG62ngX0a3sY-oGl9Y2us6-HMS0tC6NXdODxZpJgYnhnmmOnfaKLbCkQmMJVDS4uM42rsfJD7Boyh-T699J39-E7sEu428rJMUlWxF8eRWk-DRBHu3Q5Qb63gWIU7bEMEqkUeYZPfkPXcUphVKqQglKMBfCFOr4baJtlH99KsDXDdCkmHOCdosQbJ9nwG5ngP0FEcie6A
Cites_doi 10.1109/IMIS.2013.76
10.3390/s17020310
10.1145/1618525.1618538
10.1016/j.inffus.2014.09.005
10.1117/12.2015612
10.1145/2744769.2744911
10.1145/1961296.1950390
10.1109/FiCloud.2014.18
10.1109/PACT.2011.18
10.1155/2015/146067
10.1109/MDT.2010.142
10.1145/1837853.1693507
10.1016/j.comnet.2004.06.007
10.1109/CASES.2013.6662519
10.1007/978-1-4842-2322-2
10.1145/2228360.2228514
10.1109/99.660313
10.1109/MICRO.2012.37
10.1109/32.637146
10.3390/s140915981
10.1145/1391469.1391664
10.1109/IISWC.2009.5306797
10.1145/337449.337465
10.1145/1555754.1555793
10.1145/2744769.2744848
ContentType Journal Article
Copyright Copyright MDPI AG 2017
2017 by the authors. 2017
Copyright_xml – notice: Copyright MDPI AG 2017
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s17091955
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_083650194b3840a8b73d0625806e25c0
PMC5620963
28837094
10_3390_s17091955
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c429t-a329b5e03867b4f18b5a6594d5e7783088457c28b3f671963575b1a16bbe55e73
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:49 EDT 2025
Thu Aug 21 18:32:58 EDT 2025
Fri Sep 05 06:29:55 EDT 2025
Fri Jul 25 20:39:13 EDT 2025
Wed Feb 19 02:41:29 EST 2025
Tue Jul 01 01:36:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords dynamic voltage frequency scaling (DVFS)
self-adaptation
multi-core processor
runtime resource management
sensory swarm
energy minimization
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-a329b5e03867b4f18b5a6594d5e7783088457c28b3f671963575b1a16bbe55e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7929-7470
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s17091955
PMID 28837094
PQID 1952104559
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_083650194b3840a8b73d0625806e25c0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5620963
proquest_miscellaneous_1932169793
proquest_journals_1952104559
pubmed_primary_28837094
crossref_primary_10_3390_s17091955
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170824
PublicationDateYYYYMMDD 2017-08-24
PublicationDate_xml – month: 8
  year: 2017
  text: 20170824
  day: 24
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Fradi (ref_9) 2015; 24
Paek (ref_30) 2014; 14
ref_13
ref_12
ref_11
Lee (ref_4) 2015; 11
ref_32
Marculescu (ref_7) 2011; 28
Hoffmann (ref_10) 2010; 45
ref_19
ref_18
ref_17
ref_16
ref_15
Kumar (ref_27) 2009; 43
Dagum (ref_22) 1998; 5
ref_25
Mok (ref_20) 1997; 23
ref_24
ref_23
ref_21
ref_1
ref_3
ref_2
ref_29
ref_28
Gao (ref_8) 2013; 8745
Hoffmann (ref_14) 2011; 46
ref_26
Arora (ref_31) 2004; 46
ref_5
ref_6
28208730 - Sensors (Basel). 2017 Feb 08;17 (2):null
25171121 - Sensors (Basel). 2014 Aug 28;14(9):15981-6002
References_xml – ident: ref_2
  doi: 10.1109/IMIS.2013.76
– ident: ref_28
– ident: ref_17
  doi: 10.3390/s17020310
– volume: 43
  start-page: 105
  year: 2009
  ident: ref_27
  article-title: Towards Better Performance per Watt in Virtual Environments on Asymmetric Single-Isa Multi-Core Systems
  publication-title: ACM SIGOPS Oper. Syst. Rev.
  doi: 10.1145/1618525.1618538
– volume: 24
  start-page: 3
  year: 2015
  ident: ref_9
  article-title: Towards Crowd Density-Aware Video Surveillance Applications
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2014.09.005
– volume: 8745
  start-page: 87451K
  year: 2013
  ident: ref_8
  article-title: Pattern of Life from WAMI Objects Tracking based on Context-Aware Tracking and Information Network Models
  publication-title: Proc. SPIE
  doi: 10.1117/12.2015612
– ident: ref_5
– ident: ref_32
– ident: ref_24
– ident: ref_12
  doi: 10.1145/2744769.2744911
– volume: 46
  start-page: 199
  year: 2011
  ident: ref_14
  article-title: Dynamic Knobs for Responsive Power-Aware Computing
  publication-title: ACM Sigplan Not.
  doi: 10.1145/1961296.1950390
– ident: ref_3
  doi: 10.1109/FiCloud.2014.18
– ident: ref_26
  doi: 10.1109/PACT.2011.18
– ident: ref_1
– ident: ref_23
– volume: 11
  start-page: 146067
  year: 2015
  ident: ref_4
  article-title: Fast Video Encoding Algorithm for the Internet of Things Environment Based on High Efficiency Video Coding
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1155/2015/146067
– volume: 28
  start-page: 78
  year: 2011
  ident: ref_7
  article-title: Cyberphysical systems: Workload modeling and design optimization
  publication-title: IEEE Des. Test Comput.
  doi: 10.1109/MDT.2010.142
– volume: 45
  start-page: 347
  year: 2010
  ident: ref_10
  article-title: Application Heartbeats for Software Performance and Health
  publication-title: ACM Sigplan Not.
  doi: 10.1145/1837853.1693507
– volume: 46
  start-page: 605
  year: 2004
  ident: ref_31
  article-title: A Line in The Sand: A Wireless Sensor Network for Target Detection, Classification, and Tracking
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2004.06.007
– ident: ref_19
  doi: 10.1109/CASES.2013.6662519
– ident: ref_25
– ident: ref_6
  doi: 10.1007/978-1-4842-2322-2
– ident: ref_11
  doi: 10.1145/2228360.2228514
– volume: 5
  start-page: 46
  year: 1998
  ident: ref_22
  article-title: OpenMP: An Industry Standard API for Shared-Memory Programming
  publication-title: IEEE Comput. Sci. Eng.
  doi: 10.1109/99.660313
– ident: ref_18
  doi: 10.1109/MICRO.2012.37
– volume: 23
  start-page: 635
  year: 1997
  ident: ref_20
  article-title: A Multiframe Model for Real-Time Tasks
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/32.637146
– volume: 14
  start-page: 15981
  year: 2014
  ident: ref_30
  article-title: Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network
  publication-title: Sensors
  doi: 10.3390/s140915981
– ident: ref_13
  doi: 10.1145/1391469.1391664
– ident: ref_29
  doi: 10.1109/IISWC.2009.5306797
– ident: ref_21
  doi: 10.1145/337449.337465
– ident: ref_15
  doi: 10.1145/1555754.1555793
– ident: ref_16
  doi: 10.1145/2744769.2744848
– reference: 25171121 - Sensors (Basel). 2014 Aug 28;14(9):15981-6002
– reference: 28208730 - Sensors (Basel). 2017 Feb 08;17 (2):null
SSID ssj0023338
Score 2.1929426
Snippet In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1955
SubjectTerms dynamic voltage frequency scaling (DVFS)
energy minimization
multi-core processor
runtime resource management
self-adaptation
sensory swarm
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ekx7Et9VVqngNJs2rPcm6uCyCHlwFbyVpU_SwrewD8d87abvrrghevDZDmc4kme-jyTcAl0JKpD1aE5VzR4QoHLGJNESJ3FFFC8YyTxTvH9TgWdy9yJelVl_-TFgjD9wE7sqrJ0vEIcJy5CImtprnFEF7TJWLZFazdZrQOZlqqRZH5tXoCHEk9VcTprEuJv4-31L1qUX6f0OWPw9ILlWc_jZstVAx7DYu7sCaK3dhc0lAcA-uu2V4W9_eI90PM3bho-_8MHLh96mWsCrC-pYt6VVoMETaWo0_wyGajyb78Ny_feoNSNsSgWRYOKbE8Cix0lEeK21FwWIrjZKJyKXTOua4ZQipsyi2vFDaLy5EY5YZpqx1Em34AayXVemOIBSWIRkrbB4bLRLNTFxEOeUZNwqTx2QAF_NQpe-N8kWKjMHHM13EM4AbH8SFgRerrh9gCtM2helfKQygM09B2q6gSYpvRzaKUykJ4HwxjHPf_9Awpatm3oZHTCW4xQRw2GRs4YnvooxOigD0Si5XXF0dKd9ea31thIRI7Pjxf3zbCWxEHghQ3I9EB9an45k7RRgztWf1jP0CcFbrUQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB6x5cIeEK9dwktZxNXCjl_JAaGCihAS1YqHxC2yE2fh0ATaIsS_Z5wmoV0hrvEcRh7P44s93wAcCSkR9mhNVM4dEaJwxCbSECVyRxUtGMs8ULweqst7cfUgH5Zg2PbC-GeVbUysA3VeZf4f-TFLMNFg_SGT0-cX4qdG-dvVdoSGaUYr5Cc1xdgPWMaQLGkPls8Gw783HQTjiMhm_EIcwf7xhGnMl4nv85vLSjV5_1cV5_8PJ-cy0cUarDYlZNif2Xwdlly5AT_niAU34bRfhoO6q4_038zYhTde7ZELP1-7hFUR1t235LxCgVuEs9X4PbxF8dFkC-4vBnfnl6QZlUAyTChTYniUWOkoj5W2omCxlUbJROTSaR1zDCVC6iyKLS-U9k6HVZplhilrnUQZ_gt6ZVW6bQiFZQjSCpvHRotEMxMXUU55xo1CozIZwGG7VenzjBEjRSTh9zPt9jOAM7-JnYAnsa4_VON_aeMTqSfGllhiCssRZprYap5TxGMxVS6SGQ1grzVB2njWJP08BwH86ZbRJ_xFhyld9epleMRUgqEngN8zi3Wa-OnKqKQIQC_YckHVxZXy6bHm3cZSEQEf3_lerV1YiXzqpxiBxB70puNXt4-Fy9QeNKfxAx4865g
  priority: 102
  providerName: ProQuest
Title An Energy-Aware Runtime Management of Multi-Core Sensory Swarms
URI https://www.ncbi.nlm.nih.gov/pubmed/28837094
https://www.proquest.com/docview/1952104559
https://www.proquest.com/docview/1932169793
https://pubmed.ncbi.nlm.nih.gov/PMC5620963
https://doaj.org/article/083650194b3840a8b73d0625806e25c0
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xuLSHCgotKbBKEVe3cfzMAaEF7YIqFSFgpb1FduLQSpC02UXAv2ec3Q0EceSSQzyKnBmPZz4_vgHY50Ig7FGKyJw5wnnhiE2EIZLnLpJRQWnmgeLvM3k64r_GYrwEixqbcwVO3oR2vp7UqL758fD_8RAd_sAjToTsPydUYdRLhFiG1WabyJ_g4-1mQswQhs1IhbrinVDUMPa_lWa-Pi35IvwM1-DTPG8M-zNDr8OSKz_Dxxdsghtw2C_DQXOVj_TvTe3CC18G4taFz0dcwqoImyu35LhCgUvEsFX9GF6i-O1kE0bDwdXxKZnXRyAZRpEpMSxOrHAR01JZXlBthZEi4blwSmmG8wcXKou1ZYVU3tMwNbPUUGmtEyjDvsBKWZVuC0JuKSKzwubaKJ4oanQR5xHLmJFoSSoC2FuoKv03o8FIET54faatPgM48kpsBTxzdfOiqq_TuSOkng1bYF7JLUNsabRVLI8QhOlIulhkUQA7CxOki9GQ4tcRmuK4SgL43jajI_jdDVO66s7LsJjKBOebAL7OLNb2xJdUxk7yAFTHlp2udlvKv38asm3MDxHlsW_v8W_b8CH2WUGEkxPfgZVpfed2MaeZ2h4sq7HCpx6e9GD1aHB2ftFr1gd6zVh-AiNx9ro
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dD2UNF3WmjTqj1a2PErOSC00EVLgVXFQ-IW7MQpHEjo7iLEn-O3Mc4mYbeqeuMaj6LReF6f7ZkB-CakRNijNVE5d0SIwhGbSEOUyB1VtGAs80DxYKSGJ-LnqTxdgru2FsY_q2x9Yu2o8yrzZ-TrLMFAg_mHTDav_hA_NcrfrrYjNEwzWiHfqFuMNYUde-72BiHcZGP3B-739yjaGRxvD0kzZYBk6IunxPAosdJRHittRcFiK42Sicil0zrmaIVC6iyKLS-U9vqKCY5lhilrnUQajv99AsvCH6D0YHlrMPp12EE-jghw1s-I84SuT5jG-Jz4usK5KFgPC_hXhvv3Q825yLezAi-alDXsz3TsJSy58hU8n2tk-Bo2-2U4qKsISf_GjF146MV06cKH1zVhVYR1tS_ZrpDgCOFzNb4Nj5D8cvIGTh5FaG-hV1alew-hsAxBYWHz2GiRaGbiIsopz7hRqERMBvC1FVV6NevAkSJy8fJMO3kGsOWF2BH4ptn1h2r8O21sMPWNuCWmtMJyhLUmtprnFPFfTJWLZEYDWG23IG0seZI-6F0AX7pltEF_sWJKV117Gh4xlaCrC-DdbMc6Tvw0Z2RSBKAX9nKB1cWV8uK87vONqSkCTP7h_2x9hqfD44P9dH93tPcRnkU-7aDo_cQq9Kbja7eGSdPUfmo0M4SzxzaGe68fJlY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4VLwJLWAQHK2141dyqKql7aqlUCFKpb2lduIAhyZld6uqf62_jnEe-0CIW6_xKBqN5_Ul8wB4L5VC2GMM1YXwVMrSU5cqS7UsPNOs5DwPQPHLsT44lZ_GarwGN30vTCir7H1i46iLOg_fyAc8xUCD-YdKB2VXFvF1b7Rz8ZuGDVLhT2u_TqNVkSN_fYXwbbp9uId3_SGOR_vfdw9ot2GA5uiHZ9SKOHXKM5Fo42TJE6esVqkslDcmEWiBUpk8TpwotQm6ismN45Zr57xCGoHvvQN3jZAyrI0w4wXYE4j92klGQqRsMOUGI3MaOgqX4l-zJuBfue3fJZpLMW_0EDa6ZJUMW-16BGu-egwPlkYYPoGdYUX2m_5BOryyE0--hd0T554s6mpIXZKmz5fu1khwgsC5nlyTEyQ_nz6F01sR2TNYr-rKvwAiHUc4WLoisUamhtukjAsmcmE1qg9XEbzrRZVdtLM3MsQsQZ7ZXJ4RfAxCnBOEcdnNg3ryI-usLwsjuBUms9IJBLQ2cUYUDJFfwrSPVc4i2OqvIOtseJotNC6Ct_NjtL7wS8VWvr4MNCLmOkUnF8Hz9sbmnIQ9zsikjMCs3OUKq6sn1a-fzYRvTEoRWoqX_2frDdxDE8g-Hx4fbcL9OOQbDN2e3IL12eTSv8JsaeZeN2pJ4Oy27eAPmn8j8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Energy-Aware+Runtime+Management+of+Multi-Core+Sensory+Swarms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sungchan+Kim&rft.au=Hoeseok+Yang&rft.date=2017-08-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=17&rft.issue=9&rft.spage=1955&rft_id=info:doi/10.3390%2Fs17091955&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_083650194b3840a8b73d0625806e25c0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon