An Energy-Aware Runtime Management of Multi-Core Sensory Swarms
In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 17; no. 9; p. 1955 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.08.2017
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s17091955 |
Cover
Abstract | In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique. |
---|---|
AbstractList | In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique. In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique. |
Author | Yang, Hoeseok Kim , Sungchan |
AuthorAffiliation | 1 Division of Computer Science and Engineering, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea; s.kim@chonbuk.ac.kr 2 Department of Electrical and Computer Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Korea |
AuthorAffiliation_xml | – name: 1 Division of Computer Science and Engineering, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea; s.kim@chonbuk.ac.kr – name: 2 Department of Electrical and Computer Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Korea |
Author_xml | – sequence: 1 givenname: Sungchan surname: Kim fullname: Kim , Sungchan – sequence: 2 givenname: Hoeseok orcidid: 0000-0002-7929-7470 surname: Yang fullname: Yang, Hoeseok |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28837094$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktP3DAURq0KVB7tgj-AIrFpF6F-Pzag0YhSJBAStGvLztwMGSU22Emr-fc1DB1BV7bs46PP994DtBNiAISOCD5lzOBvmShsiBHiA9onnPJaU4p33uz30EHOK4wpY0x_RHtUa1ae8H10PgvVRYC0XNezPy5BdTeFsRugunHBLWGAMFaxrW6mfuzqeSzAPYQc07q6L_iQP6Hd1vUZPr-uh-jX94uf8x_19e3l1Xx2XTecmrF2jBovADMtlect0V44KQxfCFBKM6w1F6qh2rNWKmIkE0p44oj0HkRh2CG62ngX0a3sY-oGl9Y2us6-HMS0tC6NXdODxZpJgYnhnmmOnfaKLbCkQmMJVDS4uM42rsfJD7Boyh-T699J39-E7sEu428rJMUlWxF8eRWk-DRBHu3Q5Qb63gWIU7bEMEqkUeYZPfkPXcUphVKqQglKMBfCFOr4baJtlH99KsDXDdCkmHOCdosQbJ9nwG5ngP0FEcie6A |
Cites_doi | 10.1109/IMIS.2013.76 10.3390/s17020310 10.1145/1618525.1618538 10.1016/j.inffus.2014.09.005 10.1117/12.2015612 10.1145/2744769.2744911 10.1145/1961296.1950390 10.1109/FiCloud.2014.18 10.1109/PACT.2011.18 10.1155/2015/146067 10.1109/MDT.2010.142 10.1145/1837853.1693507 10.1016/j.comnet.2004.06.007 10.1109/CASES.2013.6662519 10.1007/978-1-4842-2322-2 10.1145/2228360.2228514 10.1109/99.660313 10.1109/MICRO.2012.37 10.1109/32.637146 10.3390/s140915981 10.1145/1391469.1391664 10.1109/IISWC.2009.5306797 10.1145/337449.337465 10.1145/1555754.1555793 10.1145/2744769.2744848 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 2017 by the authors. 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 – notice: 2017 by the authors. 2017 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s17091955 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_083650194b3840a8b73d0625806e25c0 PMC5620963 28837094 10_3390_s17091955 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c429t-a329b5e03867b4f18b5a6594d5e7783088457c28b3f671963575b1a16bbe55e73 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:49 EDT 2025 Thu Aug 21 18:32:58 EDT 2025 Fri Sep 05 06:29:55 EDT 2025 Fri Jul 25 20:39:13 EDT 2025 Wed Feb 19 02:41:29 EST 2025 Tue Jul 01 01:36:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | dynamic voltage frequency scaling (DVFS) self-adaptation multi-core processor runtime resource management sensory swarm energy minimization |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-a329b5e03867b4f18b5a6594d5e7783088457c28b3f671963575b1a16bbe55e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7929-7470 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s17091955 |
PMID | 28837094 |
PQID | 1952104559 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_083650194b3840a8b73d0625806e25c0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5620963 proquest_miscellaneous_1932169793 proquest_journals_1952104559 pubmed_primary_28837094 crossref_primary_10_3390_s17091955 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170824 |
PublicationDateYYYYMMDD | 2017-08-24 |
PublicationDate_xml | – month: 8 year: 2017 text: 20170824 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Fradi (ref_9) 2015; 24 Paek (ref_30) 2014; 14 ref_13 ref_12 ref_11 Lee (ref_4) 2015; 11 ref_32 Marculescu (ref_7) 2011; 28 Hoffmann (ref_10) 2010; 45 ref_19 ref_18 ref_17 ref_16 ref_15 Kumar (ref_27) 2009; 43 Dagum (ref_22) 1998; 5 ref_25 Mok (ref_20) 1997; 23 ref_24 ref_23 ref_21 ref_1 ref_3 ref_2 ref_29 ref_28 Gao (ref_8) 2013; 8745 Hoffmann (ref_14) 2011; 46 ref_26 Arora (ref_31) 2004; 46 ref_5 ref_6 28208730 - Sensors (Basel). 2017 Feb 08;17 (2):null 25171121 - Sensors (Basel). 2014 Aug 28;14(9):15981-6002 |
References_xml | – ident: ref_2 doi: 10.1109/IMIS.2013.76 – ident: ref_28 – ident: ref_17 doi: 10.3390/s17020310 – volume: 43 start-page: 105 year: 2009 ident: ref_27 article-title: Towards Better Performance per Watt in Virtual Environments on Asymmetric Single-Isa Multi-Core Systems publication-title: ACM SIGOPS Oper. Syst. Rev. doi: 10.1145/1618525.1618538 – volume: 24 start-page: 3 year: 2015 ident: ref_9 article-title: Towards Crowd Density-Aware Video Surveillance Applications publication-title: Inf. Fusion doi: 10.1016/j.inffus.2014.09.005 – volume: 8745 start-page: 87451K year: 2013 ident: ref_8 article-title: Pattern of Life from WAMI Objects Tracking based on Context-Aware Tracking and Information Network Models publication-title: Proc. SPIE doi: 10.1117/12.2015612 – ident: ref_5 – ident: ref_32 – ident: ref_24 – ident: ref_12 doi: 10.1145/2744769.2744911 – volume: 46 start-page: 199 year: 2011 ident: ref_14 article-title: Dynamic Knobs for Responsive Power-Aware Computing publication-title: ACM Sigplan Not. doi: 10.1145/1961296.1950390 – ident: ref_3 doi: 10.1109/FiCloud.2014.18 – ident: ref_26 doi: 10.1109/PACT.2011.18 – ident: ref_1 – ident: ref_23 – volume: 11 start-page: 146067 year: 2015 ident: ref_4 article-title: Fast Video Encoding Algorithm for the Internet of Things Environment Based on High Efficiency Video Coding publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1155/2015/146067 – volume: 28 start-page: 78 year: 2011 ident: ref_7 article-title: Cyberphysical systems: Workload modeling and design optimization publication-title: IEEE Des. Test Comput. doi: 10.1109/MDT.2010.142 – volume: 45 start-page: 347 year: 2010 ident: ref_10 article-title: Application Heartbeats for Software Performance and Health publication-title: ACM Sigplan Not. doi: 10.1145/1837853.1693507 – volume: 46 start-page: 605 year: 2004 ident: ref_31 article-title: A Line in The Sand: A Wireless Sensor Network for Target Detection, Classification, and Tracking publication-title: Comput. Netw. doi: 10.1016/j.comnet.2004.06.007 – ident: ref_19 doi: 10.1109/CASES.2013.6662519 – ident: ref_25 – ident: ref_6 doi: 10.1007/978-1-4842-2322-2 – ident: ref_11 doi: 10.1145/2228360.2228514 – volume: 5 start-page: 46 year: 1998 ident: ref_22 article-title: OpenMP: An Industry Standard API for Shared-Memory Programming publication-title: IEEE Comput. Sci. Eng. doi: 10.1109/99.660313 – ident: ref_18 doi: 10.1109/MICRO.2012.37 – volume: 23 start-page: 635 year: 1997 ident: ref_20 article-title: A Multiframe Model for Real-Time Tasks publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/32.637146 – volume: 14 start-page: 15981 year: 2014 ident: ref_30 article-title: Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network publication-title: Sensors doi: 10.3390/s140915981 – ident: ref_13 doi: 10.1145/1391469.1391664 – ident: ref_29 doi: 10.1109/IISWC.2009.5306797 – ident: ref_21 doi: 10.1145/337449.337465 – ident: ref_15 doi: 10.1145/1555754.1555793 – ident: ref_16 doi: 10.1145/2744769.2744848 – reference: 25171121 - Sensors (Basel). 2014 Aug 28;14(9):15981-6002 – reference: 28208730 - Sensors (Basel). 2017 Feb 08;17 (2):null |
SSID | ssj0023338 |
Score | 2.1929426 |
Snippet | In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1955 |
SubjectTerms | dynamic voltage frequency scaling (DVFS) energy minimization multi-core processor runtime resource management self-adaptation sensory swarm Workloads |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ekx7Et9VVqngNJs2rPcm6uCyCHlwFbyVpU_SwrewD8d87abvrrghevDZDmc4kme-jyTcAl0JKpD1aE5VzR4QoHLGJNESJ3FFFC8YyTxTvH9TgWdy9yJelVl_-TFgjD9wE7sqrJ0vEIcJy5CImtprnFEF7TJWLZFazdZrQOZlqqRZH5tXoCHEk9VcTprEuJv4-31L1qUX6f0OWPw9ILlWc_jZstVAx7DYu7sCaK3dhc0lAcA-uu2V4W9_eI90PM3bho-_8MHLh96mWsCrC-pYt6VVoMETaWo0_wyGajyb78Ny_feoNSNsSgWRYOKbE8Cix0lEeK21FwWIrjZKJyKXTOua4ZQipsyi2vFDaLy5EY5YZpqx1Em34AayXVemOIBSWIRkrbB4bLRLNTFxEOeUZNwqTx2QAF_NQpe-N8kWKjMHHM13EM4AbH8SFgRerrh9gCtM2helfKQygM09B2q6gSYpvRzaKUykJ4HwxjHPf_9Awpatm3oZHTCW4xQRw2GRs4YnvooxOigD0Si5XXF0dKd9ea31thIRI7Pjxf3zbCWxEHghQ3I9EB9an45k7RRgztWf1jP0CcFbrUQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB6x5cIeEK9dwktZxNXCjl_JAaGCihAS1YqHxC2yE2fh0ATaIsS_Z5wmoV0hrvEcRh7P44s93wAcCSkR9mhNVM4dEaJwxCbSECVyRxUtGMs8ULweqst7cfUgH5Zg2PbC-GeVbUysA3VeZf4f-TFLMNFg_SGT0-cX4qdG-dvVdoSGaUYr5Cc1xdgPWMaQLGkPls8Gw783HQTjiMhm_EIcwf7xhGnMl4nv85vLSjV5_1cV5_8PJ-cy0cUarDYlZNif2Xwdlly5AT_niAU34bRfhoO6q4_038zYhTde7ZELP1-7hFUR1t235LxCgVuEs9X4PbxF8dFkC-4vBnfnl6QZlUAyTChTYniUWOkoj5W2omCxlUbJROTSaR1zDCVC6iyKLS-U9k6HVZplhilrnUQZ_gt6ZVW6bQiFZQjSCpvHRotEMxMXUU55xo1CozIZwGG7VenzjBEjRSTh9zPt9jOAM7-JnYAnsa4_VON_aeMTqSfGllhiCssRZprYap5TxGMxVS6SGQ1grzVB2njWJP08BwH86ZbRJ_xFhyld9epleMRUgqEngN8zi3Wa-OnKqKQIQC_YckHVxZXy6bHm3cZSEQEf3_lerV1YiXzqpxiBxB70puNXt4-Fy9QeNKfxAx4865g priority: 102 providerName: ProQuest |
Title | An Energy-Aware Runtime Management of Multi-Core Sensory Swarms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28837094 https://www.proquest.com/docview/1952104559 https://www.proquest.com/docview/1932169793 https://pubmed.ncbi.nlm.nih.gov/PMC5620963 https://doaj.org/article/083650194b3840a8b73d0625806e25c0 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xuLSHCgotKbBKEVe3cfzMAaEF7YIqFSFgpb1FduLQSpC02UXAv2ec3Q0EceSSQzyKnBmPZz4_vgHY50Ig7FGKyJw5wnnhiE2EIZLnLpJRQWnmgeLvM3k64r_GYrwEixqbcwVO3oR2vp7UqL758fD_8RAd_sAjToTsPydUYdRLhFiG1WabyJ_g4-1mQswQhs1IhbrinVDUMPa_lWa-Pi35IvwM1-DTPG8M-zNDr8OSKz_Dxxdsghtw2C_DQXOVj_TvTe3CC18G4taFz0dcwqoImyu35LhCgUvEsFX9GF6i-O1kE0bDwdXxKZnXRyAZRpEpMSxOrHAR01JZXlBthZEi4blwSmmG8wcXKou1ZYVU3tMwNbPUUGmtEyjDvsBKWZVuC0JuKSKzwubaKJ4oanQR5xHLmJFoSSoC2FuoKv03o8FIET54faatPgM48kpsBTxzdfOiqq_TuSOkng1bYF7JLUNsabRVLI8QhOlIulhkUQA7CxOki9GQ4tcRmuK4SgL43jajI_jdDVO66s7LsJjKBOebAL7OLNb2xJdUxk7yAFTHlp2udlvKv38asm3MDxHlsW_v8W_b8CH2WUGEkxPfgZVpfed2MaeZ2h4sq7HCpx6e9GD1aHB2ftFr1gd6zVh-AiNx9ro |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dD2UNF3WmjTqj1a2PErOSC00EVLgVXFQ-IW7MQpHEjo7iLEn-O3Mc4mYbeqeuMaj6LReF6f7ZkB-CakRNijNVE5d0SIwhGbSEOUyB1VtGAs80DxYKSGJ-LnqTxdgru2FsY_q2x9Yu2o8yrzZ-TrLMFAg_mHTDav_hA_NcrfrrYjNEwzWiHfqFuMNYUde-72BiHcZGP3B-739yjaGRxvD0kzZYBk6IunxPAosdJRHittRcFiK42Sicil0zrmaIVC6iyKLS-U9vqKCY5lhilrnUQajv99AsvCH6D0YHlrMPp12EE-jghw1s-I84SuT5jG-Jz4usK5KFgPC_hXhvv3Q825yLezAi-alDXsz3TsJSy58hU8n2tk-Bo2-2U4qKsISf_GjF146MV06cKH1zVhVYR1tS_ZrpDgCOFzNb4Nj5D8cvIGTh5FaG-hV1alew-hsAxBYWHz2GiRaGbiIsopz7hRqERMBvC1FVV6NevAkSJy8fJMO3kGsOWF2BH4ptn1h2r8O21sMPWNuCWmtMJyhLUmtprnFPFfTJWLZEYDWG23IG0seZI-6F0AX7pltEF_sWJKV117Gh4xlaCrC-DdbMc6Tvw0Z2RSBKAX9nKB1cWV8uK87vONqSkCTP7h_2x9hqfD44P9dH93tPcRnkU-7aDo_cQq9Kbja7eGSdPUfmo0M4SzxzaGe68fJlY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4VLwJLWAQHK2141dyqKql7aqlUCFKpb2lduIAhyZld6uqf62_jnEe-0CIW6_xKBqN5_Ul8wB4L5VC2GMM1YXwVMrSU5cqS7UsPNOs5DwPQPHLsT44lZ_GarwGN30vTCir7H1i46iLOg_fyAc8xUCD-YdKB2VXFvF1b7Rz8ZuGDVLhT2u_TqNVkSN_fYXwbbp9uId3_SGOR_vfdw9ot2GA5uiHZ9SKOHXKM5Fo42TJE6esVqkslDcmEWiBUpk8TpwotQm6ismN45Zr57xCGoHvvQN3jZAyrI0w4wXYE4j92klGQqRsMOUGI3MaOgqX4l-zJuBfue3fJZpLMW_0EDa6ZJUMW-16BGu-egwPlkYYPoGdYUX2m_5BOryyE0--hd0T554s6mpIXZKmz5fu1khwgsC5nlyTEyQ_nz6F01sR2TNYr-rKvwAiHUc4WLoisUamhtukjAsmcmE1qg9XEbzrRZVdtLM3MsQsQZ7ZXJ4RfAxCnBOEcdnNg3ryI-usLwsjuBUms9IJBLQ2cUYUDJFfwrSPVc4i2OqvIOtseJotNC6Ct_NjtL7wS8VWvr4MNCLmOkUnF8Hz9sbmnIQ9zsikjMCs3OUKq6sn1a-fzYRvTEoRWoqX_2frDdxDE8g-Hx4fbcL9OOQbDN2e3IL12eTSv8JsaeZeN2pJ4Oy27eAPmn8j8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Energy-Aware+Runtime+Management+of+Multi-Core+Sensory+Swarms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sungchan+Kim&rft.au=Hoeseok+Yang&rft.date=2017-08-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=17&rft.issue=9&rft.spage=1955&rft_id=info:doi/10.3390%2Fs17091955&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_083650194b3840a8b73d0625806e25c0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |