Duck Pack Optimization With Deep Transfer Learning-Enabled Oral Squamous Cell Carcinoma Classification on Histopathological Images

Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for efficient treatment, enhancing survival rate, and reducing the death rate. Thus, it becomes necessary to design effective diagnosis models for assisting pathologists in the OSCC examination process. In r...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of grid and high performance computing Vol. 15; no. 2; pp. 1 - 21
Main Authors Shetty, Savita K, Patil, Annapurna P
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.01.2023
Subjects
Online AccessGet full text
ISSN1938-0259
1938-0267
1938-0267
DOI10.4018/IJGHPC.320474

Cover

Abstract Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for efficient treatment, enhancing survival rate, and reducing the death rate. Thus, it becomes necessary to design effective diagnosis models for assisting pathologists in the OSCC examination process. In recent times, deep learning (DL) models have exhibited considerable improvement in the design of effective computer-aided diagnosis models for OSCC using histopathological images. In this view, this paper develops a novel duck pack optimization with deep transfer learning enabled oral squamous cell carcinoma classification (DPODTL-OSC3) model using histopathological images. The goal of the DPODTL-OSC3 model is to improve the classifier outcomes of OSCC using histopathological images into normal and cancerous class labels. Finally, the variational autoencoder (VAE) model is utilized for the detection and classification of OSCC. The performance validation and comparative result analysis for the DPODTL-OSC3 model are tested using a histopathological imaging database.
AbstractList Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for efficient treatment, enhancing survival rate, and reducing the death rate. Thus, it becomes necessary to design effective diagnosis models for assisting pathologists in the OSCC examination process. In recent times, deep learning (DL) models have exhibited considerable improvement in the design of effective computer-aided diagnosis models for OSCC using histopathological images. In this view, this paper develops a novel duck pack optimization with deep transfer learning enabled oral squamous cell carcinoma classification (DPODTL-OSC3) model using histopathological images. The goal of the DPODTL-OSC3 model is to improve the classifier outcomes of OSCC using histopathological images into normal and cancerous class labels. Finally, the variational autoencoder (VAE) model is utilized for the detection and classification of OSCC. The performance validation and comparative result analysis for the DPODTL-OSC3 model are tested using a histopathological imaging database.
Audience Academic
Author Patil, Annapurna P
Shetty, Savita K
AuthorAffiliation Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India & Visvesvaraya Technological University, Belagavi, India
AuthorAffiliation_xml – name: Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India & Visvesvaraya Technological University, Belagavi, India
Author_xml – sequence: 1
  givenname: Savita
  surname: Shetty
  middlename: K
  fullname: Shetty, Savita K
  organization: Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India & Visvesvaraya Technological University, Belagavi, India
– sequence: 2
  givenname: Annapurna
  surname: Patil
  middlename: P
  fullname: Patil, Annapurna P
  organization: Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India & Visvesvaraya Technological University, Belagavi, India
BookMark eNp1Ul1r2zAUNaODtd0e9y7Y65zqK7H1WJy2yQiksI49imtVdpTJkivJjO5xv3xOPZbuCyRdIc45nHt0z7IT553OsrcEzzgm5cX6w83qtpoxinnBX2SnRLAyx3RRnPy6z8Wr7CzGPcYLTkl5mn1fDuoLuoXx2PbJdOYbJOMd-mzSDi217tFdABcbHdBGQ3DGtfmVg9rqe7QNYNHHhwE6P0RUaWtRBUEZ5ztAlYUYTWPUpDeulYnJ95B23vp2fLdo3UGr4-vsZQM26jc_63n26frqrlrlm-3Nurrc5IpTkXLBy0LPRcOZ1ryktb4vBanHXjlTTGAKGLhQbNFw3BA6Z1gQCkyD5jUQTRQ7z2aT7uB6ePwK1so-mA7CoyRYHhKUZt_ueiWnBEfCu4nQB_8w6Jjk3g_BjR4lLQQh7LCPqBaslsY1PgVQnYlKXhYLzAmhRTmi3j9D1UM0To_5uGjaXYotDDH-Ds8nuAo-xqCbv6xOn320yv7AK5Oekh_NGPtfVjWxTGuOvR2GQT4fBnkYBrn8pwaZsx9u9cSs
CitedBy_id crossref_primary_10_1186_s12903_024_03993_5
crossref_primary_10_54392_irjmt2529
crossref_primary_10_1007_s42979_024_03218_0
crossref_primary_10_1111_jop_13578
Cites_doi 10.1016/j.ajoms.2019.09.010
10.1109/ACCESS.2022.3142097
10.32604/iasc.2022.022209
10.1111/jmi.12611
10.1109/CCDC.2017.7978915
10.32604/csse.2022.020439
10.1001/jamaoto.2021.2028
10.1134/S1064226917140017
10.1101/2021.05.06.21256741
10.32604/iasc.2022.021822
10.1016/j.procs.2020.04.029
10.32604/iasc.2022.019117
10.3390/cancers13081784
10.1016/j.tice.2019.101322
10.7759/cureus.3111
10.1016/j.imavis.2022.104404
10.1111/jop.13135
10.2174/1875036202013010106
10.3390/cancers13122864
10.1016/j.tice.2018.06.004
10.1016/j.artmed.2021.102060
10.1016/j.dib.2020.105114
10.1109/ACCESS.2020.3001350
10.1111/jop.13042
10.32604/csse.2022.022122
10.1177/1063293X211031485
10.1155/2014/507512
10.1007/s00521-019-04516-y
10.1016/j.measurement.2021.109804
10.1016/j.ecoinf.2020.101182
10.1007/s12539-021-00467-y
ContentType Journal Article
Copyright COPYRIGHT 2023 IGI Global
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 IGI Global
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
N95
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.4018/IJGHPC.320474
DatabaseName CrossRef
Gale Business: Insights
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1938-0267
EndPage 21
ExternalDocumentID 10.4018/ijghpc.320474
A760411278
10_4018_IJGHPC_320474
Pack_Optimization_With_D10_4018_IJGHPC_32047415
GroupedDBID 0R~
4.4
AAYVP
ABEPT
ABGRR
ACOJC
ADEKF
ALMA_UNASSIGNED_HOLDINGS
BTFVE
BYHXH
CBWLS
CDTDJ
CIGCI
CKMBR
CNQXE
COVLG
EBS
H13
HZ~
IGYUU
JRD
MV1
NEEBM
O9-
RIF
AAYXX
ABJCF
ABPHS
AFKRA
ARAPS
BAAKF
BENPR
BGLVJ
CCPQU
CITATION
CTSEY
HCIFZ
IAO
ICD
ITC
K7-
M7S
N95
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-c429t-9487e59f43ee482bed891b20443c3902a0a49c36f40f12530912a3eae4ba1e1c3
IEDL.DBID BENPR
ISSN 1938-0259
1938-0267
IngestDate Tue Aug 19 17:36:39 EDT 2025
Fri Jul 25 10:13:49 EDT 2025
Mon Oct 20 22:01:06 EDT 2025
Fri May 23 01:29:03 EDT 2025
Wed Oct 01 02:02:06 EDT 2025
Thu Apr 24 23:12:58 EDT 2025
Sat Jun 10 05:49:10 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by/3.0/deed.en_US
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-9487e59f43ee482bed891b20443c3902a0a49c36f40f12530912a3eae4ba1e1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4604-428X
0000-0003-1046-5138
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.igi-global.com/ViewTitle.aspx?TitleId=320474&isxn=9781668489284
PQID 2791139113
PQPubID 2045843
PageCount 21
ParticipantIDs crossref_primary_10_4018_IJGHPC_320474
gale_infotracmisc_A760411278
proquest_journals_2791139113
crossref_citationtrail_10_4018_IJGHPC_320474
igi_journals_Pack_Optimization_With_D10_4018_IJGHPC_32047415
unpaywall_primary_10_4018_ijghpc_320474
gale_businessinsightsgauss_A760411278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of grid and high performance computing
PublicationYear 2023
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJGHPC.320474-12
IJGHPC.320474-11
IJGHPC.320474-14
IJGHPC.320474-13
IJGHPC.320474-30
IJGHPC.320474-10
IJGHPC.320474-32
IJGHPC.320474-31
IJGHPC.320474-19
IJGHPC.320474-16
IJGHPC.320474-15
IJGHPC.320474-18
IJGHPC.320474-17
E.Luz (IJGHPC.320474-33) 2021
IJGHPC.320474-1
IJGHPC.320474-0
IJGHPC.320474-3
S. B.Pokle (IJGHPC.320474-22) 2019; 22
IJGHPC.320474-2
IJGHPC.320474-23
IJGHPC.320474-25
IJGHPC.320474-24
IJGHPC.320474-21
IJGHPC.320474-20
IJGHPC.320474-5
IJGHPC.320474-4
IJGHPC.320474-7
IJGHPC.320474-6
IJGHPC.320474-9
IJGHPC.320474-27
IJGHPC.320474-8
IJGHPC.320474-26
IJGHPC.320474-29
IJGHPC.320474-28
References_xml – ident: IJGHPC.320474-16
  doi: 10.1016/j.ajoms.2019.09.010
– ident: IJGHPC.320474-0
  doi: 10.1109/ACCESS.2022.3142097
– ident: IJGHPC.320474-4
  doi: 10.32604/iasc.2022.022209
– ident: IJGHPC.320474-25
  doi: 10.1111/jmi.12611
– ident: IJGHPC.320474-30
  doi: 10.1109/CCDC.2017.7978915
– ident: IJGHPC.320474-18
  doi: 10.32604/csse.2022.020439
– ident: IJGHPC.320474-6
  doi: 10.1001/jamaoto.2021.2028
– ident: IJGHPC.320474-10
  doi: 10.1134/S1064226917140017
– ident: IJGHPC.320474-3
  doi: 10.1101/2021.05.06.21256741
– ident: IJGHPC.320474-12
  doi: 10.32604/iasc.2022.021822
– ident: IJGHPC.320474-17
  doi: 10.1016/j.procs.2020.04.029
– ident: IJGHPC.320474-26
  doi: 10.32604/iasc.2022.019117
– ident: IJGHPC.320474-19
  doi: 10.3390/cancers13081784
– ident: IJGHPC.320474-23
  doi: 10.1016/j.tice.2019.101322
– ident: IJGHPC.320474-15
  doi: 10.7759/cureus.3111
– ident: IJGHPC.320474-29
  doi: 10.1016/j.imavis.2022.104404
– ident: IJGHPC.320474-2
  doi: 10.1111/jop.13135
– ident: IJGHPC.320474-21
  doi: 10.2174/1875036202013010106
– ident: IJGHPC.320474-32
  doi: 10.3390/cancers13122864
– ident: IJGHPC.320474-8
  doi: 10.1016/j.tice.2018.06.004
– ident: IJGHPC.320474-1
  doi: 10.1016/j.artmed.2021.102060
– ident: IJGHPC.320474-24
  doi: 10.1016/j.dib.2020.105114
– ident: IJGHPC.320474-31
  doi: 10.1109/ACCESS.2020.3001350
– ident: IJGHPC.320474-28
  doi: 10.1111/jop.13042
– ident: IJGHPC.320474-20
– ident: IJGHPC.320474-27
  doi: 10.32604/csse.2022.022122
– start-page: 1
  year: 2021
  ident: IJGHPC.320474-33
  article-title: Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images.
  publication-title: Research on Biomedical Engineering
– ident: IJGHPC.320474-7
  doi: 10.1177/1063293X211031485
– ident: IJGHPC.320474-11
  doi: 10.1155/2014/507512
– ident: IJGHPC.320474-9
  doi: 10.1007/s00521-019-04516-y
– ident: IJGHPC.320474-13
  doi: 10.1016/j.measurement.2021.109804
– ident: IJGHPC.320474-5
  doi: 10.1016/j.ecoinf.2020.101182
– volume: 22
  start-page: 4561
  issue: 2
  year: 2019
  ident: IJGHPC.320474-22
  article-title: Analysis of OFDM system using DCT-PTS-SLM based approach for multimedia applications.
  publication-title: Cluster Computing
– ident: IJGHPC.320474-14
  doi: 10.1007/s12539-021-00467-y
SSID ssj0064218
Score 2.2558432
Snippet Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for efficient treatment, enhancing survival rate, and reducing the...
SourceID unpaywall
proquest
gale
crossref
igi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms CAD
Computer aided design
Deep learning
Diagnosis
Image classification
Machine learning
Mortality
Optimization
Squamous cell carcinoma
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbo9gAXylNsW5APUC5kSWLnJcFhtW3ZrUS7El0oJ8t2nG0gmy5NogJHfjnj2Gm7PCQOSEkUKc44jsffzDjONwg9DSGqopGvHKp5hmjkUicWieeksYxSN-apaIm03x6G4xk9OAlObDqgyi6rzCEsNHQYLVS_z9XFsX5zhqS2PZ2kr4nv0oju5NXXNhTywjCmcQJou4bWwwAc8x5anx1Ohx_Nd-XYAeueXJ2HkWHchPgifpl_mp8u5cCIXLFQFqfX4JlWfNCbTbnk3y54UVwzR_sbqOgaYlahfB40tRjI779wPP6nlt5Bt63biodGz-6iG6q8hza6lBDYIsR99EOnnMZTDocjAKOF_csTf8jrU7yr1BK3xjGDeyyz69zZa3_fSvHROdTw7kvD9WwEHqmiwCOd6ag8W3DcJu_Uy5qMPNhaghOdULmDbzxZADhWD9Bsf-94NHZsmgdHgjGsnQRiJhUkGSVK0dgXKo0TT0CbKZEkcX3ucppIEmbUzcAdI-Dh-JworqjgnvIkeYh65VmpHiEsJJUkJSrhvgYjT3iKg4uTeRkPhC_jPnrRdS2TlgNdp-IoGMRCWhPY5ODNeDpi5pX30c5l8aUh__hbwWdaT5hNHAqHSk-tVHPeVBUbRqFLwa-NoP7ttpwGD6hXwlCWK5dfgUYwiyIV073FrvcW073Fdv_4DF4A0jsFvZLhR2DOiN776Pml0v7WHDMCrKjNfy65hW754PWZOalt1KvPG_UYvLRaPLGj7yfu_Tj_
  priority: 102
  providerName: Unpaywall
Title Duck Pack Optimization With Deep Transfer Learning-Enabled Oral Squamous Cell Carcinoma Classification on Histopathological Images
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGHPC.320474
https://www.proquest.com/docview/2791139113
https://www.igi-global.com/ViewTitle.aspx?TitleId=320474&isxn=9781668489284
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1938-0267
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064218
  issn: 1938-0259
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9owFLYKfdhe1l011q7ywy4vy5rYhjjSpolRKK00irahtU-W4ziUKQTagKa97pfvnMRpi3aRIHnAHEM-n4ud-PsIedGBWZUImfUE8gyJ0BeejKPAS6QJE1_qJC6JtD-NOsOJODlrn22RUb0XBh-rrGNiGaiThcE18gMWgltyfH9YXnqoGoV3V2sJDe2kFZL3JcVYg2wzZMZqku2P_dH4cx2bcVenrO4zSw-yfVSxbsIcQx4cnxwNx723nPkiFBtZysXqxmw626hD76zzpf75Q2fZrZQ0uE_uuVqSdivwH5Atmz8kO7VOA3Vu-4j8Qh1oOtZwOIUIMXdbL-m32eqCHlq7pGXGSuE7jm516vXLPVUJPb2CHr5crjUuEdCezTLaQ_mhfDHXtFTUxGeNKnvwKllHUOW4jqn0eA4Rq3hMJoP-197Qc9oLnoEMtfIimMjYdpQKbq2QLLaJjIIYro3ghkc-074WkeGdVPgp1Egcyg6mudVWxDqwgeFPSDNf5PYpobERhifcRpphhAjiwGqoO9Ig1e2YGdkib-prrYwjJkd9jEzBBAWhURU0qoKmRV5dN19WjBz_avgSgVNOzRMOBa53FFO9LgrVDTu-gGIzhP73ynbo0dCvAf8yGx-_A-CVc-1CIVrqNloK0VKHf_0NQRus1yPmxsbNYG6R19ej6I-_M_s-vVgaZ-rZ_w3tkrsM6q9qdWiPNFdXa_sc6qVVvE8acnC071wBzpPRuHv-G0zjFO8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENb0cSgX3gyBAjpQuGBqS0psz9BhSpKS9JFmoB16E7Isp2Ecx62T6fTKD-O3sWvLbTM8bp2JfYmycrzab3dl736EvG5BViV8ZhyBfYaE7woniELPiQPtx26g4qhspH0waPWOxe5J82SJ_KprYfC1yhoTS6COpxr3yDeZD2bJ8fiYnznIGoVPV2sKDWWpFeKtssWYLezYM5cXkMIVW_0O6HuDsZ3uUbvnWJYBRwMWz5wQQnbTDBPBjREBi0wchF7EXCG45qHLlKtEqHkrEW4C0QAHB8sUN8qISHnG0xzkLpNVwUUIyd_qp-5g-KX2BVhFGlTPtQMHoouw6vIJOU2w2d_93Bu233OYyRcLXtH6huXxaLwQ967Ns1xdXqg0veECd-6TuzZ2pdvVYntAlkz2kNyreSGohYlH5CfyTtOhgtMhINLElnrSb-PZKe0Yk9PSQybwG9vedeR0yxqumB6ewwxfz-YKtyRo26QpbSPdUTadKFoyeOK7TZU8-JRdTpBVucZw2p8AQhaPyfGtaOEJWcmmmXlKaKSF5jE3oWKISF7kGQVxTuIlqhkxHTTIu_peS20boSMfRyohIULVyEo1slJNg7y5Gp5XHUD-NXADFScteyicCtxfKUZqXhRy22-5AoJbH-ZfL8chgsC8GuxZL3z9ARQvLZQUErUlb2pLorZk56_X4DVBer1irmVcG0-DvL1aRX_8nfGP0Wmurahn_xf0iqz1jg725X5_sPec3GEQ-1U7U-tkZXY-Ny8gVptFL61BUPL9tm3wNyoGTjk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbo9gAXylNsW5APUC5kSWLnJcFhtW3ZrUS7El0oJ8t2nG0gmy5NogJHfjnj2Gm7PCQOSEkUKc44jsffzDjONwg9DSGqopGvHKp5hmjkUicWieeksYxSN-apaIm03x6G4xk9OAlObDqgyi6rzCEsNHQYLVS_z9XFsX5zhqS2PZ2kr4nv0oju5NXXNhTywjCmcQJou4bWwwAc8x5anx1Ohx_Nd-XYAeueXJ2HkWHchPgifpl_mp8u5cCIXLFQFqfX4JlWfNCbTbnk3y54UVwzR_sbqOgaYlahfB40tRjI779wPP6nlt5Bt63biodGz-6iG6q8hza6lBDYIsR99EOnnMZTDocjAKOF_csTf8jrU7yr1BK3xjGDeyyz69zZa3_fSvHROdTw7kvD9WwEHqmiwCOd6ag8W3DcJu_Uy5qMPNhaghOdULmDbzxZADhWD9Bsf-94NHZsmgdHgjGsnQRiJhUkGSVK0dgXKo0TT0CbKZEkcX3ucppIEmbUzcAdI-Dh-JworqjgnvIkeYh65VmpHiEsJJUkJSrhvgYjT3iKg4uTeRkPhC_jPnrRdS2TlgNdp-IoGMRCWhPY5ODNeDpi5pX30c5l8aUh__hbwWdaT5hNHAqHSk-tVHPeVBUbRqFLwa-NoP7ttpwGD6hXwlCWK5dfgUYwiyIV073FrvcW073Fdv_4DF4A0jsFvZLhR2DOiN776Pml0v7WHDMCrKjNfy65hW754PWZOalt1KvPG_UYvLRaPLGj7yfu_Tj_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Duck+Pack+Optimization+With+Deep+Transfer+Learning-Enabled+Oral+Squamous+Cell+Carcinoma+Classification+on+Histopathological+Images&rft.jtitle=International+journal+of+grid+and+high+performance+computing&rft.au=Shetty%2C+Savita+K&rft.au=Patil%2C+Annapurna+P&rft.date=2023-01-01&rft.pub=IGI+Global&rft.issn=1938-0259&rft.volume=15&rft.issue=2&rft_id=info:doi/10.4018%2FIJGHPC.320474&rft.externalDBID=N95&rft.externalDocID=A760411278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-0259&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-0259&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-0259&client=summon