Duck Pack Optimization With Deep Transfer Learning-Enabled Oral Squamous Cell Carcinoma Classification on Histopathological Images
Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for efficient treatment, enhancing survival rate, and reducing the death rate. Thus, it becomes necessary to design effective diagnosis models for assisting pathologists in the OSCC examination process. In r...
        Saved in:
      
    
          | Published in | International journal of grid and high performance computing Vol. 15; no. 2; pp. 1 - 21 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hershey
          IGI Global
    
        01.01.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1938-0259 1938-0267 1938-0267  | 
| DOI | 10.4018/IJGHPC.320474 | 
Cover
| Abstract | Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for efficient treatment, enhancing survival rate, and reducing the death rate. Thus, it becomes necessary to design effective diagnosis models for assisting pathologists in the OSCC examination process. In recent times, deep learning (DL) models have exhibited considerable improvement in the design of effective computer-aided diagnosis models for OSCC using histopathological images. In this view, this paper develops a novel duck pack optimization with deep transfer learning enabled oral squamous cell carcinoma classification (DPODTL-OSC3) model using histopathological images. The goal of the DPODTL-OSC3 model is to improve the classifier outcomes of OSCC using histopathological images into normal and cancerous class labels. Finally, the variational autoencoder (VAE) model is utilized for the detection and classification of OSCC. The performance validation and comparative result analysis for the DPODTL-OSC3 model are tested using a histopathological imaging database. | 
    
|---|---|
| AbstractList | Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for efficient treatment, enhancing survival rate, and reducing the death rate. Thus, it becomes necessary to design effective diagnosis models for assisting pathologists in the OSCC examination process. In recent times, deep learning (DL) models have exhibited considerable improvement in the design of effective computer-aided diagnosis models for OSCC using histopathological images. In this view, this paper develops a novel duck pack optimization with deep transfer learning enabled oral squamous cell carcinoma classification (DPODTL-OSC3) model using histopathological images. The goal of the DPODTL-OSC3 model is to improve the classifier outcomes of OSCC using histopathological images into normal and cancerous class labels. Finally, the variational autoencoder (VAE) model is utilized for the detection and classification of OSCC. The performance validation and comparative result analysis for the DPODTL-OSC3 model are tested using a histopathological imaging database. | 
    
| Audience | Academic | 
    
| Author | Patil, Annapurna P Shetty, Savita K  | 
    
| AuthorAffiliation | Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India & Visvesvaraya Technological University, Belagavi, India | 
    
| AuthorAffiliation_xml | – name: Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India & Visvesvaraya Technological University, Belagavi, India | 
    
| Author_xml | – sequence: 1 givenname: Savita surname: Shetty middlename: K fullname: Shetty, Savita K organization: Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India & Visvesvaraya Technological University, Belagavi, India – sequence: 2 givenname: Annapurna surname: Patil middlename: P fullname: Patil, Annapurna P organization: Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India & Visvesvaraya Technological University, Belagavi, India  | 
    
| BookMark | eNp1Ul1r2zAUNaODtd0e9y7Y65zqK7H1WJy2yQiksI49imtVdpTJkivJjO5xv3xOPZbuCyRdIc45nHt0z7IT553OsrcEzzgm5cX6w83qtpoxinnBX2SnRLAyx3RRnPy6z8Wr7CzGPcYLTkl5mn1fDuoLuoXx2PbJdOYbJOMd-mzSDi217tFdABcbHdBGQ3DGtfmVg9rqe7QNYNHHhwE6P0RUaWtRBUEZ5ztAlYUYTWPUpDeulYnJ95B23vp2fLdo3UGr4-vsZQM26jc_63n26frqrlrlm-3Nurrc5IpTkXLBy0LPRcOZ1ryktb4vBanHXjlTTGAKGLhQbNFw3BA6Z1gQCkyD5jUQTRQ7z2aT7uB6ePwK1so-mA7CoyRYHhKUZt_ueiWnBEfCu4nQB_8w6Jjk3g_BjR4lLQQh7LCPqBaslsY1PgVQnYlKXhYLzAmhRTmi3j9D1UM0To_5uGjaXYotDDH-Ds8nuAo-xqCbv6xOn320yv7AK5Oekh_NGPtfVjWxTGuOvR2GQT4fBnkYBrn8pwaZsx9u9cSs | 
    
| CitedBy_id | crossref_primary_10_1186_s12903_024_03993_5 crossref_primary_10_54392_irjmt2529 crossref_primary_10_1007_s42979_024_03218_0 crossref_primary_10_1111_jop_13578  | 
    
| Cites_doi | 10.1016/j.ajoms.2019.09.010 10.1109/ACCESS.2022.3142097 10.32604/iasc.2022.022209 10.1111/jmi.12611 10.1109/CCDC.2017.7978915 10.32604/csse.2022.020439 10.1001/jamaoto.2021.2028 10.1134/S1064226917140017 10.1101/2021.05.06.21256741 10.32604/iasc.2022.021822 10.1016/j.procs.2020.04.029 10.32604/iasc.2022.019117 10.3390/cancers13081784 10.1016/j.tice.2019.101322 10.7759/cureus.3111 10.1016/j.imavis.2022.104404 10.1111/jop.13135 10.2174/1875036202013010106 10.3390/cancers13122864 10.1016/j.tice.2018.06.004 10.1016/j.artmed.2021.102060 10.1016/j.dib.2020.105114 10.1109/ACCESS.2020.3001350 10.1111/jop.13042 10.32604/csse.2022.022122 10.1177/1063293X211031485 10.1155/2014/507512 10.1007/s00521-019-04516-y 10.1016/j.measurement.2021.109804 10.1016/j.ecoinf.2020.101182 10.1007/s12539-021-00467-y  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 IGI Global 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 IGI Global – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION N95 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY  | 
    
| DOI | 10.4018/IJGHPC.320474 | 
    
| DatabaseName | CrossRef Gale Business: Insights Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1938-0267 | 
    
| EndPage | 21 | 
    
| ExternalDocumentID | 10.4018/ijghpc.320474 A760411278 10_4018_IJGHPC_320474 Pack_Optimization_With_D10_4018_IJGHPC_32047415  | 
    
| GroupedDBID | 0R~ 4.4 AAYVP ABEPT ABGRR ACOJC ADEKF ALMA_UNASSIGNED_HOLDINGS BTFVE BYHXH CBWLS CDTDJ CIGCI CKMBR CNQXE COVLG EBS H13 HZ~ IGYUU JRD MV1 NEEBM O9- RIF AAYXX ABJCF ABPHS AFKRA ARAPS BAAKF BENPR BGLVJ CCPQU CITATION CTSEY HCIFZ IAO ICD ITC K7- M7S N95 PHGZM PHGZT PQGLB PTHSS PUEGO 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC EJD UNPAY  | 
    
| ID | FETCH-LOGICAL-c429t-9487e59f43ee482bed891b20443c3902a0a49c36f40f12530912a3eae4ba1e1c3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1938-0259 1938-0267  | 
    
| IngestDate | Tue Aug 19 17:36:39 EDT 2025 Fri Jul 25 10:13:49 EDT 2025 Mon Oct 20 22:01:06 EDT 2025 Fri May 23 01:29:03 EDT 2025 Wed Oct 01 02:02:06 EDT 2025 Thu Apr 24 23:12:58 EDT 2025 Sat Jun 10 05:49:10 EDT 2023  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by/3.0/deed.en_US cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c429t-9487e59f43ee482bed891b20443c3902a0a49c36f40f12530912a3eae4ba1e1c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4604-428X 0000-0003-1046-5138  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.igi-global.com/ViewTitle.aspx?TitleId=320474&isxn=9781668489284 | 
    
| PQID | 2791139113 | 
    
| PQPubID | 2045843 | 
    
| PageCount | 21 | 
    
| ParticipantIDs | crossref_primary_10_4018_IJGHPC_320474 gale_infotracmisc_A760411278 proquest_journals_2791139113 crossref_citationtrail_10_4018_IJGHPC_320474 igi_journals_Pack_Optimization_With_D10_4018_IJGHPC_32047415 unpaywall_primary_10_4018_ijghpc_320474 gale_businessinsightsgauss_A760411278  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-01-01 | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hershey | 
    
| PublicationPlace_xml | – name: Hershey | 
    
| PublicationTitle | International journal of grid and high performance computing | 
    
| PublicationYear | 2023 | 
    
| Publisher | IGI Global | 
    
| Publisher_xml | – name: IGI Global | 
    
| References | IJGHPC.320474-12 IJGHPC.320474-11 IJGHPC.320474-14 IJGHPC.320474-13 IJGHPC.320474-30 IJGHPC.320474-10 IJGHPC.320474-32 IJGHPC.320474-31 IJGHPC.320474-19 IJGHPC.320474-16 IJGHPC.320474-15 IJGHPC.320474-18 IJGHPC.320474-17 E.Luz (IJGHPC.320474-33) 2021 IJGHPC.320474-1 IJGHPC.320474-0 IJGHPC.320474-3 S. B.Pokle (IJGHPC.320474-22) 2019; 22 IJGHPC.320474-2 IJGHPC.320474-23 IJGHPC.320474-25 IJGHPC.320474-24 IJGHPC.320474-21 IJGHPC.320474-20 IJGHPC.320474-5 IJGHPC.320474-4 IJGHPC.320474-7 IJGHPC.320474-6 IJGHPC.320474-9 IJGHPC.320474-27 IJGHPC.320474-8 IJGHPC.320474-26 IJGHPC.320474-29 IJGHPC.320474-28  | 
    
| References_xml | – ident: IJGHPC.320474-16 doi: 10.1016/j.ajoms.2019.09.010 – ident: IJGHPC.320474-0 doi: 10.1109/ACCESS.2022.3142097 – ident: IJGHPC.320474-4 doi: 10.32604/iasc.2022.022209 – ident: IJGHPC.320474-25 doi: 10.1111/jmi.12611 – ident: IJGHPC.320474-30 doi: 10.1109/CCDC.2017.7978915 – ident: IJGHPC.320474-18 doi: 10.32604/csse.2022.020439 – ident: IJGHPC.320474-6 doi: 10.1001/jamaoto.2021.2028 – ident: IJGHPC.320474-10 doi: 10.1134/S1064226917140017 – ident: IJGHPC.320474-3 doi: 10.1101/2021.05.06.21256741 – ident: IJGHPC.320474-12 doi: 10.32604/iasc.2022.021822 – ident: IJGHPC.320474-17 doi: 10.1016/j.procs.2020.04.029 – ident: IJGHPC.320474-26 doi: 10.32604/iasc.2022.019117 – ident: IJGHPC.320474-19 doi: 10.3390/cancers13081784 – ident: IJGHPC.320474-23 doi: 10.1016/j.tice.2019.101322 – ident: IJGHPC.320474-15 doi: 10.7759/cureus.3111 – ident: IJGHPC.320474-29 doi: 10.1016/j.imavis.2022.104404 – ident: IJGHPC.320474-2 doi: 10.1111/jop.13135 – ident: IJGHPC.320474-21 doi: 10.2174/1875036202013010106 – ident: IJGHPC.320474-32 doi: 10.3390/cancers13122864 – ident: IJGHPC.320474-8 doi: 10.1016/j.tice.2018.06.004 – ident: IJGHPC.320474-1 doi: 10.1016/j.artmed.2021.102060 – ident: IJGHPC.320474-24 doi: 10.1016/j.dib.2020.105114 – ident: IJGHPC.320474-31 doi: 10.1109/ACCESS.2020.3001350 – ident: IJGHPC.320474-28 doi: 10.1111/jop.13042 – ident: IJGHPC.320474-20 – ident: IJGHPC.320474-27 doi: 10.32604/csse.2022.022122 – start-page: 1 year: 2021 ident: IJGHPC.320474-33 article-title: Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images. publication-title: Research on Biomedical Engineering – ident: IJGHPC.320474-7 doi: 10.1177/1063293X211031485 – ident: IJGHPC.320474-11 doi: 10.1155/2014/507512 – ident: IJGHPC.320474-9 doi: 10.1007/s00521-019-04516-y – ident: IJGHPC.320474-13 doi: 10.1016/j.measurement.2021.109804 – ident: IJGHPC.320474-5 doi: 10.1016/j.ecoinf.2020.101182 – volume: 22 start-page: 4561 issue: 2 year: 2019 ident: IJGHPC.320474-22 article-title: Analysis of OFDM system using DCT-PTS-SLM based approach for multimedia applications. publication-title: Cluster Computing – ident: IJGHPC.320474-14 doi: 10.1007/s12539-021-00467-y  | 
    
| SSID | ssj0064218 | 
    
| Score | 2.2558432 | 
    
| Snippet | Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for efficient treatment, enhancing survival rate, and reducing the... | 
    
| SourceID | unpaywall proquest gale crossref igi  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | CAD Computer aided design Deep learning Diagnosis Image classification Machine learning Mortality Optimization Squamous cell carcinoma  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbo9gAXylNsW5APUC5kSWLnJcFhtW3ZrUS7El0oJ8t2nG0gmy5NogJHfjnj2Gm7PCQOSEkUKc44jsffzDjONwg9DSGqopGvHKp5hmjkUicWieeksYxSN-apaIm03x6G4xk9OAlObDqgyi6rzCEsNHQYLVS_z9XFsX5zhqS2PZ2kr4nv0oju5NXXNhTywjCmcQJou4bWwwAc8x5anx1Ohx_Nd-XYAeueXJ2HkWHchPgifpl_mp8u5cCIXLFQFqfX4JlWfNCbTbnk3y54UVwzR_sbqOgaYlahfB40tRjI779wPP6nlt5Bt63biodGz-6iG6q8hza6lBDYIsR99EOnnMZTDocjAKOF_csTf8jrU7yr1BK3xjGDeyyz69zZa3_fSvHROdTw7kvD9WwEHqmiwCOd6ag8W3DcJu_Uy5qMPNhaghOdULmDbzxZADhWD9Bsf-94NHZsmgdHgjGsnQRiJhUkGSVK0dgXKo0TT0CbKZEkcX3ucppIEmbUzcAdI-Dh-JworqjgnvIkeYh65VmpHiEsJJUkJSrhvgYjT3iKg4uTeRkPhC_jPnrRdS2TlgNdp-IoGMRCWhPY5ODNeDpi5pX30c5l8aUh__hbwWdaT5hNHAqHSk-tVHPeVBUbRqFLwa-NoP7ttpwGD6hXwlCWK5dfgUYwiyIV073FrvcW073Fdv_4DF4A0jsFvZLhR2DOiN776Pml0v7WHDMCrKjNfy65hW754PWZOalt1KvPG_UYvLRaPLGj7yfu_Tj_ priority: 102 providerName: Unpaywall  | 
    
| Title | Duck Pack Optimization With Deep Transfer Learning-Enabled Oral Squamous Cell Carcinoma Classification on Histopathological Images | 
    
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGHPC.320474 https://www.proquest.com/docview/2791139113 https://www.igi-global.com/ViewTitle.aspx?TitleId=320474&isxn=9781668489284  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1938-0267 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064218 issn: 1938-0259 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9owFLYKfdhe1l011q7ywy4vy5rYhjjSpolRKK00irahtU-W4ziUKQTagKa97pfvnMRpi3aRIHnAHEM-n4ud-PsIedGBWZUImfUE8gyJ0BeejKPAS6QJE1_qJC6JtD-NOsOJODlrn22RUb0XBh-rrGNiGaiThcE18gMWgltyfH9YXnqoGoV3V2sJDe2kFZL3JcVYg2wzZMZqku2P_dH4cx2bcVenrO4zSw-yfVSxbsIcQx4cnxwNx723nPkiFBtZysXqxmw626hD76zzpf75Q2fZrZQ0uE_uuVqSdivwH5Atmz8kO7VOA3Vu-4j8Qh1oOtZwOIUIMXdbL-m32eqCHlq7pGXGSuE7jm516vXLPVUJPb2CHr5crjUuEdCezTLaQ_mhfDHXtFTUxGeNKnvwKllHUOW4jqn0eA4Rq3hMJoP-197Qc9oLnoEMtfIimMjYdpQKbq2QLLaJjIIYro3ghkc-074WkeGdVPgp1Egcyg6mudVWxDqwgeFPSDNf5PYpobERhifcRpphhAjiwGqoO9Ig1e2YGdkib-prrYwjJkd9jEzBBAWhURU0qoKmRV5dN19WjBz_avgSgVNOzRMOBa53FFO9LgrVDTu-gGIzhP73ynbo0dCvAf8yGx-_A-CVc-1CIVrqNloK0VKHf_0NQRus1yPmxsbNYG6R19ej6I-_M_s-vVgaZ-rZ_w3tkrsM6q9qdWiPNFdXa_sc6qVVvE8acnC071wBzpPRuHv-G0zjFO8 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENb0cSgX3gyBAjpQuGBqS0psz9BhSpKS9JFmoB16E7Isp2Ecx62T6fTKD-O3sWvLbTM8bp2JfYmycrzab3dl736EvG5BViV8ZhyBfYaE7woniELPiQPtx26g4qhspH0waPWOxe5J82SJ_KprYfC1yhoTS6COpxr3yDeZD2bJ8fiYnznIGoVPV2sKDWWpFeKtssWYLezYM5cXkMIVW_0O6HuDsZ3uUbvnWJYBRwMWz5wQQnbTDBPBjREBi0wchF7EXCG45qHLlKtEqHkrEW4C0QAHB8sUN8qISHnG0xzkLpNVwUUIyd_qp-5g-KX2BVhFGlTPtQMHoouw6vIJOU2w2d_93Bu233OYyRcLXtH6huXxaLwQ967Ns1xdXqg0veECd-6TuzZ2pdvVYntAlkz2kNyreSGohYlH5CfyTtOhgtMhINLElnrSb-PZKe0Yk9PSQybwG9vedeR0yxqumB6ewwxfz-YKtyRo26QpbSPdUTadKFoyeOK7TZU8-JRdTpBVucZw2p8AQhaPyfGtaOEJWcmmmXlKaKSF5jE3oWKISF7kGQVxTuIlqhkxHTTIu_peS20boSMfRyohIULVyEo1slJNg7y5Gp5XHUD-NXADFScteyicCtxfKUZqXhRy22-5AoJbH-ZfL8chgsC8GuxZL3z9ARQvLZQUErUlb2pLorZk56_X4DVBer1irmVcG0-DvL1aRX_8nfGP0Wmurahn_xf0iqz1jg725X5_sPec3GEQ-1U7U-tkZXY-Ny8gVptFL61BUPL9tm3wNyoGTjk | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbo9gAXylNsW5APUC5kSWLnJcFhtW3ZrUS7El0oJ8t2nG0gmy5NogJHfjnj2Gm7PCQOSEkUKc44jsffzDjONwg9DSGqopGvHKp5hmjkUicWieeksYxSN-apaIm03x6G4xk9OAlObDqgyi6rzCEsNHQYLVS_z9XFsX5zhqS2PZ2kr4nv0oju5NXXNhTywjCmcQJou4bWwwAc8x5anx1Ohx_Nd-XYAeueXJ2HkWHchPgifpl_mp8u5cCIXLFQFqfX4JlWfNCbTbnk3y54UVwzR_sbqOgaYlahfB40tRjI779wPP6nlt5Bt63biodGz-6iG6q8hza6lBDYIsR99EOnnMZTDocjAKOF_csTf8jrU7yr1BK3xjGDeyyz69zZa3_fSvHROdTw7kvD9WwEHqmiwCOd6ag8W3DcJu_Uy5qMPNhaghOdULmDbzxZADhWD9Bsf-94NHZsmgdHgjGsnQRiJhUkGSVK0dgXKo0TT0CbKZEkcX3ucppIEmbUzcAdI-Dh-JworqjgnvIkeYh65VmpHiEsJJUkJSrhvgYjT3iKg4uTeRkPhC_jPnrRdS2TlgNdp-IoGMRCWhPY5ODNeDpi5pX30c5l8aUh__hbwWdaT5hNHAqHSk-tVHPeVBUbRqFLwa-NoP7ttpwGD6hXwlCWK5dfgUYwiyIV073FrvcW073Fdv_4DF4A0jsFvZLhR2DOiN776Pml0v7WHDMCrKjNfy65hW754PWZOalt1KvPG_UYvLRaPLGj7yfu_Tj_ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Duck+Pack+Optimization+With+Deep+Transfer+Learning-Enabled+Oral+Squamous+Cell+Carcinoma+Classification+on+Histopathological+Images&rft.jtitle=International+journal+of+grid+and+high+performance+computing&rft.au=Shetty%2C+Savita+K&rft.au=Patil%2C+Annapurna+P&rft.date=2023-01-01&rft.pub=IGI+Global&rft.issn=1938-0259&rft.volume=15&rft.issue=2&rft_id=info:doi/10.4018%2FIJGHPC.320474&rft.externalDBID=N95&rft.externalDocID=A760411278 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-0259&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-0259&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-0259&client=summon |