Poisson-Nernst-Planck framework for modelling ionic strain and temperature sensors

Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stim...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. B, Materials for biology and medicine Vol. 11; no. 24; pp. 5544 - 5551
Main Authors Balakrishnan, Gaurav, Song, Jiwoo, Khair, Aditya S, Bettinger, Christopher J
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.06.2023
Subjects
Online AccessGet full text
ISSN2050-750X
2050-7518
2050-7518
DOI10.1039/d2tb02819k

Cover

Abstract Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications. A theoretical framework is presented to describe the electrochemical response of ionic conductors for use as strain and temperature sensors. This framework can be used to design sensors for in bioelectronics and soft robotics applications.
AbstractList Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson–Nernst–Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications.
Happy 10-year Anniversary to the editors, associate editors, staff, and the entire Journal of Materials Chemistry B team! JMCB has been a trusted partner in helping the Bettinger Group disseminate our discoveries in biomaterials and biomaterials science to the scientific community. We are grateful for the long-term and productive partnership that we have forged together over the years. Our lab looks forward to continuing this collaboration for decades more in the future. Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechancial properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications. A Poisson-Nernst-Planck theoretical framework is presented to describe the electrochemical response of ionic conductors for use as strain and temperature sensors. Experimental validations of predicted results demonstrate its utility in optimizing ionically conductive sensors for use in bioelectronics and soft robotics.
Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications.Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications.
Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications. A theoretical framework is presented to describe the electrochemical response of ionic conductors for use as strain and temperature sensors. This framework can be used to design sensors for in bioelectronics and soft robotics applications.
Author Bettinger, Christopher J
Balakrishnan, Gaurav
Khair, Aditya S
Song, Jiwoo
AuthorAffiliation Biomedical Engineering
Carnegie Mellon University
Materials Science and Engineering
Chemical Engineering
AuthorAffiliation_xml – sequence: 0
  name: Carnegie Mellon University
– sequence: 0
  name: Biomedical Engineering
– sequence: 0
  name: Materials Science and Engineering
– sequence: 0
  name: Chemical Engineering
– name: a. Materials Science and Engineering, Carnegie Mellon University. 5000 Forbes Avenue, Pittsburgh PA 15232
– name: b. Chemical Engineering, Carnegie Mellon University. 5000 Forbes Avenue, Pittsburgh PA 15232
– name: c. Biomedical Engineering, Carnegie Mellon University. 5000 Forbes Avenue, Pittsburgh PA 15232
Author_xml – sequence: 1
  givenname: Gaurav
  surname: Balakrishnan
  fullname: Balakrishnan, Gaurav
– sequence: 2
  givenname: Jiwoo
  surname: Song
  fullname: Song, Jiwoo
– sequence: 3
  givenname: Aditya S
  surname: Khair
  fullname: Khair, Aditya S
– sequence: 4
  givenname: Christopher J
  surname: Bettinger
  fullname: Bettinger, Christopher J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36810661$$D View this record in MEDLINE/PubMed
BookMark eNptkd1PFTEQxRuDEURefNds4ovRrPbr9uPJICoaiRKDiW_NbLeLhd320nYl_PcWL1wQ7Usnmd-czDnzEG2EGBxCjwl-RTDTr3taOkwV0af30BbFC9zKBVEb6xr_2EQ7OZ_g-hQRivEHaJMJRbAQZAt9O4w-5xjaLy6FXNrDEYI9bYYEkzuPqVYxNVPs3Tj6cNz4GLxtckngQwOhb4qbli5BmZNrsgs5pvwI3R9gzG7n6t9G3z-8P9r72B583f-0t3vQWk51aTXFgAkXA6XYAlVCQsc1kVjDwGTnMLODWmjCpRS944pCR6HXvWLVB7iBbaOXK905LOHiHMbRLJOfIF0Ygs1lOOYmnEq_WdHLuZtcb12oJm4mInjzdyf4n-Y4_qpCVDOsaVV4fqWQ4tnscjGTz7YGA8HFORsqpWZcML6o6LM76EmcU6hpGKqo1FQLwSv19PZK612ur1OBFyvApphzcsM_Bt_Ro7d_DH6uML4DW1-g1ItdXmv8_8iT1UjKdi19K7PfP0a6lA
CitedBy_id crossref_primary_10_1080_09205063_2024_2434300
crossref_primary_10_1039_D3TB02105J
crossref_primary_10_1002_adma_202306795
crossref_primary_10_1002_marc_202400282
Cites_doi 10.1038/s41467-020-15316-7
10.1038/s43586-021-00039-w
10.1016/j.msec.2019.110310
10.1016/j.biotechadv.2017.05.006
10.1126/sciadv.abd3716
10.1002/adfm.201504755
10.1088/1741-2552/abf398
10.1021/acsmaterialslett.0c00309
10.1038/s41563-020-00814-2
10.3109/17435390903471463
10.1002/adma.201902783
10.1039/C7TC05970A
10.1016/j.nanoen.2019.01.077
10.1021/jp200737z
10.1073/pnas.2006389117
10.1002/anbr.202200132
10.1016/j.mattod.2019.12.026
10.1002/adhm.202000942
10.1126/science.aba5132
10.1039/D2TA02576K
10.1039/C8CS00963E
10.1039/D2TA02559K
10.1021/acs.langmuir.8b01834
10.1002/aelm.202000391
10.1002/adma.201904752
10.1016/j.bios.2016.03.045
10.1016/j.coelec.2018.12.003
10.1038/s41596-020-0389-2
10.1016/j.mtphys.2020.100258
10.1073/pnas.1717217115
10.1038/s41551-017-0154-1
10.1021/am504462f
10.1039/C6SM01445C
10.1016/j.jcis.2014.08.052
10.1038/s41467-019-09003-5
10.1002/smll.201601916
10.1002/admi.201900985
10.1021/acs.macromol.0c00238
10.1039/C8CS00595H
10.1039/D0TA07390C
10.1126/science.aaf3627
10.1038/s41928-021-00545-5
10.1002/adhm.201901372
10.1007/s11517-019-02062-2
10.1002/adma.202106787
10.1039/C8MH01398E
10.1126/sciadv.adc8738
10.1021/acsami.9b20612
10.1021/acssensors.1c00699
10.1038/s41565-018-0226-8
10.1109/LED.2009.2013884
10.1039/C8TB02763C
10.1002/adma.201500954
10.1002/advs.202000810
10.1021/acsami.1c04432
10.1016/j.matt.2021.06.041
10.1126/science.abo2542
10.1002/adfm.201801059
10.1002/adsu.202100173
10.1126/science.aaw1974
10.1021/acs.jpcb.9b06263
10.1039/D0MH00361A
10.1063/1.435929
10.1016/j.bios.2020.112275
10.1039/C7TC03434B
10.1002/advs.202200687
10.1016/j.eurpolymj.2014.11.024
10.1002/adfm.201907290
10.1126/science.1240228
10.1021/es1034188
10.1021/acs.chemmater.8b03999
10.1016/j.compscitech.2021.109042
10.1039/C9TB02570G
10.1002/adma.202109904
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1039/d2tb02819k
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7518
EndPage 5551
ExternalDocumentID 10.1039/d2tb02819k
PMC10293092
36810661
10_1039_D2TB02819K
d2tb02819k
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R21 EB028418
– fundername: NIBIB NIH HHS
  grantid: R21 EB026073
GroupedDBID -JG
0-7
0R~
4.4
53G
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
D0L
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
ANBJS
EJD
J3G
J3H
ROL
UNPAY
ID FETCH-LOGICAL-c429t-920a0146f220ca2867ab491709af37be03cf85914776de482ab2ad9d83081aef3
IEDL.DBID UNPAY
ISSN 2050-750X
2050-7518
IngestDate Wed Oct 01 15:15:20 EDT 2025
Tue Sep 30 17:09:01 EDT 2025
Fri Jul 11 10:08:12 EDT 2025
Mon Jun 30 07:56:17 EDT 2025
Fri Feb 07 03:04:27 EST 2025
Tue Jul 01 01:00:46 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Tue Dec 17 20:58:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-920a0146f220ca2867ab491709af37be03cf85914776de482ab2ad9d83081aef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions
GB, ASK and CJB contributed to conceptualization and planning. GB and JS conducted and implemented the work. GB prepared the manuscript draft and all authors provided edits. JS, ASK, and CJB revised the manuscript.
ORCID 0000-0001-6076-2910
0000-0002-7671-4048
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2023/tb/d2tb02819k
PMID 36810661
PQID 2827929664
PQPubID 2047522
PageCount 8
ParticipantIDs proquest_miscellaneous_2779346345
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10293092
proquest_journals_2827929664
crossref_primary_10_1039_D2TB02819K
unpaywall_primary_10_1039_d2tb02819k
crossref_citationtrail_10_1039_D2TB02819K
rsc_primary_d2tb02819k
pubmed_primary_36810661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-21
PublicationDateYYYYMMDD 2023-06-21
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Journal of materials chemistry. B, Materials for biology and medicine
PublicationTitleAlternate J Mater Chem B
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yamamoto (D2TB02819K/cit30/1) 2019; 57
Ahn (D2TB02819K/cit40/1) 2014; 6
Wei (D2TB02819K/cit55/1) 2021; 6
Cheng (D2TB02819K/cit66/1) 2019; 6
Kim (D2TB02819K/cit33/1) 2020; 30
Dechiraju (D2TB02819K/cit48/1) 2022; 6
Zhang (D2TB02819K/cit52/1) 2021; 4
Zhang (D2TB02819K/cit7/1) 2017; 356
Wang (D2TB02819K/cit57/1) 2020; 8
Deng (D2TB02819K/cit41/1) 2021; 20
Lenzi (D2TB02819K/cit73/1) 2019; 123
Huang (D2TB02819K/cit10/1) 2018; 28
Ciucci (D2TB02819K/cit75/1) 2019; 13
Moreno (D2TB02819K/cit16/1) 2020; 6
Ren (D2TB02819K/cit18/1) 2021; 13
Mironava (D2TB02819K/cit60/1) 2010; 4
El Badawy (D2TB02819K/cit59/1) 2011; 45
Goding (D2TB02819K/cit17/1) 2019; 7
Wang (D2TB02819K/cit27/1) 2018; 30
Jia (D2TB02819K/cit47/1) 2020; 9
Macdonald (D2TB02819K/cit74/1) 2011; 115
Zhang (D2TB02819K/cit20/1) 2020; 32
Parida (D2TB02819K/cit62/1) 2019; 59
Chen (D2TB02819K/cit25/1) 2020; 12
Chen (D2TB02819K/cit24/1) 2020; 117
Yuk (D2TB02819K/cit1/1) 2019; 48
Lu (D2TB02819K/cit37/1) 2020; 9
Jin (D2TB02819K/cit63/1) 2018; 115
Mazurek (D2TB02819K/cit61/1) 2019; 48
Noskovicova (D2TB02819K/cit44/1) 2021
Yu (D2TB02819K/cit58/1) 2022; 10
Song (D2TB02819K/cit12/1) 2023; 3
Wang (D2TB02819K/cit35/1) 2018; 6
Zhu (D2TB02819K/cit68/1) 2009; 30
Song (D2TB02819K/cit51/1) 2017; 89
Yin (D2TB02819K/cit64/1) 2019; 6
Shi (D2TB02819K/cit6/1) 2019; 35
An (D2TB02819K/cit26/1) 2020; 107
Fu (D2TB02819K/cit2/1) 2020; 2
Lei (D2TB02819K/cit9/1) 2022; 8
Yezer (D2TB02819K/cit71/1) 2015; 449
Wang (D2TB02819K/cit69/1) 2021; 1
Kim (D2TB02819K/cit36/1) 2020; 7
Feicht (D2TB02819K/cit70/1) 2016; 12
Yuk (D2TB02819K/cit45/1) 2020; 11
Macdonald (D2TB02819K/cit72/1) 1978; 68
Lou (D2TB02819K/cit38/1) 2020; 162
Lu (D2TB02819K/cit19/1) 2019; 10
Balakrishnan (D2TB02819K/cit4/1) 2022; 34
Lim (D2TB02819K/cit13/1) 2021; 7
Kim (D2TB02819K/cit65/1) 2022; 9
Liu (D2TB02819K/cit23/1) 2020; 36
Wang (D2TB02819K/cit46/1) 2022; 34
Han (D2TB02819K/cit42/1) 2017; 13
Naahidi (D2TB02819K/cit5/1) 2017; 35
Caló (D2TB02819K/cit8/1) 2015; 65
Guo (D2TB02819K/cit49/1) 2022; 10
Amjadi (D2TB02819K/cit53/1) 2016; 26
Fan (D2TB02819K/cit21/1) 2020; 53
Wang (D2TB02819K/cit14/1) 2022; 377
Choi (D2TB02819K/cit39/1) 2018; 13
Horn (D2TB02819K/cit11/1) 2021; 18
You (D2TB02819K/cit32/1) 2020; 370
Liu (D2TB02819K/cit3/1) 2019; 31
Wu (D2TB02819K/cit15/1) 2015; 27
Pei (D2TB02819K/cit29/1) 2020; 7
Dobashi (D2TB02819K/cit31/1) 2022; 376
Wang (D2TB02819K/cit56/1) 2021; 216
Boehler (D2TB02819K/cit54/1) 2020; 15
Li (D2TB02819K/cit34/1) 2017; 5
Lee (D2TB02819K/cit22/1) 2020; 15
Zhang (D2TB02819K/cit28/1) 2020; 8
Keplinger (D2TB02819K/cit67/1) 2013; 341
Salatino (D2TB02819K/cit43/1) 2017; 1
Ohm (D2TB02819K/cit50/1) 2021; 4
References_xml – volume: 11
  start-page: 1604
  year: 2020
  ident: D2TB02819K/cit45/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15316-7
– volume: 1
  start-page: 1
  year: 2021
  ident: D2TB02819K/cit69/1
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-021-00039-w
– volume: 107
  start-page: 110310
  year: 2020
  ident: D2TB02819K/cit26/1
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2019.110310
– volume: 35
  start-page: 530
  year: 2017
  ident: D2TB02819K/cit5/1
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2017.05.006
– volume: 7
  start-page: eabd3716
  year: 2021
  ident: D2TB02819K/cit13/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd3716
– volume: 26
  start-page: 1678
  year: 2016
  ident: D2TB02819K/cit53/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504755
– volume: 18
  start-page: 055008
  year: 2021
  ident: D2TB02819K/cit11/1
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abf398
– volume: 2
  start-page: 1287
  year: 2020
  ident: D2TB02819K/cit2/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.0c00309
– volume: 20
  start-page: 229
  year: 2021
  ident: D2TB02819K/cit41/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00814-2
– volume: 4
  start-page: 120
  year: 2010
  ident: D2TB02819K/cit60/1
  publication-title: Nanotoxicology
  doi: 10.3109/17435390903471463
– volume: 31
  start-page: 1902783
  year: 2019
  ident: D2TB02819K/cit3/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902783
– volume: 6
  start-page: 4737
  year: 2018
  ident: D2TB02819K/cit35/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC05970A
– volume: 59
  start-page: 237
  year: 2019
  ident: D2TB02819K/cit62/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.077
– volume: 115
  start-page: 7648
  year: 2011
  ident: D2TB02819K/cit74/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200737z
– volume: 117
  start-page: 15497
  year: 2020
  ident: D2TB02819K/cit24/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2006389117
– volume: 3
  start-page: 2200132
  year: 2023
  ident: D2TB02819K/cit12/1
  publication-title: Adv. NanoBiomed Res.
  doi: 10.1002/anbr.202200132
– volume: 36
  start-page: 102
  year: 2020
  ident: D2TB02819K/cit23/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.12.026
– volume: 9
  start-page: 2000942
  year: 2020
  ident: D2TB02819K/cit37/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202000942
– volume: 370
  start-page: 961
  year: 2020
  ident: D2TB02819K/cit32/1
  publication-title: Science
  doi: 10.1126/science.aba5132
– volume: 10
  start-page: 16095
  year: 2022
  ident: D2TB02819K/cit49/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02576K
– volume: 48
  start-page: 1448
  year: 2019
  ident: D2TB02819K/cit61/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00963E
– volume: 10
  start-page: 15000
  year: 2022
  ident: D2TB02819K/cit58/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02559K
– volume: 35
  start-page: 1837
  year: 2019
  ident: D2TB02819K/cit6/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01834
– volume: 6
  start-page: 2000391
  year: 2020
  ident: D2TB02819K/cit16/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000391
– volume: 32
  start-page: 1904752
  year: 2020
  ident: D2TB02819K/cit20/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904752
– volume: 89
  start-page: 187
  year: 2017
  ident: D2TB02819K/cit51/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.03.045
– volume: 13
  start-page: 132
  year: 2019
  ident: D2TB02819K/cit75/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.12.003
– volume: 15
  start-page: 3557
  year: 2020
  ident: D2TB02819K/cit54/1
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0389-2
– volume: 15
  start-page: 100258
  year: 2020
  ident: D2TB02819K/cit22/1
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2020.100258
– volume: 115
  start-page: 1986
  year: 2018
  ident: D2TB02819K/cit63/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1717217115
– volume: 1
  start-page: 862
  year: 2017
  ident: D2TB02819K/cit43/1
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0154-1
– volume: 6
  start-page: 18401
  year: 2014
  ident: D2TB02819K/cit40/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504462f
– volume: 12
  start-page: 7028
  year: 2016
  ident: D2TB02819K/cit70/1
  publication-title: Soft Matter
  doi: 10.1039/C6SM01445C
– start-page: 1
  year: 2021
  ident: D2TB02819K/cit44/1
  publication-title: Nat. Biomed. Eng.
– volume: 449
  start-page: 2
  year: 2015
  ident: D2TB02819K/cit71/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.08.052
– volume: 10
  start-page: 1043
  year: 2019
  ident: D2TB02819K/cit19/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09003-5
– volume: 13
  start-page: 1601916
  year: 2017
  ident: D2TB02819K/cit42/1
  publication-title: Small
  doi: 10.1002/smll.201601916
– volume: 6
  start-page: 1900985
  year: 2019
  ident: D2TB02819K/cit66/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900985
– volume: 53
  start-page: 2769
  year: 2020
  ident: D2TB02819K/cit21/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c00238
– volume: 48
  start-page: 1642
  year: 2019
  ident: D2TB02819K/cit1/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00595H
– volume: 8
  start-page: 20474
  year: 2020
  ident: D2TB02819K/cit28/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA07390C
– volume: 356
  start-page: eaaf3627
  year: 2017
  ident: D2TB02819K/cit7/1
  publication-title: Science
  doi: 10.1126/science.aaf3627
– volume: 4
  start-page: 185
  year: 2021
  ident: D2TB02819K/cit50/1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-021-00545-5
– volume: 9
  start-page: 1901372
  year: 2020
  ident: D2TB02819K/cit47/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201901372
– volume: 57
  start-page: 2741
  year: 2019
  ident: D2TB02819K/cit30/1
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-019-02062-2
– volume: 34
  start-page: 2106787
  year: 2022
  ident: D2TB02819K/cit4/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106787
– volume: 6
  start-page: 767
  year: 2019
  ident: D2TB02819K/cit64/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01398E
– volume: 8
  start-page: eadc8738
  year: 2022
  ident: D2TB02819K/cit9/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adc8738
– volume: 12
  start-page: 7565
  year: 2020
  ident: D2TB02819K/cit25/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20612
– volume: 6
  start-page: 2938
  year: 2021
  ident: D2TB02819K/cit55/1
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c00699
– volume: 13
  start-page: 1048
  year: 2018
  ident: D2TB02819K/cit39/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0226-8
– volume: 30
  start-page: 337
  year: 2009
  ident: D2TB02819K/cit68/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2009.2013884
– volume: 7
  start-page: 1625
  year: 2019
  ident: D2TB02819K/cit17/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB02763C
– volume: 27
  start-page: 3398
  year: 2015
  ident: D2TB02819K/cit15/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500954
– volume: 7
  start-page: 2000810
  year: 2020
  ident: D2TB02819K/cit36/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000810
– volume: 13
  start-page: 25374
  year: 2021
  ident: D2TB02819K/cit18/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c04432
– volume: 4
  start-page: 2655
  year: 2021
  ident: D2TB02819K/cit52/1
  publication-title: Matter
  doi: 10.1016/j.matt.2021.06.041
– volume: 377
  start-page: 517
  year: 2022
  ident: D2TB02819K/cit14/1
  publication-title: Science
  doi: 10.1126/science.abo2542
– volume: 28
  start-page: 1801059
  year: 2018
  ident: D2TB02819K/cit10/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801059
– volume: 6
  start-page: 2100173
  year: 2022
  ident: D2TB02819K/cit48/1
  publication-title: Adv. Sustainable Syst.
  doi: 10.1002/adsu.202100173
– volume: 376
  start-page: 502
  year: 2022
  ident: D2TB02819K/cit31/1
  publication-title: Science
  doi: 10.1126/science.aaw1974
– volume: 123
  start-page: 7885
  year: 2019
  ident: D2TB02819K/cit73/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b06263
– volume: 7
  start-page: 1872
  year: 2020
  ident: D2TB02819K/cit29/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH00361A
– volume: 68
  start-page: 1614
  year: 1978
  ident: D2TB02819K/cit72/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.435929
– volume: 162
  start-page: 112275
  year: 2020
  ident: D2TB02819K/cit38/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112275
– volume: 5
  start-page: 11092
  year: 2017
  ident: D2TB02819K/cit34/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC03434B
– volume: 9
  start-page: 2200687
  year: 2022
  ident: D2TB02819K/cit65/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202200687
– volume: 65
  start-page: 252
  year: 2015
  ident: D2TB02819K/cit8/1
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2014.11.024
– volume: 30
  start-page: 1907290
  year: 2020
  ident: D2TB02819K/cit33/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907290
– volume: 341
  start-page: 984
  year: 2013
  ident: D2TB02819K/cit67/1
  publication-title: Science
  doi: 10.1126/science.1240228
– volume: 45
  start-page: 283
  year: 2011
  ident: D2TB02819K/cit59/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1034188
– volume: 30
  start-page: 8062
  year: 2018
  ident: D2TB02819K/cit27/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03999
– volume: 216
  start-page: 109042
  year: 2021
  ident: D2TB02819K/cit56/1
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.109042
– volume: 8
  start-page: 3437
  year: 2020
  ident: D2TB02819K/cit57/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB02570G
– volume: 34
  start-page: 2109904
  year: 2022
  ident: D2TB02819K/cit46/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109904
SSID ssj0000816834
Score 2.3775768
Snippet Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical...
Happy 10-year Anniversary to the editors, associate editors, staff, and the entire Journal of Materials Chemistry B team! JMCB has been a trusted partner in...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5544
SubjectTerms Bioelectricity
Electric Conductivity
Electric potential
Electrochemistry
Hydrogels
Hydrogels - chemistry
Impedance
Ion Transport
Ions
Ions - chemistry
Mechanical properties
Perturbation
Robotics
Sensors
Temperature
Temperature sensors
Voltage
Title Poisson-Nernst-Planck framework for modelling ionic strain and temperature sensors
URI https://www.ncbi.nlm.nih.gov/pubmed/36810661
https://www.proquest.com/docview/2827929664
https://www.proquest.com/docview/2779346345
https://pubmed.ncbi.nlm.nih.gov/PMC10293092
https://pubs.rsc.org/en/content/articlepdf/2023/tb/d2tb02819k
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 2050-7518
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816834
  issn: 2050-750X
  databaseCode: AETIL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x7QH2wHshsKyC2AuHtIntxMmxwK6WV7WHFpVTZSeOFrVKqibVajnxH_iH_BJmkjRtKQfEzZLHiR_j-JvM-BuAUyaUz4VWjmd86Qjp457TUewo4_HES8jioPvOn4fBxVh8mPiTJjaH7sJgJ4resqgpgg2a78TRlJX9Zh4XSUrmOu-Xup-wUrvkB5odQDcg_1IHuuPh5eArJZRzfdfB03CyKXvhmp6UR1uNdw-kPZS5Hyx5gN07hNurbKFurtV8vnUend-rk65WI6nCUGa9Val78fc_SB7_e6j34W6DVO1BLfcAbpnsIRxu8Rc-gi-XOa5bnv368XNolgg0sUBZkOKZna6DvmxExXaVb4cuvtv0-ze2iyozha2yxCZurIbY2S7Qps6XxWMYn5-N3l44TaIGJ8bjrHQi5ioioUkZc2PFwkAqLdAOdCOVcqmNy-OUePKElEFiRMiUZiqJkpAjIFEm5UfQyfLMPAU7UIHwycySMhW-1KEv8SGIm0IZc-35Frxer9Y0bljMqcvzaeVN59H0HRu9qebqowWvWtlFzd3xV6nj9aJPm_1bTNEQlQgcg0BY8LKtxp1H7hSVmXyFMhK_bSLgAjv1pNaR9jWcaN4Q-lgQ7mhPK0Cs3rs12berit0bEV_E3YhZcITK0TbYqIAFp63u7Y1rI_bs38Sewx3SMop-Y94xdMrlyrxAnFXqE-gOzkbvP500u-o3iDUqhA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x3QPsgfdCYEFG7IVD2sR24uS4PFYrENUetqicIjtxtKhVUjWpEJz4D_xDfgkzSZq2lAPiZsnjxI9x_E1m_A3AKZc6ENJo17eBcqUKcM-ZOHW19UXmZ2Rx0H3nj-PwYiLfT4NpF5tDd2GwE9VwWbUUwRbNd-JoKupRN4-LLCdzXYxqM8p4bTzyA80O4DAk_9IADifjy7PPlFDOCzwXT8PppuxHa3pSEW813j2Q9lDmfrDkAXbvCG6uioX-9lXP51vn0fmdNulqM5ImDGU2XNVmmH7_g-Txv4d6F253SJWdtXL34IYt7sPRFn_hA_h0WeK6lcWvHz_HdolAEwuUBSmdsXwd9MUQFbMm3w5dfGf0-zdlVZOZgukiY8SN1RE7swpt6nJZPYTJ-burNxdul6jBTfE4q92Ye5pIaHLOvVTzKFTaSLQDvVjnQhnriTQnnjypVJhZGXFtuM7iLBIISLTNxTEMirKwj4GFOpQBmVlK5TJQJgoUPgRxU6RSYfzAgVfr1UrSjsWcujxPGm-6iJO3_Op1M1cfHHjZyy5a7o6_Sp2sFz3p9m-VoCGqEDiGoXTgRV-NO4_cKbqw5QplFH7bZCgkdupRqyP9awTRvCH0cSDa0Z5egFi9d2uKL9cNuzcivlh4MXfgGJWjb7BRAQdOe93bG9dG7Mm_iT2FW6RlFP3G_RMY1MuVfYY4qzbPu930GzxFKPI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poisson%E2%80%93Nernst%E2%80%93Planck+framework+for+modelling+ionic+strain+and+temperature+sensors&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Balakrishnan%2C+Gaurav&rft.au=Song%2C+Jiwoo&rft.au=Khair%2C+Aditya+S&rft.au=Bettinger%2C+Christopher+J&rft.date=2023-06-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-750X&rft.eissn=2050-7518&rft.volume=11&rft.issue=24&rft.spage=5544&rft.epage=5551&rft_id=info:doi/10.1039%2Fd2tb02819k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon