Poisson-Nernst-Planck framework for modelling ionic strain and temperature sensors
Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stim...
Saved in:
Published in | Journal of materials chemistry. B, Materials for biology and medicine Vol. 11; no. 24; pp. 5544 - 5551 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-750X 2050-7518 2050-7518 |
DOI | 10.1039/d2tb02819k |
Cover
Abstract | Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications.
A theoretical framework is presented to describe the electrochemical response of ionic conductors for use as strain and temperature sensors. This framework can be used to design sensors for in bioelectronics and soft robotics applications. |
---|---|
AbstractList | Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson–Nernst–Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications. Happy 10-year Anniversary to the editors, associate editors, staff, and the entire Journal of Materials Chemistry B team! JMCB has been a trusted partner in helping the Bettinger Group disseminate our discoveries in biomaterials and biomaterials science to the scientific community. We are grateful for the long-term and productive partnership that we have forged together over the years. Our lab looks forward to continuing this collaboration for decades more in the future. Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechancial properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications. A Poisson-Nernst-Planck theoretical framework is presented to describe the electrochemical response of ionic conductors for use as strain and temperature sensors. Experimental validations of predicted results demonstrate its utility in optimizing ionically conductive sensors for use in bioelectronics and soft robotics. Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications.Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications. Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical compliances and tractable ionic conductivities are compelling materials that can sense physiological states and potentially modulate the stimulation of excitable tissue because of the congruence in electro-mechanical properties across the tissue-material interface. However, interfacing ionic hydrogels with conventional DC voltage-based circuits poses several technical challenges including electrode delamination, electrochemical reaction, and drifting contact impedance. Utilizing alternating voltages to probe ion-relaxation dynamics has been shown to be a viable alternative for strain and temperature sensing. In this work, we present a Poisson-Nernst-Planck theoretical framework to model ion transport under alternating fields within conductors subject to varying strains and temperatures. Using simulated impedance spectra, we develop key insights about the relationship between frequency of the applied voltage perturbation and sensitivity. Lastly, we perform preliminary experimental characterization to demonstrate the applicability of the proposed theory. We believe this work provides a useful perspective that is applicable to the design of a variety of ionic hydrogel-based sensors for biomedical and soft robotic applications. A theoretical framework is presented to describe the electrochemical response of ionic conductors for use as strain and temperature sensors. This framework can be used to design sensors for in bioelectronics and soft robotics applications. |
Author | Bettinger, Christopher J Balakrishnan, Gaurav Khair, Aditya S Song, Jiwoo |
AuthorAffiliation | Biomedical Engineering Carnegie Mellon University Materials Science and Engineering Chemical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Carnegie Mellon University – sequence: 0 name: Biomedical Engineering – sequence: 0 name: Materials Science and Engineering – sequence: 0 name: Chemical Engineering – name: a. Materials Science and Engineering, Carnegie Mellon University. 5000 Forbes Avenue, Pittsburgh PA 15232 – name: b. Chemical Engineering, Carnegie Mellon University. 5000 Forbes Avenue, Pittsburgh PA 15232 – name: c. Biomedical Engineering, Carnegie Mellon University. 5000 Forbes Avenue, Pittsburgh PA 15232 |
Author_xml | – sequence: 1 givenname: Gaurav surname: Balakrishnan fullname: Balakrishnan, Gaurav – sequence: 2 givenname: Jiwoo surname: Song fullname: Song, Jiwoo – sequence: 3 givenname: Aditya S surname: Khair fullname: Khair, Aditya S – sequence: 4 givenname: Christopher J surname: Bettinger fullname: Bettinger, Christopher J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36810661$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd1PFTEQxRuDEURefNds4ovRrPbr9uPJICoaiRKDiW_NbLeLhd320nYl_PcWL1wQ7Usnmd-czDnzEG2EGBxCjwl-RTDTr3taOkwV0af30BbFC9zKBVEb6xr_2EQ7OZ_g-hQRivEHaJMJRbAQZAt9O4w-5xjaLy6FXNrDEYI9bYYEkzuPqVYxNVPs3Tj6cNz4GLxtckngQwOhb4qbli5BmZNrsgs5pvwI3R9gzG7n6t9G3z-8P9r72B583f-0t3vQWk51aTXFgAkXA6XYAlVCQsc1kVjDwGTnMLODWmjCpRS944pCR6HXvWLVB7iBbaOXK905LOHiHMbRLJOfIF0Ygs1lOOYmnEq_WdHLuZtcb12oJm4mInjzdyf4n-Y4_qpCVDOsaVV4fqWQ4tnscjGTz7YGA8HFORsqpWZcML6o6LM76EmcU6hpGKqo1FQLwSv19PZK612ur1OBFyvApphzcsM_Bt_Ro7d_DH6uML4DW1-g1ItdXmv8_8iT1UjKdi19K7PfP0a6lA |
CitedBy_id | crossref_primary_10_1080_09205063_2024_2434300 crossref_primary_10_1039_D3TB02105J crossref_primary_10_1002_adma_202306795 crossref_primary_10_1002_marc_202400282 |
Cites_doi | 10.1038/s41467-020-15316-7 10.1038/s43586-021-00039-w 10.1016/j.msec.2019.110310 10.1016/j.biotechadv.2017.05.006 10.1126/sciadv.abd3716 10.1002/adfm.201504755 10.1088/1741-2552/abf398 10.1021/acsmaterialslett.0c00309 10.1038/s41563-020-00814-2 10.3109/17435390903471463 10.1002/adma.201902783 10.1039/C7TC05970A 10.1016/j.nanoen.2019.01.077 10.1021/jp200737z 10.1073/pnas.2006389117 10.1002/anbr.202200132 10.1016/j.mattod.2019.12.026 10.1002/adhm.202000942 10.1126/science.aba5132 10.1039/D2TA02576K 10.1039/C8CS00963E 10.1039/D2TA02559K 10.1021/acs.langmuir.8b01834 10.1002/aelm.202000391 10.1002/adma.201904752 10.1016/j.bios.2016.03.045 10.1016/j.coelec.2018.12.003 10.1038/s41596-020-0389-2 10.1016/j.mtphys.2020.100258 10.1073/pnas.1717217115 10.1038/s41551-017-0154-1 10.1021/am504462f 10.1039/C6SM01445C 10.1016/j.jcis.2014.08.052 10.1038/s41467-019-09003-5 10.1002/smll.201601916 10.1002/admi.201900985 10.1021/acs.macromol.0c00238 10.1039/C8CS00595H 10.1039/D0TA07390C 10.1126/science.aaf3627 10.1038/s41928-021-00545-5 10.1002/adhm.201901372 10.1007/s11517-019-02062-2 10.1002/adma.202106787 10.1039/C8MH01398E 10.1126/sciadv.adc8738 10.1021/acsami.9b20612 10.1021/acssensors.1c00699 10.1038/s41565-018-0226-8 10.1109/LED.2009.2013884 10.1039/C8TB02763C 10.1002/adma.201500954 10.1002/advs.202000810 10.1021/acsami.1c04432 10.1016/j.matt.2021.06.041 10.1126/science.abo2542 10.1002/adfm.201801059 10.1002/adsu.202100173 10.1126/science.aaw1974 10.1021/acs.jpcb.9b06263 10.1039/D0MH00361A 10.1063/1.435929 10.1016/j.bios.2020.112275 10.1039/C7TC03434B 10.1002/advs.202200687 10.1016/j.eurpolymj.2014.11.024 10.1002/adfm.201907290 10.1126/science.1240228 10.1021/es1034188 10.1021/acs.chemmater.8b03999 10.1016/j.compscitech.2021.109042 10.1039/C9TB02570G 10.1002/adma.202109904 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM ADTOC UNPAY |
DOI | 10.1039/d2tb02819k |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7518 |
EndPage | 5551 |
ExternalDocumentID | 10.1039/d2tb02819k PMC10293092 36810661 10_1039_D2TB02819K d2tb02819k |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R21 EB028418 – fundername: NIBIB NIH HHS grantid: R21 EB026073 |
GroupedDBID | -JG 0-7 0R~ 4.4 53G 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K D0L EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM ADTOC ANBJS EJD J3G J3H ROL UNPAY |
ID | FETCH-LOGICAL-c429t-920a0146f220ca2867ab491709af37be03cf85914776de482ab2ad9d83081aef3 |
IEDL.DBID | UNPAY |
ISSN | 2050-750X 2050-7518 |
IngestDate | Wed Oct 01 15:15:20 EDT 2025 Tue Sep 30 17:09:01 EDT 2025 Fri Jul 11 10:08:12 EDT 2025 Mon Jun 30 07:56:17 EDT 2025 Fri Feb 07 03:04:27 EST 2025 Tue Jul 01 01:00:46 EDT 2025 Thu Apr 24 22:53:39 EDT 2025 Tue Dec 17 20:58:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-920a0146f220ca2867ab491709af37be03cf85914776de482ab2ad9d83081aef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author Contributions GB, ASK and CJB contributed to conceptualization and planning. GB and JS conducted and implemented the work. GB prepared the manuscript draft and all authors provided edits. JS, ASK, and CJB revised the manuscript. |
ORCID | 0000-0001-6076-2910 0000-0002-7671-4048 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2023/tb/d2tb02819k |
PMID | 36810661 |
PQID | 2827929664 |
PQPubID | 2047522 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2779346345 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10293092 proquest_journals_2827929664 crossref_primary_10_1039_D2TB02819K unpaywall_primary_10_1039_d2tb02819k crossref_citationtrail_10_1039_D2TB02819K rsc_primary_d2tb02819k pubmed_primary_36810661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-21 |
PublicationDateYYYYMMDD | 2023-06-21 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Journal of materials chemistry. B, Materials for biology and medicine |
PublicationTitleAlternate | J Mater Chem B |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Yamamoto (D2TB02819K/cit30/1) 2019; 57 Ahn (D2TB02819K/cit40/1) 2014; 6 Wei (D2TB02819K/cit55/1) 2021; 6 Cheng (D2TB02819K/cit66/1) 2019; 6 Kim (D2TB02819K/cit33/1) 2020; 30 Dechiraju (D2TB02819K/cit48/1) 2022; 6 Zhang (D2TB02819K/cit52/1) 2021; 4 Zhang (D2TB02819K/cit7/1) 2017; 356 Wang (D2TB02819K/cit57/1) 2020; 8 Deng (D2TB02819K/cit41/1) 2021; 20 Lenzi (D2TB02819K/cit73/1) 2019; 123 Huang (D2TB02819K/cit10/1) 2018; 28 Ciucci (D2TB02819K/cit75/1) 2019; 13 Moreno (D2TB02819K/cit16/1) 2020; 6 Ren (D2TB02819K/cit18/1) 2021; 13 Mironava (D2TB02819K/cit60/1) 2010; 4 El Badawy (D2TB02819K/cit59/1) 2011; 45 Goding (D2TB02819K/cit17/1) 2019; 7 Wang (D2TB02819K/cit27/1) 2018; 30 Jia (D2TB02819K/cit47/1) 2020; 9 Macdonald (D2TB02819K/cit74/1) 2011; 115 Zhang (D2TB02819K/cit20/1) 2020; 32 Parida (D2TB02819K/cit62/1) 2019; 59 Chen (D2TB02819K/cit25/1) 2020; 12 Chen (D2TB02819K/cit24/1) 2020; 117 Yuk (D2TB02819K/cit1/1) 2019; 48 Lu (D2TB02819K/cit37/1) 2020; 9 Jin (D2TB02819K/cit63/1) 2018; 115 Mazurek (D2TB02819K/cit61/1) 2019; 48 Noskovicova (D2TB02819K/cit44/1) 2021 Yu (D2TB02819K/cit58/1) 2022; 10 Song (D2TB02819K/cit12/1) 2023; 3 Wang (D2TB02819K/cit35/1) 2018; 6 Zhu (D2TB02819K/cit68/1) 2009; 30 Song (D2TB02819K/cit51/1) 2017; 89 Yin (D2TB02819K/cit64/1) 2019; 6 Shi (D2TB02819K/cit6/1) 2019; 35 An (D2TB02819K/cit26/1) 2020; 107 Fu (D2TB02819K/cit2/1) 2020; 2 Lei (D2TB02819K/cit9/1) 2022; 8 Yezer (D2TB02819K/cit71/1) 2015; 449 Wang (D2TB02819K/cit69/1) 2021; 1 Kim (D2TB02819K/cit36/1) 2020; 7 Feicht (D2TB02819K/cit70/1) 2016; 12 Yuk (D2TB02819K/cit45/1) 2020; 11 Macdonald (D2TB02819K/cit72/1) 1978; 68 Lou (D2TB02819K/cit38/1) 2020; 162 Lu (D2TB02819K/cit19/1) 2019; 10 Balakrishnan (D2TB02819K/cit4/1) 2022; 34 Lim (D2TB02819K/cit13/1) 2021; 7 Kim (D2TB02819K/cit65/1) 2022; 9 Liu (D2TB02819K/cit23/1) 2020; 36 Wang (D2TB02819K/cit46/1) 2022; 34 Han (D2TB02819K/cit42/1) 2017; 13 Naahidi (D2TB02819K/cit5/1) 2017; 35 Caló (D2TB02819K/cit8/1) 2015; 65 Guo (D2TB02819K/cit49/1) 2022; 10 Amjadi (D2TB02819K/cit53/1) 2016; 26 Fan (D2TB02819K/cit21/1) 2020; 53 Wang (D2TB02819K/cit14/1) 2022; 377 Choi (D2TB02819K/cit39/1) 2018; 13 Horn (D2TB02819K/cit11/1) 2021; 18 You (D2TB02819K/cit32/1) 2020; 370 Liu (D2TB02819K/cit3/1) 2019; 31 Wu (D2TB02819K/cit15/1) 2015; 27 Pei (D2TB02819K/cit29/1) 2020; 7 Dobashi (D2TB02819K/cit31/1) 2022; 376 Wang (D2TB02819K/cit56/1) 2021; 216 Boehler (D2TB02819K/cit54/1) 2020; 15 Li (D2TB02819K/cit34/1) 2017; 5 Lee (D2TB02819K/cit22/1) 2020; 15 Zhang (D2TB02819K/cit28/1) 2020; 8 Keplinger (D2TB02819K/cit67/1) 2013; 341 Salatino (D2TB02819K/cit43/1) 2017; 1 Ohm (D2TB02819K/cit50/1) 2021; 4 |
References_xml | – volume: 11 start-page: 1604 year: 2020 ident: D2TB02819K/cit45/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15316-7 – volume: 1 start-page: 1 year: 2021 ident: D2TB02819K/cit69/1 publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-021-00039-w – volume: 107 start-page: 110310 year: 2020 ident: D2TB02819K/cit26/1 publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2019.110310 – volume: 35 start-page: 530 year: 2017 ident: D2TB02819K/cit5/1 publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2017.05.006 – volume: 7 start-page: eabd3716 year: 2021 ident: D2TB02819K/cit13/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd3716 – volume: 26 start-page: 1678 year: 2016 ident: D2TB02819K/cit53/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504755 – volume: 18 start-page: 055008 year: 2021 ident: D2TB02819K/cit11/1 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abf398 – volume: 2 start-page: 1287 year: 2020 ident: D2TB02819K/cit2/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.0c00309 – volume: 20 start-page: 229 year: 2021 ident: D2TB02819K/cit41/1 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00814-2 – volume: 4 start-page: 120 year: 2010 ident: D2TB02819K/cit60/1 publication-title: Nanotoxicology doi: 10.3109/17435390903471463 – volume: 31 start-page: 1902783 year: 2019 ident: D2TB02819K/cit3/1 publication-title: Adv. Mater. doi: 10.1002/adma.201902783 – volume: 6 start-page: 4737 year: 2018 ident: D2TB02819K/cit35/1 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC05970A – volume: 59 start-page: 237 year: 2019 ident: D2TB02819K/cit62/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.077 – volume: 115 start-page: 7648 year: 2011 ident: D2TB02819K/cit74/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp200737z – volume: 117 start-page: 15497 year: 2020 ident: D2TB02819K/cit24/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2006389117 – volume: 3 start-page: 2200132 year: 2023 ident: D2TB02819K/cit12/1 publication-title: Adv. NanoBiomed Res. doi: 10.1002/anbr.202200132 – volume: 36 start-page: 102 year: 2020 ident: D2TB02819K/cit23/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.12.026 – volume: 9 start-page: 2000942 year: 2020 ident: D2TB02819K/cit37/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.202000942 – volume: 370 start-page: 961 year: 2020 ident: D2TB02819K/cit32/1 publication-title: Science doi: 10.1126/science.aba5132 – volume: 10 start-page: 16095 year: 2022 ident: D2TB02819K/cit49/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02576K – volume: 48 start-page: 1448 year: 2019 ident: D2TB02819K/cit61/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00963E – volume: 10 start-page: 15000 year: 2022 ident: D2TB02819K/cit58/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02559K – volume: 35 start-page: 1837 year: 2019 ident: D2TB02819K/cit6/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01834 – volume: 6 start-page: 2000391 year: 2020 ident: D2TB02819K/cit16/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000391 – volume: 32 start-page: 1904752 year: 2020 ident: D2TB02819K/cit20/1 publication-title: Adv. Mater. doi: 10.1002/adma.201904752 – volume: 89 start-page: 187 year: 2017 ident: D2TB02819K/cit51/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.03.045 – volume: 13 start-page: 132 year: 2019 ident: D2TB02819K/cit75/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.12.003 – volume: 15 start-page: 3557 year: 2020 ident: D2TB02819K/cit54/1 publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0389-2 – volume: 15 start-page: 100258 year: 2020 ident: D2TB02819K/cit22/1 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2020.100258 – volume: 115 start-page: 1986 year: 2018 ident: D2TB02819K/cit63/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1717217115 – volume: 1 start-page: 862 year: 2017 ident: D2TB02819K/cit43/1 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0154-1 – volume: 6 start-page: 18401 year: 2014 ident: D2TB02819K/cit40/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504462f – volume: 12 start-page: 7028 year: 2016 ident: D2TB02819K/cit70/1 publication-title: Soft Matter doi: 10.1039/C6SM01445C – start-page: 1 year: 2021 ident: D2TB02819K/cit44/1 publication-title: Nat. Biomed. Eng. – volume: 449 start-page: 2 year: 2015 ident: D2TB02819K/cit71/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.08.052 – volume: 10 start-page: 1043 year: 2019 ident: D2TB02819K/cit19/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09003-5 – volume: 13 start-page: 1601916 year: 2017 ident: D2TB02819K/cit42/1 publication-title: Small doi: 10.1002/smll.201601916 – volume: 6 start-page: 1900985 year: 2019 ident: D2TB02819K/cit66/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900985 – volume: 53 start-page: 2769 year: 2020 ident: D2TB02819K/cit21/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.0c00238 – volume: 48 start-page: 1642 year: 2019 ident: D2TB02819K/cit1/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00595H – volume: 8 start-page: 20474 year: 2020 ident: D2TB02819K/cit28/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA07390C – volume: 356 start-page: eaaf3627 year: 2017 ident: D2TB02819K/cit7/1 publication-title: Science doi: 10.1126/science.aaf3627 – volume: 4 start-page: 185 year: 2021 ident: D2TB02819K/cit50/1 publication-title: Nat. Electron. doi: 10.1038/s41928-021-00545-5 – volume: 9 start-page: 1901372 year: 2020 ident: D2TB02819K/cit47/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201901372 – volume: 57 start-page: 2741 year: 2019 ident: D2TB02819K/cit30/1 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-019-02062-2 – volume: 34 start-page: 2106787 year: 2022 ident: D2TB02819K/cit4/1 publication-title: Adv. Mater. doi: 10.1002/adma.202106787 – volume: 6 start-page: 767 year: 2019 ident: D2TB02819K/cit64/1 publication-title: Mater. Horiz. doi: 10.1039/C8MH01398E – volume: 8 start-page: eadc8738 year: 2022 ident: D2TB02819K/cit9/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.adc8738 – volume: 12 start-page: 7565 year: 2020 ident: D2TB02819K/cit25/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20612 – volume: 6 start-page: 2938 year: 2021 ident: D2TB02819K/cit55/1 publication-title: ACS Sens. doi: 10.1021/acssensors.1c00699 – volume: 13 start-page: 1048 year: 2018 ident: D2TB02819K/cit39/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0226-8 – volume: 30 start-page: 337 year: 2009 ident: D2TB02819K/cit68/1 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2009.2013884 – volume: 7 start-page: 1625 year: 2019 ident: D2TB02819K/cit17/1 publication-title: J. Mater. Chem. B doi: 10.1039/C8TB02763C – volume: 27 start-page: 3398 year: 2015 ident: D2TB02819K/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.201500954 – volume: 7 start-page: 2000810 year: 2020 ident: D2TB02819K/cit36/1 publication-title: Adv. Sci. doi: 10.1002/advs.202000810 – volume: 13 start-page: 25374 year: 2021 ident: D2TB02819K/cit18/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c04432 – volume: 4 start-page: 2655 year: 2021 ident: D2TB02819K/cit52/1 publication-title: Matter doi: 10.1016/j.matt.2021.06.041 – volume: 377 start-page: 517 year: 2022 ident: D2TB02819K/cit14/1 publication-title: Science doi: 10.1126/science.abo2542 – volume: 28 start-page: 1801059 year: 2018 ident: D2TB02819K/cit10/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801059 – volume: 6 start-page: 2100173 year: 2022 ident: D2TB02819K/cit48/1 publication-title: Adv. Sustainable Syst. doi: 10.1002/adsu.202100173 – volume: 376 start-page: 502 year: 2022 ident: D2TB02819K/cit31/1 publication-title: Science doi: 10.1126/science.aaw1974 – volume: 123 start-page: 7885 year: 2019 ident: D2TB02819K/cit73/1 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.9b06263 – volume: 7 start-page: 1872 year: 2020 ident: D2TB02819K/cit29/1 publication-title: Mater. Horiz. doi: 10.1039/D0MH00361A – volume: 68 start-page: 1614 year: 1978 ident: D2TB02819K/cit72/1 publication-title: J. Chem. Phys. doi: 10.1063/1.435929 – volume: 162 start-page: 112275 year: 2020 ident: D2TB02819K/cit38/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112275 – volume: 5 start-page: 11092 year: 2017 ident: D2TB02819K/cit34/1 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC03434B – volume: 9 start-page: 2200687 year: 2022 ident: D2TB02819K/cit65/1 publication-title: Adv. Sci. doi: 10.1002/advs.202200687 – volume: 65 start-page: 252 year: 2015 ident: D2TB02819K/cit8/1 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.11.024 – volume: 30 start-page: 1907290 year: 2020 ident: D2TB02819K/cit33/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907290 – volume: 341 start-page: 984 year: 2013 ident: D2TB02819K/cit67/1 publication-title: Science doi: 10.1126/science.1240228 – volume: 45 start-page: 283 year: 2011 ident: D2TB02819K/cit59/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es1034188 – volume: 30 start-page: 8062 year: 2018 ident: D2TB02819K/cit27/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03999 – volume: 216 start-page: 109042 year: 2021 ident: D2TB02819K/cit56/1 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.109042 – volume: 8 start-page: 3437 year: 2020 ident: D2TB02819K/cit57/1 publication-title: J. Mater. Chem. B doi: 10.1039/C9TB02570G – volume: 34 start-page: 2109904 year: 2022 ident: D2TB02819K/cit46/1 publication-title: Adv. Mater. doi: 10.1002/adma.202109904 |
SSID | ssj0000816834 |
Score | 2.3775768 |
Snippet | Ionically conductive hydrogels are gaining traction as sensing and structural materials for use bioelectronic devices. Hydrogels that feature large mechanical... Happy 10-year Anniversary to the editors, associate editors, staff, and the entire Journal of Materials Chemistry B team! JMCB has been a trusted partner in... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5544 |
SubjectTerms | Bioelectricity Electric Conductivity Electric potential Electrochemistry Hydrogels Hydrogels - chemistry Impedance Ion Transport Ions Ions - chemistry Mechanical properties Perturbation Robotics Sensors Temperature Temperature sensors Voltage |
Title | Poisson-Nernst-Planck framework for modelling ionic strain and temperature sensors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36810661 https://www.proquest.com/docview/2827929664 https://www.proquest.com/docview/2779346345 https://pubmed.ncbi.nlm.nih.gov/PMC10293092 https://pubs.rsc.org/en/content/articlepdf/2023/tb/d2tb02819k |
UnpaywallVersion | publishedVersion |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 2050-7518 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816834 issn: 2050-750X databaseCode: AETIL dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x7QH2wHshsKyC2AuHtIntxMmxwK6WV7WHFpVTZSeOFrVKqibVajnxH_iH_BJmkjRtKQfEzZLHiR_j-JvM-BuAUyaUz4VWjmd86Qjp457TUewo4_HES8jioPvOn4fBxVh8mPiTJjaH7sJgJ4resqgpgg2a78TRlJX9Zh4XSUrmOu-Xup-wUrvkB5odQDcg_1IHuuPh5eArJZRzfdfB03CyKXvhmp6UR1uNdw-kPZS5Hyx5gN07hNurbKFurtV8vnUend-rk65WI6nCUGa9Val78fc_SB7_e6j34W6DVO1BLfcAbpnsIRxu8Rc-gi-XOa5bnv368XNolgg0sUBZkOKZna6DvmxExXaVb4cuvtv0-ze2iyozha2yxCZurIbY2S7Qps6XxWMYn5-N3l44TaIGJ8bjrHQi5ioioUkZc2PFwkAqLdAOdCOVcqmNy-OUePKElEFiRMiUZiqJkpAjIFEm5UfQyfLMPAU7UIHwycySMhW-1KEv8SGIm0IZc-35Frxer9Y0bljMqcvzaeVN59H0HRu9qebqowWvWtlFzd3xV6nj9aJPm_1bTNEQlQgcg0BY8LKtxp1H7hSVmXyFMhK_bSLgAjv1pNaR9jWcaN4Q-lgQ7mhPK0Cs3rs12berit0bEV_E3YhZcITK0TbYqIAFp63u7Y1rI_bs38Sewx3SMop-Y94xdMrlyrxAnFXqE-gOzkbvP500u-o3iDUqhA |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x3QPsgfdCYEFG7IVD2sR24uS4PFYrENUetqicIjtxtKhVUjWpEJz4D_xDfgkzSZq2lAPiZsnjxI9x_E1m_A3AKZc6ENJo17eBcqUKcM-ZOHW19UXmZ2Rx0H3nj-PwYiLfT4NpF5tDd2GwE9VwWbUUwRbNd-JoKupRN4-LLCdzXYxqM8p4bTzyA80O4DAk_9IADifjy7PPlFDOCzwXT8PppuxHa3pSEW813j2Q9lDmfrDkAXbvCG6uioX-9lXP51vn0fmdNulqM5ImDGU2XNVmmH7_g-Txv4d6F253SJWdtXL34IYt7sPRFn_hA_h0WeK6lcWvHz_HdolAEwuUBSmdsXwd9MUQFbMm3w5dfGf0-zdlVZOZgukiY8SN1RE7swpt6nJZPYTJ-burNxdul6jBTfE4q92Ye5pIaHLOvVTzKFTaSLQDvVjnQhnriTQnnjypVJhZGXFtuM7iLBIISLTNxTEMirKwj4GFOpQBmVlK5TJQJgoUPgRxU6RSYfzAgVfr1UrSjsWcujxPGm-6iJO3_Op1M1cfHHjZyy5a7o6_Sp2sFz3p9m-VoCGqEDiGoXTgRV-NO4_cKbqw5QplFH7bZCgkdupRqyP9awTRvCH0cSDa0Z5egFi9d2uKL9cNuzcivlh4MXfgGJWjb7BRAQdOe93bG9dG7Mm_iT2FW6RlFP3G_RMY1MuVfYY4qzbPu930GzxFKPI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poisson%E2%80%93Nernst%E2%80%93Planck+framework+for+modelling+ionic+strain+and+temperature+sensors&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Balakrishnan%2C+Gaurav&rft.au=Song%2C+Jiwoo&rft.au=Khair%2C+Aditya+S&rft.au=Bettinger%2C+Christopher+J&rft.date=2023-06-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-750X&rft.eissn=2050-7518&rft.volume=11&rft.issue=24&rft.spage=5544&rft.epage=5551&rft_id=info:doi/10.1039%2Fd2tb02819k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon |