Plasmonics for neuroengineering

The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulati...

Full description

Saved in:
Bibliographic Details
Published inCommunications materials Vol. 4; no. 1; pp. 101 - 16
Main Authors Mousavi, N. S. Susan, Ramadi, Khalil B., Song, Yong-Ak, Kumar, Sunil
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2662-4443
2662-4443
DOI10.1038/s43246-023-00429-5

Cover

Abstract The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulation with high spatial resolution than common electrical methods. Also, originating from either excitation of surface plasmons alone or in combination with thermoplasmonic effects, they can improve the performances of nanotools in neuroengineering. Here, we review plasmonic-based modalities and explore recent developments, advantages and limitations for minimally invasive neuromodulation, central nervous system disease diagnosis and therapy, and smart carrier-drug delivery toward the brain. The subject of the study stands at the interface of neuroscience and engineering. Thus, within the scope of this study, we provide background information about the nervous system and its underlying basic biology, types of neural interfaces, as well as the physics of surface plasmons and thermoplasmonic phenomena. Plasmonic nanomaterials, such as nanoparticles, efficiently deliver light to target cells for neuromodulation that is less invasive and has higher spatial resolution than common electrical methods. This review covers recent developments in the use of plasmonics for neuroengineering.
AbstractList The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulation with high spatial resolution than common electrical methods. Also, originating from either excitation of surface plasmons alone or in combination with thermoplasmonic effects, they can improve the performances of nanotools in neuroengineering. Here, we review plasmonic-based modalities and explore recent developments, advantages and limitations for minimally invasive neuromodulation, central nervous system disease diagnosis and therapy, and smart carrier-drug delivery toward the brain. The subject of the study stands at the interface of neuroscience and engineering. Thus, within the scope of this study, we provide background information about the nervous system and its underlying basic biology, types of neural interfaces, as well as the physics of surface plasmons and thermoplasmonic phenomena.Plasmonic nanomaterials, such as nanoparticles, efficiently deliver light to target cells for neuromodulation that is less invasive and has higher spatial resolution than common electrical methods. This review covers recent developments in the use of plasmonics for neuroengineering.
The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulation with high spatial resolution than common electrical methods. Also, originating from either excitation of surface plasmons alone or in combination with thermoplasmonic effects, they can improve the performances of nanotools in neuroengineering. Here, we review plasmonic-based modalities and explore recent developments, advantages and limitations for minimally invasive neuromodulation, central nervous system disease diagnosis and therapy, and smart carrier-drug delivery toward the brain. The subject of the study stands at the interface of neuroscience and engineering. Thus, within the scope of this study, we provide background information about the nervous system and its underlying basic biology, types of neural interfaces, as well as the physics of surface plasmons and thermoplasmonic phenomena. Plasmonic nanomaterials, such as nanoparticles, efficiently deliver light to target cells for neuromodulation that is less invasive and has higher spatial resolution than common electrical methods. This review covers recent developments in the use of plasmonics for neuroengineering.
Abstract The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulation with high spatial resolution than common electrical methods. Also, originating from either excitation of surface plasmons alone or in combination with thermoplasmonic effects, they can improve the performances of nanotools in neuroengineering. Here, we review plasmonic-based modalities and explore recent developments, advantages and limitations for minimally invasive neuromodulation, central nervous system disease diagnosis and therapy, and smart carrier-drug delivery toward the brain. The subject of the study stands at the interface of neuroscience and engineering. Thus, within the scope of this study, we provide background information about the nervous system and its underlying basic biology, types of neural interfaces, as well as the physics of surface plasmons and thermoplasmonic phenomena.
The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulation with high spatial resolution than common electrical methods. Also, originating from either excitation of surface plasmons alone or in combination with thermoplasmonic effects, they can improve the performances of nanotools in neuroengineering. Here, we review plasmonic-based modalities and explore recent developments, advantages and limitations for minimally invasive neuromodulation, central nervous system disease diagnosis and therapy, and smart carrier-drug delivery toward the brain. The subject of the study stands at the interface of neuroscience and engineering. Thus, within the scope of this study, we provide background information about the nervous system and its underlying basic biology, types of neural interfaces, as well as the physics of surface plasmons and thermoplasmonic phenomena.
ArticleNumber 101
Author Song, Yong-Ak
Mousavi, N. S. Susan
Ramadi, Khalil B.
Kumar, Sunil
Author_xml – sequence: 1
  givenname: N. S. Susan
  orcidid: 0000-0001-6806-5669
  surname: Mousavi
  fullname: Mousavi, N. S. Susan
  email: susan.mousavi@nyu.edu
  organization: School of Physics, Institute for Research in Fundamental Sciences (IPM), Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University
– sequence: 2
  givenname: Khalil B.
  surname: Ramadi
  fullname: Ramadi, Khalil B.
  organization: Division of Engineering, New York University Abu Dhabi (NYUAD), Department of Biomedical Engineering, Tandon School of Engineering, New York University
– sequence: 3
  givenname: Yong-Ak
  orcidid: 0000-0001-8066-2933
  surname: Song
  fullname: Song, Yong-Ak
  email: rafael.song@nyu.edu
  organization: Division of Engineering, New York University Abu Dhabi (NYUAD), Department of Biomedical Engineering, Tandon School of Engineering, New York University, Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University
– sequence: 4
  givenname: Sunil
  surname: Kumar
  fullname: Kumar, Sunil
  organization: Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Division of Engineering, New York University Abu Dhabi (NYUAD)
BookMark eNp9kM1KAzEURoNUsNa-gBsLrkeTm7_JUorWQkEXug6ZTKakTJOaTBe-vdOOorjoKpdwz3c_ziUahRgcQtcE3xFMy_vMKDBRYKAFxgxUwc_QGISAgjFGR3_mCzTNeYMxBk6IYHiMbl5bk7cxeJtnTUyz4PYpurD2wbnkw_oKnTemzW76_U7Q-9Pj2_y5WL0slvOHVWH7g10hK2kFVAY4q53qS9XMGkuUJcxSQ4AbkAw74jjYhpem4RYr0kBNHamUBDpByyG3jmajd8lvTfrU0Xh9_IhprU3qvG2dNrZ2UnIhGFWssqoSlSxrQSVV2BBK-qzbIWuX4sfe5U5v4j6Fvr6GUgEDrKDst8phy6aYc3KNtr4znY-hS8a3mmB9sKsHu7q3q492Ne9R-If-FD4J0QHKu4NYl35bnaC-ACWNi-Q
CitedBy_id crossref_primary_10_1039_D4NA00859F
crossref_primary_10_1007_s11468_024_02505_z
crossref_primary_10_1021_acsnano_4c08875
crossref_primary_10_1007_s11468_023_02184_2
crossref_primary_10_1002_adma_202418729
crossref_primary_10_1155_2024_5562848
Cites_doi 10.1002/anie.201915296
10.3390/electronics10020118
10.1523/JNEUROSCI.2916-15.2015
10.1002/lpor.201200003
10.1038/s41598-017-04229-z
10.1038/s41467-021-23025-y
10.1364/OL.30.000504
10.1038/s41598-017-08141-4
10.1523/JNEUROSCI.1458-17.2018
10.1126/science.aaa9610
10.1038/nnano.2010.125
10.3390/ma11101995
10.1016/j.optlastec.2020.106502
10.1016/j.neuron.2015.02.033
10.1063/5.0072884
10.1021/acsnano.0c00722
10.1016/j.brs.2021.08.001
10.1021/acsnano.0c03703
10.1016/j.actbio.2021.08.035
10.1016/j.jneumeth.2022.109564
10.1002/adma.202103208
10.1016/j.aca.2017.11.066
10.1016/j.talanta.2017.04.056
10.1016/j.neuron.2017.10.022
10.1007/s13320-011-0051-2
10.1007/978-1-0716-0755-8_4
10.1038/nature24636
10.1016/j.jare.2021.11.006
10.3389/fchem.2019.00279
10.3389/fnins.2016.00105
10.1126/science.1073765
10.1038/nmat2162
10.1021/acs.jpcb.1c06054
10.1186/s12951-018-0392-8
10.1016/j.neuron.2020.10.011
10.1529/biophysj.107.104786
10.1001/jamaneurol.2020.4152
10.1002/adma.201800927
10.1016/j.optmat.2018.04.015
10.1016/j.optlastec.2010.12.010
10.3389/fnins.2016.00069
10.7150/thno.25228
10.1021/acsami.1c08454
10.1021/acsnano.0c07581
10.1039/C4AN01079E
10.1002/cyto.a.24489
10.1073/pnas.1721690115
10.2174/1389200218666170125114751
10.1146/annurev-bioeng-071813-104733
10.1002/adfm.201605778
10.1038/s41578-020-00267-8
10.1109/JSEN.2019.2931159
10.1103/PhysRevB.92.115450
10.1021/nl801891q
10.1016/B978-0-444-59426-6.00001-X
10.3390/mi12080925
10.3390/nano9071029
10.1038/s41598-020-66706-2
10.3389/fbioe.2020.602797
10.1016/S0166-2236(97)01132-6
10.1021/accountsmr.1c00251
10.1002/cpph.13
10.1021/acs.langmuir.8b04331
10.1038/s41573-020-0090-8
10.2174/1389450121666200106105633
10.1016/j.biomaterials.2015.06.041
10.1021/acs.chemrev.8b00738
10.1126/sciadv.aav9786
10.3390/mi9090445
10.1140/epjp/i2016-16221-5
10.1016/j.addr.2018.10.016
10.1002/smll.201400599
10.1038/s41467-020-20060-z
10.1088/1741-2552/ac3265
10.1088/1361-6528/ab93ec
10.1039/C9LC00400A
10.1039/C6NR07520G
10.1038/nmat2564
10.1002/adpr.202100130
10.1021/acs.nanolett.7b01523
10.1016/j.rio.2020.100051
10.1002/anie.201505534
10.1126/science.aaq1144
10.1117/1.NPh.1.1.011011
10.3390/nano12132242
10.1002/adfm.201902128
10.1039/C5NR08477F
10.1016/j.matt.2020.11.019
10.1111/nyas.13948
10.1364/OL.37.000614
10.1126/science.1261821
10.1088/1741-2552/abb3b2
10.1016/j.jconrel.2016.05.044
10.1186/s12984-015-0061-1
10.3389/fncom.2018.00061
10.1038/s41565-017-0041-7
10.1007/s13206-021-00017-0
10.1007/s42114-022-00444-z
10.1016/j.nano.2019.102052
10.1021/nn2050032
10.1002/adpr.202000198
10.1038/s41563-020-0740-6
10.1146/annurev-neuro-061010-113817
10.1016/B978-0-444-53497-2.00001-2
10.1021/acsnano.0c05215
10.1113/jphysiol.1890.sp000321
10.1021/acsphotonics.0c01381
10.1021/acs.chemrev.3c00159
10.1021/acsami.2c11218
10.1021/acsnano.5b03162
10.1038/s41563-022-01249-7
10.1111/j.1476-5381.2011.01601.x
10.1038/s41565-022-01189-y
10.1021/acsnano.7b06617
10.1002/biot.201200219
10.1002/lpor.200900055
10.1088/1361-6528/ab08f7
10.1016/j.biomaterials.2021.121186
10.1038/nature08540
10.1080/14786440209462857
10.1021/acsnano.9b01993
10.1021/jz5019042
10.5607/en.2013.22.3.158
10.1364/OL.33.000914
10.1117/1.NPh.8.1.015012
10.1016/j.biomaterials.2018.12.013
10.1016/j.neuroimage.2013.05.004
10.1002/adfm.201002373
10.1016/0250-6874(83)85036-7
10.1038/nm.3484
10.1088/1361-6439/abeb30
10.1002/adfm.202106932
10.3390/nano7040092
10.1038/nn1525
10.1039/C6RA02684B
10.1021/nl070345g
10.1016/j.matt.2021.02.012
10.1103/PhysRevB.84.035415
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1038/s43246-023-00429-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2662-4443
EndPage 16
ExternalDocumentID oai_doaj_org_article_acde775664394bc9b6b78d637390a131
10_1038_s43246_023_00429_5
GroupedDBID 0R~
AAJSJ
ABJCF
ACSMW
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
KB.
NAO
OK1
PDBOC
PIMPY
SNYQT
AASML
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
AARCD
ABUWG
AZQEC
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c429t-7b7c62ba254de9038d4cac19c14c3a125a2740e1e52cf58af5c091f2d3e1b9723
IEDL.DBID 8FG
ISSN 2662-4443
IngestDate Wed Aug 27 01:32:26 EDT 2025
Wed Aug 13 03:36:54 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Tue Jul 01 01:22:47 EDT 2025
Fri Feb 21 02:37:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-7b7c62ba254de9038d4cac19c14c3a125a2740e1e52cf58af5c091f2d3e1b9723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8066-2933
0000-0001-6806-5669
OpenAccessLink https://www.proquest.com/docview/2892420928?pq-origsite=%requestingapplication%
PQID 2892420928
PQPubID 5061814
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_acde775664394bc9b6b78d637390a131
proquest_journals_2892420928
crossref_citationtrail_10_1038_s43246_023_00429_5
crossref_primary_10_1038_s43246_023_00429_5
springer_journals_10_1038_s43246_023_00429_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-22
PublicationDateYYYYMMDD 2023-11-22
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Communications materials
PublicationTitleAbbrev Commun Mater
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References KangHLeeG-HJungHLeeJWNamYInkjet-printed biofunctional thermo-plasmonic interfaces for patterned neuromodulationACS Nano201812112811381:CAS:528:DC%2BC1cXit1yrsbs%3D10.1021/acsnano.7b06617
LiedbergBNylanderCLunströmISurface plasmon resonance for gas detection and biosensingSens. Actuators198342993041:CAS:528:DyaL2cXnvV2kug%3D%3D10.1016/0250-6874(83)85036-7
PintiPThe present and future use of functional near infrared spectroscopy (fNIRS) for cognitive neuroscienceAnn. N.Y. Acad. Sci.2020146452910.1111/nyas.13948
LiXNanotransducers for wireless neuromodulationMatter20214148415101:CAS:528:DC%2BB3MXhvV2lurrL10.1016/j.matt.2021.02.012
Patel, M., Meenu, M., Pandey, J. K., Kumar, P. & Patel, R. Recent development in upconversion nanoparticles and their application in optogenetics: a review. J. Rare Earthshttps://www.sciencedirect.com/science/article/pii/S100207212100243X (2021).
MultariCMagnetoplasmonic nanoparticles for photothermal therapyNanotechnology2019302557051:CAS:528:DC%2BC1MXhtlGmu7fP10.1088/1361-6528/ab08f7
HanLA magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapyTalanta201717132381:CAS:528:DC%2BC2sXntVKisrw%3D10.1016/j.talanta.2017.04.056
JauffredLSamadiAKlingbergHBendixPMOddershedeLBPlasmonic heating of nanostructuresChem. Rev.2019119808781301:CAS:528:DC%2BC1MXhtVais7zE10.1021/acs.chemrev.8b00738
ChernovMRoeAWInfrared neural stimulation: a new stimulation tool for central nervous system applicationsNeurophotonics2014101101110.1117/1.NPh.1.1.011011
Nguyen, K. T. et al. Strategies of engineering nanoparticles for treating neurodegenerative disorders. Curr. Drug Metab.18http://www.eurekaselect.com/149495/article (2017).
RobinsonJTDeveloping next-generation brain sensing technologies—a reviewIEEE Sensors J.20191910163101751:CAS:528:DC%2BB3cXmsFWis7w%3D10.1109/JSEN.2019.2931159
JohnsenKBAntibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticlesTheranostics20188341634361:CAS:528:DC%2BC1cXit1KqsrvL10.7150/thno.25228
Borghei, Y.-S., Hosseinkhani, S. & Ganjali, M. R. “plasmonic nanomaterials": an emerging avenue in biomedical and biomedical engineering opportunities. J. Adv. Res.https://www.sciencedirect.com/science/article/pii/S2090123221002162 (2021).
Towne, C. & Thompson, K. R. Overview on research and clinical applications of optogenetics. Curr. Protoc. Pharmacol.75https://onlinelibrary.wiley.com/doi/10.1002/cpph.13 (2016).
LeungSJKachurXMBobnickMCRomanowskiMWavelength-selective light-induced release from plasmon resonant liposomesAdv. Funct. Mater.201121111311211:CAS:528:DC%2BC3MXjsVKis7s%3D10.1002/adfm.201002373
LinYApplications of upconversion nanoparticles in cellular optogeneticsActa Biomater.20211351121:CAS:528:DC%2BB3MXisFChsbnJ10.1016/j.actbio.2021.08.035
WellsJBiophysical mechanisms of transient optical stimulation of peripheral nerveBiophys. J.200793256725801:CAS:528:DC%2BD2sXhtVOqtLnI10.1529/biophysj.107.104786
RajpootKNanotechnology-based targeting of neurodegenerative disorders: a promising tool for efficient delivery of neuromedicinesCurr. Drug Targets2020218198361:CAS:528:DC%2BB3cXhslWitLbK10.2174/1389450121666200106105633
PengFJeongSHoAEvansCLRecent progress in plasmonic nanoparticle based biomarker detection and cytometry for the study of central nervous system disordersCytomet. Part A202199106710781:CAS:528:DC%2BB3MXitFOmtbjF10.1002/cyto.a.24489
KimRNamYFabrication of a nanoplasmonic chip to enhance neuron membrane potential imaging by metal-enhanced fluorescence effectBioChip J.2021151711781:CAS:528:DC%2BB3MXkvVaqurg%3D10.1007/s13206-021-00017-0
GaoGGold nanoclusters for Parkinson’s disease treatmentBiomaterials201919436461:CAS:528:DC%2BC1cXisFCku7%2FK10.1016/j.biomaterials.2018.12.013
BoyerDTamaratPMaaliALounisBOrritMPhotothermal imaging of nanometer-sized metal particles among scatterersScience2002297116011631:CAS:528:DC%2BD38XmsVOhsL4%3D10.1126/science.1073765
ChenYMingHReview of surface plasmon resonance and localized surface plasmon resonance sensorPhotonic Sens.20122374910.1007/s13320-011-0051-2
WestPSearching for better plasmonic materialsLaser Photonics Rev.201047958081:CAS:528:DC%2BC3cXhsFyqt7rP10.1002/lpor.200900055
KimSAJunSBIn-vivo optical measurement of neural activity in the brainExp. Neurobiol.20132215816610.5607/en.2013.22.3.158
BazardPFrisinaRDWaltonJPBhethanabotlaVRNanoparticle-based plasmonic transduction for modulation of electrically excitable cellsSci. Rep.2017710.1038/s41598-017-08141-4
MitchellMJEngineering precision nanoparticles for drug deliveryNat. Rev. Drug Discov.2021201011241:CAS:528:DC%2BB3cXisV2ntL3P10.1038/s41573-020-0090-8
ShpacovitchVHergenröderROptical and surface plasmonic approaches to characterize extracellular vesicles. a reviewAnal. Chim. Acta201810051151:CAS:528:DC%2BC2sXhvF2ltrnO10.1016/j.aca.2017.11.066
YangXNanotechnology enables novel modalities for neuromodulationAdv. Mater.20213321032081:CAS:528:DC%2BB3MXit12murjK10.1002/adma.202103208
JungHNamYOptical recording of neural responses to gold-nanorod mediated photothermal neural inhibitionJ. Neurosci. Methods20223731095641:CAS:528:DC%2BB38Xhtlajsr3E10.1016/j.jneumeth.2022.109564
MantriYJokerstJVEngineering plasmonic nanoparticles for enhanced photoacoustic imagingACS Nano202014940894221:CAS:528:DC%2BB3cXhsFOjurfK10.1021/acsnano.0c05215
FeketeTOptically manipulated microtools to measure adhesion of the nanoparticle-targeting ligand glutathione to brain endothelial cellsACS Appl. Mater. Interfaces20211339018390291:CAS:528:DC%2BB3MXhsl2qtb3J10.1021/acsami.1c08454
SaraivaCNanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseasesJ. Control. Release201623534471:CAS:528:DC%2BC28XovV2hsbY%3D10.1016/j.jconrel.2016.05.044
KimRHongNNamYGold nanograin microelectrodes for neuroelectronic interfacesBiotechnol. J.201382062141:CAS:528:DC%2BC38Xhs1ersL%2FE10.1002/biot.201200219
KangHThermoplasmonic optical fiber for localized neural stimulationACS Nano20201411406114191:CAS:528:DC%2BB3cXhslKqtbvL10.1021/acsnano.0c03703
TomitakaAMagneto-plasmonic nanostars for image-guided and NIR-triggered drug deliverySci. Rep.2020101:CAS:528:DC%2BB3cXht1CqtbvO10.1038/s41598-020-66706-2
World Health Organization (WHO) report. Neurological disorders affect millions globally https://www.who.int/news/item/27-02-2007-neurological-disorders-affect-millions-globally-who-report (2007).
ParkYParkS-YEomKCurrent review of optical neural interfaces for clinical applicationsMicromachines20211292510.3390/mi12080925
RoyCSSherringtonCSOn the regulation of the blood-supply of the brainJ. Physiol.189011851581:STN:280:DC%2BD2s%2FntV2isg%3D%3D10.1113/jphysiol.1890.sp000321
BaffouGRigneaultHFemtosecond-pulsed optical heating of gold nanoparticlesPhys. Rev. B20118403541510.1103/PhysRevB.84.035415
ScholkmannFA review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodologyNeuroImage20148562710.1016/j.neuroimage.2013.05.004
LiMCushingSKWuNPlasmon-enhanced optical sensors: a reviewAnalyst20151403864061:CAS:528:DC%2BC2cXhs1yhu7vM10.1039/C4AN01079E
HongNNamYThermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitroNat. Commun.2020111:CAS:528:DC%2BB3cXisFelt7nM10.1038/s41467-020-20060-z
HuangHDelikanliSZengHFerkeyDMPralleARemote control of ion channels and neurons through magnetic-field heating of nanoparticlesNat. Nanotechnol.201056026061:CAS:528:DC%2BC3cXpvVSrurg%3D10.1038/nnano.2010.125
BorghGSurface plasmons in silicon nanowiresAdv. Photonics Res.2021221001301:CAS:528:DC%2BB3sXjtFSrsrc%3D10.1002/adpr.202100130
ParakhonskiyBVParakWJVolodkinDSkirtachAGHybrids of polymeric capsules, lipids, and nanoparticles: Thermodynamics and temperature rise at the nanoscale and emerging applicationsLangmuir201935857485831:CAS:528:DC%2BC1MXntFaktb8%3D10.1021/acs.langmuir.8b04331
MarinoAPiezoelectric nanoparticle-assisted wireless neuronal stimulationACS Nano20159767876891:CAS:528:DC%2BC2MXhtFGitbrP10.1021/acsnano.5b03162
EomKEnhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorodsSmall201410385338571:CAS:528:DC%2BC2cXhtVKmtbjK10.1002/smll.201400599
NakatsujiHThermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticlesAngew. Chem. Int. Ed.20155411725117291:CAS:528:DC%2BC2MXht1yqu7rE10.1002/anie.201505534
Carvalho-de SouzaJLPhotosensitivity of neurons enabled by cell-targeted gold nanoparticlesNeuron2015862072171:CAS:528:DC%2BC2MXksVaisrY%3D10.1016/j.neuron.2015.02.033
RamezaniZSeoKJFangHHybrid electrical and optical neural interfacesJ. Micromech. Microeng.2021310440021:CAS:528:DC%2BB3MXhtlCrs7bM10.1088/1361-6439/abeb30
NadortAZhaoJGoldysEMLanthanide upconversion luminescence at the nanoscale: fundamentals and optical propertiesNanoscale2016813099131301:CAS:528:DC%2BC28Xjt1Cjtrs%3D10.1039/C5NR08477F
WuDMGarcía-EtxarriASalleoADionneJAPlasmon-enhanced upconversionJ. Phys. Chem. Lett.20145402040311:CAS:528:DC%2BC2cXhvVens7fM10.1021/jz5019042
ChenSNear-infrared deep brain stimulation via upconversion nanoparticle-mediated optogeneticsScience20183596796841:CAS:528:DC%2BC1cXit1CjtLk%3D10.1126/science.aaq1144
AnkerJNBiosensing with plasmonic nanosensorsNat. Mater.200874424531:CAS:528:DC%2BD1cXmsVejt7g%3D10.1038/nmat2162
KangPTransient photoinactivation of cell membrane protein activity without genetic modification by molecular hyperthermiaACS Nano20191312487124991:CAS:528:DC%2BC1MXhvFKktr%2FF10.1021/acsnano.9b01993
BaffouGQuidantRThermo-plasmonics: using metallic nanostructures as nano-sources of heat: thermoplasmonicsLaser Photon. Rev.201371711871:CAS:528:DC%2BC3sXjslWhtr4%3D10.1002/lpor.201200003
LuanLRecent advances in electrical neural interface engineering: minimal invasiveness, longevity, and scalabilityNeuron20201083023211:CAS:528:DC%2BB3cXitlemsrjJ10.1016/j.neuron.2020.10.011
YeTPrecise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near infrared neuromodula
W Hong (429_CR115) 2021; 10
429_CR30
X Li (429_CR140) 2021; 4
Y Park (429_CR24) 2021; 12
C Rizal (429_CR86) 2021; 130
A Marino (429_CR84) 2015; 9
Y Chen (429_CR90) 2012; 2
A Habib (429_CR13) 2019; 5
C Multari (429_CR85) 2019; 30
B Liedberg (429_CR89) 1983; 4
JT Robinson (429_CR18) 2019; 19
A Tomitaka (429_CR66) 2017; 9
MJ Mitchell (429_CR97) 2021; 20
D Dominguez-Paredes (429_CR126) 2021; 14
H Kang (429_CR117) 2020; 14
SH Choi (429_CR93) 2011; 43
J Kumar (429_CR131) 2018; 115
R Wood (429_CR88) 1902; 4
LK Chin (429_CR9) 2020; 14
S Chen (429_CR54) 2018; 359
J Wells (429_CR57) 2005; 30
H Jung (429_CR100) 2022; 373
Collaborators, G. U. N. D. (429_CR2) 2021; 78
BV Parakhonskiy (429_CR5) 2019; 35
F Benfenati (429_CR19) 2021; 6
R Kim (429_CR112) 2013; 8
H Nakatsuji (429_CR4) 2015; 54
R Damnjanovic (429_CR14) 2020; 14
429_CR47
X Xie (429_CR91) 2017; 7
J Zhang (429_CR118) 2009; 9
T Ye (429_CR132) 2019; 29
Y Temel (429_CR87) 2015; 347
429_CR49
S Ae Kim (429_CR41) 2008; 33
M Abedini (429_CR43) 2018; 12
E Cazares-Cortes (429_CR83) 2019; 138
JN Anker (429_CR92) 2008; 7
JL Carvalho-de Souza (429_CR65) 2015; 86
V Shpacovitch (429_CR7) 2018; 1005
R Kim (429_CR124) 2021; 15
SJ Leung (429_CR70) 2011; 21
A Guglielmelli (429_CR96) 2021; 2
M Yuan (429_CR138) 2022; 12
429_CR40
G Kim (429_CR22) 2018; 11
R Chen (429_CR26) 2015; 347
D Boyer (429_CR10) 2002; 297
J Wells (429_CR60) 2007; 93
H Huang (429_CR81) 2010; 5
F Sohrabi (429_CR6) 2016; 131
A Villringer (429_CR38) 1997; 20
429_CR12
Y Jiang (429_CR29) 2021; 4
J Chen (429_CR71) 2007; 7
W Li (429_CR73) 2015; 65
M Li (429_CR145) 2015; 140
L Luan (429_CR32) 2020; 108
JK Patra (429_CR101) 2018; 16
429_CR16
CT Alexander (429_CR33) 2014; 3
SAN Gowers (429_CR141) 2019; 19
KB Johnsen (429_CR135) 2018; 8
W Yang (429_CR98) 2019; 22
C Li (429_CR109) 2016; 6
MR Warden (429_CR34) 2014; 16
M Chernov (429_CR55) 2014; 1
A Tay (429_CR82) 2018; 30
K Eom (429_CR120) 2014; 10
429_CR20
X Yang (429_CR125) 2021; 33
Y An (429_CR15) 2021; 18
M Dipalo (429_CR111) 2017; 17
P Bazard (429_CR113) 2017; 7
A Nadort (429_CR143) 2016; 8
G Bondelli (429_CR64) 2021; 125
K Rajpoot (429_CR103) 2020; 21
H Ye (429_CR31) 2015; 12
KM Alghazali (429_CR17) 2019; 9
CS Roy (429_CR39) 1890; 11
T Rojalin (429_CR8) 2019; 7
M Yuan (429_CR68) 2019; 21
429_CR104
EY Lukianova-Hleb (429_CR74) 2014; 20
M Scanziani (429_CR36) 2009; 461
P Kang (429_CR134) 2019; 13
X Cui (429_CR106) 2023; 123
Y Liu (429_CR48) 2022; 3
X Chen (429_CR94) 2012; 6
L Fenno (429_CR144) 2011; 34
V Emiliani (429_CR23) 2015; 35
429_CR121
DM Wu (429_CR52) 2014; 5
G Borgh (429_CR77) 2021; 2
P West (429_CR107) 2010; 4
F Scholkmann (429_CR62) 2014; 85
429_CR119
SV Ovsepian (429_CR80) 2017; 96
C Saraiva (429_CR102) 2016; 235
N Hong (429_CR123) 2020; 11
L Vay (429_CR61) 2012; 165
H Arami (429_CR99) 2022; 17
A Prominski (429_CR27) 2022; 21
JJ Jun (429_CR37) 2017; 551
ES Boyden (429_CR35) 2005; 8
Z Fekete (429_CR58) 2020; 17
P Pinti (429_CR63) 2020; 1464
S Principe (429_CR116) 2020; 132
Y Mantri (429_CR79) 2020; 14
T Fekete (429_CR105) 2021; 13
L Han (429_CR69) 2017; 171
F Peng (429_CR129) 2021; 99
429_CR128
429_CR127
TDY Kozai (429_CR21) 2018; 9
429_CR1
X Li (429_CR45) 2017; 27
429_CR59
SA Kim (429_CR42) 2012; 37
G Baffou (429_CR136) 2020; 19
Y Lin (429_CR51) 2021; 135
J Kubanek (429_CR28) 2018; 38
MS Yavuz (429_CR72) 2009; 8
A Prost (429_CR78) 2015; 92
L Jauffred (429_CR108) 2019; 119
G Baffou (429_CR3) 2013; 7
A Domínguez-Bajo (429_CR133) 2021; 279
M Yuan (429_CR142) 2022; 5
G Baffou (429_CR95) 2011; 84
G Gao (429_CR130) 2019; 194
R Parameswaran (429_CR76) 2018; 13
SA Kim (429_CR44) 2013; 22
429_CR50
M Giaquinto (429_CR114) 2021; 2
Z Ramezani (429_CR25) 2021; 31
L Peng (429_CR11) 2022; 14
H Kang (429_CR122) 2018; 12
H Xiong (429_CR75) 2020; 59
A Tomitaka (429_CR139) 2020; 10
C Paviolo (429_CR110) 2017; 7
RM Abraham-Ekeroth (429_CR46) 2021; 8
LM Wiesholler (429_CR53) 2018; 80
J Bornacelli (429_CR67) 2020; 31
J Zhang (429_CR56) 2021; 12
L Uson (429_CR137) 2022; 32
References_xml – reference: TomitakaADevelopment of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brainNanoscale201797647731:CAS:528:DC%2BC28XhvVCisbvE10.1039/C6NR07520G
– reference: JohnsenKBAntibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticlesTheranostics20188341634361:CAS:528:DC%2BC1cXit1KqsrvL10.7150/thno.25228
– reference: BaffouGQuidantRThermo-plasmonics: using metallic nanostructures as nano-sources of heat: thermoplasmonicsLaser Photon. Rev.201371711871:CAS:528:DC%2BC3sXjslWhtr4%3D10.1002/lpor.201200003
– reference: BazardPFrisinaRDWaltonJPBhethanabotlaVRNanoparticle-based plasmonic transduction for modulation of electrically excitable cellsSci. Rep.2017710.1038/s41598-017-08141-4
– reference: CuiXPhotothermal nanomaterials: a powerful light-to-heat converterChem. Rev.2023123689169521:CAS:528:DC%2BB3sXptVWntr4%3D10.1021/acs.chemrev.3c00159
– reference: Cazares-CortesERecent insights in magnetic hyperthermia: from the “hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybridsAdv. Drug Deliv. Rev.20191382332461:CAS:528:DC%2BC1cXit1SntrvM10.1016/j.addr.2018.10.016
– reference: WellsJBiophysical mechanisms of transient optical stimulation of peripheral nerveBiophys. J.200793256725801:CAS:528:DC%2BD2sXhtVOqtLnI10.1529/biophysj.107.104786
– reference: AbediniMTekiehTSasanpourPRecording neural activity based on surface plasmon resonance by optical fibers-a computational analysisFront. Comput. Neurosci.2018126110.3389/fncom.2018.00061
– reference: KimGRecent progress on microelectrodes in neural interfacesMaterials201811199510.3390/ma11101995
– reference: BornacelliJEnhanced ultrafast optomagnetic effects in room-temperature ferromagnetic pt nanoclusters embedded in silica by ion implantationNanotechnology2020313557051:CAS:528:DC%2BB3cXhvFyktrnM10.1088/1361-6528/ab93ec
– reference: LeungSJKachurXMBobnickMCRomanowskiMWavelength-selective light-induced release from plasmon resonant liposomesAdv. Funct. Mater.201121111311211:CAS:528:DC%2BC3MXjsVKis7s%3D10.1002/adfm.201002373
– reference: NadortAZhaoJGoldysEMLanthanide upconversion luminescence at the nanoscale: fundamentals and optical propertiesNanoscale2016813099131301:CAS:528:DC%2BC28Xjt1Cjtrs%3D10.1039/C5NR08477F
– reference: TemelYJahanshahiATreating brain disorders with neuromodulationScience20153471418141910.1126/science.aaa9610
– reference: Colombo, E., Feyen, P., Antognazza, M. R., Lanzani, G. & Benfenati, F. Nanoparticles: a challenging vehicle for neural stimulation. Front. Neurosci.10. http://journal.frontiersin.org/Article/10.3389/fnins.2016.00105/abstract (2016).
– reference: JungHNamYOptical recording of neural responses to gold-nanorod mediated photothermal neural inhibitionJ. Neurosci. Methods20223731095641:CAS:528:DC%2BB38Xhtlajsr3E10.1016/j.jneumeth.2022.109564
– reference: SaraivaCNanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseasesJ. Control. Release201623534471:CAS:528:DC%2BC28XovV2hsbY%3D10.1016/j.jconrel.2016.05.044
– reference: RoyCSSherringtonCSOn the regulation of the blood-supply of the brainJ. Physiol.189011851581:STN:280:DC%2BD2s%2FntV2isg%3D%3D10.1113/jphysiol.1890.sp000321
– reference: Abraham-EkerothRMDe AngelisFRadioplasmonics: plasmonic transducers in the radiofrequency regime for resonant thermo-acoustic imaging in deep tissuesACS Photonics202182382461:CAS:528:DC%2BB3MXislWntQ%3D%3D10.1021/acsphotonics.0c01381
– reference: ChenXChenYYanMQiuMNanosecond photothermal effects in plasmonic nanostructuresACS Nano20126255025571:CAS:528:DC%2BC38XislSrtLs%3D10.1021/nn2050032
– reference: DamnjanovicRBazardPFrisinaRDBhethanabotlaVRHybrid electro-plasmonic neural stimulation with visible-light-sensitive gold nanoparticlesACS Nano20201410917109281:CAS:528:DC%2BB3cXhtlSju7nK10.1021/acsnano.0c00722
– reference: ParakhonskiyBVParakWJVolodkinDSkirtachAGHybrids of polymeric capsules, lipids, and nanoparticles: Thermodynamics and temperature rise at the nanoscale and emerging applicationsLangmuir201935857485831:CAS:528:DC%2BC1MXntFaktb8%3D10.1021/acs.langmuir.8b04331
– reference: JauffredLSamadiAKlingbergHBendixPMOddershedeLBPlasmonic heating of nanostructuresChem. Rev.2019119808781301:CAS:528:DC%2BC1MXhtVais7zE10.1021/acs.chemrev.8b00738
– reference: LiCLiuZYaoPGold nanoparticles coated with a polydopamine layer and dextran brush surface for diagnosis and highly efficient photothermal therapy of tumorsRSC Adv.2016633083330911:CAS:528:DC%2BC28Xksl2nuro%3D10.1039/C6RA02684B
– reference: BaffouGCichosFQuidantRApplications and challenges of thermoplasmonicsNat. Mate.2020199469581:CAS:528:DC%2BB3cXhs1ehsrvP10.1038/s41563-020-0740-6
– reference: AnYNamYClosed-loop control of neural spike rate of cultured neurons using a thermoplasmonics-based photothermal neural stimulationJ. Neural Eng.20211806600210.1088/1741-2552/ac3265
– reference: BaffouGRigneaultHFemtosecond-pulsed optical heating of gold nanoparticlesPhys. Rev. B20118403541510.1103/PhysRevB.84.035415
– reference: PengLSurface plasmon-enhanced NIR-II fluorescence in a multilayer nanoprobe for through-skull mouse brain imagingACS Appl. Mater. Interfaces20221438575385831:CAS:528:DC%2BB38XitFantbnM10.1021/acsami.2c11218
– reference: KozaiTDYThe history and horizons of microscale neural interfacesMicromachines2018944510.3390/mi9090445
– reference: Ae KimSOptical measurement of neural activity using surface plasmon resonanceOptics Lett.20083391410.1364/OL.33.000914
– reference: Borghei, Y.-S., Hosseinkhani, S. & Ganjali, M. R. “plasmonic nanomaterials": an emerging avenue in biomedical and biomedical engineering opportunities. J. Adv. Res.https://www.sciencedirect.com/science/article/pii/S2090123221002162 (2021).
– reference: LinYApplications of upconversion nanoparticles in cellular optogeneticsActa Biomater.20211351121:CAS:528:DC%2BB3MXisFChsbnJ10.1016/j.actbio.2021.08.035
– reference: Lukianova-HlebEYOn-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubblesNat. Med.2014207787841:CAS:528:DC%2BC2cXovFCnsro%3D10.1038/nm.3484
– reference: LiuYYiZYaoYGuoBLiuXNoninvasive manipulation of ion channels for neuromodulation and theranosticsAcc. Mater. Res.202232472581:CAS:528:DC%2BB38XhtVems7o%3D10.1021/accountsmr.1c00251
– reference: Patel, M., Meenu, M., Pandey, J. K., Kumar, P. & Patel, R. Recent development in upconversion nanoparticles and their application in optogenetics: a review. J. Rare Earthshttps://www.sciencedirect.com/science/article/pii/S100207212100243X (2021).
– reference: ScanzianiMHäusserMElectrophysiology in the age of lightNature20094619309391:CAS:528:DC%2BD1MXht1KntLrO10.1038/nature08540
– reference: Skala, M. C., Tao, Y. K., Davis, A. M. & Izatt, J. A. Functional optical coherence tomography in preclinical models. Handbook of Biomedical Optics (2011). https://www.routledgehandbooks.com/doi/10.1201/b10951-18.
– reference: BenfenatiFLanzaniGClinical translation of nanoparticles for neural stimulationNat. Rev. Mater.202161410.1038/s41578-020-00267-8
– reference: Towne, C. & Thompson, K. R. Overview on research and clinical applications of optogenetics. Curr. Protoc. Pharmacol.75https://onlinelibrary.wiley.com/doi/10.1002/cpph.13 (2016).
– reference: ParameswaranRPhotoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowiresNat. Nanotechnol.2018132602661:CAS:528:DC%2BC1cXjtFKqu7g%3D10.1038/s41565-017-0041-7
– reference: ChenSNear-infrared deep brain stimulation via upconversion nanoparticle-mediated optogeneticsScience20183596796841:CAS:528:DC%2BC1cXit1CjtLk%3D10.1126/science.aaq1144
– reference: FeketeZHorváthCZátonyiAInfrared neuromodulation:a neuroengineering perspectiveJ. Neural Eng.2020170510031:STN:280:DC%2BB3s7htlKjtg%3D%3D10.1088/1741-2552/abb3b2
– reference: KimSAKimSJMoonHJunSBIn vivo optical neural recording using fiber-based surface plasmon resonanceOptics Lett.2012376141:CAS:528:DC%2BC38XmsFOkt70%3D10.1364/OL.37.000614
– reference: Throckmorton, G. et al. Identifying optimal parameters for infrared neural stimulation in the peripheral nervous system. Neurophotonics8https://www.spiedigitallibrary.org/journals/neurophotonics/volume-8/issue-01/015012/Identifying-optimal-parameters-for-infrared-neural-stimulation-in-the-peripheral/10.1117/1.NPh.8.1.015012.full (2021).
– reference: SohrabiFHamidiSMNeuroplasmonics: from kretschmann configuration to plasmonic crystalsEur. Phys. J. Plus201613110.1140/epjp/i2016-16221-5
– reference: ChenYMingHReview of surface plasmon resonance and localized surface plasmon resonance sensorPhotonic Sens.20122374910.1007/s13320-011-0051-2
– reference: ChinLKPlasmonic sensors for extracellular vesicle analysis: from scientific development to translational researchACS Nano20201414528145481:CAS:528:DC%2BB3cXitFygsLbL10.1021/acsnano.0c07581
– reference: FennoLYizharODeisserothKThe development and application of optogeneticsAnnu. Rev. Neurosci.2011343894121:CAS:528:DC%2BC3MXpvVyisrs%3D10.1146/annurev-neuro-061010-113817
– reference: LiXCheZMazharKPriceTJQinZUltrafast near-infrared light triggered intracellular uncaging to probe cell signalingAdv. Funct. Mater.201727160577810.1002/adfm.201605778
– reference: VillringerANon-invasive optical spectroscopy and imaging of human brain functionTrends Neurosci.1997204354421:CAS:528:DyaK2sXmsFGqurk%3D10.1016/S0166-2236(97)01132-6
– reference: AlghazaliKMPlasmonic nanofactors as switchable devices to promote or inhibit neuronal activity and functionNanomaterials2019910291:CAS:528:DC%2BC1MXhsF2gs7rL10.3390/nano9071029
– reference: RajpootKNanotechnology-based targeting of neurodegenerative disorders: a promising tool for efficient delivery of neuromedicinesCurr. Drug Targets2020218198361:CAS:528:DC%2BB3cXhslWitLbK10.2174/1389450121666200106105633
– reference: FeketeTOptically manipulated microtools to measure adhesion of the nanoparticle-targeting ligand glutathione to brain endothelial cellsACS Appl. Mater. Interfaces20211339018390291:CAS:528:DC%2BB3MXhsl2qtb3J10.1021/acsami.1c08454
– reference: LuanLRecent advances in electrical neural interface engineering: minimal invasiveness, longevity, and scalabilityNeuron20201083023211:CAS:528:DC%2BB3cXitlemsrjJ10.1016/j.neuron.2020.10.011
– reference: GiaquintoM(Invited) Stimuli-responsive materials for smart lab-on-fiber optrodesResults Opt.2021210005110.1016/j.rio.2020.100051
– reference: YuanMProgress, opportunities, and challenges of magneto-plasmonic nanoparticles under remote magnetic and light stimulation for brain-tissue and cellular regenerationNanomaterials20221222421:CAS:528:DC%2BB38XhvVCktbbJ10.3390/nano12132242
– reference: Lenton, I. C. D., Scott, E. K., Rubinsztein-Dunlop, H. & Favre-Bulle, I. A. Optical tweezers exploring neuroscience. Front. Bioeng. Biotechnol.8https://www.frontiersin.org/articles/10.3389/fbioe.2020.602797 (2020).
– reference: TayASohrabiAPooleKSeidlitsSDi CarloDA 3d magnetic hyaluronic acid hydrogel for magnetomechanical neuromodulation of primary dorsal root ganglion neuronsAdv. Mater.201830180092710.1002/adma.201800927
– reference: AnkerJNBiosensing with plasmonic nanosensorsNat. Mater.200874424531:CAS:528:DC%2BD1cXmsVejt7g%3D10.1038/nmat2162
– reference: YeHSteigerANeuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric fieldJ. NeuroEng. Rehabil.20151210.1186/s12984-015-0061-1
– reference: RizalCMagnetophotonics for sensing and magnetometry toward industrial applicationsJ. Appl. Phys.20211302309011:CAS:528:DC%2BB3MXislOns7vO10.1063/5.0072884
– reference: YeTPrecise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near infrared neuromodulationAdv. Funct. Mater.201929190212810.1002/adfm.201902128
– reference: BondelliGShedding light on thermally induced optocapacitance at the organic biointerfaceJ. Phys. Chem. B202112510748107581:CAS:528:DC%2BB3MXitVWmtb%2FF10.1021/acs.jpcb.1c06054
– reference: YuanMSuperparamagnetic iron oxide-enclosed hollow gold nanostructure with tunable surface plasmon resonances to promote near-infrared photothermal conversionAdv. Compos. Hybrid Mater.20225238723981:CAS:528:DC%2BB38XnslCgt7c%3D10.1007/s42114-022-00444-z
– reference: HongWComputational thermal analysis of the photothermal effect of thermoplasmonic optical fiber for localized neural stimulation in vivoElectronics2021101181:CAS:528:DC%2BB3MXls1Ggt7c%3D10.3390/electronics10020118
– reference: ParkYParkS-YEomKCurrent review of optical neural interfaces for clinical applicationsMicromachines20211292510.3390/mi12080925
– reference: GaoGGold nanoclusters for Parkinson’s disease treatmentBiomaterials201919436461:CAS:528:DC%2BC1cXisFCku7%2FK10.1016/j.biomaterials.2018.12.013
– reference: Mousavi, N. S. S., Moghaddasi, F., Venugopalan, P., Dabirian, A. & Kumar, S. Design of a portable optical fiber-based localized surface plasmon resonance (LSPR) for in-situ biosensing. In: Proc. International Conference in Nanophotonics, Micro-Nano Optics (NANOP2019) (2019). https://zenodo.org/record/7568795.
– reference: YuanMWangYQinY-XEngineered nanomedicine for neuroregeneration: light emitting diode-mediated superparamagnetic iron oxide-gold core-shell nanoparticles functionalized by nerve growth factorNanomed. Nanotechnol. Biol. Med.2019211020521:CAS:528:DC%2BC1MXhsFCgs7vF10.1016/j.nano.2019.102052
– reference: PrincipeSThermo-plasmonic lab-on-fiber optrodesOptics Laser Technol.20201321065021:CAS:528:DC%2BB3cXhsFaitrvO10.1016/j.optlastec.2020.106502
– reference: YangXNanotechnology enables novel modalities for neuromodulationAdv. Mater.20213321032081:CAS:528:DC%2BB3MXit12murjK10.1002/adma.202103208
– reference: OvsepianSVOlefirIWestmeyerGRazanskyDNtziachristosVPushing the boundaries of neuroimaging with optoacousticsNeuron2017969669881:CAS:528:DC%2BC2sXhvFemur7E10.1016/j.neuron.2017.10.022
– reference: LiedbergBNylanderCLunströmISurface plasmon resonance for gas detection and biosensingSens. Actuators198342993041:CAS:528:DyaL2cXnvV2kug%3D%3D10.1016/0250-6874(83)85036-7
– reference: ChenRRomeroGChristiansenMGMohrAAnikeevaPWireless magnetothermal deep brain stimulationScience2015347147714801:CAS:528:DC%2BC2MXkvFCnurs%3D10.1126/science.1261821
– reference: ProstAPoissonFBossyEPhotoacoustic generation by a gold nanosphere: from linear to nonlinear thermoelastics in the long-pulse illumination regimePhys. Rev. B20159211545010.1103/PhysRevB.92.115450
– reference: Nguyen, K. T. et al. Strategies of engineering nanoparticles for treating neurodegenerative disorders. Curr. Drug Metab.18http://www.eurekaselect.com/149495/article (2017).
– reference: GuglielmelliAThermoplasmonics with gold nanoparticles: a new weapon in modern optics and biomedicineAdv. Photonics Res.20212200019810.1002/adpr.202000198
– reference: PintiPThe present and future use of functional near infrared spectroscopy (fNIRS) for cognitive neuroscienceAnn. N.Y. Acad. Sci.2020146452910.1111/nyas.13948
– reference: XieXLiaoJShaoXLiQLinYThe effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and trianglesSci. Rep.2017710.1038/s41598-017-04229-z
– reference: HanLA magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapyTalanta201717132381:CAS:528:DC%2BC2sXntVKisrw%3D10.1016/j.talanta.2017.04.056
– reference: RobinsonJTDeveloping next-generation brain sensing technologies—a reviewIEEE Sensors J.20191910163101751:CAS:528:DC%2BB3cXmsFWis7w%3D10.1109/JSEN.2019.2931159
– reference: ScholkmannFA review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodologyNeuroImage20148562710.1016/j.neuroimage.2013.05.004
– reference: Domínguez-BajoANanostructured gold electrodes promote neural maturation and network connectivityBiomaterials202127912118610.1016/j.biomaterials.2021.121186
– reference: MultariCMagnetoplasmonic nanoparticles for photothermal therapyNanotechnology2019302557051:CAS:528:DC%2BC1MXhtlGmu7fP10.1088/1361-6528/ab08f7
– reference: AramiHRemotely controlled near-infrared-triggered photothermal treatment of brain tumours in freely behaving mice using gold nanostar sNat. Nanotechnol.202217101510221:CAS:528:DC%2BB38XitF2rsbnL10.1038/s41565-022-01189-y
– reference: EomKEnhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorodsSmall201410385338571:CAS:528:DC%2BC2cXhtVKmtbjK10.1002/smll.201400599
– reference: KubanekJShuklaPDasABaccusSAGoodmanMBUltrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous systemJ. Neurosci.201838308130911:CAS:528:DC%2BC1cXhslWmt7%2FN10.1523/JNEUROSCI.1458-17.2018
– reference: VayLGuCMcNaughtonPAThe thermo-TRP ion channel family: properties and therapeutic implications: The thermo-TRP ion channel familyBr. J. Pharmacol.20121657878011:CAS:528:DC%2BC38XhvFGqsLw%3D10.1111/j.1476-5381.2011.01601.x
– reference: ZhangJNon-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learningNat. Commun.2021121:CAS:528:DC%2BB3MXhtFWgu7zL10.1038/s41467-021-23025-y
– reference: ZhangJAtayTNurmikkoAVOptical detection of brain cell activity using plasmonic gold nanoparticlesNano Lett.200995195241:CAS:528:DC%2BD1MXjslWisQ%3D%3D10.1021/nl801891q
– reference: KangHThermoplasmonic optical fiber for localized neural stimulationACS Nano20201411406114191:CAS:528:DC%2BB3cXhslKqtbvL10.1021/acsnano.0c03703
– reference: ShpacovitchVHergenröderROptical and surface plasmonic approaches to characterize extracellular vesicles. a reviewAnal. Chim. Acta201810051151:CAS:528:DC%2BC2sXhvF2ltrnO10.1016/j.aca.2017.11.066
– reference: RamezaniZSeoKJFangHHybrid electrical and optical neural interfacesJ. Micromech. Microeng.2021310440021:CAS:528:DC%2BB3MXhtlCrs7bM10.1088/1361-6439/abeb30
– reference: Carvalho-de SouzaJLPhotosensitivity of neurons enabled by cell-targeted gold nanoparticlesNeuron2015862072171:CAS:528:DC%2BC2MXksVaisrY%3D10.1016/j.neuron.2015.02.033
– reference: PengFJeongSHoAEvansCLRecent progress in plasmonic nanoparticle based biomarker detection and cytometry for the study of central nervous system disordersCytomet. Part A202199106710781:CAS:528:DC%2BB3MXitFOmtbjF10.1002/cyto.a.24489
– reference: KimRNamYFabrication of a nanoplasmonic chip to enhance neuron membrane potential imaging by metal-enhanced fluorescence effectBioChip J.2021151711781:CAS:528:DC%2BB3MXkvVaqurg%3D10.1007/s13206-021-00017-0
– reference: YangWLiangHMaSWangDHuangJGold nanoparticle based photothermal therapy: development and application for effective cancer treatmentSustain. Mater. Technol.201922e001091:CAS:528:DC%2BB3cXjvFajtw%3D%3D
– reference: ProminskiAPorosity-based heterojunctions enable leadless optoelectronic modulation of tissuesNat. Mater.2022216476551:CAS:528:DC%2BB38Xhtl2ktbfN10.1038/s41563-022-01249-7
– reference: XiongHNear infrared light triggered release in deep brain regions using ultra photosensitive nanovesiclesAngew. Chem. Int. Ed.202059860886151:CAS:528:DC%2BB3cXltlCisbY%3D10.1002/anie.201915296
– reference: WieshollerLMHirschTStrategies for the design of bright upconversion nanoparticles for bioanalytical applicationsOptical Mater.2018802532641:CAS:528:DC%2BC1cXpsVajt7w%3D10.1016/j.optmat.2018.04.015
– reference: Dugué, G. P., Akemann, W. & Knöpfel, T. A comprehensive concept of optogenetics, vol. 196, 1–28 (Elsevier, 2012). https://linkinghub.elsevier.com/retrieve/pii/B978044459426600001X.
– reference: UsonLNanoengineering palladium plasmonic nanosheets inside polymer nanospheres for photothermal therapy and targeted drug deliveryAdv. Funct. Mater.20223221069321:CAS:528:DC%2BB3MXis1Wis7bF10.1002/adfm.202106932
– reference: BoyerDTamaratPMaaliALounisBOrritMPhotothermal imaging of nanometer-sized metal particles among scatterersScience2002297116011631:CAS:528:DC%2BD38XmsVOhsL4%3D10.1126/science.1073765
– reference: KimRHongNNamYGold nanograin microelectrodes for neuroelectronic interfacesBiotechnol. J.201382062141:CAS:528:DC%2BC38Xhs1ersL%2FE10.1002/biot.201200219
– reference: LiXNanotransducers for wireless neuromodulationMatter20214148415101:CAS:528:DC%2BB3MXhvV2lurrL10.1016/j.matt.2021.02.012
– reference: BorghGSurface plasmons in silicon nanowiresAdv. Photonics Res.2021221001301:CAS:528:DC%2BB3sXjtFSrsrc%3D10.1002/adpr.202100130
– reference: HongNNamYThermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitroNat. Commun.2020111:CAS:528:DC%2BB3cXisFelt7nM10.1038/s41467-020-20060-z
– reference: KumarJDetection of amyloid fibrils in Parkinson’s disease using plasmonic chiralityProc. Natl Acad. Sci.2018115322532301:CAS:528:DC%2BC1cXht1Ckur7P10.1073/pnas.1721690115
– reference: JiangYNeural stimulation in vitro and in vivo by photoacoustic nanotransducersMatter202146546741:CAS:528:DC%2BB3MXhsl2qur%2FF10.1016/j.matt.2020.11.019
– reference: Wang, Y. & Guo, L. Nanomaterial-enabled neural stimulation. Front. Neurosc. 10, 69 (2016).
– reference: WoodRXlii. on a remarkable case of uneven distribution of light in a diffraction grating spectrumLond. Edinb. Dublin Philos. Mag. J. Sci.1902439640210.1080/14786440209462857
– reference: JunJJFully integrated silicon probes for high-density recording of neural activityNature20175512322361:CAS:528:DC%2BC2sXhsl2jtbbN10.1038/nature24636
– reference: HuangHDelikanliSZengHFerkeyDMPralleARemote control of ion channels and neurons through magnetic-field heating of nanoparticlesNat. Nanotechnol.201056026061:CAS:528:DC%2BC3cXpvVSrurg%3D10.1038/nnano.2010.125
– reference: PavioloCStoddartPGold nanoparticles for modulating neuronal behaviorNanomaterials201779210.3390/nano7040092
– reference: PatraJKNano based drug delivery systems: recent developments and future prospectsJ. Nanobiotechnol.20181610.1186/s12951-018-0392-8
– reference: WellsJOptical stimulation of neural tissue in vivoOptics Lett.20053050410.1364/OL.30.000504
– reference: ChernovMRoeAWInfrared neural stimulation: a new stimulation tool for central nervous system applicationsNeurophotonics2014101101110.1117/1.NPh.1.1.011011
– reference: MantriYJokerstJVEngineering plasmonic nanoparticles for enhanced photoacoustic imagingACS Nano202014940894221:CAS:528:DC%2BB3cXhsFOjurfK10.1021/acsnano.0c05215
– reference: Collaborators, G. U. N. D.Burden of neurological disorders across the US from 1990–2017: a global burden of disease studyJAMA Neurology20217816510.1001/jamaneurol.2020.4152
– reference: HabibAElectro-plasmonic nanoantenna: a nonfluorescent optical probe for ultrasensitive label-free detection of electrophysiological signalsSci. Adv.20195eaav97861:CAS:528:DC%2BB3cXhtlalu73K10.1126/sciadv.aav9786
– reference: WuDMGarcía-EtxarriASalleoADionneJAPlasmon-enhanced upconversionJ. Phys. Chem. Lett.20145402040311:CAS:528:DC%2BC2cXhvVens7fM10.1021/jz5019042
– reference: MarinoAPiezoelectric nanoparticle-assisted wireless neuronal stimulationACS Nano20159767876891:CAS:528:DC%2BC2MXhtFGitbrP10.1021/acsnano.5b03162
– reference: GowersSANClinical translation of microfluidic sensor devices: focus on calibration and analytical robustnessLab Chip201919253725481:CAS:528:DC%2BC1MXhtlGjt7vJ10.1039/C9LC00400A
– reference: RojalinTPhongBKosterHJCarneyRPNanoplasmonic approaches for sensitive detection and molecular characterization of extracellular vesiclesFront. Chem.201972791:CAS:528:DC%2BC1MXitVOrsrbP10.3389/fchem.2019.00279
– reference: World Health Organization (WHO) report. Neurological disorders affect millions globally https://www.who.int/news/item/27-02-2007-neurological-disorders-affect-millions-globally-who-report (2007).
– reference: ChenJImmuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cellsNano Lett.20077131813221:CAS:528:DC%2BD2sXktVyht7k%3D10.1021/nl070345g
– reference: WardenMRCardinJADeisserothKOptical neural interfacesAnnu. Rev. Biomed. Eng.2014161031291:CAS:528:DC%2BC2cXhsVKgt77L10.1146/annurev-bioeng-071813-104733
– reference: ChoiSHKimSJImC-HKimSAKimDQuantitative model for the change of optical resonance in neural activity detection systems based on surface plasmon resonanceOptics Laser Technol.2011439389481:CAS:528:DC%2BC3MXhvVCnsrY%3D10.1016/j.optlastec.2010.12.010
– reference: KangHLeeG-HJungHLeeJWNamYInkjet-printed biofunctional thermo-plasmonic interfaces for patterned neuromodulationACS Nano201812112811381:CAS:528:DC%2BC1cXit1yrsbs%3D10.1021/acsnano.7b06617
– reference: TomitakaAMagneto-plasmonic nanostars for image-guided and NIR-triggered drug deliverySci. Rep.2020101:CAS:528:DC%2BB3cXht1CqtbvO10.1038/s41598-020-66706-2
– reference: LiMCushingSKWuNPlasmon-enhanced optical sensors: a reviewAnalyst20151403864061:CAS:528:DC%2BC2cXhs1yhu7vM10.1039/C4AN01079E
– reference: LiWRemote modulation of neural activities via near-infrared triggered release of biomoleculesBiomaterials20156576851:CAS:528:DC%2BC2MXhtVyht7vN10.1016/j.biomaterials.2015.06.041
– reference: MitchellMJEngineering precision nanoparticles for drug deliveryNat. Rev. Drug Discov.2021201011241:CAS:528:DC%2BB3cXisV2ntL3P10.1038/s41573-020-0090-8
– reference: EmilianiVCohenAEDeisserothKHausserMAll-optical interrogation of neural circuitsJ. Neurosci.20153513917139261:CAS:528:DC%2BC28XjtVyksrc%3D10.1523/JNEUROSCI.2916-15.2015
– reference: Brocker, D. T. & Grill, W. M. Principles of Electrical Stimulation of Neural Tissue, vol. 116, 3–18 (Elsevier, 2013). https://linkinghub.elsevier.com/retrieve/pii/B9780444534972000012.
– reference: BoydenESZhangFBambergENagelGDeisserothKMillisecond-timescale, genetically targeted optical control of neural activityNat. Neurosci.20058126312681:CAS:528:DC%2BD2MXpt1egtrc%3D10.1038/nn1525
– reference: DipaloMIntracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3d plasmonic nanoelectrodesNano Lett.201717393239391:CAS:528:DC%2BC2sXot1ylsr8%3D10.1021/acs.nanolett.7b01523
– reference: AlexanderCTPaulRSE. DucoJOptical stimulation of neuronsCurr. Mol. Imaging (Discontinued)20143162177
– reference: Dominguez-ParedesDJahanshahiAKozielskiKLTranslational considerations for the design of untethered nanomaterials in human neural stimulationBrain Stimul.2021141285129710.1016/j.brs.2021.08.001
– reference: KimSAJunSBIn-vivo optical measurement of neural activity in the brainExp. Neurobiol.20132215816610.5607/en.2013.22.3.158
– reference: Deisseroth, K. & Anikeeva, P. Upconversion of light for use in optogenetic methods, United States Patent No. US10252076(B2) https://patents.google.com/patent/US20160317658/en (2011).
– reference: Chen, S. Near-infrared Deep Brain Stimulation in Living Mice, vol. 2173, 71–82 (Springer US, New York, NY, 2020). https://link.springer.com/10.1007/978-1-0716-0755-8_4.
– reference: NakatsujiHThermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticlesAngew. Chem. Int. Ed.20155411725117291:CAS:528:DC%2BC2MXht1yqu7rE10.1002/anie.201505534
– reference: YavuzMSGold nanocages covered by smart polymers for controlled release with near-infrared lightNat. Mater.200989359391:CAS:528:DC%2BD1MXhsVGlt7rF10.1038/nmat2564
– reference: KangPTransient photoinactivation of cell membrane protein activity without genetic modification by molecular hyperthermiaACS Nano20191312487124991:CAS:528:DC%2BC1MXhvFKktr%2FF10.1021/acsnano.9b01993
– reference: WestPSearching for better plasmonic materialsLaser Photonics Rev.201047958081:CAS:528:DC%2BC3cXhsFyqt7rP10.1002/lpor.200900055
– volume: 59
  start-page: 8608
  year: 2020
  ident: 429_CR75
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915296
– volume: 10
  start-page: 118
  year: 2021
  ident: 429_CR115
  publication-title: Electronics
  doi: 10.3390/electronics10020118
– volume: 35
  start-page: 13917
  year: 2015
  ident: 429_CR23
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2916-15.2015
– volume: 7
  start-page: 171
  year: 2013
  ident: 429_CR3
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201200003
– volume: 7
  year: 2017
  ident: 429_CR91
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04229-z
– volume: 12
  year: 2021
  ident: 429_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23025-y
– volume: 30
  start-page: 504
  year: 2005
  ident: 429_CR57
  publication-title: Optics Lett.
  doi: 10.1364/OL.30.000504
– volume: 7
  year: 2017
  ident: 429_CR113
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08141-4
– volume: 38
  start-page: 3081
  year: 2018
  ident: 429_CR28
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1458-17.2018
– volume: 347
  start-page: 1418
  year: 2015
  ident: 429_CR87
  publication-title: Science
  doi: 10.1126/science.aaa9610
– volume: 5
  start-page: 602
  year: 2010
  ident: 429_CR81
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.125
– volume: 11
  start-page: 1995
  year: 2018
  ident: 429_CR22
  publication-title: Materials
  doi: 10.3390/ma11101995
– volume: 132
  start-page: 106502
  year: 2020
  ident: 429_CR116
  publication-title: Optics Laser Technol.
  doi: 10.1016/j.optlastec.2020.106502
– volume: 86
  start-page: 207
  year: 2015
  ident: 429_CR65
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.02.033
– volume: 130
  start-page: 230901
  year: 2021
  ident: 429_CR86
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0072884
– volume: 14
  start-page: 10917
  year: 2020
  ident: 429_CR14
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00722
– volume: 14
  start-page: 1285
  year: 2021
  ident: 429_CR126
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2021.08.001
– volume: 14
  start-page: 11406
  year: 2020
  ident: 429_CR117
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03703
– volume: 135
  start-page: 1
  year: 2021
  ident: 429_CR51
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.08.035
– volume: 373
  start-page: 109564
  year: 2022
  ident: 429_CR100
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2022.109564
– volume: 33
  start-page: 2103208
  year: 2021
  ident: 429_CR125
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103208
– volume: 1005
  start-page: 1
  year: 2018
  ident: 429_CR7
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.11.066
– volume: 171
  start-page: 32
  year: 2017
  ident: 429_CR69
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.04.056
– volume: 96
  start-page: 966
  year: 2017
  ident: 429_CR80
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.10.022
– volume: 2
  start-page: 37
  year: 2012
  ident: 429_CR90
  publication-title: Photonic Sens.
  doi: 10.1007/s13320-011-0051-2
– ident: 429_CR50
  doi: 10.1007/978-1-0716-0755-8_4
– volume: 551
  start-page: 232
  year: 2017
  ident: 429_CR37
  publication-title: Nature
  doi: 10.1038/nature24636
– ident: 429_CR119
– ident: 429_CR128
  doi: 10.1016/j.jare.2021.11.006
– ident: 429_CR49
– volume: 7
  start-page: 279
  year: 2019
  ident: 429_CR8
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00279
– ident: 429_CR20
  doi: 10.3389/fnins.2016.00105
– volume: 297
  start-page: 1160
  year: 2002
  ident: 429_CR10
  publication-title: Science
  doi: 10.1126/science.1073765
– volume: 7
  start-page: 442
  year: 2008
  ident: 429_CR92
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2162
– volume: 125
  start-page: 10748
  year: 2021
  ident: 429_CR64
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.1c06054
– volume: 22
  start-page: e00109
  year: 2019
  ident: 429_CR98
  publication-title: Sustain. Mater. Technol.
– volume: 16
  year: 2018
  ident: 429_CR101
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-018-0392-8
– volume: 108
  start-page: 302
  year: 2020
  ident: 429_CR32
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.10.011
– volume: 93
  start-page: 2567
  year: 2007
  ident: 429_CR60
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.104786
– volume: 78
  start-page: 165
  year: 2021
  ident: 429_CR2
  publication-title: JAMA Neurology
  doi: 10.1001/jamaneurol.2020.4152
– volume: 30
  start-page: 1800927
  year: 2018
  ident: 429_CR82
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800927
– volume: 80
  start-page: 253
  year: 2018
  ident: 429_CR53
  publication-title: Optical Mater.
  doi: 10.1016/j.optmat.2018.04.015
– volume: 43
  start-page: 938
  year: 2011
  ident: 429_CR93
  publication-title: Optics Laser Technol.
  doi: 10.1016/j.optlastec.2010.12.010
– ident: 429_CR121
  doi: 10.3389/fnins.2016.00069
– volume: 8
  start-page: 3416
  year: 2018
  ident: 429_CR135
  publication-title: Theranostics
  doi: 10.7150/thno.25228
– volume: 13
  start-page: 39018
  year: 2021
  ident: 429_CR105
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c08454
– volume: 14
  start-page: 14528
  year: 2020
  ident: 429_CR9
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07581
– volume: 140
  start-page: 386
  year: 2015
  ident: 429_CR145
  publication-title: Analyst
  doi: 10.1039/C4AN01079E
– volume: 99
  start-page: 1067
  year: 2021
  ident: 429_CR129
  publication-title: Cytomet. Part A
  doi: 10.1002/cyto.a.24489
– volume: 115
  start-page: 3225
  year: 2018
  ident: 429_CR131
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1721690115
– ident: 429_CR16
  doi: 10.2174/1389200218666170125114751
– volume: 16
  start-page: 103
  year: 2014
  ident: 429_CR34
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071813-104733
– volume: 27
  start-page: 1605778
  year: 2017
  ident: 429_CR45
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605778
– volume: 6
  start-page: 1
  year: 2021
  ident: 429_CR19
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00267-8
– volume: 19
  start-page: 10163
  year: 2019
  ident: 429_CR18
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2019.2931159
– volume: 92
  start-page: 115450
  year: 2015
  ident: 429_CR78
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.115450
– volume: 9
  start-page: 519
  year: 2009
  ident: 429_CR118
  publication-title: Nano Lett.
  doi: 10.1021/nl801891q
– ident: 429_CR47
  doi: 10.1016/B978-0-444-59426-6.00001-X
– volume: 12
  start-page: 925
  year: 2021
  ident: 429_CR24
  publication-title: Micromachines
  doi: 10.3390/mi12080925
– volume: 9
  start-page: 1029
  year: 2019
  ident: 429_CR17
  publication-title: Nanomaterials
  doi: 10.3390/nano9071029
– ident: 429_CR1
– volume: 10
  year: 2020
  ident: 429_CR139
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66706-2
– ident: 429_CR104
  doi: 10.3389/fbioe.2020.602797
– volume: 20
  start-page: 435
  year: 1997
  ident: 429_CR38
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(97)01132-6
– volume: 3
  start-page: 247
  year: 2022
  ident: 429_CR48
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00251
– ident: 429_CR127
  doi: 10.1002/cpph.13
– volume: 35
  start-page: 8574
  year: 2019
  ident: 429_CR5
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b04331
– volume: 20
  start-page: 101
  year: 2021
  ident: 429_CR97
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-020-0090-8
– volume: 21
  start-page: 819
  year: 2020
  ident: 429_CR103
  publication-title: Curr. Drug Targets
  doi: 10.2174/1389450121666200106105633
– volume: 65
  start-page: 76
  year: 2015
  ident: 429_CR73
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.06.041
– volume: 119
  start-page: 8087
  year: 2019
  ident: 429_CR108
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00738
– volume: 5
  start-page: eaav9786
  year: 2019
  ident: 429_CR13
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav9786
– volume: 9
  start-page: 445
  year: 2018
  ident: 429_CR21
  publication-title: Micromachines
  doi: 10.3390/mi9090445
– volume: 131
  year: 2016
  ident: 429_CR6
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2016-16221-5
– volume: 138
  start-page: 233
  year: 2019
  ident: 429_CR83
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2018.10.016
– volume: 10
  start-page: 3853
  year: 2014
  ident: 429_CR120
  publication-title: Small
  doi: 10.1002/smll.201400599
– volume: 11
  year: 2020
  ident: 429_CR123
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20060-z
– volume: 18
  start-page: 066002
  year: 2021
  ident: 429_CR15
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac3265
– volume: 31
  start-page: 355705
  year: 2020
  ident: 429_CR67
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab93ec
– volume: 19
  start-page: 2537
  year: 2019
  ident: 429_CR141
  publication-title: Lab Chip
  doi: 10.1039/C9LC00400A
– volume: 9
  start-page: 764
  year: 2017
  ident: 429_CR66
  publication-title: Nanoscale
  doi: 10.1039/C6NR07520G
– volume: 8
  start-page: 935
  year: 2009
  ident: 429_CR72
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2564
– volume: 2
  start-page: 2100130
  year: 2021
  ident: 429_CR77
  publication-title: Adv. Photonics Res.
  doi: 10.1002/adpr.202100130
– volume: 17
  start-page: 3932
  year: 2017
  ident: 429_CR111
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01523
– volume: 2
  start-page: 100051
  year: 2021
  ident: 429_CR114
  publication-title: Results Opt.
  doi: 10.1016/j.rio.2020.100051
– volume: 54
  start-page: 11725
  year: 2015
  ident: 429_CR4
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201505534
– volume: 359
  start-page: 679
  year: 2018
  ident: 429_CR54
  publication-title: Science
  doi: 10.1126/science.aaq1144
– volume: 1
  start-page: 011011
  year: 2014
  ident: 429_CR55
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.1.1.011011
– volume: 12
  start-page: 2242
  year: 2022
  ident: 429_CR138
  publication-title: Nanomaterials
  doi: 10.3390/nano12132242
– volume: 29
  start-page: 1902128
  year: 2019
  ident: 429_CR132
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902128
– volume: 8
  start-page: 13099
  year: 2016
  ident: 429_CR143
  publication-title: Nanoscale
  doi: 10.1039/C5NR08477F
– volume: 4
  start-page: 654
  year: 2021
  ident: 429_CR29
  publication-title: Matter
  doi: 10.1016/j.matt.2020.11.019
– volume: 1464
  start-page: 5
  year: 2020
  ident: 429_CR63
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1111/nyas.13948
– volume: 37
  start-page: 614
  year: 2012
  ident: 429_CR42
  publication-title: Optics Lett.
  doi: 10.1364/OL.37.000614
– volume: 347
  start-page: 1477
  year: 2015
  ident: 429_CR26
  publication-title: Science
  doi: 10.1126/science.1261821
– volume: 17
  start-page: 051003
  year: 2020
  ident: 429_CR58
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abb3b2
– volume: 235
  start-page: 34
  year: 2016
  ident: 429_CR102
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.05.044
– volume: 12
  year: 2015
  ident: 429_CR31
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-015-0061-1
– volume: 12
  start-page: 61
  year: 2018
  ident: 429_CR43
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2018.00061
– volume: 13
  start-page: 260
  year: 2018
  ident: 429_CR76
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0041-7
– volume: 15
  start-page: 171
  year: 2021
  ident: 429_CR124
  publication-title: BioChip J.
  doi: 10.1007/s13206-021-00017-0
– volume: 5
  start-page: 2387
  year: 2022
  ident: 429_CR142
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-022-00444-z
– volume: 21
  start-page: 102052
  year: 2019
  ident: 429_CR68
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2019.102052
– volume: 6
  start-page: 2550
  year: 2012
  ident: 429_CR94
  publication-title: ACS Nano
  doi: 10.1021/nn2050032
– volume: 2
  start-page: 2000198
  year: 2021
  ident: 429_CR96
  publication-title: Adv. Photonics Res.
  doi: 10.1002/adpr.202000198
– volume: 19
  start-page: 946
  year: 2020
  ident: 429_CR136
  publication-title: Nat. Mate.
  doi: 10.1038/s41563-020-0740-6
– volume: 34
  start-page: 389
  year: 2011
  ident: 429_CR144
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-061010-113817
– ident: 429_CR30
  doi: 10.1016/B978-0-444-53497-2.00001-2
– volume: 14
  start-page: 9408
  year: 2020
  ident: 429_CR79
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05215
– volume: 11
  start-page: 85
  year: 1890
  ident: 429_CR39
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1890.sp000321
– volume: 8
  start-page: 238
  year: 2021
  ident: 429_CR46
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.0c01381
– volume: 123
  start-page: 6891
  year: 2023
  ident: 429_CR106
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00159
– volume: 14
  start-page: 38575
  year: 2022
  ident: 429_CR11
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c11218
– ident: 429_CR12
– volume: 9
  start-page: 7678
  year: 2015
  ident: 429_CR84
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03162
– volume: 21
  start-page: 647
  year: 2022
  ident: 429_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01249-7
– volume: 165
  start-page: 787
  year: 2012
  ident: 429_CR61
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2011.01601.x
– volume: 17
  start-page: 1015
  year: 2022
  ident: 429_CR99
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01189-y
– volume: 12
  start-page: 1128
  year: 2018
  ident: 429_CR122
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06617
– volume: 8
  start-page: 206
  year: 2013
  ident: 429_CR112
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201200219
– volume: 4
  start-page: 795
  year: 2010
  ident: 429_CR107
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.200900055
– volume: 30
  start-page: 255705
  year: 2019
  ident: 429_CR85
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab08f7
– volume: 279
  start-page: 121186
  year: 2021
  ident: 429_CR133
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121186
– volume: 461
  start-page: 930
  year: 2009
  ident: 429_CR36
  publication-title: Nature
  doi: 10.1038/nature08540
– volume: 4
  start-page: 396
  year: 1902
  ident: 429_CR88
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440209462857
– volume: 13
  start-page: 12487
  year: 2019
  ident: 429_CR134
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01993
– volume: 5
  start-page: 4020
  year: 2014
  ident: 429_CR52
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5019042
– volume: 22
  start-page: 158
  year: 2013
  ident: 429_CR44
  publication-title: Exp. Neurobiol.
  doi: 10.5607/en.2013.22.3.158
– ident: 429_CR40
– volume: 33
  start-page: 914
  year: 2008
  ident: 429_CR41
  publication-title: Optics Lett.
  doi: 10.1364/OL.33.000914
– ident: 429_CR59
  doi: 10.1117/1.NPh.8.1.015012
– volume: 194
  start-page: 36
  year: 2019
  ident: 429_CR130
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.12.013
– volume: 85
  start-page: 6
  year: 2014
  ident: 429_CR62
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.004
– volume: 21
  start-page: 1113
  year: 2011
  ident: 429_CR70
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002373
– volume: 4
  start-page: 299
  year: 1983
  ident: 429_CR89
  publication-title: Sens. Actuators
  doi: 10.1016/0250-6874(83)85036-7
– volume: 20
  start-page: 778
  year: 2014
  ident: 429_CR74
  publication-title: Nat. Med.
  doi: 10.1038/nm.3484
– volume: 3
  start-page: 162
  year: 2014
  ident: 429_CR33
  publication-title: Curr. Mol. Imaging (Discontinued)
– volume: 31
  start-page: 044002
  year: 2021
  ident: 429_CR25
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/abeb30
– volume: 32
  start-page: 2106932
  year: 2022
  ident: 429_CR137
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106932
– volume: 7
  start-page: 92
  year: 2017
  ident: 429_CR110
  publication-title: Nanomaterials
  doi: 10.3390/nano7040092
– volume: 8
  start-page: 1263
  year: 2005
  ident: 429_CR35
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1525
– volume: 6
  start-page: 33083
  year: 2016
  ident: 429_CR109
  publication-title: RSC Adv.
  doi: 10.1039/C6RA02684B
– volume: 7
  start-page: 1318
  year: 2007
  ident: 429_CR71
  publication-title: Nano Lett.
  doi: 10.1021/nl070345g
– volume: 4
  start-page: 1484
  year: 2021
  ident: 429_CR140
  publication-title: Matter
  doi: 10.1016/j.matt.2021.02.012
– volume: 84
  start-page: 035415
  year: 2011
  ident: 429_CR95
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.035415
SSID ssj0002511640
Score 2.317868
SecondaryResourceType review_article
Snippet The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures...
Abstract The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms 631/378/2586
631/378/87
Central nervous system
Chemistry and Materials Science
Materials Science
Nanomaterials
Nanoparticles
Nervous system
Plasmonics
Plasmons
Review Article
Spatial resolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCAaJQIAMbWPVnnIyAqCoGxEClbpZ9diYoiJb_z9lJv5CAhSVDYkuXd4nvnex7R8il0kEzJxvqVCkpxmNJnYkVDaWPJiAjDz6ftngsR2P1MNGTtVZf6UxYKw_cAjdwEKIxSDpSCaeH2pfeVKGUBpN1x3MFtWA1W0um0hqciHOpWFclw2Q1mCXpuXTeVtK8CFO9EYmyYP8Gy_y2MZrjzXCP7HZEsbhpDdwnW3F6QC6ekOy-JjXbWYFss8hqlHElKXhIxsP757sR7VocUEAb5tR4A6XwDtO0EGu0MyhwwGvgCqRD8uEwa2SRRy2g0ZVrNGCAb0SQkfvUMOyIbE_fpvGYFMozQJTqBrhTCi9InIQ0HDyCF7juEb54XQud_ndqQ_Fi8z60rGwLkUWIbIbI4pyr5Zz3Vv3i19G3CcXlyKRcnW-gP23nT_uXP3ukv_CB7X6nmcWsEKkEq0XVI9cLv6we_2zSyX-YdEp2UpP5VIEoRJ9szz8-4xlSkbk_z1_dF9HQ1JI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKu7AgECAKBTKwgUX8TsaCqKoOCAkqdbP8Cgu0qC3_n7ObtCoCJJYMiU-6nJO7z_bddwhdceFFbliFDZcMQzxm2KhQYC9tUB4Qubcp2-JRDsd8NBGTFqJNLUxK2k-UlslNN9lht4vIHBfTZRlOPhSLHdQpFLjfNur0-6Pn0XpnJYJmyfO6QiZnxQ_CW1EokfVvIcxvh6Ip1gz20V4NErP-Sq0D1ArTQ3T5BED3PTLZLjJAmlliogwbOsEjNB48vNwPcd3eADvQYYmVVU5Sa2CJ5kMJenrujCOlI9wxA8DDwIoxDyQI6ipRmEo4CO4V9SwQG5uFHaP2dDYNJyjjNndS8rJyxHAOFwBNlCniLKA1T0QXkeZ1tau5v2MLijedzqBZoVcm0mAinUykQeZ6LfOxYr74c_RdtOJ6ZGStTjdm81ddz6I2zgelQKVYjmtdaaVVhZdMsTI3hJEu6jVzoOtfaaFhRQgwIi9p0UU3zbxsHv-u0un_hp-h3dhKPtYZUtpD7eX8M5wD4Fjai_oL-wL-2Mu7
  priority: 102
  providerName: Springer Nature
Title Plasmonics for neuroengineering
URI https://link.springer.com/article/10.1038/s43246-023-00429-5
https://www.proquest.com/docview/2892420928
https://doaj.org/article/acde775664394bc9b6b78d637390a131
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULl6MRo0oIgdv2rjddtvdkwECEg6EqCTemr7WiwIC_n-npUAwkctusttuZqeP-abtfIPQHctslihaYsU4xWCPKVbC5dhy7YQFRG51OG0x5P0xG7xn73HBbRGPVa7nxDBR26nxa-SP4BiANUmKNH-afWOfNcrvrsYUGoeoSlKwtT5SvPe8WWPx8JmzJMbKJDR_XHgCOn_qluIwFeNsxx4F2v4drPlnezRYnd4JOo5wsdlate8pOnCTM3Q7Asj75TltF03AnM3ASem2xILnaNzrvnX6OCY6wAZkWGKhheGpVuCsWVeAnJYZZUhhCDNUAQRR4DsmjrgsNWWWqzIzYObL1FJHtE8bdoEqk-nEXaIm04nhnBWlIYoxuAB8SqkgRgNusySrIbL-XWkiC7hPRvEpw240zeVKRRJUJIOKJNS539SZrTgw9pZuey1uSnr-6vBgOv-QcThIZawTAkTygbnaFJprkVtOBS0SRSipofq6DWQcVAu57QI19LBul-3r_0W62v-1a3Tkk8j7CMM0raPKcv7jbgBqLHUj9KcGqrZag9cB3Nvd4egFnnZ4pxHc919kNtGj
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBeKiqouhRKDu2pWMSP2MkBVaUFLa8VQiBxc_0KF7pL2a0q_hy_rWOvsysqlRuXHBLbcsZjzze2Zz6Aj6LyVWl4S4yQnKA95sSoUBMvbVAeEbm36bbFUA4uxdFVdbUED10sTLxW2a2JaaH2Yxf3yHfQMUBrUjas_nL7i0TWqHi62lFomEyt4HdTirEc2HEc7v-gCzfZPfyO4_2JsYP9i28DklkGiMO1eEqUVU4ya9BT8qEpee2FM442jgrHDdp_g45bGWiomGur2rSVQxvbMs8DtZGzC9t9AcsibqD0YHlvf3h2Pt_liQBeijJH62DjO5OYAi_e--UkGQNSPbKIiTjgEdr954A22b2DFXidAWvxdaZhb2ApjFZh6wxB98-YVXdSIOotUlbMsEhtuAaXzyKEt9AbjUfhHRTClk5K0bSOGiHwgQCOcUWdReToadUH2v2udjkPeaTDuNHpPJzXeiYijSLSSUQa63ye17mdZeF4svRelOK8ZMygnV6M7651npDaOB-Uwi7F0GDrGiutqr3kijeloZz2YaMbA52n9UQvlLAP2924LD7_v0vrT7e2BS8HF6cn-uRwePweXkVK-xjvyNgG9KZ3v8MmAp-p_ZC1q4Afz63QfwFO-RAv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgkxAXBALEeG0HbhBomjRpj-MxjYEQEkzaLcqrXGAgNv4_TtYODQESlx7apHLtNv7c2J8BjnjmskSzkmguGEF_zIiWPidOGC8dInJnYrbFnegP-WCUjZZA1LUwMWk_UlrGZbrODjubBOa4kC7LSFxDSXb65splaOZhq7EBzW538DCY_10JwFnwpKqSSVj-ww0WPFEk7F9Amd82RqO_6a3DWgUUO92ZaBuw5Meb0L5HsPsS2GwnHUSbnchG6b8oBbdg2Lt6vOiTqsUBsSjDlEgjrUiNxjDN-QLldNxqSwtLuWUawYfGqDHx1GepLbNcl5lFB1-mjnlqQsOwbWiMX8d-BzrcJFYIXpSWas7xgMApZZJag4jN0awFtH5cZSv-79CG4lnFfWiWq5mKFKpIRRUpnHM8n_M2Y7_4c_R50OJ8ZGCujide359UZUmlrfNSokihJNfYwggjcyeYZEWiKaMt2K9toKrPaaIwKkQokRRp3oKT2i5fl38Xafd_w9uwcn_ZU7fXdzd7sBo6y4eywzTdh8b0_cMfIP6YmsPqZfsE0wnPsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmonics+for+neuroengineering&rft.jtitle=Communications+materials&rft.au=Mousavi%2C+N.+S.+Susan&rft.au=Ramadi%2C+Khalil+B&rft.au=Song%2C+Yong-Ak&rft.au=Kumar%2C+Sunil&rft.date=2023-11-22&rft.pub=Nature+Publishing+Group&rft.eissn=2662-4443&rft.volume=4&rft.issue=1&rft.spage=101&rft_id=info:doi/10.1038%2Fs43246-023-00429-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4443&client=summon