Plasmonics for neuroengineering
The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulati...
Saved in:
Published in | Communications materials Vol. 4; no. 1; pp. 101 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.11.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2662-4443 2662-4443 |
DOI | 10.1038/s43246-023-00429-5 |
Cover
Abstract | The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulation with high spatial resolution than common electrical methods. Also, originating from either excitation of surface plasmons alone or in combination with thermoplasmonic effects, they can improve the performances of nanotools in neuroengineering. Here, we review plasmonic-based modalities and explore recent developments, advantages and limitations for minimally invasive neuromodulation, central nervous system disease diagnosis and therapy, and smart carrier-drug delivery toward the brain. The subject of the study stands at the interface of neuroscience and engineering. Thus, within the scope of this study, we provide background information about the nervous system and its underlying basic biology, types of neural interfaces, as well as the physics of surface plasmons and thermoplasmonic phenomena.
Plasmonic nanomaterials, such as nanoparticles, efficiently deliver light to target cells for neuromodulation that is less invasive and has higher spatial resolution than common electrical methods. This review covers recent developments in the use of plasmonics for neuroengineering. |
---|---|
AbstractList | The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulation with high spatial resolution than common electrical methods. Also, originating from either excitation of surface plasmons alone or in combination with thermoplasmonic effects, they can improve the performances of nanotools in neuroengineering. Here, we review plasmonic-based modalities and explore recent developments, advantages and limitations for minimally invasive neuromodulation, central nervous system disease diagnosis and therapy, and smart carrier-drug delivery toward the brain. The subject of the study stands at the interface of neuroscience and engineering. Thus, within the scope of this study, we provide background information about the nervous system and its underlying basic biology, types of neural interfaces, as well as the physics of surface plasmons and thermoplasmonic phenomena.Plasmonic nanomaterials, such as nanoparticles, efficiently deliver light to target cells for neuromodulation that is less invasive and has higher spatial resolution than common electrical methods. This review covers recent developments in the use of plasmonics for neuroengineering. The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulation with high spatial resolution than common electrical methods. Also, originating from either excitation of surface plasmons alone or in combination with thermoplasmonic effects, they can improve the performances of nanotools in neuroengineering. Here, we review plasmonic-based modalities and explore recent developments, advantages and limitations for minimally invasive neuromodulation, central nervous system disease diagnosis and therapy, and smart carrier-drug delivery toward the brain. The subject of the study stands at the interface of neuroscience and engineering. Thus, within the scope of this study, we provide background information about the nervous system and its underlying basic biology, types of neural interfaces, as well as the physics of surface plasmons and thermoplasmonic phenomena. Plasmonic nanomaterials, such as nanoparticles, efficiently deliver light to target cells for neuromodulation that is less invasive and has higher spatial resolution than common electrical methods. This review covers recent developments in the use of plasmonics for neuroengineering. Abstract The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulation with high spatial resolution than common electrical methods. Also, originating from either excitation of surface plasmons alone or in combination with thermoplasmonic effects, they can improve the performances of nanotools in neuroengineering. Here, we review plasmonic-based modalities and explore recent developments, advantages and limitations for minimally invasive neuromodulation, central nervous system disease diagnosis and therapy, and smart carrier-drug delivery toward the brain. The subject of the study stands at the interface of neuroscience and engineering. Thus, within the scope of this study, we provide background information about the nervous system and its underlying basic biology, types of neural interfaces, as well as the physics of surface plasmons and thermoplasmonic phenomena. The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures such as nanoparticles, if appropriately designed, can act as mediators to efficiently deliver light to target cells for less-invasive modulation with high spatial resolution than common electrical methods. Also, originating from either excitation of surface plasmons alone or in combination with thermoplasmonic effects, they can improve the performances of nanotools in neuroengineering. Here, we review plasmonic-based modalities and explore recent developments, advantages and limitations for minimally invasive neuromodulation, central nervous system disease diagnosis and therapy, and smart carrier-drug delivery toward the brain. The subject of the study stands at the interface of neuroscience and engineering. Thus, within the scope of this study, we provide background information about the nervous system and its underlying basic biology, types of neural interfaces, as well as the physics of surface plasmons and thermoplasmonic phenomena. |
ArticleNumber | 101 |
Author | Song, Yong-Ak Mousavi, N. S. Susan Ramadi, Khalil B. Kumar, Sunil |
Author_xml | – sequence: 1 givenname: N. S. Susan orcidid: 0000-0001-6806-5669 surname: Mousavi fullname: Mousavi, N. S. Susan email: susan.mousavi@nyu.edu organization: School of Physics, Institute for Research in Fundamental Sciences (IPM), Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University – sequence: 2 givenname: Khalil B. surname: Ramadi fullname: Ramadi, Khalil B. organization: Division of Engineering, New York University Abu Dhabi (NYUAD), Department of Biomedical Engineering, Tandon School of Engineering, New York University – sequence: 3 givenname: Yong-Ak orcidid: 0000-0001-8066-2933 surname: Song fullname: Song, Yong-Ak email: rafael.song@nyu.edu organization: Division of Engineering, New York University Abu Dhabi (NYUAD), Department of Biomedical Engineering, Tandon School of Engineering, New York University, Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University – sequence: 4 givenname: Sunil surname: Kumar fullname: Kumar, Sunil organization: Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Division of Engineering, New York University Abu Dhabi (NYUAD) |
BookMark | eNp9kM1KAzEURoNUsNa-gBsLrkeTm7_JUorWQkEXug6ZTKakTJOaTBe-vdOOorjoKpdwz3c_ziUahRgcQtcE3xFMy_vMKDBRYKAFxgxUwc_QGISAgjFGR3_mCzTNeYMxBk6IYHiMbl5bk7cxeJtnTUyz4PYpurD2wbnkw_oKnTemzW76_U7Q-9Pj2_y5WL0slvOHVWH7g10hK2kFVAY4q53qS9XMGkuUJcxSQ4AbkAw74jjYhpem4RYr0kBNHamUBDpByyG3jmajd8lvTfrU0Xh9_IhprU3qvG2dNrZ2UnIhGFWssqoSlSxrQSVV2BBK-qzbIWuX4sfe5U5v4j6Fvr6GUgEDrKDst8phy6aYc3KNtr4znY-hS8a3mmB9sKsHu7q3q492Ne9R-If-FD4J0QHKu4NYl35bnaC-ACWNi-Q |
CitedBy_id | crossref_primary_10_1039_D4NA00859F crossref_primary_10_1007_s11468_024_02505_z crossref_primary_10_1021_acsnano_4c08875 crossref_primary_10_1007_s11468_023_02184_2 crossref_primary_10_1002_adma_202418729 crossref_primary_10_1155_2024_5562848 |
Cites_doi | 10.1002/anie.201915296 10.3390/electronics10020118 10.1523/JNEUROSCI.2916-15.2015 10.1002/lpor.201200003 10.1038/s41598-017-04229-z 10.1038/s41467-021-23025-y 10.1364/OL.30.000504 10.1038/s41598-017-08141-4 10.1523/JNEUROSCI.1458-17.2018 10.1126/science.aaa9610 10.1038/nnano.2010.125 10.3390/ma11101995 10.1016/j.optlastec.2020.106502 10.1016/j.neuron.2015.02.033 10.1063/5.0072884 10.1021/acsnano.0c00722 10.1016/j.brs.2021.08.001 10.1021/acsnano.0c03703 10.1016/j.actbio.2021.08.035 10.1016/j.jneumeth.2022.109564 10.1002/adma.202103208 10.1016/j.aca.2017.11.066 10.1016/j.talanta.2017.04.056 10.1016/j.neuron.2017.10.022 10.1007/s13320-011-0051-2 10.1007/978-1-0716-0755-8_4 10.1038/nature24636 10.1016/j.jare.2021.11.006 10.3389/fchem.2019.00279 10.3389/fnins.2016.00105 10.1126/science.1073765 10.1038/nmat2162 10.1021/acs.jpcb.1c06054 10.1186/s12951-018-0392-8 10.1016/j.neuron.2020.10.011 10.1529/biophysj.107.104786 10.1001/jamaneurol.2020.4152 10.1002/adma.201800927 10.1016/j.optmat.2018.04.015 10.1016/j.optlastec.2010.12.010 10.3389/fnins.2016.00069 10.7150/thno.25228 10.1021/acsami.1c08454 10.1021/acsnano.0c07581 10.1039/C4AN01079E 10.1002/cyto.a.24489 10.1073/pnas.1721690115 10.2174/1389200218666170125114751 10.1146/annurev-bioeng-071813-104733 10.1002/adfm.201605778 10.1038/s41578-020-00267-8 10.1109/JSEN.2019.2931159 10.1103/PhysRevB.92.115450 10.1021/nl801891q 10.1016/B978-0-444-59426-6.00001-X 10.3390/mi12080925 10.3390/nano9071029 10.1038/s41598-020-66706-2 10.3389/fbioe.2020.602797 10.1016/S0166-2236(97)01132-6 10.1021/accountsmr.1c00251 10.1002/cpph.13 10.1021/acs.langmuir.8b04331 10.1038/s41573-020-0090-8 10.2174/1389450121666200106105633 10.1016/j.biomaterials.2015.06.041 10.1021/acs.chemrev.8b00738 10.1126/sciadv.aav9786 10.3390/mi9090445 10.1140/epjp/i2016-16221-5 10.1016/j.addr.2018.10.016 10.1002/smll.201400599 10.1038/s41467-020-20060-z 10.1088/1741-2552/ac3265 10.1088/1361-6528/ab93ec 10.1039/C9LC00400A 10.1039/C6NR07520G 10.1038/nmat2564 10.1002/adpr.202100130 10.1021/acs.nanolett.7b01523 10.1016/j.rio.2020.100051 10.1002/anie.201505534 10.1126/science.aaq1144 10.1117/1.NPh.1.1.011011 10.3390/nano12132242 10.1002/adfm.201902128 10.1039/C5NR08477F 10.1016/j.matt.2020.11.019 10.1111/nyas.13948 10.1364/OL.37.000614 10.1126/science.1261821 10.1088/1741-2552/abb3b2 10.1016/j.jconrel.2016.05.044 10.1186/s12984-015-0061-1 10.3389/fncom.2018.00061 10.1038/s41565-017-0041-7 10.1007/s13206-021-00017-0 10.1007/s42114-022-00444-z 10.1016/j.nano.2019.102052 10.1021/nn2050032 10.1002/adpr.202000198 10.1038/s41563-020-0740-6 10.1146/annurev-neuro-061010-113817 10.1016/B978-0-444-53497-2.00001-2 10.1021/acsnano.0c05215 10.1113/jphysiol.1890.sp000321 10.1021/acsphotonics.0c01381 10.1021/acs.chemrev.3c00159 10.1021/acsami.2c11218 10.1021/acsnano.5b03162 10.1038/s41563-022-01249-7 10.1111/j.1476-5381.2011.01601.x 10.1038/s41565-022-01189-y 10.1021/acsnano.7b06617 10.1002/biot.201200219 10.1002/lpor.200900055 10.1088/1361-6528/ab08f7 10.1016/j.biomaterials.2021.121186 10.1038/nature08540 10.1080/14786440209462857 10.1021/acsnano.9b01993 10.1021/jz5019042 10.5607/en.2013.22.3.158 10.1364/OL.33.000914 10.1117/1.NPh.8.1.015012 10.1016/j.biomaterials.2018.12.013 10.1016/j.neuroimage.2013.05.004 10.1002/adfm.201002373 10.1016/0250-6874(83)85036-7 10.1038/nm.3484 10.1088/1361-6439/abeb30 10.1002/adfm.202106932 10.3390/nano7040092 10.1038/nn1525 10.1039/C6RA02684B 10.1021/nl070345g 10.1016/j.matt.2021.02.012 10.1103/PhysRevB.84.035415 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1038/s43246-023-00429-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2662-4443 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_acde775664394bc9b6b78d637390a131 10_1038_s43246_023_00429_5 |
GroupedDBID | 0R~ AAJSJ ABJCF ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. NAO OK1 PDBOC PIMPY SNYQT AASML AAYXX CITATION PHGZM PHGZT 8FE 8FG AARCD ABUWG AZQEC D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c429t-7b7c62ba254de9038d4cac19c14c3a125a2740e1e52cf58af5c091f2d3e1b9723 |
IEDL.DBID | 8FG |
ISSN | 2662-4443 |
IngestDate | Wed Aug 27 01:32:26 EDT 2025 Wed Aug 13 03:36:54 EDT 2025 Thu Apr 24 23:09:07 EDT 2025 Tue Jul 01 01:22:47 EDT 2025 Fri Feb 21 02:37:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-7b7c62ba254de9038d4cac19c14c3a125a2740e1e52cf58af5c091f2d3e1b9723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8066-2933 0000-0001-6806-5669 |
OpenAccessLink | https://www.proquest.com/docview/2892420928?pq-origsite=%requestingapplication% |
PQID | 2892420928 |
PQPubID | 5061814 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_acde775664394bc9b6b78d637390a131 proquest_journals_2892420928 crossref_citationtrail_10_1038_s43246_023_00429_5 crossref_primary_10_1038_s43246_023_00429_5 springer_journals_10_1038_s43246_023_00429_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-22 |
PublicationDateYYYYMMDD | 2023-11-22 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Communications materials |
PublicationTitleAbbrev | Commun Mater |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | KangHLeeG-HJungHLeeJWNamYInkjet-printed biofunctional thermo-plasmonic interfaces for patterned neuromodulationACS Nano201812112811381:CAS:528:DC%2BC1cXit1yrsbs%3D10.1021/acsnano.7b06617 LiedbergBNylanderCLunströmISurface plasmon resonance for gas detection and biosensingSens. Actuators198342993041:CAS:528:DyaL2cXnvV2kug%3D%3D10.1016/0250-6874(83)85036-7 PintiPThe present and future use of functional near infrared spectroscopy (fNIRS) for cognitive neuroscienceAnn. N.Y. Acad. Sci.2020146452910.1111/nyas.13948 LiXNanotransducers for wireless neuromodulationMatter20214148415101:CAS:528:DC%2BB3MXhvV2lurrL10.1016/j.matt.2021.02.012 Patel, M., Meenu, M., Pandey, J. K., Kumar, P. & Patel, R. Recent development in upconversion nanoparticles and their application in optogenetics: a review. J. Rare Earthshttps://www.sciencedirect.com/science/article/pii/S100207212100243X (2021). MultariCMagnetoplasmonic nanoparticles for photothermal therapyNanotechnology2019302557051:CAS:528:DC%2BC1MXhtlGmu7fP10.1088/1361-6528/ab08f7 HanLA magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapyTalanta201717132381:CAS:528:DC%2BC2sXntVKisrw%3D10.1016/j.talanta.2017.04.056 JauffredLSamadiAKlingbergHBendixPMOddershedeLBPlasmonic heating of nanostructuresChem. Rev.2019119808781301:CAS:528:DC%2BC1MXhtVais7zE10.1021/acs.chemrev.8b00738 ChernovMRoeAWInfrared neural stimulation: a new stimulation tool for central nervous system applicationsNeurophotonics2014101101110.1117/1.NPh.1.1.011011 Nguyen, K. T. et al. Strategies of engineering nanoparticles for treating neurodegenerative disorders. Curr. Drug Metab.18http://www.eurekaselect.com/149495/article (2017). RobinsonJTDeveloping next-generation brain sensing technologies—a reviewIEEE Sensors J.20191910163101751:CAS:528:DC%2BB3cXmsFWis7w%3D10.1109/JSEN.2019.2931159 JohnsenKBAntibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticlesTheranostics20188341634361:CAS:528:DC%2BC1cXit1KqsrvL10.7150/thno.25228 Borghei, Y.-S., Hosseinkhani, S. & Ganjali, M. R. “plasmonic nanomaterials": an emerging avenue in biomedical and biomedical engineering opportunities. J. Adv. Res.https://www.sciencedirect.com/science/article/pii/S2090123221002162 (2021). Towne, C. & Thompson, K. R. Overview on research and clinical applications of optogenetics. Curr. Protoc. Pharmacol.75https://onlinelibrary.wiley.com/doi/10.1002/cpph.13 (2016). LeungSJKachurXMBobnickMCRomanowskiMWavelength-selective light-induced release from plasmon resonant liposomesAdv. Funct. Mater.201121111311211:CAS:528:DC%2BC3MXjsVKis7s%3D10.1002/adfm.201002373 LinYApplications of upconversion nanoparticles in cellular optogeneticsActa Biomater.20211351121:CAS:528:DC%2BB3MXisFChsbnJ10.1016/j.actbio.2021.08.035 WellsJBiophysical mechanisms of transient optical stimulation of peripheral nerveBiophys. J.200793256725801:CAS:528:DC%2BD2sXhtVOqtLnI10.1529/biophysj.107.104786 RajpootKNanotechnology-based targeting of neurodegenerative disorders: a promising tool for efficient delivery of neuromedicinesCurr. Drug Targets2020218198361:CAS:528:DC%2BB3cXhslWitLbK10.2174/1389450121666200106105633 PengFJeongSHoAEvansCLRecent progress in plasmonic nanoparticle based biomarker detection and cytometry for the study of central nervous system disordersCytomet. Part A202199106710781:CAS:528:DC%2BB3MXitFOmtbjF10.1002/cyto.a.24489 KimRNamYFabrication of a nanoplasmonic chip to enhance neuron membrane potential imaging by metal-enhanced fluorescence effectBioChip J.2021151711781:CAS:528:DC%2BB3MXkvVaqurg%3D10.1007/s13206-021-00017-0 GaoGGold nanoclusters for Parkinson’s disease treatmentBiomaterials201919436461:CAS:528:DC%2BC1cXisFCku7%2FK10.1016/j.biomaterials.2018.12.013 BoyerDTamaratPMaaliALounisBOrritMPhotothermal imaging of nanometer-sized metal particles among scatterersScience2002297116011631:CAS:528:DC%2BD38XmsVOhsL4%3D10.1126/science.1073765 ChenYMingHReview of surface plasmon resonance and localized surface plasmon resonance sensorPhotonic Sens.20122374910.1007/s13320-011-0051-2 WestPSearching for better plasmonic materialsLaser Photonics Rev.201047958081:CAS:528:DC%2BC3cXhsFyqt7rP10.1002/lpor.200900055 KimSAJunSBIn-vivo optical measurement of neural activity in the brainExp. Neurobiol.20132215816610.5607/en.2013.22.3.158 BazardPFrisinaRDWaltonJPBhethanabotlaVRNanoparticle-based plasmonic transduction for modulation of electrically excitable cellsSci. Rep.2017710.1038/s41598-017-08141-4 MitchellMJEngineering precision nanoparticles for drug deliveryNat. Rev. Drug Discov.2021201011241:CAS:528:DC%2BB3cXisV2ntL3P10.1038/s41573-020-0090-8 ShpacovitchVHergenröderROptical and surface plasmonic approaches to characterize extracellular vesicles. a reviewAnal. Chim. Acta201810051151:CAS:528:DC%2BC2sXhvF2ltrnO10.1016/j.aca.2017.11.066 YangXNanotechnology enables novel modalities for neuromodulationAdv. Mater.20213321032081:CAS:528:DC%2BB3MXit12murjK10.1002/adma.202103208 JungHNamYOptical recording of neural responses to gold-nanorod mediated photothermal neural inhibitionJ. Neurosci. Methods20223731095641:CAS:528:DC%2BB38Xhtlajsr3E10.1016/j.jneumeth.2022.109564 MantriYJokerstJVEngineering plasmonic nanoparticles for enhanced photoacoustic imagingACS Nano202014940894221:CAS:528:DC%2BB3cXhsFOjurfK10.1021/acsnano.0c05215 FeketeTOptically manipulated microtools to measure adhesion of the nanoparticle-targeting ligand glutathione to brain endothelial cellsACS Appl. Mater. Interfaces20211339018390291:CAS:528:DC%2BB3MXhsl2qtb3J10.1021/acsami.1c08454 SaraivaCNanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseasesJ. Control. Release201623534471:CAS:528:DC%2BC28XovV2hsbY%3D10.1016/j.jconrel.2016.05.044 KimRHongNNamYGold nanograin microelectrodes for neuroelectronic interfacesBiotechnol. J.201382062141:CAS:528:DC%2BC38Xhs1ersL%2FE10.1002/biot.201200219 KangHThermoplasmonic optical fiber for localized neural stimulationACS Nano20201411406114191:CAS:528:DC%2BB3cXhslKqtbvL10.1021/acsnano.0c03703 TomitakaAMagneto-plasmonic nanostars for image-guided and NIR-triggered drug deliverySci. Rep.2020101:CAS:528:DC%2BB3cXht1CqtbvO10.1038/s41598-020-66706-2 World Health Organization (WHO) report. Neurological disorders affect millions globally https://www.who.int/news/item/27-02-2007-neurological-disorders-affect-millions-globally-who-report (2007). ParkYParkS-YEomKCurrent review of optical neural interfaces for clinical applicationsMicromachines20211292510.3390/mi12080925 RoyCSSherringtonCSOn the regulation of the blood-supply of the brainJ. Physiol.189011851581:STN:280:DC%2BD2s%2FntV2isg%3D%3D10.1113/jphysiol.1890.sp000321 BaffouGRigneaultHFemtosecond-pulsed optical heating of gold nanoparticlesPhys. Rev. B20118403541510.1103/PhysRevB.84.035415 ScholkmannFA review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodologyNeuroImage20148562710.1016/j.neuroimage.2013.05.004 LiMCushingSKWuNPlasmon-enhanced optical sensors: a reviewAnalyst20151403864061:CAS:528:DC%2BC2cXhs1yhu7vM10.1039/C4AN01079E HongNNamYThermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitroNat. Commun.2020111:CAS:528:DC%2BB3cXisFelt7nM10.1038/s41467-020-20060-z HuangHDelikanliSZengHFerkeyDMPralleARemote control of ion channels and neurons through magnetic-field heating of nanoparticlesNat. Nanotechnol.201056026061:CAS:528:DC%2BC3cXpvVSrurg%3D10.1038/nnano.2010.125 BorghGSurface plasmons in silicon nanowiresAdv. Photonics Res.2021221001301:CAS:528:DC%2BB3sXjtFSrsrc%3D10.1002/adpr.202100130 ParakhonskiyBVParakWJVolodkinDSkirtachAGHybrids of polymeric capsules, lipids, and nanoparticles: Thermodynamics and temperature rise at the nanoscale and emerging applicationsLangmuir201935857485831:CAS:528:DC%2BC1MXntFaktb8%3D10.1021/acs.langmuir.8b04331 MarinoAPiezoelectric nanoparticle-assisted wireless neuronal stimulationACS Nano20159767876891:CAS:528:DC%2BC2MXhtFGitbrP10.1021/acsnano.5b03162 EomKEnhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorodsSmall201410385338571:CAS:528:DC%2BC2cXhtVKmtbjK10.1002/smll.201400599 NakatsujiHThermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticlesAngew. Chem. Int. Ed.20155411725117291:CAS:528:DC%2BC2MXht1yqu7rE10.1002/anie.201505534 Carvalho-de SouzaJLPhotosensitivity of neurons enabled by cell-targeted gold nanoparticlesNeuron2015862072171:CAS:528:DC%2BC2MXksVaisrY%3D10.1016/j.neuron.2015.02.033 RamezaniZSeoKJFangHHybrid electrical and optical neural interfacesJ. Micromech. Microeng.2021310440021:CAS:528:DC%2BB3MXhtlCrs7bM10.1088/1361-6439/abeb30 NadortAZhaoJGoldysEMLanthanide upconversion luminescence at the nanoscale: fundamentals and optical propertiesNanoscale2016813099131301:CAS:528:DC%2BC28Xjt1Cjtrs%3D10.1039/C5NR08477F WuDMGarcía-EtxarriASalleoADionneJAPlasmon-enhanced upconversionJ. Phys. Chem. Lett.20145402040311:CAS:528:DC%2BC2cXhvVens7fM10.1021/jz5019042 ChenSNear-infrared deep brain stimulation via upconversion nanoparticle-mediated optogeneticsScience20183596796841:CAS:528:DC%2BC1cXit1CjtLk%3D10.1126/science.aaq1144 AnkerJNBiosensing with plasmonic nanosensorsNat. Mater.200874424531:CAS:528:DC%2BD1cXmsVejt7g%3D10.1038/nmat2162 KangPTransient photoinactivation of cell membrane protein activity without genetic modification by molecular hyperthermiaACS Nano20191312487124991:CAS:528:DC%2BC1MXhvFKktr%2FF10.1021/acsnano.9b01993 BaffouGQuidantRThermo-plasmonics: using metallic nanostructures as nano-sources of heat: thermoplasmonicsLaser Photon. Rev.201371711871:CAS:528:DC%2BC3sXjslWhtr4%3D10.1002/lpor.201200003 LuanLRecent advances in electrical neural interface engineering: minimal invasiveness, longevity, and scalabilityNeuron20201083023211:CAS:528:DC%2BB3cXitlemsrjJ10.1016/j.neuron.2020.10.011 YeTPrecise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near infrared neuromodula W Hong (429_CR115) 2021; 10 429_CR30 X Li (429_CR140) 2021; 4 Y Park (429_CR24) 2021; 12 C Rizal (429_CR86) 2021; 130 A Marino (429_CR84) 2015; 9 Y Chen (429_CR90) 2012; 2 A Habib (429_CR13) 2019; 5 C Multari (429_CR85) 2019; 30 B Liedberg (429_CR89) 1983; 4 JT Robinson (429_CR18) 2019; 19 A Tomitaka (429_CR66) 2017; 9 MJ Mitchell (429_CR97) 2021; 20 D Dominguez-Paredes (429_CR126) 2021; 14 H Kang (429_CR117) 2020; 14 SH Choi (429_CR93) 2011; 43 J Kumar (429_CR131) 2018; 115 R Wood (429_CR88) 1902; 4 LK Chin (429_CR9) 2020; 14 S Chen (429_CR54) 2018; 359 J Wells (429_CR57) 2005; 30 H Jung (429_CR100) 2022; 373 Collaborators, G. U. N. D. (429_CR2) 2021; 78 BV Parakhonskiy (429_CR5) 2019; 35 F Benfenati (429_CR19) 2021; 6 R Kim (429_CR112) 2013; 8 H Nakatsuji (429_CR4) 2015; 54 R Damnjanovic (429_CR14) 2020; 14 429_CR47 X Xie (429_CR91) 2017; 7 J Zhang (429_CR118) 2009; 9 T Ye (429_CR132) 2019; 29 Y Temel (429_CR87) 2015; 347 429_CR49 S Ae Kim (429_CR41) 2008; 33 M Abedini (429_CR43) 2018; 12 E Cazares-Cortes (429_CR83) 2019; 138 JN Anker (429_CR92) 2008; 7 JL Carvalho-de Souza (429_CR65) 2015; 86 V Shpacovitch (429_CR7) 2018; 1005 R Kim (429_CR124) 2021; 15 SJ Leung (429_CR70) 2011; 21 A Guglielmelli (429_CR96) 2021; 2 M Yuan (429_CR138) 2022; 12 429_CR40 G Kim (429_CR22) 2018; 11 R Chen (429_CR26) 2015; 347 D Boyer (429_CR10) 2002; 297 J Wells (429_CR60) 2007; 93 H Huang (429_CR81) 2010; 5 F Sohrabi (429_CR6) 2016; 131 A Villringer (429_CR38) 1997; 20 429_CR12 Y Jiang (429_CR29) 2021; 4 J Chen (429_CR71) 2007; 7 W Li (429_CR73) 2015; 65 M Li (429_CR145) 2015; 140 L Luan (429_CR32) 2020; 108 JK Patra (429_CR101) 2018; 16 429_CR16 CT Alexander (429_CR33) 2014; 3 SAN Gowers (429_CR141) 2019; 19 KB Johnsen (429_CR135) 2018; 8 W Yang (429_CR98) 2019; 22 C Li (429_CR109) 2016; 6 MR Warden (429_CR34) 2014; 16 M Chernov (429_CR55) 2014; 1 A Tay (429_CR82) 2018; 30 K Eom (429_CR120) 2014; 10 429_CR20 X Yang (429_CR125) 2021; 33 Y An (429_CR15) 2021; 18 M Dipalo (429_CR111) 2017; 17 P Bazard (429_CR113) 2017; 7 A Nadort (429_CR143) 2016; 8 G Bondelli (429_CR64) 2021; 125 K Rajpoot (429_CR103) 2020; 21 H Ye (429_CR31) 2015; 12 KM Alghazali (429_CR17) 2019; 9 CS Roy (429_CR39) 1890; 11 T Rojalin (429_CR8) 2019; 7 M Yuan (429_CR68) 2019; 21 429_CR104 EY Lukianova-Hleb (429_CR74) 2014; 20 M Scanziani (429_CR36) 2009; 461 P Kang (429_CR134) 2019; 13 X Cui (429_CR106) 2023; 123 Y Liu (429_CR48) 2022; 3 X Chen (429_CR94) 2012; 6 L Fenno (429_CR144) 2011; 34 V Emiliani (429_CR23) 2015; 35 429_CR121 DM Wu (429_CR52) 2014; 5 G Borgh (429_CR77) 2021; 2 P West (429_CR107) 2010; 4 F Scholkmann (429_CR62) 2014; 85 429_CR119 SV Ovsepian (429_CR80) 2017; 96 C Saraiva (429_CR102) 2016; 235 N Hong (429_CR123) 2020; 11 L Vay (429_CR61) 2012; 165 H Arami (429_CR99) 2022; 17 A Prominski (429_CR27) 2022; 21 JJ Jun (429_CR37) 2017; 551 ES Boyden (429_CR35) 2005; 8 Z Fekete (429_CR58) 2020; 17 P Pinti (429_CR63) 2020; 1464 S Principe (429_CR116) 2020; 132 Y Mantri (429_CR79) 2020; 14 T Fekete (429_CR105) 2021; 13 L Han (429_CR69) 2017; 171 F Peng (429_CR129) 2021; 99 429_CR128 429_CR127 TDY Kozai (429_CR21) 2018; 9 429_CR1 X Li (429_CR45) 2017; 27 429_CR59 SA Kim (429_CR42) 2012; 37 G Baffou (429_CR136) 2020; 19 Y Lin (429_CR51) 2021; 135 J Kubanek (429_CR28) 2018; 38 MS Yavuz (429_CR72) 2009; 8 A Prost (429_CR78) 2015; 92 L Jauffred (429_CR108) 2019; 119 G Baffou (429_CR3) 2013; 7 A Domínguez-Bajo (429_CR133) 2021; 279 M Yuan (429_CR142) 2022; 5 G Baffou (429_CR95) 2011; 84 G Gao (429_CR130) 2019; 194 R Parameswaran (429_CR76) 2018; 13 SA Kim (429_CR44) 2013; 22 429_CR50 M Giaquinto (429_CR114) 2021; 2 Z Ramezani (429_CR25) 2021; 31 L Peng (429_CR11) 2022; 14 H Kang (429_CR122) 2018; 12 H Xiong (429_CR75) 2020; 59 A Tomitaka (429_CR139) 2020; 10 C Paviolo (429_CR110) 2017; 7 RM Abraham-Ekeroth (429_CR46) 2021; 8 LM Wiesholler (429_CR53) 2018; 80 J Bornacelli (429_CR67) 2020; 31 J Zhang (429_CR56) 2021; 12 L Uson (429_CR137) 2022; 32 |
References_xml | – reference: TomitakaADevelopment of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brainNanoscale201797647731:CAS:528:DC%2BC28XhvVCisbvE10.1039/C6NR07520G – reference: JohnsenKBAntibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticlesTheranostics20188341634361:CAS:528:DC%2BC1cXit1KqsrvL10.7150/thno.25228 – reference: BaffouGQuidantRThermo-plasmonics: using metallic nanostructures as nano-sources of heat: thermoplasmonicsLaser Photon. Rev.201371711871:CAS:528:DC%2BC3sXjslWhtr4%3D10.1002/lpor.201200003 – reference: BazardPFrisinaRDWaltonJPBhethanabotlaVRNanoparticle-based plasmonic transduction for modulation of electrically excitable cellsSci. Rep.2017710.1038/s41598-017-08141-4 – reference: CuiXPhotothermal nanomaterials: a powerful light-to-heat converterChem. Rev.2023123689169521:CAS:528:DC%2BB3sXptVWntr4%3D10.1021/acs.chemrev.3c00159 – reference: Cazares-CortesERecent insights in magnetic hyperthermia: from the “hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybridsAdv. Drug Deliv. Rev.20191382332461:CAS:528:DC%2BC1cXit1SntrvM10.1016/j.addr.2018.10.016 – reference: WellsJBiophysical mechanisms of transient optical stimulation of peripheral nerveBiophys. J.200793256725801:CAS:528:DC%2BD2sXhtVOqtLnI10.1529/biophysj.107.104786 – reference: AbediniMTekiehTSasanpourPRecording neural activity based on surface plasmon resonance by optical fibers-a computational analysisFront. Comput. Neurosci.2018126110.3389/fncom.2018.00061 – reference: KimGRecent progress on microelectrodes in neural interfacesMaterials201811199510.3390/ma11101995 – reference: BornacelliJEnhanced ultrafast optomagnetic effects in room-temperature ferromagnetic pt nanoclusters embedded in silica by ion implantationNanotechnology2020313557051:CAS:528:DC%2BB3cXhvFyktrnM10.1088/1361-6528/ab93ec – reference: LeungSJKachurXMBobnickMCRomanowskiMWavelength-selective light-induced release from plasmon resonant liposomesAdv. Funct. Mater.201121111311211:CAS:528:DC%2BC3MXjsVKis7s%3D10.1002/adfm.201002373 – reference: NadortAZhaoJGoldysEMLanthanide upconversion luminescence at the nanoscale: fundamentals and optical propertiesNanoscale2016813099131301:CAS:528:DC%2BC28Xjt1Cjtrs%3D10.1039/C5NR08477F – reference: TemelYJahanshahiATreating brain disorders with neuromodulationScience20153471418141910.1126/science.aaa9610 – reference: Colombo, E., Feyen, P., Antognazza, M. R., Lanzani, G. & Benfenati, F. Nanoparticles: a challenging vehicle for neural stimulation. Front. Neurosci.10. http://journal.frontiersin.org/Article/10.3389/fnins.2016.00105/abstract (2016). – reference: JungHNamYOptical recording of neural responses to gold-nanorod mediated photothermal neural inhibitionJ. Neurosci. Methods20223731095641:CAS:528:DC%2BB38Xhtlajsr3E10.1016/j.jneumeth.2022.109564 – reference: SaraivaCNanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseasesJ. Control. Release201623534471:CAS:528:DC%2BC28XovV2hsbY%3D10.1016/j.jconrel.2016.05.044 – reference: RoyCSSherringtonCSOn the regulation of the blood-supply of the brainJ. Physiol.189011851581:STN:280:DC%2BD2s%2FntV2isg%3D%3D10.1113/jphysiol.1890.sp000321 – reference: Abraham-EkerothRMDe AngelisFRadioplasmonics: plasmonic transducers in the radiofrequency regime for resonant thermo-acoustic imaging in deep tissuesACS Photonics202182382461:CAS:528:DC%2BB3MXislWntQ%3D%3D10.1021/acsphotonics.0c01381 – reference: ChenXChenYYanMQiuMNanosecond photothermal effects in plasmonic nanostructuresACS Nano20126255025571:CAS:528:DC%2BC38XislSrtLs%3D10.1021/nn2050032 – reference: DamnjanovicRBazardPFrisinaRDBhethanabotlaVRHybrid electro-plasmonic neural stimulation with visible-light-sensitive gold nanoparticlesACS Nano20201410917109281:CAS:528:DC%2BB3cXhtlSju7nK10.1021/acsnano.0c00722 – reference: ParakhonskiyBVParakWJVolodkinDSkirtachAGHybrids of polymeric capsules, lipids, and nanoparticles: Thermodynamics and temperature rise at the nanoscale and emerging applicationsLangmuir201935857485831:CAS:528:DC%2BC1MXntFaktb8%3D10.1021/acs.langmuir.8b04331 – reference: JauffredLSamadiAKlingbergHBendixPMOddershedeLBPlasmonic heating of nanostructuresChem. Rev.2019119808781301:CAS:528:DC%2BC1MXhtVais7zE10.1021/acs.chemrev.8b00738 – reference: LiCLiuZYaoPGold nanoparticles coated with a polydopamine layer and dextran brush surface for diagnosis and highly efficient photothermal therapy of tumorsRSC Adv.2016633083330911:CAS:528:DC%2BC28Xksl2nuro%3D10.1039/C6RA02684B – reference: BaffouGCichosFQuidantRApplications and challenges of thermoplasmonicsNat. Mate.2020199469581:CAS:528:DC%2BB3cXhs1ehsrvP10.1038/s41563-020-0740-6 – reference: AnYNamYClosed-loop control of neural spike rate of cultured neurons using a thermoplasmonics-based photothermal neural stimulationJ. Neural Eng.20211806600210.1088/1741-2552/ac3265 – reference: BaffouGRigneaultHFemtosecond-pulsed optical heating of gold nanoparticlesPhys. Rev. B20118403541510.1103/PhysRevB.84.035415 – reference: PengLSurface plasmon-enhanced NIR-II fluorescence in a multilayer nanoprobe for through-skull mouse brain imagingACS Appl. Mater. Interfaces20221438575385831:CAS:528:DC%2BB38XitFantbnM10.1021/acsami.2c11218 – reference: KozaiTDYThe history and horizons of microscale neural interfacesMicromachines2018944510.3390/mi9090445 – reference: Ae KimSOptical measurement of neural activity using surface plasmon resonanceOptics Lett.20083391410.1364/OL.33.000914 – reference: Borghei, Y.-S., Hosseinkhani, S. & Ganjali, M. R. “plasmonic nanomaterials": an emerging avenue in biomedical and biomedical engineering opportunities. J. Adv. Res.https://www.sciencedirect.com/science/article/pii/S2090123221002162 (2021). – reference: LinYApplications of upconversion nanoparticles in cellular optogeneticsActa Biomater.20211351121:CAS:528:DC%2BB3MXisFChsbnJ10.1016/j.actbio.2021.08.035 – reference: Lukianova-HlebEYOn-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubblesNat. Med.2014207787841:CAS:528:DC%2BC2cXovFCnsro%3D10.1038/nm.3484 – reference: LiuYYiZYaoYGuoBLiuXNoninvasive manipulation of ion channels for neuromodulation and theranosticsAcc. Mater. Res.202232472581:CAS:528:DC%2BB38XhtVems7o%3D10.1021/accountsmr.1c00251 – reference: Patel, M., Meenu, M., Pandey, J. K., Kumar, P. & Patel, R. Recent development in upconversion nanoparticles and their application in optogenetics: a review. J. Rare Earthshttps://www.sciencedirect.com/science/article/pii/S100207212100243X (2021). – reference: ScanzianiMHäusserMElectrophysiology in the age of lightNature20094619309391:CAS:528:DC%2BD1MXht1KntLrO10.1038/nature08540 – reference: Skala, M. C., Tao, Y. K., Davis, A. M. & Izatt, J. A. Functional optical coherence tomography in preclinical models. Handbook of Biomedical Optics (2011). https://www.routledgehandbooks.com/doi/10.1201/b10951-18. – reference: BenfenatiFLanzaniGClinical translation of nanoparticles for neural stimulationNat. Rev. Mater.202161410.1038/s41578-020-00267-8 – reference: Towne, C. & Thompson, K. R. Overview on research and clinical applications of optogenetics. Curr. Protoc. Pharmacol.75https://onlinelibrary.wiley.com/doi/10.1002/cpph.13 (2016). – reference: ParameswaranRPhotoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowiresNat. Nanotechnol.2018132602661:CAS:528:DC%2BC1cXjtFKqu7g%3D10.1038/s41565-017-0041-7 – reference: ChenSNear-infrared deep brain stimulation via upconversion nanoparticle-mediated optogeneticsScience20183596796841:CAS:528:DC%2BC1cXit1CjtLk%3D10.1126/science.aaq1144 – reference: FeketeZHorváthCZátonyiAInfrared neuromodulation:a neuroengineering perspectiveJ. Neural Eng.2020170510031:STN:280:DC%2BB3s7htlKjtg%3D%3D10.1088/1741-2552/abb3b2 – reference: KimSAKimSJMoonHJunSBIn vivo optical neural recording using fiber-based surface plasmon resonanceOptics Lett.2012376141:CAS:528:DC%2BC38XmsFOkt70%3D10.1364/OL.37.000614 – reference: Throckmorton, G. et al. Identifying optimal parameters for infrared neural stimulation in the peripheral nervous system. Neurophotonics8https://www.spiedigitallibrary.org/journals/neurophotonics/volume-8/issue-01/015012/Identifying-optimal-parameters-for-infrared-neural-stimulation-in-the-peripheral/10.1117/1.NPh.8.1.015012.full (2021). – reference: SohrabiFHamidiSMNeuroplasmonics: from kretschmann configuration to plasmonic crystalsEur. Phys. J. Plus201613110.1140/epjp/i2016-16221-5 – reference: ChenYMingHReview of surface plasmon resonance and localized surface plasmon resonance sensorPhotonic Sens.20122374910.1007/s13320-011-0051-2 – reference: ChinLKPlasmonic sensors for extracellular vesicle analysis: from scientific development to translational researchACS Nano20201414528145481:CAS:528:DC%2BB3cXitFygsLbL10.1021/acsnano.0c07581 – reference: FennoLYizharODeisserothKThe development and application of optogeneticsAnnu. Rev. Neurosci.2011343894121:CAS:528:DC%2BC3MXpvVyisrs%3D10.1146/annurev-neuro-061010-113817 – reference: LiXCheZMazharKPriceTJQinZUltrafast near-infrared light triggered intracellular uncaging to probe cell signalingAdv. Funct. Mater.201727160577810.1002/adfm.201605778 – reference: VillringerANon-invasive optical spectroscopy and imaging of human brain functionTrends Neurosci.1997204354421:CAS:528:DyaK2sXmsFGqurk%3D10.1016/S0166-2236(97)01132-6 – reference: AlghazaliKMPlasmonic nanofactors as switchable devices to promote or inhibit neuronal activity and functionNanomaterials2019910291:CAS:528:DC%2BC1MXhsF2gs7rL10.3390/nano9071029 – reference: RajpootKNanotechnology-based targeting of neurodegenerative disorders: a promising tool for efficient delivery of neuromedicinesCurr. Drug Targets2020218198361:CAS:528:DC%2BB3cXhslWitLbK10.2174/1389450121666200106105633 – reference: FeketeTOptically manipulated microtools to measure adhesion of the nanoparticle-targeting ligand glutathione to brain endothelial cellsACS Appl. Mater. Interfaces20211339018390291:CAS:528:DC%2BB3MXhsl2qtb3J10.1021/acsami.1c08454 – reference: LuanLRecent advances in electrical neural interface engineering: minimal invasiveness, longevity, and scalabilityNeuron20201083023211:CAS:528:DC%2BB3cXitlemsrjJ10.1016/j.neuron.2020.10.011 – reference: GiaquintoM(Invited) Stimuli-responsive materials for smart lab-on-fiber optrodesResults Opt.2021210005110.1016/j.rio.2020.100051 – reference: YuanMProgress, opportunities, and challenges of magneto-plasmonic nanoparticles under remote magnetic and light stimulation for brain-tissue and cellular regenerationNanomaterials20221222421:CAS:528:DC%2BB38XhvVCktbbJ10.3390/nano12132242 – reference: Lenton, I. C. D., Scott, E. K., Rubinsztein-Dunlop, H. & Favre-Bulle, I. A. Optical tweezers exploring neuroscience. Front. Bioeng. Biotechnol.8https://www.frontiersin.org/articles/10.3389/fbioe.2020.602797 (2020). – reference: TayASohrabiAPooleKSeidlitsSDi CarloDA 3d magnetic hyaluronic acid hydrogel for magnetomechanical neuromodulation of primary dorsal root ganglion neuronsAdv. Mater.201830180092710.1002/adma.201800927 – reference: AnkerJNBiosensing with plasmonic nanosensorsNat. Mater.200874424531:CAS:528:DC%2BD1cXmsVejt7g%3D10.1038/nmat2162 – reference: YeHSteigerANeuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric fieldJ. NeuroEng. Rehabil.20151210.1186/s12984-015-0061-1 – reference: RizalCMagnetophotonics for sensing and magnetometry toward industrial applicationsJ. Appl. Phys.20211302309011:CAS:528:DC%2BB3MXislOns7vO10.1063/5.0072884 – reference: YeTPrecise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near infrared neuromodulationAdv. Funct. Mater.201929190212810.1002/adfm.201902128 – reference: BondelliGShedding light on thermally induced optocapacitance at the organic biointerfaceJ. Phys. Chem. B202112510748107581:CAS:528:DC%2BB3MXitVWmtb%2FF10.1021/acs.jpcb.1c06054 – reference: YuanMSuperparamagnetic iron oxide-enclosed hollow gold nanostructure with tunable surface plasmon resonances to promote near-infrared photothermal conversionAdv. Compos. Hybrid Mater.20225238723981:CAS:528:DC%2BB38XnslCgt7c%3D10.1007/s42114-022-00444-z – reference: HongWComputational thermal analysis of the photothermal effect of thermoplasmonic optical fiber for localized neural stimulation in vivoElectronics2021101181:CAS:528:DC%2BB3MXls1Ggt7c%3D10.3390/electronics10020118 – reference: ParkYParkS-YEomKCurrent review of optical neural interfaces for clinical applicationsMicromachines20211292510.3390/mi12080925 – reference: GaoGGold nanoclusters for Parkinson’s disease treatmentBiomaterials201919436461:CAS:528:DC%2BC1cXisFCku7%2FK10.1016/j.biomaterials.2018.12.013 – reference: Mousavi, N. S. S., Moghaddasi, F., Venugopalan, P., Dabirian, A. & Kumar, S. Design of a portable optical fiber-based localized surface plasmon resonance (LSPR) for in-situ biosensing. In: Proc. International Conference in Nanophotonics, Micro-Nano Optics (NANOP2019) (2019). https://zenodo.org/record/7568795. – reference: YuanMWangYQinY-XEngineered nanomedicine for neuroregeneration: light emitting diode-mediated superparamagnetic iron oxide-gold core-shell nanoparticles functionalized by nerve growth factorNanomed. Nanotechnol. Biol. Med.2019211020521:CAS:528:DC%2BC1MXhsFCgs7vF10.1016/j.nano.2019.102052 – reference: PrincipeSThermo-plasmonic lab-on-fiber optrodesOptics Laser Technol.20201321065021:CAS:528:DC%2BB3cXhsFaitrvO10.1016/j.optlastec.2020.106502 – reference: YangXNanotechnology enables novel modalities for neuromodulationAdv. Mater.20213321032081:CAS:528:DC%2BB3MXit12murjK10.1002/adma.202103208 – reference: OvsepianSVOlefirIWestmeyerGRazanskyDNtziachristosVPushing the boundaries of neuroimaging with optoacousticsNeuron2017969669881:CAS:528:DC%2BC2sXhvFemur7E10.1016/j.neuron.2017.10.022 – reference: LiedbergBNylanderCLunströmISurface plasmon resonance for gas detection and biosensingSens. Actuators198342993041:CAS:528:DyaL2cXnvV2kug%3D%3D10.1016/0250-6874(83)85036-7 – reference: ChenRRomeroGChristiansenMGMohrAAnikeevaPWireless magnetothermal deep brain stimulationScience2015347147714801:CAS:528:DC%2BC2MXkvFCnurs%3D10.1126/science.1261821 – reference: ProstAPoissonFBossyEPhotoacoustic generation by a gold nanosphere: from linear to nonlinear thermoelastics in the long-pulse illumination regimePhys. Rev. B20159211545010.1103/PhysRevB.92.115450 – reference: Nguyen, K. T. et al. Strategies of engineering nanoparticles for treating neurodegenerative disorders. Curr. Drug Metab.18http://www.eurekaselect.com/149495/article (2017). – reference: GuglielmelliAThermoplasmonics with gold nanoparticles: a new weapon in modern optics and biomedicineAdv. Photonics Res.20212200019810.1002/adpr.202000198 – reference: PintiPThe present and future use of functional near infrared spectroscopy (fNIRS) for cognitive neuroscienceAnn. N.Y. Acad. Sci.2020146452910.1111/nyas.13948 – reference: XieXLiaoJShaoXLiQLinYThe effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and trianglesSci. Rep.2017710.1038/s41598-017-04229-z – reference: HanLA magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapyTalanta201717132381:CAS:528:DC%2BC2sXntVKisrw%3D10.1016/j.talanta.2017.04.056 – reference: RobinsonJTDeveloping next-generation brain sensing technologies—a reviewIEEE Sensors J.20191910163101751:CAS:528:DC%2BB3cXmsFWis7w%3D10.1109/JSEN.2019.2931159 – reference: ScholkmannFA review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodologyNeuroImage20148562710.1016/j.neuroimage.2013.05.004 – reference: Domínguez-BajoANanostructured gold electrodes promote neural maturation and network connectivityBiomaterials202127912118610.1016/j.biomaterials.2021.121186 – reference: MultariCMagnetoplasmonic nanoparticles for photothermal therapyNanotechnology2019302557051:CAS:528:DC%2BC1MXhtlGmu7fP10.1088/1361-6528/ab08f7 – reference: AramiHRemotely controlled near-infrared-triggered photothermal treatment of brain tumours in freely behaving mice using gold nanostar sNat. Nanotechnol.202217101510221:CAS:528:DC%2BB38XitF2rsbnL10.1038/s41565-022-01189-y – reference: EomKEnhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorodsSmall201410385338571:CAS:528:DC%2BC2cXhtVKmtbjK10.1002/smll.201400599 – reference: KubanekJShuklaPDasABaccusSAGoodmanMBUltrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous systemJ. Neurosci.201838308130911:CAS:528:DC%2BC1cXhslWmt7%2FN10.1523/JNEUROSCI.1458-17.2018 – reference: VayLGuCMcNaughtonPAThe thermo-TRP ion channel family: properties and therapeutic implications: The thermo-TRP ion channel familyBr. J. Pharmacol.20121657878011:CAS:528:DC%2BC38XhvFGqsLw%3D10.1111/j.1476-5381.2011.01601.x – reference: ZhangJNon-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learningNat. Commun.2021121:CAS:528:DC%2BB3MXhtFWgu7zL10.1038/s41467-021-23025-y – reference: ZhangJAtayTNurmikkoAVOptical detection of brain cell activity using plasmonic gold nanoparticlesNano Lett.200995195241:CAS:528:DC%2BD1MXjslWisQ%3D%3D10.1021/nl801891q – reference: KangHThermoplasmonic optical fiber for localized neural stimulationACS Nano20201411406114191:CAS:528:DC%2BB3cXhslKqtbvL10.1021/acsnano.0c03703 – reference: ShpacovitchVHergenröderROptical and surface plasmonic approaches to characterize extracellular vesicles. a reviewAnal. Chim. Acta201810051151:CAS:528:DC%2BC2sXhvF2ltrnO10.1016/j.aca.2017.11.066 – reference: RamezaniZSeoKJFangHHybrid electrical and optical neural interfacesJ. Micromech. Microeng.2021310440021:CAS:528:DC%2BB3MXhtlCrs7bM10.1088/1361-6439/abeb30 – reference: Carvalho-de SouzaJLPhotosensitivity of neurons enabled by cell-targeted gold nanoparticlesNeuron2015862072171:CAS:528:DC%2BC2MXksVaisrY%3D10.1016/j.neuron.2015.02.033 – reference: PengFJeongSHoAEvansCLRecent progress in plasmonic nanoparticle based biomarker detection and cytometry for the study of central nervous system disordersCytomet. Part A202199106710781:CAS:528:DC%2BB3MXitFOmtbjF10.1002/cyto.a.24489 – reference: KimRNamYFabrication of a nanoplasmonic chip to enhance neuron membrane potential imaging by metal-enhanced fluorescence effectBioChip J.2021151711781:CAS:528:DC%2BB3MXkvVaqurg%3D10.1007/s13206-021-00017-0 – reference: YangWLiangHMaSWangDHuangJGold nanoparticle based photothermal therapy: development and application for effective cancer treatmentSustain. Mater. Technol.201922e001091:CAS:528:DC%2BB3cXjvFajtw%3D%3D – reference: ProminskiAPorosity-based heterojunctions enable leadless optoelectronic modulation of tissuesNat. Mater.2022216476551:CAS:528:DC%2BB38Xhtl2ktbfN10.1038/s41563-022-01249-7 – reference: XiongHNear infrared light triggered release in deep brain regions using ultra photosensitive nanovesiclesAngew. Chem. Int. Ed.202059860886151:CAS:528:DC%2BB3cXltlCisbY%3D10.1002/anie.201915296 – reference: WieshollerLMHirschTStrategies for the design of bright upconversion nanoparticles for bioanalytical applicationsOptical Mater.2018802532641:CAS:528:DC%2BC1cXpsVajt7w%3D10.1016/j.optmat.2018.04.015 – reference: Dugué, G. P., Akemann, W. & Knöpfel, T. A comprehensive concept of optogenetics, vol. 196, 1–28 (Elsevier, 2012). https://linkinghub.elsevier.com/retrieve/pii/B978044459426600001X. – reference: UsonLNanoengineering palladium plasmonic nanosheets inside polymer nanospheres for photothermal therapy and targeted drug deliveryAdv. Funct. Mater.20223221069321:CAS:528:DC%2BB3MXis1Wis7bF10.1002/adfm.202106932 – reference: BoyerDTamaratPMaaliALounisBOrritMPhotothermal imaging of nanometer-sized metal particles among scatterersScience2002297116011631:CAS:528:DC%2BD38XmsVOhsL4%3D10.1126/science.1073765 – reference: KimRHongNNamYGold nanograin microelectrodes for neuroelectronic interfacesBiotechnol. J.201382062141:CAS:528:DC%2BC38Xhs1ersL%2FE10.1002/biot.201200219 – reference: LiXNanotransducers for wireless neuromodulationMatter20214148415101:CAS:528:DC%2BB3MXhvV2lurrL10.1016/j.matt.2021.02.012 – reference: BorghGSurface plasmons in silicon nanowiresAdv. Photonics Res.2021221001301:CAS:528:DC%2BB3sXjtFSrsrc%3D10.1002/adpr.202100130 – reference: HongNNamYThermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitroNat. Commun.2020111:CAS:528:DC%2BB3cXisFelt7nM10.1038/s41467-020-20060-z – reference: KumarJDetection of amyloid fibrils in Parkinson’s disease using plasmonic chiralityProc. Natl Acad. Sci.2018115322532301:CAS:528:DC%2BC1cXht1Ckur7P10.1073/pnas.1721690115 – reference: JiangYNeural stimulation in vitro and in vivo by photoacoustic nanotransducersMatter202146546741:CAS:528:DC%2BB3MXhsl2qur%2FF10.1016/j.matt.2020.11.019 – reference: Wang, Y. & Guo, L. Nanomaterial-enabled neural stimulation. Front. Neurosc. 10, 69 (2016). – reference: WoodRXlii. on a remarkable case of uneven distribution of light in a diffraction grating spectrumLond. Edinb. Dublin Philos. Mag. J. Sci.1902439640210.1080/14786440209462857 – reference: JunJJFully integrated silicon probes for high-density recording of neural activityNature20175512322361:CAS:528:DC%2BC2sXhsl2jtbbN10.1038/nature24636 – reference: HuangHDelikanliSZengHFerkeyDMPralleARemote control of ion channels and neurons through magnetic-field heating of nanoparticlesNat. Nanotechnol.201056026061:CAS:528:DC%2BC3cXpvVSrurg%3D10.1038/nnano.2010.125 – reference: PavioloCStoddartPGold nanoparticles for modulating neuronal behaviorNanomaterials201779210.3390/nano7040092 – reference: PatraJKNano based drug delivery systems: recent developments and future prospectsJ. Nanobiotechnol.20181610.1186/s12951-018-0392-8 – reference: WellsJOptical stimulation of neural tissue in vivoOptics Lett.20053050410.1364/OL.30.000504 – reference: ChernovMRoeAWInfrared neural stimulation: a new stimulation tool for central nervous system applicationsNeurophotonics2014101101110.1117/1.NPh.1.1.011011 – reference: MantriYJokerstJVEngineering plasmonic nanoparticles for enhanced photoacoustic imagingACS Nano202014940894221:CAS:528:DC%2BB3cXhsFOjurfK10.1021/acsnano.0c05215 – reference: Collaborators, G. U. N. D.Burden of neurological disorders across the US from 1990–2017: a global burden of disease studyJAMA Neurology20217816510.1001/jamaneurol.2020.4152 – reference: HabibAElectro-plasmonic nanoantenna: a nonfluorescent optical probe for ultrasensitive label-free detection of electrophysiological signalsSci. Adv.20195eaav97861:CAS:528:DC%2BB3cXhtlalu73K10.1126/sciadv.aav9786 – reference: WuDMGarcía-EtxarriASalleoADionneJAPlasmon-enhanced upconversionJ. Phys. Chem. Lett.20145402040311:CAS:528:DC%2BC2cXhvVens7fM10.1021/jz5019042 – reference: MarinoAPiezoelectric nanoparticle-assisted wireless neuronal stimulationACS Nano20159767876891:CAS:528:DC%2BC2MXhtFGitbrP10.1021/acsnano.5b03162 – reference: GowersSANClinical translation of microfluidic sensor devices: focus on calibration and analytical robustnessLab Chip201919253725481:CAS:528:DC%2BC1MXhtlGjt7vJ10.1039/C9LC00400A – reference: RojalinTPhongBKosterHJCarneyRPNanoplasmonic approaches for sensitive detection and molecular characterization of extracellular vesiclesFront. Chem.201972791:CAS:528:DC%2BC1MXitVOrsrbP10.3389/fchem.2019.00279 – reference: World Health Organization (WHO) report. Neurological disorders affect millions globally https://www.who.int/news/item/27-02-2007-neurological-disorders-affect-millions-globally-who-report (2007). – reference: ChenJImmuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cellsNano Lett.20077131813221:CAS:528:DC%2BD2sXktVyht7k%3D10.1021/nl070345g – reference: WardenMRCardinJADeisserothKOptical neural interfacesAnnu. Rev. Biomed. Eng.2014161031291:CAS:528:DC%2BC2cXhsVKgt77L10.1146/annurev-bioeng-071813-104733 – reference: ChoiSHKimSJImC-HKimSAKimDQuantitative model for the change of optical resonance in neural activity detection systems based on surface plasmon resonanceOptics Laser Technol.2011439389481:CAS:528:DC%2BC3MXhvVCnsrY%3D10.1016/j.optlastec.2010.12.010 – reference: KangHLeeG-HJungHLeeJWNamYInkjet-printed biofunctional thermo-plasmonic interfaces for patterned neuromodulationACS Nano201812112811381:CAS:528:DC%2BC1cXit1yrsbs%3D10.1021/acsnano.7b06617 – reference: TomitakaAMagneto-plasmonic nanostars for image-guided and NIR-triggered drug deliverySci. Rep.2020101:CAS:528:DC%2BB3cXht1CqtbvO10.1038/s41598-020-66706-2 – reference: LiMCushingSKWuNPlasmon-enhanced optical sensors: a reviewAnalyst20151403864061:CAS:528:DC%2BC2cXhs1yhu7vM10.1039/C4AN01079E – reference: LiWRemote modulation of neural activities via near-infrared triggered release of biomoleculesBiomaterials20156576851:CAS:528:DC%2BC2MXhtVyht7vN10.1016/j.biomaterials.2015.06.041 – reference: MitchellMJEngineering precision nanoparticles for drug deliveryNat. Rev. Drug Discov.2021201011241:CAS:528:DC%2BB3cXisV2ntL3P10.1038/s41573-020-0090-8 – reference: EmilianiVCohenAEDeisserothKHausserMAll-optical interrogation of neural circuitsJ. Neurosci.20153513917139261:CAS:528:DC%2BC28XjtVyksrc%3D10.1523/JNEUROSCI.2916-15.2015 – reference: Brocker, D. T. & Grill, W. M. Principles of Electrical Stimulation of Neural Tissue, vol. 116, 3–18 (Elsevier, 2013). https://linkinghub.elsevier.com/retrieve/pii/B9780444534972000012. – reference: BoydenESZhangFBambergENagelGDeisserothKMillisecond-timescale, genetically targeted optical control of neural activityNat. Neurosci.20058126312681:CAS:528:DC%2BD2MXpt1egtrc%3D10.1038/nn1525 – reference: DipaloMIntracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3d plasmonic nanoelectrodesNano Lett.201717393239391:CAS:528:DC%2BC2sXot1ylsr8%3D10.1021/acs.nanolett.7b01523 – reference: AlexanderCTPaulRSE. DucoJOptical stimulation of neuronsCurr. Mol. Imaging (Discontinued)20143162177 – reference: Dominguez-ParedesDJahanshahiAKozielskiKLTranslational considerations for the design of untethered nanomaterials in human neural stimulationBrain Stimul.2021141285129710.1016/j.brs.2021.08.001 – reference: KimSAJunSBIn-vivo optical measurement of neural activity in the brainExp. Neurobiol.20132215816610.5607/en.2013.22.3.158 – reference: Deisseroth, K. & Anikeeva, P. Upconversion of light for use in optogenetic methods, United States Patent No. US10252076(B2) https://patents.google.com/patent/US20160317658/en (2011). – reference: Chen, S. Near-infrared Deep Brain Stimulation in Living Mice, vol. 2173, 71–82 (Springer US, New York, NY, 2020). https://link.springer.com/10.1007/978-1-0716-0755-8_4. – reference: NakatsujiHThermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticlesAngew. Chem. Int. Ed.20155411725117291:CAS:528:DC%2BC2MXht1yqu7rE10.1002/anie.201505534 – reference: YavuzMSGold nanocages covered by smart polymers for controlled release with near-infrared lightNat. Mater.200989359391:CAS:528:DC%2BD1MXhsVGlt7rF10.1038/nmat2564 – reference: KangPTransient photoinactivation of cell membrane protein activity without genetic modification by molecular hyperthermiaACS Nano20191312487124991:CAS:528:DC%2BC1MXhvFKktr%2FF10.1021/acsnano.9b01993 – reference: WestPSearching for better plasmonic materialsLaser Photonics Rev.201047958081:CAS:528:DC%2BC3cXhsFyqt7rP10.1002/lpor.200900055 – volume: 59 start-page: 8608 year: 2020 ident: 429_CR75 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915296 – volume: 10 start-page: 118 year: 2021 ident: 429_CR115 publication-title: Electronics doi: 10.3390/electronics10020118 – volume: 35 start-page: 13917 year: 2015 ident: 429_CR23 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2916-15.2015 – volume: 7 start-page: 171 year: 2013 ident: 429_CR3 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201200003 – volume: 7 year: 2017 ident: 429_CR91 publication-title: Sci. Rep. doi: 10.1038/s41598-017-04229-z – volume: 12 year: 2021 ident: 429_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23025-y – volume: 30 start-page: 504 year: 2005 ident: 429_CR57 publication-title: Optics Lett. doi: 10.1364/OL.30.000504 – volume: 7 year: 2017 ident: 429_CR113 publication-title: Sci. Rep. doi: 10.1038/s41598-017-08141-4 – volume: 38 start-page: 3081 year: 2018 ident: 429_CR28 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1458-17.2018 – volume: 347 start-page: 1418 year: 2015 ident: 429_CR87 publication-title: Science doi: 10.1126/science.aaa9610 – volume: 5 start-page: 602 year: 2010 ident: 429_CR81 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.125 – volume: 11 start-page: 1995 year: 2018 ident: 429_CR22 publication-title: Materials doi: 10.3390/ma11101995 – volume: 132 start-page: 106502 year: 2020 ident: 429_CR116 publication-title: Optics Laser Technol. doi: 10.1016/j.optlastec.2020.106502 – volume: 86 start-page: 207 year: 2015 ident: 429_CR65 publication-title: Neuron doi: 10.1016/j.neuron.2015.02.033 – volume: 130 start-page: 230901 year: 2021 ident: 429_CR86 publication-title: J. Appl. Phys. doi: 10.1063/5.0072884 – volume: 14 start-page: 10917 year: 2020 ident: 429_CR14 publication-title: ACS Nano doi: 10.1021/acsnano.0c00722 – volume: 14 start-page: 1285 year: 2021 ident: 429_CR126 publication-title: Brain Stimul. doi: 10.1016/j.brs.2021.08.001 – volume: 14 start-page: 11406 year: 2020 ident: 429_CR117 publication-title: ACS Nano doi: 10.1021/acsnano.0c03703 – volume: 135 start-page: 1 year: 2021 ident: 429_CR51 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.08.035 – volume: 373 start-page: 109564 year: 2022 ident: 429_CR100 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2022.109564 – volume: 33 start-page: 2103208 year: 2021 ident: 429_CR125 publication-title: Adv. Mater. doi: 10.1002/adma.202103208 – volume: 1005 start-page: 1 year: 2018 ident: 429_CR7 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.11.066 – volume: 171 start-page: 32 year: 2017 ident: 429_CR69 publication-title: Talanta doi: 10.1016/j.talanta.2017.04.056 – volume: 96 start-page: 966 year: 2017 ident: 429_CR80 publication-title: Neuron doi: 10.1016/j.neuron.2017.10.022 – volume: 2 start-page: 37 year: 2012 ident: 429_CR90 publication-title: Photonic Sens. doi: 10.1007/s13320-011-0051-2 – ident: 429_CR50 doi: 10.1007/978-1-0716-0755-8_4 – volume: 551 start-page: 232 year: 2017 ident: 429_CR37 publication-title: Nature doi: 10.1038/nature24636 – ident: 429_CR119 – ident: 429_CR128 doi: 10.1016/j.jare.2021.11.006 – ident: 429_CR49 – volume: 7 start-page: 279 year: 2019 ident: 429_CR8 publication-title: Front. Chem. doi: 10.3389/fchem.2019.00279 – ident: 429_CR20 doi: 10.3389/fnins.2016.00105 – volume: 297 start-page: 1160 year: 2002 ident: 429_CR10 publication-title: Science doi: 10.1126/science.1073765 – volume: 7 start-page: 442 year: 2008 ident: 429_CR92 publication-title: Nat. Mater. doi: 10.1038/nmat2162 – volume: 125 start-page: 10748 year: 2021 ident: 429_CR64 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.1c06054 – volume: 22 start-page: e00109 year: 2019 ident: 429_CR98 publication-title: Sustain. Mater. Technol. – volume: 16 year: 2018 ident: 429_CR101 publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-018-0392-8 – volume: 108 start-page: 302 year: 2020 ident: 429_CR32 publication-title: Neuron doi: 10.1016/j.neuron.2020.10.011 – volume: 93 start-page: 2567 year: 2007 ident: 429_CR60 publication-title: Biophys. J. doi: 10.1529/biophysj.107.104786 – volume: 78 start-page: 165 year: 2021 ident: 429_CR2 publication-title: JAMA Neurology doi: 10.1001/jamaneurol.2020.4152 – volume: 30 start-page: 1800927 year: 2018 ident: 429_CR82 publication-title: Adv. Mater. doi: 10.1002/adma.201800927 – volume: 80 start-page: 253 year: 2018 ident: 429_CR53 publication-title: Optical Mater. doi: 10.1016/j.optmat.2018.04.015 – volume: 43 start-page: 938 year: 2011 ident: 429_CR93 publication-title: Optics Laser Technol. doi: 10.1016/j.optlastec.2010.12.010 – ident: 429_CR121 doi: 10.3389/fnins.2016.00069 – volume: 8 start-page: 3416 year: 2018 ident: 429_CR135 publication-title: Theranostics doi: 10.7150/thno.25228 – volume: 13 start-page: 39018 year: 2021 ident: 429_CR105 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c08454 – volume: 14 start-page: 14528 year: 2020 ident: 429_CR9 publication-title: ACS Nano doi: 10.1021/acsnano.0c07581 – volume: 140 start-page: 386 year: 2015 ident: 429_CR145 publication-title: Analyst doi: 10.1039/C4AN01079E – volume: 99 start-page: 1067 year: 2021 ident: 429_CR129 publication-title: Cytomet. Part A doi: 10.1002/cyto.a.24489 – volume: 115 start-page: 3225 year: 2018 ident: 429_CR131 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1721690115 – ident: 429_CR16 doi: 10.2174/1389200218666170125114751 – volume: 16 start-page: 103 year: 2014 ident: 429_CR34 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071813-104733 – volume: 27 start-page: 1605778 year: 2017 ident: 429_CR45 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605778 – volume: 6 start-page: 1 year: 2021 ident: 429_CR19 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00267-8 – volume: 19 start-page: 10163 year: 2019 ident: 429_CR18 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2019.2931159 – volume: 92 start-page: 115450 year: 2015 ident: 429_CR78 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.115450 – volume: 9 start-page: 519 year: 2009 ident: 429_CR118 publication-title: Nano Lett. doi: 10.1021/nl801891q – ident: 429_CR47 doi: 10.1016/B978-0-444-59426-6.00001-X – volume: 12 start-page: 925 year: 2021 ident: 429_CR24 publication-title: Micromachines doi: 10.3390/mi12080925 – volume: 9 start-page: 1029 year: 2019 ident: 429_CR17 publication-title: Nanomaterials doi: 10.3390/nano9071029 – ident: 429_CR1 – volume: 10 year: 2020 ident: 429_CR139 publication-title: Sci. Rep. doi: 10.1038/s41598-020-66706-2 – ident: 429_CR104 doi: 10.3389/fbioe.2020.602797 – volume: 20 start-page: 435 year: 1997 ident: 429_CR38 publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(97)01132-6 – volume: 3 start-page: 247 year: 2022 ident: 429_CR48 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00251 – ident: 429_CR127 doi: 10.1002/cpph.13 – volume: 35 start-page: 8574 year: 2019 ident: 429_CR5 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b04331 – volume: 20 start-page: 101 year: 2021 ident: 429_CR97 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-020-0090-8 – volume: 21 start-page: 819 year: 2020 ident: 429_CR103 publication-title: Curr. Drug Targets doi: 10.2174/1389450121666200106105633 – volume: 65 start-page: 76 year: 2015 ident: 429_CR73 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.06.041 – volume: 119 start-page: 8087 year: 2019 ident: 429_CR108 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00738 – volume: 5 start-page: eaav9786 year: 2019 ident: 429_CR13 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav9786 – volume: 9 start-page: 445 year: 2018 ident: 429_CR21 publication-title: Micromachines doi: 10.3390/mi9090445 – volume: 131 year: 2016 ident: 429_CR6 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2016-16221-5 – volume: 138 start-page: 233 year: 2019 ident: 429_CR83 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2018.10.016 – volume: 10 start-page: 3853 year: 2014 ident: 429_CR120 publication-title: Small doi: 10.1002/smll.201400599 – volume: 11 year: 2020 ident: 429_CR123 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20060-z – volume: 18 start-page: 066002 year: 2021 ident: 429_CR15 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac3265 – volume: 31 start-page: 355705 year: 2020 ident: 429_CR67 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab93ec – volume: 19 start-page: 2537 year: 2019 ident: 429_CR141 publication-title: Lab Chip doi: 10.1039/C9LC00400A – volume: 9 start-page: 764 year: 2017 ident: 429_CR66 publication-title: Nanoscale doi: 10.1039/C6NR07520G – volume: 8 start-page: 935 year: 2009 ident: 429_CR72 publication-title: Nat. Mater. doi: 10.1038/nmat2564 – volume: 2 start-page: 2100130 year: 2021 ident: 429_CR77 publication-title: Adv. Photonics Res. doi: 10.1002/adpr.202100130 – volume: 17 start-page: 3932 year: 2017 ident: 429_CR111 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01523 – volume: 2 start-page: 100051 year: 2021 ident: 429_CR114 publication-title: Results Opt. doi: 10.1016/j.rio.2020.100051 – volume: 54 start-page: 11725 year: 2015 ident: 429_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505534 – volume: 359 start-page: 679 year: 2018 ident: 429_CR54 publication-title: Science doi: 10.1126/science.aaq1144 – volume: 1 start-page: 011011 year: 2014 ident: 429_CR55 publication-title: Neurophotonics doi: 10.1117/1.NPh.1.1.011011 – volume: 12 start-page: 2242 year: 2022 ident: 429_CR138 publication-title: Nanomaterials doi: 10.3390/nano12132242 – volume: 29 start-page: 1902128 year: 2019 ident: 429_CR132 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902128 – volume: 8 start-page: 13099 year: 2016 ident: 429_CR143 publication-title: Nanoscale doi: 10.1039/C5NR08477F – volume: 4 start-page: 654 year: 2021 ident: 429_CR29 publication-title: Matter doi: 10.1016/j.matt.2020.11.019 – volume: 1464 start-page: 5 year: 2020 ident: 429_CR63 publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/nyas.13948 – volume: 37 start-page: 614 year: 2012 ident: 429_CR42 publication-title: Optics Lett. doi: 10.1364/OL.37.000614 – volume: 347 start-page: 1477 year: 2015 ident: 429_CR26 publication-title: Science doi: 10.1126/science.1261821 – volume: 17 start-page: 051003 year: 2020 ident: 429_CR58 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abb3b2 – volume: 235 start-page: 34 year: 2016 ident: 429_CR102 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.05.044 – volume: 12 year: 2015 ident: 429_CR31 publication-title: J. NeuroEng. Rehabil. doi: 10.1186/s12984-015-0061-1 – volume: 12 start-page: 61 year: 2018 ident: 429_CR43 publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2018.00061 – volume: 13 start-page: 260 year: 2018 ident: 429_CR76 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0041-7 – volume: 15 start-page: 171 year: 2021 ident: 429_CR124 publication-title: BioChip J. doi: 10.1007/s13206-021-00017-0 – volume: 5 start-page: 2387 year: 2022 ident: 429_CR142 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-022-00444-z – volume: 21 start-page: 102052 year: 2019 ident: 429_CR68 publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2019.102052 – volume: 6 start-page: 2550 year: 2012 ident: 429_CR94 publication-title: ACS Nano doi: 10.1021/nn2050032 – volume: 2 start-page: 2000198 year: 2021 ident: 429_CR96 publication-title: Adv. Photonics Res. doi: 10.1002/adpr.202000198 – volume: 19 start-page: 946 year: 2020 ident: 429_CR136 publication-title: Nat. Mate. doi: 10.1038/s41563-020-0740-6 – volume: 34 start-page: 389 year: 2011 ident: 429_CR144 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-061010-113817 – ident: 429_CR30 doi: 10.1016/B978-0-444-53497-2.00001-2 – volume: 14 start-page: 9408 year: 2020 ident: 429_CR79 publication-title: ACS Nano doi: 10.1021/acsnano.0c05215 – volume: 11 start-page: 85 year: 1890 ident: 429_CR39 publication-title: J. Physiol. doi: 10.1113/jphysiol.1890.sp000321 – volume: 8 start-page: 238 year: 2021 ident: 429_CR46 publication-title: ACS Photonics doi: 10.1021/acsphotonics.0c01381 – volume: 123 start-page: 6891 year: 2023 ident: 429_CR106 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00159 – volume: 14 start-page: 38575 year: 2022 ident: 429_CR11 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c11218 – ident: 429_CR12 – volume: 9 start-page: 7678 year: 2015 ident: 429_CR84 publication-title: ACS Nano doi: 10.1021/acsnano.5b03162 – volume: 21 start-page: 647 year: 2022 ident: 429_CR27 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01249-7 – volume: 165 start-page: 787 year: 2012 ident: 429_CR61 publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2011.01601.x – volume: 17 start-page: 1015 year: 2022 ident: 429_CR99 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01189-y – volume: 12 start-page: 1128 year: 2018 ident: 429_CR122 publication-title: ACS Nano doi: 10.1021/acsnano.7b06617 – volume: 8 start-page: 206 year: 2013 ident: 429_CR112 publication-title: Biotechnol. J. doi: 10.1002/biot.201200219 – volume: 4 start-page: 795 year: 2010 ident: 429_CR107 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.200900055 – volume: 30 start-page: 255705 year: 2019 ident: 429_CR85 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab08f7 – volume: 279 start-page: 121186 year: 2021 ident: 429_CR133 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121186 – volume: 461 start-page: 930 year: 2009 ident: 429_CR36 publication-title: Nature doi: 10.1038/nature08540 – volume: 4 start-page: 396 year: 1902 ident: 429_CR88 publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440209462857 – volume: 13 start-page: 12487 year: 2019 ident: 429_CR134 publication-title: ACS Nano doi: 10.1021/acsnano.9b01993 – volume: 5 start-page: 4020 year: 2014 ident: 429_CR52 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5019042 – volume: 22 start-page: 158 year: 2013 ident: 429_CR44 publication-title: Exp. Neurobiol. doi: 10.5607/en.2013.22.3.158 – ident: 429_CR40 – volume: 33 start-page: 914 year: 2008 ident: 429_CR41 publication-title: Optics Lett. doi: 10.1364/OL.33.000914 – ident: 429_CR59 doi: 10.1117/1.NPh.8.1.015012 – volume: 194 start-page: 36 year: 2019 ident: 429_CR130 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.12.013 – volume: 85 start-page: 6 year: 2014 ident: 429_CR62 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.004 – volume: 21 start-page: 1113 year: 2011 ident: 429_CR70 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002373 – volume: 4 start-page: 299 year: 1983 ident: 429_CR89 publication-title: Sens. Actuators doi: 10.1016/0250-6874(83)85036-7 – volume: 20 start-page: 778 year: 2014 ident: 429_CR74 publication-title: Nat. Med. doi: 10.1038/nm.3484 – volume: 3 start-page: 162 year: 2014 ident: 429_CR33 publication-title: Curr. Mol. Imaging (Discontinued) – volume: 31 start-page: 044002 year: 2021 ident: 429_CR25 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/abeb30 – volume: 32 start-page: 2106932 year: 2022 ident: 429_CR137 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106932 – volume: 7 start-page: 92 year: 2017 ident: 429_CR110 publication-title: Nanomaterials doi: 10.3390/nano7040092 – volume: 8 start-page: 1263 year: 2005 ident: 429_CR35 publication-title: Nat. Neurosci. doi: 10.1038/nn1525 – volume: 6 start-page: 33083 year: 2016 ident: 429_CR109 publication-title: RSC Adv. doi: 10.1039/C6RA02684B – volume: 7 start-page: 1318 year: 2007 ident: 429_CR71 publication-title: Nano Lett. doi: 10.1021/nl070345g – volume: 4 start-page: 1484 year: 2021 ident: 429_CR140 publication-title: Matter doi: 10.1016/j.matt.2021.02.012 – volume: 84 start-page: 035415 year: 2011 ident: 429_CR95 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.035415 |
SSID | ssj0002511640 |
Score | 2.317868 |
SecondaryResourceType | review_article |
Snippet | The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic nanostructures... Abstract The evolving field of plasmonics has enabled the rise of engineered plasmonic nanomaterials to improve neural interface performance. Plasmonic... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101 |
SubjectTerms | 631/378/2586 631/378/87 Central nervous system Chemistry and Materials Science Materials Science Nanomaterials Nanoparticles Nervous system Plasmonics Plasmons Review Article Spatial resolution |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwsCAaJQIAMbWPVnnIyAqCoGxEClbpZ9diYoiJb_z9lJv5CAhSVDYkuXd4nvnex7R8il0kEzJxvqVCkpxmNJnYkVDaWPJiAjDz6ftngsR2P1MNGTtVZf6UxYKw_cAjdwEKIxSDpSCaeH2pfeVKGUBpN1x3MFtWA1W0um0hqciHOpWFclw2Q1mCXpuXTeVtK8CFO9EYmyYP8Gy_y2MZrjzXCP7HZEsbhpDdwnW3F6QC6ekOy-JjXbWYFss8hqlHElKXhIxsP757sR7VocUEAb5tR4A6XwDtO0EGu0MyhwwGvgCqRD8uEwa2SRRy2g0ZVrNGCAb0SQkfvUMOyIbE_fpvGYFMozQJTqBrhTCi9InIQ0HDyCF7juEb54XQud_ndqQ_Fi8z60rGwLkUWIbIbI4pyr5Zz3Vv3i19G3CcXlyKRcnW-gP23nT_uXP3ukv_CB7X6nmcWsEKkEq0XVI9cLv6we_2zSyX-YdEp2UpP5VIEoRJ9szz8-4xlSkbk_z1_dF9HQ1JI priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKu7AgECAKBTKwgUX8TsaCqKoOCAkqdbP8Cgu0qC3_n7ObtCoCJJYMiU-6nJO7z_bddwhdceFFbliFDZcMQzxm2KhQYC9tUB4Qubcp2-JRDsd8NBGTFqJNLUxK2k-UlslNN9lht4vIHBfTZRlOPhSLHdQpFLjfNur0-6Pn0XpnJYJmyfO6QiZnxQ_CW1EokfVvIcxvh6Ip1gz20V4NErP-Sq0D1ArTQ3T5BED3PTLZLjJAmlliogwbOsEjNB48vNwPcd3eADvQYYmVVU5Sa2CJ5kMJenrujCOlI9wxA8DDwIoxDyQI6ipRmEo4CO4V9SwQG5uFHaP2dDYNJyjjNndS8rJyxHAOFwBNlCniLKA1T0QXkeZ1tau5v2MLijedzqBZoVcm0mAinUykQeZ6LfOxYr74c_RdtOJ6ZGStTjdm81ddz6I2zgelQKVYjmtdaaVVhZdMsTI3hJEu6jVzoOtfaaFhRQgwIi9p0UU3zbxsHv-u0un_hp-h3dhKPtYZUtpD7eX8M5wD4Fjai_oL-wL-2Mu7 priority: 102 providerName: Springer Nature |
Title | Plasmonics for neuroengineering |
URI | https://link.springer.com/article/10.1038/s43246-023-00429-5 https://www.proquest.com/docview/2892420928 https://doaj.org/article/acde775664394bc9b6b78d637390a131 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULl6MRo0oIgdv2rjddtvdkwECEg6EqCTemr7WiwIC_n-npUAwkctusttuZqeP-abtfIPQHctslihaYsU4xWCPKVbC5dhy7YQFRG51OG0x5P0xG7xn73HBbRGPVa7nxDBR26nxa-SP4BiANUmKNH-afWOfNcrvrsYUGoeoSlKwtT5SvPe8WWPx8JmzJMbKJDR_XHgCOn_qluIwFeNsxx4F2v4drPlnezRYnd4JOo5wsdlate8pOnCTM3Q7Asj75TltF03AnM3ASem2xILnaNzrvnX6OCY6wAZkWGKhheGpVuCsWVeAnJYZZUhhCDNUAQRR4DsmjrgsNWWWqzIzYObL1FJHtE8bdoEqk-nEXaIm04nhnBWlIYoxuAB8SqkgRgNusySrIbL-XWkiC7hPRvEpw240zeVKRRJUJIOKJNS539SZrTgw9pZuey1uSnr-6vBgOv-QcThIZawTAkTygbnaFJprkVtOBS0SRSipofq6DWQcVAu57QI19LBul-3r_0W62v-1a3Tkk8j7CMM0raPKcv7jbgBqLHUj9KcGqrZag9cB3Nvd4egFnnZ4pxHc919kNtGj |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBeKiqouhRKDu2pWMSP2MkBVaUFLa8VQiBxc_0KF7pL2a0q_hy_rWOvsysqlRuXHBLbcsZjzze2Zz6Aj6LyVWl4S4yQnKA95sSoUBMvbVAeEbm36bbFUA4uxdFVdbUED10sTLxW2a2JaaH2Yxf3yHfQMUBrUjas_nL7i0TWqHi62lFomEyt4HdTirEc2HEc7v-gCzfZPfyO4_2JsYP9i28DklkGiMO1eEqUVU4ya9BT8qEpee2FM442jgrHDdp_g45bGWiomGur2rSVQxvbMs8DtZGzC9t9AcsibqD0YHlvf3h2Pt_liQBeijJH62DjO5OYAi_e--UkGQNSPbKIiTjgEdr954A22b2DFXidAWvxdaZhb2ApjFZh6wxB98-YVXdSIOotUlbMsEhtuAaXzyKEt9AbjUfhHRTClk5K0bSOGiHwgQCOcUWdReToadUH2v2udjkPeaTDuNHpPJzXeiYijSLSSUQa63ye17mdZeF4svRelOK8ZMygnV6M7651npDaOB-Uwi7F0GDrGiutqr3kijeloZz2YaMbA52n9UQvlLAP2924LD7_v0vrT7e2BS8HF6cn-uRwePweXkVK-xjvyNgG9KZ3v8MmAp-p_ZC1q4Afz63QfwFO-RAv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgkxAXBALEeG0HbhBomjRpj-MxjYEQEkzaLcqrXGAgNv4_TtYODQESlx7apHLtNv7c2J8BjnjmskSzkmguGEF_zIiWPidOGC8dInJnYrbFnegP-WCUjZZA1LUwMWk_UlrGZbrODjubBOa4kC7LSFxDSXb65splaOZhq7EBzW538DCY_10JwFnwpKqSSVj-ww0WPFEk7F9Amd82RqO_6a3DWgUUO92ZaBuw5Meb0L5HsPsS2GwnHUSbnchG6b8oBbdg2Lt6vOiTqsUBsSjDlEgjrUiNxjDN-QLldNxqSwtLuWUawYfGqDHx1GepLbNcl5lFB1-mjnlqQsOwbWiMX8d-BzrcJFYIXpSWas7xgMApZZJag4jN0awFtH5cZSv-79CG4lnFfWiWq5mKFKpIRRUpnHM8n_M2Y7_4c_R50OJ8ZGCujide359UZUmlrfNSokihJNfYwggjcyeYZEWiKaMt2K9toKrPaaIwKkQokRRp3oKT2i5fl38Xafd_w9uwcn_ZU7fXdzd7sBo6y4eywzTdh8b0_cMfIP6YmsPqZfsE0wnPsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmonics+for+neuroengineering&rft.jtitle=Communications+materials&rft.au=Mousavi%2C+N.+S.+Susan&rft.au=Ramadi%2C+Khalil+B&rft.au=Song%2C+Yong-Ak&rft.au=Kumar%2C+Sunil&rft.date=2023-11-22&rft.pub=Nature+Publishing+Group&rft.eissn=2662-4443&rft.volume=4&rft.issue=1&rft.spage=101&rft_id=info:doi/10.1038%2Fs43246-023-00429-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4443&client=summon |