Degradation of Chloramphenicol with Novel Metal Foam Electrodes in Bioelectrochemical Systems
[Display omitted] •Copper foam and nickel foam were evaluated as cathodes for CAP degradation.•Higher applied voltage contributed to faster degradation of CAP.•Copper foam can replace carbon based materials for recalcitrant organics degradation.•Oxygen in the catholyte benefited the complete degrada...
Saved in:
| Published in | Electrochimica acta Vol. 240; pp. 136 - 145 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
20.06.2017
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0013-4686 1873-3859 1873-3859 |
| DOI | 10.1016/j.electacta.2017.04.059 |
Cover
| Abstract | [Display omitted]
•Copper foam and nickel foam were evaluated as cathodes for CAP degradation.•Higher applied voltage contributed to faster degradation of CAP.•Copper foam can replace carbon based materials for recalcitrant organics degradation.•Oxygen in the catholyte benefited the complete degradation of CAP
Bioelectrochemical system (BES) has been considered as one of the efficient methods for recalcitrant organic pollutant removal. This study compared three different cathodes, i.e. carbon rod (CR), copper foam (Cu), nickel foam (NF), for chloramphenicol (CAP) removal in BESs, while Cu and NF have not been used as cathodes for CAP degradation before. The results demonstrated that with 0.3V applied voltage, 100% removal of 32mgL−1 CAP was observed after 36h and 24h with CR and Cu electrodes respectively, while amines were the main intermediate products. The performance of Cu cathode was 15.13 times better than NF electrode under 0.3V applied voltage. When the applied voltage increased to 0.5V, CAP could be completely removed within 12h with Cu electrode, while complete CAP removal was found after 24hours for CR and more than 120hours for NF respectively. With 0.5V applied voltage in 24h degradation period, the final degradation products were found to be CO2 and H2O for Cu electrode, while nitrobenzene and 4-Nitrobenzyl alcohol were the main products for CR and NF electrodes respectively. The results demonstrated that Cu was the most efficient cathode for CAP degradation. |
|---|---|
| AbstractList | [Display omitted]
•Copper foam and nickel foam were evaluated as cathodes for CAP degradation.•Higher applied voltage contributed to faster degradation of CAP.•Copper foam can replace carbon based materials for recalcitrant organics degradation.•Oxygen in the catholyte benefited the complete degradation of CAP
Bioelectrochemical system (BES) has been considered as one of the efficient methods for recalcitrant organic pollutant removal. This study compared three different cathodes, i.e. carbon rod (CR), copper foam (Cu), nickel foam (NF), for chloramphenicol (CAP) removal in BESs, while Cu and NF have not been used as cathodes for CAP degradation before. The results demonstrated that with 0.3V applied voltage, 100% removal of 32mgL−1 CAP was observed after 36h and 24h with CR and Cu electrodes respectively, while amines were the main intermediate products. The performance of Cu cathode was 15.13 times better than NF electrode under 0.3V applied voltage. When the applied voltage increased to 0.5V, CAP could be completely removed within 12h with Cu electrode, while complete CAP removal was found after 24hours for CR and more than 120hours for NF respectively. With 0.5V applied voltage in 24h degradation period, the final degradation products were found to be CO2 and H2O for Cu electrode, while nitrobenzene and 4-Nitrobenzyl alcohol were the main products for CR and NF electrodes respectively. The results demonstrated that Cu was the most efficient cathode for CAP degradation. Bioelectrochemical system (BES) has been considered as one of the efficient methods for recalcitrant organic pollutant removal. This study compared three different cathodes, i.e. carbon rod (CR), copper foam (Cu), nickel foam (NF), for chloramphenicol (CAP) removal in BESs, while Cu and NF have not been used as cathodes for CAP degradation before. The results demonstrated that with 0.3 V applied voltage, 100% removal of 32 mg L-1 CAP was observed after 36 h and 24 h with CR and Cu electrodes respectively, while amines were the main intermediate products. The performance of Cu cathode was 15.13 times better than NF electrode under 0.3 V applied voltage. When the applied voltage increased to 0.5 V, CAP could be completely removed within 12 h with Cu electrode, while complete CAP removal was found after 24 hours for CR and more than 120 hours for NF respectively. With 0.5 V applied voltage in 24 h degradation period, the final degradation products were found to be CO2 and H2O for Cu electrode, while nitrobenzene and 4-Nitrobenzyl alcohol were the main products for CR and NF electrodes respectively. The results demonstrated that Cu was the most efficient cathode for CAP degradation. |
| Author | Sun, Faqian Zhou, Yan Wu, Dan |
| Author_xml | – sequence: 1 givenname: Dan surname: Wu fullname: Wu, Dan organization: Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore – sequence: 2 givenname: Faqian surname: Sun fullname: Sun, Faqian organization: Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore – sequence: 3 givenname: Yan surname: Zhou fullname: Zhou, Yan email: zhouyan@ntu.edu.sg organization: Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore |
| BookMark | eNqNkEFv1DAQhS1UJLYtvwFLnBPGcRLHBw5laaFSKYeWI7KMPWa9cuLF9rbaf0-WVBy4UGmkkUbvvXn6TsnJFCck5A2DmgHr321rDGiKnqdugIka2ho6-YKs2CB4xYdOnpAVAONV2w_9K3Ka8xYARC9gRb5_xJ9JW118nGh0dL0JMelxt8HJmxjooy8behsfMNAvWHSgV1GP9PL4MUWLmfqJfvARl4PZ4OjNrLo75IJjPicvnQ4ZXz_tM_Lt6vJ-_bm6-frpen1xU5m2kaXqml46CVpIAGca_aNxzlljJG-lRecEaMYEdK5xljMxIOsGFFxzi1Yb7vgZGZbc_bTTh0cdgtolP-p0UAzUEZPaqr-Y1BGTglbNmGbr28W6S_HXHnNR27hP09xWMclZ3_CGs1n1flGZFHNO6JTx5Q-0krQPz_gi_vE_v9_F4sSZ34PHpLLxOBm0Ps16ZaP_b8Zv9COstw |
| CitedBy_id | crossref_primary_10_1016_j_jwpe_2025_107226 crossref_primary_10_1039_D1RA07600K crossref_primary_10_3390_su14148379 crossref_primary_10_1016_j_coelec_2021_100833 crossref_primary_10_1016_j_apcatb_2019_117824 crossref_primary_10_1016_j_cej_2018_10_128 crossref_primary_10_1016_j_biortech_2020_122761 crossref_primary_10_1016_j_cej_2019_122483 crossref_primary_10_1016_j_jwpe_2021_101995 crossref_primary_10_1016_j_scitotenv_2022_158550 crossref_primary_10_1016_j_biortech_2020_123176 crossref_primary_10_1016_j_jwpe_2024_104846 crossref_primary_10_1016_j_jtice_2020_04_010 crossref_primary_10_1002_jobm_202100368 crossref_primary_10_1007_s11356_021_16658_5 crossref_primary_10_1016_j_scitotenv_2019_133914 crossref_primary_10_4491_eer_2019_405 crossref_primary_10_1016_j_scitotenv_2024_173530 crossref_primary_10_1007_s11356_022_18676_3 crossref_primary_10_1149_2_1011816jes crossref_primary_10_1016_j_mset_2019_09_011 crossref_primary_10_1016_j_jece_2023_110021 crossref_primary_10_1016_j_rineng_2025_104314 crossref_primary_10_20964_2017_10_49 crossref_primary_10_1061__ASCE_EE_1943_7870_0002017 crossref_primary_10_1016_j_envint_2021_106863 crossref_primary_10_1016_j_jwpe_2020_101421 crossref_primary_10_1016_j_bej_2019_02_008 crossref_primary_10_1016_j_envpol_2021_116603 crossref_primary_10_1016_j_seppur_2024_127822 crossref_primary_10_1016_j_jcou_2021_101640 crossref_primary_10_1007_s11356_021_17089_y crossref_primary_10_1016_j_scitotenv_2024_174517 crossref_primary_10_1039_C9DT01000A |
| Cites_doi | 10.1016/j.jes.2014.06.009 10.1016/j.ijhydene.2010.08.064 10.1016/j.watres.2016.05.028 10.1021/es100526g 10.1039/C4CS00126E 10.1021/acs.est.5b00870 10.1016/j.jpowsour.2016.01.022 10.1021/cs500522g 10.1016/S0048-9697(99)00330-7 10.1016/j.scitotenv.2015.12.040 10.1007/s00253-011-3257-8 10.1002/cssc.201100604 10.5935/0103-5053.20140185 10.1016/j.biortech.2012.11.011 10.1016/j.molliq.2014.06.017 10.1039/c0ee00743a 10.1039/c2jm30474k 10.1016/j.watres.2005.05.031 10.1021/cm048887b 10.1007/s10529-008-9792-4 10.1021/jp0642903 10.1016/j.chemosphere.2016.09.091 10.1016/j.jpowsour.2013.02.036 10.1016/j.jpowsour.2014.09.126 10.1016/j.bios.2010.05.003 10.1016/j.biortech.2013.06.084 10.1016/j.biortech.2013.08.040 10.1021/es803074x 10.1016/j.electacta.2015.02.029 10.1016/j.bios.2011.08.025 10.1016/j.watres.2015.01.025 10.1016/j.ijhydene.2014.11.014 10.1021/es400933h 10.1074/jbc.M109.043455 10.1016/j.jenvman.2011.05.023 10.1016/j.electacta.2007.12.002 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Jun 20, 2017 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Jun 20, 2017 |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M ADTOC UNPAY |
| DOI | 10.1016/j.electacta.2017.04.059 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1873-3859 |
| EndPage | 145 |
| ExternalDocumentID | 10.1016/j.electacta.2017.04.059 10_1016_j_electacta_2017_04_059 S0013468617308174 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW T9H VH1 WUQ XOL ZY4 ~HD 7SR 7U5 8BQ 8FD AFXIZ AGCQF AGRNS JG9 L7M SSH ADTOC UNPAY |
| ID | FETCH-LOGICAL-c429t-5269f90a7900fc2ab2fffdcc9349deff70a11705f2fd3178e158e73a3dedac3f3 |
| IEDL.DBID | .~1 |
| ISSN | 0013-4686 1873-3859 |
| IngestDate | Wed Oct 01 15:57:22 EDT 2025 Fri Jul 25 05:00:49 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Wed Oct 01 02:36:15 EDT 2025 Fri Feb 23 02:17:59 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Chloramphenicol Degradation mechanism Bioelectrochemical systems Metal foam electrodes |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-5269f90a7900fc2ab2fffdcc9349deff70a11705f2fd3178e158e73a3dedac3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ars.els-cdn.com/content/image/1-s2.0-S0013468617308174-fx1_lrg.jpg |
| PQID | 1931623231 |
| PQPubID | 2045485 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1016_j_electacta_2017_04_059 proquest_journals_1931623231 crossref_citationtrail_10_1016_j_electacta_2017_04_059 crossref_primary_10_1016_j_electacta_2017_04_059 elsevier_sciencedirect_doi_10_1016_j_electacta_2017_04_059 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-20 |
| PublicationDateYYYYMMDD | 2017-06-20 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Electrochimica acta |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Yew-Hu Chien (bib0035) 1999; 239 Homem, Santos (bib0005) 2011; 92 Call, Logan (bib0160) 2009; 43 Annemiek Ter Heijne, Van Der Weijden (bib0150) 2010; 44 Manohar, Bretschger, Nealson, Mansfeld (bib0180) 2008; 53 APHA (bib0130) 1992 Lu, Xing, Xie, Ren, Logan (bib0170) 2010; 25 Kong, Liang, Lee, Wang, Ren (bib0060) 2014; 26 Zhang, Merrill, Logan (bib0165) 2010; 35 Kong, Liang, Yun, Cheng, Ma, Cui, Wang, Ren (bib0055) 2015; 72 Logan (bib0115) 2012; 5 Pan, Chu (bib0040) 2016; 545-546 Liang, Kong, Ma, Wen, Yuan, Lee, Zhou, Wang (bib0065) 2016; 100 Agegnehu, Pan, Rick, Lee, Su, Hwang (bib0155) 2012; 22 La Rosa-Toro, Berenguer, Quijada, Montilla, Morallon, Vazquez (bib0075) 2006; 110 Kartikaningsih, Huang, Shih (bib0095) 2017; 166 Joss, Keller, Alder, Gobel, McArdell, Ternes, Siegrist (bib0045) 2005; 39 Hong, Lee, Jang, Lee (bib0145) 2011; 4 Chen, Xia, Dai (bib0025) 2015; 165 Cheng, Wang, Wang (bib0110) 2013; 147 Zhang, Yu, Wu, Huang, Zhou, Quan, Chen (bib0120) 2015; 273 Zhang, Candelaria, Tian, Li, Huang, Cao (bib0080) 2013; 236 Larcher, Yargeau (bib0030) 2011; 91 Trovó, Paiva, Costa Filho, Machado, Oliveira, Santos, Daniel (bib0135) 2014 Zhang, Pant, Logan (bib0140) 2011; 30 Liu, Liu, Zhou, Wang, Ong, Vecitis (bib0010) 2015; 49 Wang, Huang, Zhang (bib0105) 2008; 30 Sun, Liu, Liang, Song, Yan, Wang (bib0015) 2013; 143 Wu, Huang, Quan, Li Puma (bib0070) 2016; 307 Sen, Liu, Palmore (bib0090) 2014; 4 Huang, Li, Liu, Quan, Chen, Wang, Chen (bib0125) 2013; 128 Wang, Zhang, Chen, Hu, Li, Wang, Liu, Wang (bib0185) 2014; 43 Liu (bib0085) 2004; 16 Liang, Cheng, Kong, Gao, Sun, Cui, Kong, Zhou, Liu, Ren, Wu, Wang, Lee (bib0050) 2013; 47 Guo, Zhu, Li (bib0020) 2014; 198 Baron, LaBelle, Coursolle, Gralnick, Bond (bib0175) 2009; 284 Wang, Huang, Yu, Quan, Li, Fan, Li (bib0100) 2015; 40 Wang (10.1016/j.electacta.2017.04.059_bib0105) 2008; 30 Homem (10.1016/j.electacta.2017.04.059_bib0005) 2011; 92 Logan (10.1016/j.electacta.2017.04.059_bib0115) 2012; 5 Zhang (10.1016/j.electacta.2017.04.059_bib0140) 2011; 30 Joss (10.1016/j.electacta.2017.04.059_bib0045) 2005; 39 Zhang (10.1016/j.electacta.2017.04.059_bib0120) 2015; 273 Kong (10.1016/j.electacta.2017.04.059_bib0055) 2015; 72 Liu (10.1016/j.electacta.2017.04.059_bib0085) 2004; 16 Trovó (10.1016/j.electacta.2017.04.059_bib0135) 2014 Liang (10.1016/j.electacta.2017.04.059_bib0065) 2016; 100 Sen (10.1016/j.electacta.2017.04.059_bib0090) 2014; 4 Annemiek Ter Heijne (10.1016/j.electacta.2017.04.059_bib0150) 2010; 44 Lu (10.1016/j.electacta.2017.04.059_bib0170) 2010; 25 Sun (10.1016/j.electacta.2017.04.059_bib0015) 2013; 143 Zhang (10.1016/j.electacta.2017.04.059_bib0165) 2010; 35 Liu (10.1016/j.electacta.2017.04.059_bib0010) 2015; 49 Zhang (10.1016/j.electacta.2017.04.059_bib0080) 2013; 236 Manohar (10.1016/j.electacta.2017.04.059_bib0180) 2008; 53 Kong (10.1016/j.electacta.2017.04.059_bib0060) 2014; 26 Liang (10.1016/j.electacta.2017.04.059_bib0050) 2013; 47 La Rosa-Toro (10.1016/j.electacta.2017.04.059_bib0075) 2006; 110 Pan (10.1016/j.electacta.2017.04.059_bib0040) 2016; 545-546 Wang (10.1016/j.electacta.2017.04.059_bib0185) 2014; 43 Kartikaningsih (10.1016/j.electacta.2017.04.059_bib0095) 2017; 166 Call (10.1016/j.electacta.2017.04.059_bib0160) 2009; 43 Yew-Hu Chien (10.1016/j.electacta.2017.04.059_bib0035) 1999; 239 Agegnehu (10.1016/j.electacta.2017.04.059_bib0155) 2012; 22 APHA (10.1016/j.electacta.2017.04.059_bib0130) 1992 Chen (10.1016/j.electacta.2017.04.059_bib0025) 2015; 165 Baron (10.1016/j.electacta.2017.04.059_bib0175) 2009; 284 Wu (10.1016/j.electacta.2017.04.059_bib0070) 2016; 307 Larcher (10.1016/j.electacta.2017.04.059_bib0030) 2011; 91 Wang (10.1016/j.electacta.2017.04.059_bib0100) 2015; 40 Cheng (10.1016/j.electacta.2017.04.059_bib0110) 2013; 147 Hong (10.1016/j.electacta.2017.04.059_bib0145) 2011; 4 Guo (10.1016/j.electacta.2017.04.059_bib0020) 2014; 198 Huang (10.1016/j.electacta.2017.04.059_bib0125) 2013; 128 |
| References_xml | – volume: 92 start-page: 2304 year: 2011 ident: bib0005 article-title: Degradation and removal methods of antibiotics from aqueous matrices–a review publication-title: J Environ Manage – volume: 39 start-page: 3139 year: 2005 ident: bib0045 article-title: Removal of pharmaceuticals and fragrances in biological wastewater treatment publication-title: Water Res – volume: 44 start-page: 4376 year: 2010 ident: bib0150 article-title: Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell publication-title: Environ Sci & Technol – volume: 147 start-page: 332 year: 2013 ident: bib0110 article-title: Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters publication-title: Bioresour Technol – volume: 43 start-page: 5234 year: 2014 ident: bib0185 article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances publication-title: Chem Soc Rev – volume: 40 start-page: 184 year: 2015 ident: bib0100 article-title: Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells publication-title: Int J of Hydrogen Energy – volume: 128 start-page: 539 year: 2013 ident: bib0125 article-title: Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells publication-title: Bioresour Technol – volume: 72 start-page: 281 year: 2015 ident: bib0055 article-title: Cathodic degradation of antibiotics: characterization and pathway analysis publication-title: Water Res – volume: 4 start-page: 1781 year: 2011 ident: bib0145 article-title: Heterojunction BiVO publication-title: Energy & Environ Sci – volume: 100 start-page: 157 year: 2016 ident: bib0065 article-title: Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification publication-title: Water Res – volume: 284 start-page: 28865 year: 2009 ident: bib0175 article-title: Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1 publication-title: J Biol Chem – volume: 49 start-page: 7974 year: 2015 ident: bib0010 article-title: Degradation of the Common Aqueous Antibiotic Tetracycline using a Carbon Nanotube Electrochemical Filter publication-title: Environ Sci Technol – volume: 165 start-page: 277 year: 2015 ident: bib0025 article-title: Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: Performance, kinetics and degradation mechanism publication-title: Electrochim Acta – volume: 43 start-page: 2179 year: 2009 ident: bib0160 article-title: High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells publication-title: Environ Sci Technol – volume: 239 start-page: 81 year: 1999 ident: bib0035 article-title: Modeling the effects of sodium chloride on degradation of chloramphenicol in aquaculture pond sediment publication-title: Sci Total Environ – volume: 307 start-page: 705 year: 2016 ident: bib0070 article-title: Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells publication-title: J Power Sources – volume: 166 start-page: 184 year: 2017 ident: bib0095 article-title: Electro-oxidation and characterization of nickel foam electrode for removing boron publication-title: Chemosphere – volume: 198 start-page: 169 year: 2014 ident: bib0020 article-title: Biodegradation of sulfamethoxazole by Phanerochaete chrysosporium publication-title: J Mol Liq – volume: 545-546 start-page: 48 year: 2016 ident: bib0040 article-title: Adsorption and degradation of five selected antibiotics in agricultural soil publication-title: Sci Total Environ – volume: 22 start-page: 13849 year: 2012 ident: bib0155 article-title: Enhanced hydrogen generation by cocatalytic Ni and NiO nanoparticles loaded on graphene oxide sheets publication-title: J Mater Chem – volume: 53 start-page: 3508 year: 2008 ident: bib0180 article-title: The polarization behavior of the anode in a microbial fuel cell publication-title: Electrochim Acta – volume: 4 start-page: 3091 year: 2014 ident: bib0090 article-title: Electrochemical Reduction of CO2at Copper Nanofoams publication-title: ACS Catal – volume: 91 start-page: 211 year: 2011 ident: bib0030 article-title: Biodegradation of sulfamethoxazole by individual and mixed bacteria publication-title: Appl Microbiol Biotechnol – volume: 30 start-page: 1959 year: 2008 ident: bib0105 article-title: Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells publication-title: Biotechnol Lett – volume: 47 start-page: 5353 year: 2013 ident: bib0050 article-title: Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode publication-title: Environ Sci Technol – volume: 25 start-page: 2690 year: 2010 ident: bib0170 article-title: Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells publication-title: Biosens Bioelectron – volume: 5 start-page: 988 year: 2012 ident: bib0115 article-title: Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments publication-title: ChemSusChem – volume: 273 start-page: 1103 year: 2015 ident: bib0120 article-title: Dependency of simultaneous Cr(VI) Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells publication-title: J Power Sources – volume: 30 start-page: 49 year: 2011 ident: bib0140 article-title: Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells publication-title: Biosens Bioelectron – volume: 143 start-page: 699 year: 2013 ident: bib0015 article-title: Reductive degradation of chloramphenicol using bioelectrochemical system (BES): a comparative study of abiotic cathode and biocathode publication-title: Bioresour Technol – volume: 26 start-page: 1689 year: 2014 ident: bib0060 article-title: Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system publication-title: J Environ Sci (China) – volume: 110 start-page: 24021 year: 2006 ident: bib0075 article-title: Preparation and characterization of copper-doped cobalt oxide electrodes publication-title: J Phys Chem B – year: 1992 ident: bib0130 article-title: WPCF, Standard Methods for the Examination of Water and Wastewater – volume: 35 start-page: 12020 year: 2010 ident: bib0165 article-title: The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells publication-title: Int J Hydrogen Energy – volume: 236 start-page: 215 year: 2013 ident: bib0080 article-title: Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density publication-title: J Power Sources – volume: 16 start-page: 5460 year: 2004 ident: bib0085 article-title: Copper Foam Structures with Highly Porous Nanostructured Walls publication-title: Chem. Mater. – year: 2014 ident: bib0135 article-title: Photolytic Degradation of Chloramphenicol in Different Aqueous Matrices Using Artificial and Solar Radiation: Reaction Kinetics and Initial Transformation Products publication-title: J Brazilian Chem Soc – volume: 26 start-page: 1689 year: 2014 ident: 10.1016/j.electacta.2017.04.059_bib0060 article-title: Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system publication-title: J Environ Sci (China) doi: 10.1016/j.jes.2014.06.009 – volume: 35 start-page: 12020 year: 2010 ident: 10.1016/j.electacta.2017.04.059_bib0165 article-title: The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.08.064 – volume: 100 start-page: 157 year: 2016 ident: 10.1016/j.electacta.2017.04.059_bib0065 article-title: Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification publication-title: Water Res doi: 10.1016/j.watres.2016.05.028 – volume: 44 start-page: 4376 year: 2010 ident: 10.1016/j.electacta.2017.04.059_bib0150 article-title: Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell publication-title: Environ Sci & Technol doi: 10.1021/es100526g – volume: 43 start-page: 5234 year: 2014 ident: 10.1016/j.electacta.2017.04.059_bib0185 article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances publication-title: Chem Soc Rev doi: 10.1039/C4CS00126E – volume: 49 start-page: 7974 year: 2015 ident: 10.1016/j.electacta.2017.04.059_bib0010 article-title: Degradation of the Common Aqueous Antibiotic Tetracycline using a Carbon Nanotube Electrochemical Filter publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b00870 – volume: 307 start-page: 705 year: 2016 ident: 10.1016/j.electacta.2017.04.059_bib0070 article-title: Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.01.022 – volume: 4 start-page: 3091 year: 2014 ident: 10.1016/j.electacta.2017.04.059_bib0090 article-title: Electrochemical Reduction of CO2at Copper Nanofoams publication-title: ACS Catal doi: 10.1021/cs500522g – volume: 239 start-page: 81 year: 1999 ident: 10.1016/j.electacta.2017.04.059_bib0035 article-title: Modeling the effects of sodium chloride on degradation of chloramphenicol in aquaculture pond sediment publication-title: Sci Total Environ doi: 10.1016/S0048-9697(99)00330-7 – volume: 545-546 start-page: 48 year: 2016 ident: 10.1016/j.electacta.2017.04.059_bib0040 article-title: Adsorption and degradation of five selected antibiotics in agricultural soil publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2015.12.040 – volume: 91 start-page: 211 year: 2011 ident: 10.1016/j.electacta.2017.04.059_bib0030 article-title: Biodegradation of sulfamethoxazole by individual and mixed bacteria publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3257-8 – volume: 5 start-page: 988 year: 2012 ident: 10.1016/j.electacta.2017.04.059_bib0115 article-title: Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments publication-title: ChemSusChem doi: 10.1002/cssc.201100604 – year: 2014 ident: 10.1016/j.electacta.2017.04.059_bib0135 article-title: Photolytic Degradation of Chloramphenicol in Different Aqueous Matrices Using Artificial and Solar Radiation: Reaction Kinetics and Initial Transformation Products publication-title: J Brazilian Chem Soc doi: 10.5935/0103-5053.20140185 – volume: 128 start-page: 539 year: 2013 ident: 10.1016/j.electacta.2017.04.059_bib0125 article-title: Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.11.011 – volume: 198 start-page: 169 year: 2014 ident: 10.1016/j.electacta.2017.04.059_bib0020 article-title: Biodegradation of sulfamethoxazole by Phanerochaete chrysosporium publication-title: J Mol Liq doi: 10.1016/j.molliq.2014.06.017 – volume: 4 start-page: 1781 year: 2011 ident: 10.1016/j.electacta.2017.04.059_bib0145 article-title: Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation publication-title: Energy & Environ Sci doi: 10.1039/c0ee00743a – volume: 22 start-page: 13849 year: 2012 ident: 10.1016/j.electacta.2017.04.059_bib0155 article-title: Enhanced hydrogen generation by cocatalytic Ni and NiO nanoparticles loaded on graphene oxide sheets publication-title: J Mater Chem doi: 10.1039/c2jm30474k – volume: 39 start-page: 3139 year: 2005 ident: 10.1016/j.electacta.2017.04.059_bib0045 article-title: Removal of pharmaceuticals and fragrances in biological wastewater treatment publication-title: Water Res doi: 10.1016/j.watres.2005.05.031 – volume: 16 start-page: 5460 year: 2004 ident: 10.1016/j.electacta.2017.04.059_bib0085 article-title: Copper Foam Structures with Highly Porous Nanostructured Walls publication-title: Chem. Mater. doi: 10.1021/cm048887b – year: 1992 ident: 10.1016/j.electacta.2017.04.059_bib0130 – volume: 30 start-page: 1959 year: 2008 ident: 10.1016/j.electacta.2017.04.059_bib0105 article-title: Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells publication-title: Biotechnol Lett doi: 10.1007/s10529-008-9792-4 – volume: 110 start-page: 24021 year: 2006 ident: 10.1016/j.electacta.2017.04.059_bib0075 article-title: Preparation and characterization of copper-doped cobalt oxide electrodes publication-title: J Phys Chem B doi: 10.1021/jp0642903 – volume: 166 start-page: 184 year: 2017 ident: 10.1016/j.electacta.2017.04.059_bib0095 article-title: Electro-oxidation and characterization of nickel foam electrode for removing boron publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.091 – volume: 236 start-page: 215 year: 2013 ident: 10.1016/j.electacta.2017.04.059_bib0080 article-title: Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.02.036 – volume: 273 start-page: 1103 year: 2015 ident: 10.1016/j.electacta.2017.04.059_bib0120 article-title: Dependency of simultaneous Cr(VI) Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.09.126 – volume: 25 start-page: 2690 year: 2010 ident: 10.1016/j.electacta.2017.04.059_bib0170 article-title: Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2010.05.003 – volume: 143 start-page: 699 year: 2013 ident: 10.1016/j.electacta.2017.04.059_bib0015 article-title: Reductive degradation of chloramphenicol using bioelectrochemical system (BES): a comparative study of abiotic cathode and biocathode publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.06.084 – volume: 147 start-page: 332 year: 2013 ident: 10.1016/j.electacta.2017.04.059_bib0110 article-title: Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.08.040 – volume: 43 start-page: 2179 year: 2009 ident: 10.1016/j.electacta.2017.04.059_bib0160 article-title: High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells publication-title: Environ Sci Technol doi: 10.1021/es803074x – volume: 165 start-page: 277 year: 2015 ident: 10.1016/j.electacta.2017.04.059_bib0025 article-title: Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: Performance, kinetics and degradation mechanism publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.02.029 – volume: 30 start-page: 49 year: 2011 ident: 10.1016/j.electacta.2017.04.059_bib0140 article-title: Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2011.08.025 – volume: 72 start-page: 281 year: 2015 ident: 10.1016/j.electacta.2017.04.059_bib0055 article-title: Cathodic degradation of antibiotics: characterization and pathway analysis publication-title: Water Res doi: 10.1016/j.watres.2015.01.025 – volume: 40 start-page: 184 year: 2015 ident: 10.1016/j.electacta.2017.04.059_bib0100 article-title: Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells publication-title: Int J of Hydrogen Energy doi: 10.1016/j.ijhydene.2014.11.014 – volume: 47 start-page: 5353 year: 2013 ident: 10.1016/j.electacta.2017.04.059_bib0050 article-title: Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode publication-title: Environ Sci Technol doi: 10.1021/es400933h – volume: 284 start-page: 28865 year: 2009 ident: 10.1016/j.electacta.2017.04.059_bib0175 article-title: Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1 publication-title: J Biol Chem doi: 10.1074/jbc.M109.043455 – volume: 92 start-page: 2304 year: 2011 ident: 10.1016/j.electacta.2017.04.059_bib0005 article-title: Degradation and removal methods of antibiotics from aqueous matrices–a review publication-title: J Environ Manage doi: 10.1016/j.jenvman.2011.05.023 – volume: 53 start-page: 3508 year: 2008 ident: 10.1016/j.electacta.2017.04.059_bib0180 article-title: The polarization behavior of the anode in a microbial fuel cell publication-title: Electrochim Acta doi: 10.1016/j.electacta.2007.12.002 |
| SSID | ssj0007670 |
| Score | 2.434728 |
| Snippet | [Display omitted]
•Copper foam and nickel foam were evaluated as cathodes for CAP degradation.•Higher applied voltage contributed to faster degradation of... Bioelectrochemical system (BES) has been considered as one of the efficient methods for recalcitrant organic pollutant removal. This study compared three... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 136 |
| SubjectTerms | Amines Antibiotics Bioelectrochemical systems Carbon dioxide Cathodes Chloramphenicol Chloromycetin Copper Degradation Degradation mechanism Electric potential Electrodes Metal foam electrodes Metal foams Pollutants Water treatment |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1daxQxFA26fag-WK2Kq1Xy4Gum-ZhP3-q2SxG6CLpQHyQkmaTddnZm6c5q66_3ppNZVhEqIszLwFyYcG_mnDvcnIPQW1tYYVWhSWF1AQ2KiIkClkyYNgbgnRqa-tPIJ5P0eBp_OE1Ow_yTPwsD3VwEoEBMWXcnGrxGU93uz-awvfYZWfKIkk-euMRpDugrANKymLhrJqurs-hicXYfbaUJ8PIB2ppOPh586S0M_PO--8ozQUSeFL8Me916zii4_LBXdit-6tVL_wxVG1R0e1Uv1M13VVUbqDTeQZf9erphlMto1erI_PhN6vH_LPgxehTIKz7oqu0JumfrXbQ96j3jdtHDDXnDp-jroVei6EybcOPw6LyCgpv7qTJff9j_A8aT5put8ImFJgCPGzXHR50xT2mXeFbj97MmOPWYIG2Ag8j6MzQdH30eHZNg50AMgF5LvJe5K6jKCkqd4Upz51xpTCHiorTOZVR5G5zEcVcCq8ktS3KbCSVKWyojnHiOBnVT2xcIC-VEzHVZMgvBCdNAU7hmigOD09yaIUr7zEkTtM695UYl-6G2C7lOufQplzSWkPIhouvARSf3cXfIu740ZGAtHRuRAEp3B-_1xSTDx2MpgVMzYKXAvIeIrQvsb9_n5T_EvEIP_J0fgeN0Dw3aq5V9DWSr1W_CLvoJJuAneA priority: 102 providerName: Unpaywall |
| Title | Degradation of Chloramphenicol with Novel Metal Foam Electrodes in Bioelectrochemical Systems |
| URI | https://dx.doi.org/10.1016/j.electacta.2017.04.059 https://www.proquest.com/docview/1931623231 https://ars.els-cdn.com/content/image/1-s2.0-S0013468617308174-fx1_lrg.jpg |
| UnpaywallVersion | publishedVersion |
| Volume | 240 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 1873-3859 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 1873-3859 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 1873-3859 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 1873-3859 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 1873-3859 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-QwFH6IHtw9iLorO-sPcvDaNW067dTbODqMioMHB_QgIUkTHBnbYR0VL_7tvjdNxxEEBaFQWvog5KX5voSX7wPYtZkVVmU6yKzOcIEi4kAhSw5CbQzCOzc8odPIZ_2kN4hPLpuXC9Cpz8JQWaWf-6s5fTpb-zd7vjf3xsMhnfENRZy0EIIF4lpKmqBxnJKLwb-XtzKPNEl57WJAX7-r8ZpazSi8qMYrnWqekmjpxwg1x0CXH4qxen5So9EcGHVXYcWzSNauGroGC7ZYh-VObd62Dj_ndAZ_wfUhSUJU7kmsdKxzg6t0dUflXTQQGG3Gsn75aEfszCIbZ91S3bGjyiEnt_dsWLCDYektc4zXGGBe7fw3DLpHF51e4H0VAoPoMwnIVNxlXKUZ585ESkfOudyYTMRZbp1LuSI_mqaLXI70omXDZsumQonc5soIJzZgsSgL-weYUE7Ekc7z0GJwM9TIFyIdqgiplI6saUBS96U0XnScvC9Gsq4uu5WzJEhKguSxxCQ0gM8Cx5Xuxuch-3Wy5LshJBEdPg_eqtMr_V98L5HchkgPkQI3IJyl_Kvt-fud9mzCD3qiorSIb8Hi5P-D3Ub6M9E70_G9A0vt49NeH--D_nn76hVZ7AiB |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5i7NBxQBs_RDe2-bBrhmPnR7MbdFTdRnsCiQuybMcWRW1SjbKJC3877zVOV6RJTJqUU5InWX6Ov8_Re98H8MkVTjpdmKhwpsADikwijSw5io21CO_c8oy6kUfjbHiRfL9MLzeg3_bCUFll2PubPX25W4c7R2E2j-aTCfX4xjLJegjBEnEtT17AyyQVOZ3APj_8qfPIs5y3Ngb0-pMir6XXjMaLirzypegpqZb-HaLWKGjnrprr-996Ol1Do8Fr2A40kh03I30DG67agU6_dW_bga01ocFduPpKmhCNfRKrPetf4zFdz6i-i1YCo7-xbFz_clM2ckjH2aDWM3baWOSU7pZNKnYyqYNnjg0iAyzIne_BxeD0vD-MgrFCZBF-FhG5ivuC67zg3FuhjfDel9YWMilK533ONRnSpF74EvlFz8Vpz-VSy9KV2kov92Gzqit3AExqLxNhyjJ2GJzGBgmDMLEWyKWMcLYLWTuXygbVcTK_mKq2vOxGrZKgKAmKJwqT0AW-Cpw3whvPh3xpk6WerCGF8PB88GGbXhU-41uF7DZGfogcuAvxKuX_Op63_zOej9AZno_O1Nm38Y938IqeUIWa4Iewufh5594jF1qYD8u1_ggafQhm |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1daxQxFA26fag-WK2Kq1Xy4Gum-ZhP3-q2SxG6CLpQHyQkmaTddnZm6c5q66_3ppNZVhEqIszLwFyYcG_mnDvcnIPQW1tYYVWhSWF1AQ2KiIkClkyYNgbgnRqa-tPIJ5P0eBp_OE1Ow_yTPwsD3VwEoEBMWXcnGrxGU93uz-awvfYZWfKIkk-euMRpDugrANKymLhrJqurs-hicXYfbaUJ8PIB2ppOPh586S0M_PO--8ozQUSeFL8Me916zii4_LBXdit-6tVL_wxVG1R0e1Uv1M13VVUbqDTeQZf9erphlMto1erI_PhN6vH_LPgxehTIKz7oqu0JumfrXbQ96j3jdtHDDXnDp-jroVei6EybcOPw6LyCgpv7qTJff9j_A8aT5put8ImFJgCPGzXHR50xT2mXeFbj97MmOPWYIG2Ag8j6MzQdH30eHZNg50AMgF5LvJe5K6jKCkqd4Upz51xpTCHiorTOZVR5G5zEcVcCq8ktS3KbCSVKWyojnHiOBnVT2xcIC-VEzHVZMgvBCdNAU7hmigOD09yaIUr7zEkTtM695UYl-6G2C7lOufQplzSWkPIhouvARSf3cXfIu740ZGAtHRuRAEp3B-_1xSTDx2MpgVMzYKXAvIeIrQvsb9_n5T_EvEIP_J0fgeN0Dw3aq5V9DWSr1W_CLvoJJuAneA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+Chloramphenicol+with+Novel+Metal+Foam+Electrodes+in+Bioelectrochemical+Systems&rft.jtitle=Electrochimica+acta&rft.au=Wu%2C+Dan&rft.au=Sun%2C+Faqian&rft.au=Zhou%2C+Yan&rft.date=2017-06-20&rft.issn=0013-4686&rft.volume=240&rft.spage=136&rft.epage=145&rft_id=info:doi/10.1016%2Fj.electacta.2017.04.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2017_04_059 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |