Degradation of Chloramphenicol with Novel Metal Foam Electrodes in Bioelectrochemical Systems

[Display omitted] •Copper foam and nickel foam were evaluated as cathodes for CAP degradation.•Higher applied voltage contributed to faster degradation of CAP.•Copper foam can replace carbon based materials for recalcitrant organics degradation.•Oxygen in the catholyte benefited the complete degrada...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 240; pp. 136 - 145
Main Authors Wu, Dan, Sun, Faqian, Zhou, Yan
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 20.06.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0013-4686
1873-3859
1873-3859
DOI10.1016/j.electacta.2017.04.059

Cover

Abstract [Display omitted] •Copper foam and nickel foam were evaluated as cathodes for CAP degradation.•Higher applied voltage contributed to faster degradation of CAP.•Copper foam can replace carbon based materials for recalcitrant organics degradation.•Oxygen in the catholyte benefited the complete degradation of CAP Bioelectrochemical system (BES) has been considered as one of the efficient methods for recalcitrant organic pollutant removal. This study compared three different cathodes, i.e. carbon rod (CR), copper foam (Cu), nickel foam (NF), for chloramphenicol (CAP) removal in BESs, while Cu and NF have not been used as cathodes for CAP degradation before. The results demonstrated that with 0.3V applied voltage, 100% removal of 32mgL−1 CAP was observed after 36h and 24h with CR and Cu electrodes respectively, while amines were the main intermediate products. The performance of Cu cathode was 15.13 times better than NF electrode under 0.3V applied voltage. When the applied voltage increased to 0.5V, CAP could be completely removed within 12h with Cu electrode, while complete CAP removal was found after 24hours for CR and more than 120hours for NF respectively. With 0.5V applied voltage in 24h degradation period, the final degradation products were found to be CO2 and H2O for Cu electrode, while nitrobenzene and 4-Nitrobenzyl alcohol were the main products for CR and NF electrodes respectively. The results demonstrated that Cu was the most efficient cathode for CAP degradation.
AbstractList [Display omitted] •Copper foam and nickel foam were evaluated as cathodes for CAP degradation.•Higher applied voltage contributed to faster degradation of CAP.•Copper foam can replace carbon based materials for recalcitrant organics degradation.•Oxygen in the catholyte benefited the complete degradation of CAP Bioelectrochemical system (BES) has been considered as one of the efficient methods for recalcitrant organic pollutant removal. This study compared three different cathodes, i.e. carbon rod (CR), copper foam (Cu), nickel foam (NF), for chloramphenicol (CAP) removal in BESs, while Cu and NF have not been used as cathodes for CAP degradation before. The results demonstrated that with 0.3V applied voltage, 100% removal of 32mgL−1 CAP was observed after 36h and 24h with CR and Cu electrodes respectively, while amines were the main intermediate products. The performance of Cu cathode was 15.13 times better than NF electrode under 0.3V applied voltage. When the applied voltage increased to 0.5V, CAP could be completely removed within 12h with Cu electrode, while complete CAP removal was found after 24hours for CR and more than 120hours for NF respectively. With 0.5V applied voltage in 24h degradation period, the final degradation products were found to be CO2 and H2O for Cu electrode, while nitrobenzene and 4-Nitrobenzyl alcohol were the main products for CR and NF electrodes respectively. The results demonstrated that Cu was the most efficient cathode for CAP degradation.
Bioelectrochemical system (BES) has been considered as one of the efficient methods for recalcitrant organic pollutant removal. This study compared three different cathodes, i.e. carbon rod (CR), copper foam (Cu), nickel foam (NF), for chloramphenicol (CAP) removal in BESs, while Cu and NF have not been used as cathodes for CAP degradation before. The results demonstrated that with 0.3 V applied voltage, 100% removal of 32 mg L-1 CAP was observed after 36 h and 24 h with CR and Cu electrodes respectively, while amines were the main intermediate products. The performance of Cu cathode was 15.13 times better than NF electrode under 0.3 V applied voltage. When the applied voltage increased to 0.5 V, CAP could be completely removed within 12 h with Cu electrode, while complete CAP removal was found after 24 hours for CR and more than 120 hours for NF respectively. With 0.5 V applied voltage in 24 h degradation period, the final degradation products were found to be CO2 and H2O for Cu electrode, while nitrobenzene and 4-Nitrobenzyl alcohol were the main products for CR and NF electrodes respectively. The results demonstrated that Cu was the most efficient cathode for CAP degradation.
Author Sun, Faqian
Zhou, Yan
Wu, Dan
Author_xml – sequence: 1
  givenname: Dan
  surname: Wu
  fullname: Wu, Dan
  organization: Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
– sequence: 2
  givenname: Faqian
  surname: Sun
  fullname: Sun, Faqian
  organization: Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
– sequence: 3
  givenname: Yan
  surname: Zhou
  fullname: Zhou, Yan
  email: zhouyan@ntu.edu.sg
  organization: Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
BookMark eNqNkEFv1DAQhS1UJLYtvwFLnBPGcRLHBw5laaFSKYeWI7KMPWa9cuLF9rbaf0-WVBy4UGmkkUbvvXn6TsnJFCck5A2DmgHr321rDGiKnqdugIka2ho6-YKs2CB4xYdOnpAVAONV2w_9K3Ka8xYARC9gRb5_xJ9JW118nGh0dL0JMelxt8HJmxjooy8behsfMNAvWHSgV1GP9PL4MUWLmfqJfvARl4PZ4OjNrLo75IJjPicvnQ4ZXz_tM_Lt6vJ-_bm6-frpen1xU5m2kaXqml46CVpIAGca_aNxzlljJG-lRecEaMYEdK5xljMxIOsGFFxzi1Yb7vgZGZbc_bTTh0cdgtolP-p0UAzUEZPaqr-Y1BGTglbNmGbr28W6S_HXHnNR27hP09xWMclZ3_CGs1n1flGZFHNO6JTx5Q-0krQPz_gi_vE_v9_F4sSZ34PHpLLxOBm0Ps16ZaP_b8Zv9COstw
CitedBy_id crossref_primary_10_1016_j_jwpe_2025_107226
crossref_primary_10_1039_D1RA07600K
crossref_primary_10_3390_su14148379
crossref_primary_10_1016_j_coelec_2021_100833
crossref_primary_10_1016_j_apcatb_2019_117824
crossref_primary_10_1016_j_cej_2018_10_128
crossref_primary_10_1016_j_biortech_2020_122761
crossref_primary_10_1016_j_cej_2019_122483
crossref_primary_10_1016_j_jwpe_2021_101995
crossref_primary_10_1016_j_scitotenv_2022_158550
crossref_primary_10_1016_j_biortech_2020_123176
crossref_primary_10_1016_j_jwpe_2024_104846
crossref_primary_10_1016_j_jtice_2020_04_010
crossref_primary_10_1002_jobm_202100368
crossref_primary_10_1007_s11356_021_16658_5
crossref_primary_10_1016_j_scitotenv_2019_133914
crossref_primary_10_4491_eer_2019_405
crossref_primary_10_1016_j_scitotenv_2024_173530
crossref_primary_10_1007_s11356_022_18676_3
crossref_primary_10_1149_2_1011816jes
crossref_primary_10_1016_j_mset_2019_09_011
crossref_primary_10_1016_j_jece_2023_110021
crossref_primary_10_1016_j_rineng_2025_104314
crossref_primary_10_20964_2017_10_49
crossref_primary_10_1061__ASCE_EE_1943_7870_0002017
crossref_primary_10_1016_j_envint_2021_106863
crossref_primary_10_1016_j_jwpe_2020_101421
crossref_primary_10_1016_j_bej_2019_02_008
crossref_primary_10_1016_j_envpol_2021_116603
crossref_primary_10_1016_j_seppur_2024_127822
crossref_primary_10_1016_j_jcou_2021_101640
crossref_primary_10_1007_s11356_021_17089_y
crossref_primary_10_1016_j_scitotenv_2024_174517
crossref_primary_10_1039_C9DT01000A
Cites_doi 10.1016/j.jes.2014.06.009
10.1016/j.ijhydene.2010.08.064
10.1016/j.watres.2016.05.028
10.1021/es100526g
10.1039/C4CS00126E
10.1021/acs.est.5b00870
10.1016/j.jpowsour.2016.01.022
10.1021/cs500522g
10.1016/S0048-9697(99)00330-7
10.1016/j.scitotenv.2015.12.040
10.1007/s00253-011-3257-8
10.1002/cssc.201100604
10.5935/0103-5053.20140185
10.1016/j.biortech.2012.11.011
10.1016/j.molliq.2014.06.017
10.1039/c0ee00743a
10.1039/c2jm30474k
10.1016/j.watres.2005.05.031
10.1021/cm048887b
10.1007/s10529-008-9792-4
10.1021/jp0642903
10.1016/j.chemosphere.2016.09.091
10.1016/j.jpowsour.2013.02.036
10.1016/j.jpowsour.2014.09.126
10.1016/j.bios.2010.05.003
10.1016/j.biortech.2013.06.084
10.1016/j.biortech.2013.08.040
10.1021/es803074x
10.1016/j.electacta.2015.02.029
10.1016/j.bios.2011.08.025
10.1016/j.watres.2015.01.025
10.1016/j.ijhydene.2014.11.014
10.1021/es400933h
10.1074/jbc.M109.043455
10.1016/j.jenvman.2011.05.023
10.1016/j.electacta.2007.12.002
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Jun 20, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 20, 2017
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ADTOC
UNPAY
DOI 10.1016/j.electacta.2017.04.059
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 145
ExternalDocumentID 10.1016/j.electacta.2017.04.059
10_1016_j_electacta_2017_04_059
S0013468617308174
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
T9H
VH1
WUQ
XOL
ZY4
~HD
7SR
7U5
8BQ
8FD
AFXIZ
AGCQF
AGRNS
JG9
L7M
SSH
ADTOC
UNPAY
ID FETCH-LOGICAL-c429t-5269f90a7900fc2ab2fffdcc9349deff70a11705f2fd3178e158e73a3dedac3f3
IEDL.DBID .~1
ISSN 0013-4686
1873-3859
IngestDate Wed Oct 01 15:57:22 EDT 2025
Fri Jul 25 05:00:49 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Wed Oct 01 02:36:15 EDT 2025
Fri Feb 23 02:17:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Chloramphenicol
Degradation mechanism
Bioelectrochemical systems
Metal foam electrodes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-5269f90a7900fc2ab2fffdcc9349deff70a11705f2fd3178e158e73a3dedac3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ars.els-cdn.com/content/image/1-s2.0-S0013468617308174-fx1_lrg.jpg
PQID 1931623231
PQPubID 2045485
PageCount 10
ParticipantIDs unpaywall_primary_10_1016_j_electacta_2017_04_059
proquest_journals_1931623231
crossref_citationtrail_10_1016_j_electacta_2017_04_059
crossref_primary_10_1016_j_electacta_2017_04_059
elsevier_sciencedirect_doi_10_1016_j_electacta_2017_04_059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-20
PublicationDateYYYYMMDD 2017-06-20
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-20
  day: 20
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yew-Hu Chien (bib0035) 1999; 239
Homem, Santos (bib0005) 2011; 92
Call, Logan (bib0160) 2009; 43
Annemiek Ter Heijne, Van Der Weijden (bib0150) 2010; 44
Manohar, Bretschger, Nealson, Mansfeld (bib0180) 2008; 53
APHA (bib0130) 1992
Lu, Xing, Xie, Ren, Logan (bib0170) 2010; 25
Kong, Liang, Lee, Wang, Ren (bib0060) 2014; 26
Zhang, Merrill, Logan (bib0165) 2010; 35
Kong, Liang, Yun, Cheng, Ma, Cui, Wang, Ren (bib0055) 2015; 72
Logan (bib0115) 2012; 5
Pan, Chu (bib0040) 2016; 545-546
Liang, Kong, Ma, Wen, Yuan, Lee, Zhou, Wang (bib0065) 2016; 100
Agegnehu, Pan, Rick, Lee, Su, Hwang (bib0155) 2012; 22
La Rosa-Toro, Berenguer, Quijada, Montilla, Morallon, Vazquez (bib0075) 2006; 110
Kartikaningsih, Huang, Shih (bib0095) 2017; 166
Joss, Keller, Alder, Gobel, McArdell, Ternes, Siegrist (bib0045) 2005; 39
Hong, Lee, Jang, Lee (bib0145) 2011; 4
Chen, Xia, Dai (bib0025) 2015; 165
Cheng, Wang, Wang (bib0110) 2013; 147
Zhang, Yu, Wu, Huang, Zhou, Quan, Chen (bib0120) 2015; 273
Zhang, Candelaria, Tian, Li, Huang, Cao (bib0080) 2013; 236
Larcher, Yargeau (bib0030) 2011; 91
Trovó, Paiva, Costa Filho, Machado, Oliveira, Santos, Daniel (bib0135) 2014
Zhang, Pant, Logan (bib0140) 2011; 30
Liu, Liu, Zhou, Wang, Ong, Vecitis (bib0010) 2015; 49
Wang, Huang, Zhang (bib0105) 2008; 30
Sun, Liu, Liang, Song, Yan, Wang (bib0015) 2013; 143
Wu, Huang, Quan, Li Puma (bib0070) 2016; 307
Sen, Liu, Palmore (bib0090) 2014; 4
Huang, Li, Liu, Quan, Chen, Wang, Chen (bib0125) 2013; 128
Wang, Zhang, Chen, Hu, Li, Wang, Liu, Wang (bib0185) 2014; 43
Liu (bib0085) 2004; 16
Liang, Cheng, Kong, Gao, Sun, Cui, Kong, Zhou, Liu, Ren, Wu, Wang, Lee (bib0050) 2013; 47
Guo, Zhu, Li (bib0020) 2014; 198
Baron, LaBelle, Coursolle, Gralnick, Bond (bib0175) 2009; 284
Wang, Huang, Yu, Quan, Li, Fan, Li (bib0100) 2015; 40
Wang (10.1016/j.electacta.2017.04.059_bib0105) 2008; 30
Homem (10.1016/j.electacta.2017.04.059_bib0005) 2011; 92
Logan (10.1016/j.electacta.2017.04.059_bib0115) 2012; 5
Zhang (10.1016/j.electacta.2017.04.059_bib0140) 2011; 30
Joss (10.1016/j.electacta.2017.04.059_bib0045) 2005; 39
Zhang (10.1016/j.electacta.2017.04.059_bib0120) 2015; 273
Kong (10.1016/j.electacta.2017.04.059_bib0055) 2015; 72
Liu (10.1016/j.electacta.2017.04.059_bib0085) 2004; 16
Trovó (10.1016/j.electacta.2017.04.059_bib0135) 2014
Liang (10.1016/j.electacta.2017.04.059_bib0065) 2016; 100
Sen (10.1016/j.electacta.2017.04.059_bib0090) 2014; 4
Annemiek Ter Heijne (10.1016/j.electacta.2017.04.059_bib0150) 2010; 44
Lu (10.1016/j.electacta.2017.04.059_bib0170) 2010; 25
Sun (10.1016/j.electacta.2017.04.059_bib0015) 2013; 143
Zhang (10.1016/j.electacta.2017.04.059_bib0165) 2010; 35
Liu (10.1016/j.electacta.2017.04.059_bib0010) 2015; 49
Zhang (10.1016/j.electacta.2017.04.059_bib0080) 2013; 236
Manohar (10.1016/j.electacta.2017.04.059_bib0180) 2008; 53
Kong (10.1016/j.electacta.2017.04.059_bib0060) 2014; 26
Liang (10.1016/j.electacta.2017.04.059_bib0050) 2013; 47
La Rosa-Toro (10.1016/j.electacta.2017.04.059_bib0075) 2006; 110
Pan (10.1016/j.electacta.2017.04.059_bib0040) 2016; 545-546
Wang (10.1016/j.electacta.2017.04.059_bib0185) 2014; 43
Kartikaningsih (10.1016/j.electacta.2017.04.059_bib0095) 2017; 166
Call (10.1016/j.electacta.2017.04.059_bib0160) 2009; 43
Yew-Hu Chien (10.1016/j.electacta.2017.04.059_bib0035) 1999; 239
Agegnehu (10.1016/j.electacta.2017.04.059_bib0155) 2012; 22
APHA (10.1016/j.electacta.2017.04.059_bib0130) 1992
Chen (10.1016/j.electacta.2017.04.059_bib0025) 2015; 165
Baron (10.1016/j.electacta.2017.04.059_bib0175) 2009; 284
Wu (10.1016/j.electacta.2017.04.059_bib0070) 2016; 307
Larcher (10.1016/j.electacta.2017.04.059_bib0030) 2011; 91
Wang (10.1016/j.electacta.2017.04.059_bib0100) 2015; 40
Cheng (10.1016/j.electacta.2017.04.059_bib0110) 2013; 147
Hong (10.1016/j.electacta.2017.04.059_bib0145) 2011; 4
Guo (10.1016/j.electacta.2017.04.059_bib0020) 2014; 198
Huang (10.1016/j.electacta.2017.04.059_bib0125) 2013; 128
References_xml – volume: 92
  start-page: 2304
  year: 2011
  ident: bib0005
  article-title: Degradation and removal methods of antibiotics from aqueous matrices–a review
  publication-title: J Environ Manage
– volume: 39
  start-page: 3139
  year: 2005
  ident: bib0045
  article-title: Removal of pharmaceuticals and fragrances in biological wastewater treatment
  publication-title: Water Res
– volume: 44
  start-page: 4376
  year: 2010
  ident: bib0150
  article-title: Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell
  publication-title: Environ Sci & Technol
– volume: 147
  start-page: 332
  year: 2013
  ident: bib0110
  article-title: Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters
  publication-title: Bioresour Technol
– volume: 43
  start-page: 5234
  year: 2014
  ident: bib0185
  article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances
  publication-title: Chem Soc Rev
– volume: 40
  start-page: 184
  year: 2015
  ident: bib0100
  article-title: Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells
  publication-title: Int J of Hydrogen Energy
– volume: 128
  start-page: 539
  year: 2013
  ident: bib0125
  article-title: Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells
  publication-title: Bioresour Technol
– volume: 72
  start-page: 281
  year: 2015
  ident: bib0055
  article-title: Cathodic degradation of antibiotics: characterization and pathway analysis
  publication-title: Water Res
– volume: 4
  start-page: 1781
  year: 2011
  ident: bib0145
  article-title: Heterojunction BiVO
  publication-title: Energy & Environ Sci
– volume: 100
  start-page: 157
  year: 2016
  ident: bib0065
  article-title: Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification
  publication-title: Water Res
– volume: 284
  start-page: 28865
  year: 2009
  ident: bib0175
  article-title: Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1
  publication-title: J Biol Chem
– volume: 49
  start-page: 7974
  year: 2015
  ident: bib0010
  article-title: Degradation of the Common Aqueous Antibiotic Tetracycline using a Carbon Nanotube Electrochemical Filter
  publication-title: Environ Sci Technol
– volume: 165
  start-page: 277
  year: 2015
  ident: bib0025
  article-title: Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: Performance, kinetics and degradation mechanism
  publication-title: Electrochim Acta
– volume: 43
  start-page: 2179
  year: 2009
  ident: bib0160
  article-title: High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells
  publication-title: Environ Sci Technol
– volume: 239
  start-page: 81
  year: 1999
  ident: bib0035
  article-title: Modeling the effects of sodium chloride on degradation of chloramphenicol in aquaculture pond sediment
  publication-title: Sci Total Environ
– volume: 307
  start-page: 705
  year: 2016
  ident: bib0070
  article-title: Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells
  publication-title: J Power Sources
– volume: 166
  start-page: 184
  year: 2017
  ident: bib0095
  article-title: Electro-oxidation and characterization of nickel foam electrode for removing boron
  publication-title: Chemosphere
– volume: 198
  start-page: 169
  year: 2014
  ident: bib0020
  article-title: Biodegradation of sulfamethoxazole by Phanerochaete chrysosporium
  publication-title: J Mol Liq
– volume: 545-546
  start-page: 48
  year: 2016
  ident: bib0040
  article-title: Adsorption and degradation of five selected antibiotics in agricultural soil
  publication-title: Sci Total Environ
– volume: 22
  start-page: 13849
  year: 2012
  ident: bib0155
  article-title: Enhanced hydrogen generation by cocatalytic Ni and NiO nanoparticles loaded on graphene oxide sheets
  publication-title: J Mater Chem
– volume: 53
  start-page: 3508
  year: 2008
  ident: bib0180
  article-title: The polarization behavior of the anode in a microbial fuel cell
  publication-title: Electrochim Acta
– volume: 4
  start-page: 3091
  year: 2014
  ident: bib0090
  article-title: Electrochemical Reduction of CO2at Copper Nanofoams
  publication-title: ACS Catal
– volume: 91
  start-page: 211
  year: 2011
  ident: bib0030
  article-title: Biodegradation of sulfamethoxazole by individual and mixed bacteria
  publication-title: Appl Microbiol Biotechnol
– volume: 30
  start-page: 1959
  year: 2008
  ident: bib0105
  article-title: Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells
  publication-title: Biotechnol Lett
– volume: 47
  start-page: 5353
  year: 2013
  ident: bib0050
  article-title: Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode
  publication-title: Environ Sci Technol
– volume: 25
  start-page: 2690
  year: 2010
  ident: bib0170
  article-title: Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells
  publication-title: Biosens Bioelectron
– volume: 5
  start-page: 988
  year: 2012
  ident: bib0115
  article-title: Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments
  publication-title: ChemSusChem
– volume: 273
  start-page: 1103
  year: 2015
  ident: bib0120
  article-title: Dependency of simultaneous Cr(VI) Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells
  publication-title: J Power Sources
– volume: 30
  start-page: 49
  year: 2011
  ident: bib0140
  article-title: Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells
  publication-title: Biosens Bioelectron
– volume: 143
  start-page: 699
  year: 2013
  ident: bib0015
  article-title: Reductive degradation of chloramphenicol using bioelectrochemical system (BES): a comparative study of abiotic cathode and biocathode
  publication-title: Bioresour Technol
– volume: 26
  start-page: 1689
  year: 2014
  ident: bib0060
  article-title: Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system
  publication-title: J Environ Sci (China)
– volume: 110
  start-page: 24021
  year: 2006
  ident: bib0075
  article-title: Preparation and characterization of copper-doped cobalt oxide electrodes
  publication-title: J Phys Chem B
– year: 1992
  ident: bib0130
  article-title: WPCF, Standard Methods for the Examination of Water and Wastewater
– volume: 35
  start-page: 12020
  year: 2010
  ident: bib0165
  article-title: The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells
  publication-title: Int J Hydrogen Energy
– volume: 236
  start-page: 215
  year: 2013
  ident: bib0080
  article-title: Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density
  publication-title: J Power Sources
– volume: 16
  start-page: 5460
  year: 2004
  ident: bib0085
  article-title: Copper Foam Structures with Highly Porous Nanostructured Walls
  publication-title: Chem. Mater.
– year: 2014
  ident: bib0135
  article-title: Photolytic Degradation of Chloramphenicol in Different Aqueous Matrices Using Artificial and Solar Radiation: Reaction Kinetics and Initial Transformation Products
  publication-title: J Brazilian Chem Soc
– volume: 26
  start-page: 1689
  year: 2014
  ident: 10.1016/j.electacta.2017.04.059_bib0060
  article-title: Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system
  publication-title: J Environ Sci (China)
  doi: 10.1016/j.jes.2014.06.009
– volume: 35
  start-page: 12020
  year: 2010
  ident: 10.1016/j.electacta.2017.04.059_bib0165
  article-title: The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.08.064
– volume: 100
  start-page: 157
  year: 2016
  ident: 10.1016/j.electacta.2017.04.059_bib0065
  article-title: Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification
  publication-title: Water Res
  doi: 10.1016/j.watres.2016.05.028
– volume: 44
  start-page: 4376
  year: 2010
  ident: 10.1016/j.electacta.2017.04.059_bib0150
  article-title: Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell
  publication-title: Environ Sci & Technol
  doi: 10.1021/es100526g
– volume: 43
  start-page: 5234
  year: 2014
  ident: 10.1016/j.electacta.2017.04.059_bib0185
  article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances
  publication-title: Chem Soc Rev
  doi: 10.1039/C4CS00126E
– volume: 49
  start-page: 7974
  year: 2015
  ident: 10.1016/j.electacta.2017.04.059_bib0010
  article-title: Degradation of the Common Aqueous Antibiotic Tetracycline using a Carbon Nanotube Electrochemical Filter
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b00870
– volume: 307
  start-page: 705
  year: 2016
  ident: 10.1016/j.electacta.2017.04.059_bib0070
  article-title: Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.01.022
– volume: 4
  start-page: 3091
  year: 2014
  ident: 10.1016/j.electacta.2017.04.059_bib0090
  article-title: Electrochemical Reduction of CO2at Copper Nanofoams
  publication-title: ACS Catal
  doi: 10.1021/cs500522g
– volume: 239
  start-page: 81
  year: 1999
  ident: 10.1016/j.electacta.2017.04.059_bib0035
  article-title: Modeling the effects of sodium chloride on degradation of chloramphenicol in aquaculture pond sediment
  publication-title: Sci Total Environ
  doi: 10.1016/S0048-9697(99)00330-7
– volume: 545-546
  start-page: 48
  year: 2016
  ident: 10.1016/j.electacta.2017.04.059_bib0040
  article-title: Adsorption and degradation of five selected antibiotics in agricultural soil
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2015.12.040
– volume: 91
  start-page: 211
  year: 2011
  ident: 10.1016/j.electacta.2017.04.059_bib0030
  article-title: Biodegradation of sulfamethoxazole by individual and mixed bacteria
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-011-3257-8
– volume: 5
  start-page: 988
  year: 2012
  ident: 10.1016/j.electacta.2017.04.059_bib0115
  article-title: Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100604
– year: 2014
  ident: 10.1016/j.electacta.2017.04.059_bib0135
  article-title: Photolytic Degradation of Chloramphenicol in Different Aqueous Matrices Using Artificial and Solar Radiation: Reaction Kinetics and Initial Transformation Products
  publication-title: J Brazilian Chem Soc
  doi: 10.5935/0103-5053.20140185
– volume: 128
  start-page: 539
  year: 2013
  ident: 10.1016/j.electacta.2017.04.059_bib0125
  article-title: Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2012.11.011
– volume: 198
  start-page: 169
  year: 2014
  ident: 10.1016/j.electacta.2017.04.059_bib0020
  article-title: Biodegradation of sulfamethoxazole by Phanerochaete chrysosporium
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2014.06.017
– volume: 4
  start-page: 1781
  year: 2011
  ident: 10.1016/j.electacta.2017.04.059_bib0145
  article-title: Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation
  publication-title: Energy & Environ Sci
  doi: 10.1039/c0ee00743a
– volume: 22
  start-page: 13849
  year: 2012
  ident: 10.1016/j.electacta.2017.04.059_bib0155
  article-title: Enhanced hydrogen generation by cocatalytic Ni and NiO nanoparticles loaded on graphene oxide sheets
  publication-title: J Mater Chem
  doi: 10.1039/c2jm30474k
– volume: 39
  start-page: 3139
  year: 2005
  ident: 10.1016/j.electacta.2017.04.059_bib0045
  article-title: Removal of pharmaceuticals and fragrances in biological wastewater treatment
  publication-title: Water Res
  doi: 10.1016/j.watres.2005.05.031
– volume: 16
  start-page: 5460
  year: 2004
  ident: 10.1016/j.electacta.2017.04.059_bib0085
  article-title: Copper Foam Structures with Highly Porous Nanostructured Walls
  publication-title: Chem. Mater.
  doi: 10.1021/cm048887b
– year: 1992
  ident: 10.1016/j.electacta.2017.04.059_bib0130
– volume: 30
  start-page: 1959
  year: 2008
  ident: 10.1016/j.electacta.2017.04.059_bib0105
  article-title: Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-008-9792-4
– volume: 110
  start-page: 24021
  year: 2006
  ident: 10.1016/j.electacta.2017.04.059_bib0075
  article-title: Preparation and characterization of copper-doped cobalt oxide electrodes
  publication-title: J Phys Chem B
  doi: 10.1021/jp0642903
– volume: 166
  start-page: 184
  year: 2017
  ident: 10.1016/j.electacta.2017.04.059_bib0095
  article-title: Electro-oxidation and characterization of nickel foam electrode for removing boron
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.09.091
– volume: 236
  start-page: 215
  year: 2013
  ident: 10.1016/j.electacta.2017.04.059_bib0080
  article-title: Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.02.036
– volume: 273
  start-page: 1103
  year: 2015
  ident: 10.1016/j.electacta.2017.04.059_bib0120
  article-title: Dependency of simultaneous Cr(VI) Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.09.126
– volume: 25
  start-page: 2690
  year: 2010
  ident: 10.1016/j.electacta.2017.04.059_bib0170
  article-title: Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2010.05.003
– volume: 143
  start-page: 699
  year: 2013
  ident: 10.1016/j.electacta.2017.04.059_bib0015
  article-title: Reductive degradation of chloramphenicol using bioelectrochemical system (BES): a comparative study of abiotic cathode and biocathode
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2013.06.084
– volume: 147
  start-page: 332
  year: 2013
  ident: 10.1016/j.electacta.2017.04.059_bib0110
  article-title: Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2013.08.040
– volume: 43
  start-page: 2179
  year: 2009
  ident: 10.1016/j.electacta.2017.04.059_bib0160
  article-title: High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells
  publication-title: Environ Sci Technol
  doi: 10.1021/es803074x
– volume: 165
  start-page: 277
  year: 2015
  ident: 10.1016/j.electacta.2017.04.059_bib0025
  article-title: Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: Performance, kinetics and degradation mechanism
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.02.029
– volume: 30
  start-page: 49
  year: 2011
  ident: 10.1016/j.electacta.2017.04.059_bib0140
  article-title: Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2011.08.025
– volume: 72
  start-page: 281
  year: 2015
  ident: 10.1016/j.electacta.2017.04.059_bib0055
  article-title: Cathodic degradation of antibiotics: characterization and pathway analysis
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.01.025
– volume: 40
  start-page: 184
  year: 2015
  ident: 10.1016/j.electacta.2017.04.059_bib0100
  article-title: Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells
  publication-title: Int J of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.11.014
– volume: 47
  start-page: 5353
  year: 2013
  ident: 10.1016/j.electacta.2017.04.059_bib0050
  article-title: Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode
  publication-title: Environ Sci Technol
  doi: 10.1021/es400933h
– volume: 284
  start-page: 28865
  year: 2009
  ident: 10.1016/j.electacta.2017.04.059_bib0175
  article-title: Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.043455
– volume: 92
  start-page: 2304
  year: 2011
  ident: 10.1016/j.electacta.2017.04.059_bib0005
  article-title: Degradation and removal methods of antibiotics from aqueous matrices–a review
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2011.05.023
– volume: 53
  start-page: 3508
  year: 2008
  ident: 10.1016/j.electacta.2017.04.059_bib0180
  article-title: The polarization behavior of the anode in a microbial fuel cell
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2007.12.002
SSID ssj0007670
Score 2.434728
Snippet [Display omitted] •Copper foam and nickel foam were evaluated as cathodes for CAP degradation.•Higher applied voltage contributed to faster degradation of...
Bioelectrochemical system (BES) has been considered as one of the efficient methods for recalcitrant organic pollutant removal. This study compared three...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 136
SubjectTerms Amines
Antibiotics
Bioelectrochemical systems
Carbon dioxide
Cathodes
Chloramphenicol
Chloromycetin
Copper
Degradation
Degradation mechanism
Electric potential
Electrodes
Metal foam electrodes
Metal foams
Pollutants
Water treatment
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1daxQxFA26fag-WK2Kq1Xy4Gum-ZhP3-q2SxG6CLpQHyQkmaTddnZm6c5q66_3ppNZVhEqIszLwFyYcG_mnDvcnIPQW1tYYVWhSWF1AQ2KiIkClkyYNgbgnRqa-tPIJ5P0eBp_OE1Ow_yTPwsD3VwEoEBMWXcnGrxGU93uz-awvfYZWfKIkk-euMRpDugrANKymLhrJqurs-hicXYfbaUJ8PIB2ppOPh586S0M_PO--8ozQUSeFL8Me916zii4_LBXdit-6tVL_wxVG1R0e1Uv1M13VVUbqDTeQZf9erphlMto1erI_PhN6vH_LPgxehTIKz7oqu0JumfrXbQ96j3jdtHDDXnDp-jroVei6EybcOPw6LyCgpv7qTJff9j_A8aT5put8ImFJgCPGzXHR50xT2mXeFbj97MmOPWYIG2Ag8j6MzQdH30eHZNg50AMgF5LvJe5K6jKCkqd4Upz51xpTCHiorTOZVR5G5zEcVcCq8ktS3KbCSVKWyojnHiOBnVT2xcIC-VEzHVZMgvBCdNAU7hmigOD09yaIUr7zEkTtM695UYl-6G2C7lOufQplzSWkPIhouvARSf3cXfIu740ZGAtHRuRAEp3B-_1xSTDx2MpgVMzYKXAvIeIrQvsb9_n5T_EvEIP_J0fgeN0Dw3aq5V9DWSr1W_CLvoJJuAneA
  priority: 102
  providerName: Unpaywall
Title Degradation of Chloramphenicol with Novel Metal Foam Electrodes in Bioelectrochemical Systems
URI https://dx.doi.org/10.1016/j.electacta.2017.04.059
https://www.proquest.com/docview/1931623231
https://ars.els-cdn.com/content/image/1-s2.0-S0013468617308174-fx1_lrg.jpg
UnpaywallVersion publishedVersion
Volume 240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 1873-3859
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 1873-3859
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 1873-3859
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 1873-3859
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007670
  issn: 1873-3859
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-QwFH6IHtw9iLorO-sPcvDaNW067dTbODqMioMHB_QgIUkTHBnbYR0VL_7tvjdNxxEEBaFQWvog5KX5voSX7wPYtZkVVmU6yKzOcIEi4kAhSw5CbQzCOzc8odPIZ_2kN4hPLpuXC9Cpz8JQWaWf-6s5fTpb-zd7vjf3xsMhnfENRZy0EIIF4lpKmqBxnJKLwb-XtzKPNEl57WJAX7-r8ZpazSi8qMYrnWqekmjpxwg1x0CXH4qxen5So9EcGHVXYcWzSNauGroGC7ZYh-VObd62Dj_ndAZ_wfUhSUJU7kmsdKxzg6t0dUflXTQQGG3Gsn75aEfszCIbZ91S3bGjyiEnt_dsWLCDYektc4zXGGBe7fw3DLpHF51e4H0VAoPoMwnIVNxlXKUZ585ESkfOudyYTMRZbp1LuSI_mqaLXI70omXDZsumQonc5soIJzZgsSgL-weYUE7Ekc7z0GJwM9TIFyIdqgiplI6saUBS96U0XnScvC9Gsq4uu5WzJEhKguSxxCQ0gM8Cx5Xuxuch-3Wy5LshJBEdPg_eqtMr_V98L5HchkgPkQI3IJyl_Kvt-fud9mzCD3qiorSIb8Hi5P-D3Ub6M9E70_G9A0vt49NeH--D_nn76hVZ7AiB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5i7NBxQBs_RDe2-bBrhmPnR7MbdFTdRnsCiQuybMcWRW1SjbKJC3877zVOV6RJTJqUU5InWX6Ov8_Re98H8MkVTjpdmKhwpsADikwijSw5io21CO_c8oy6kUfjbHiRfL9MLzeg3_bCUFll2PubPX25W4c7R2E2j-aTCfX4xjLJegjBEnEtT17AyyQVOZ3APj_8qfPIs5y3Ngb0-pMir6XXjMaLirzypegpqZb-HaLWKGjnrprr-996Ol1Do8Fr2A40kh03I30DG67agU6_dW_bga01ocFduPpKmhCNfRKrPetf4zFdz6i-i1YCo7-xbFz_clM2ckjH2aDWM3baWOSU7pZNKnYyqYNnjg0iAyzIne_BxeD0vD-MgrFCZBF-FhG5ivuC67zg3FuhjfDel9YWMilK533ONRnSpF74EvlFz8Vpz-VSy9KV2kov92Gzqit3AExqLxNhyjJ2GJzGBgmDMLEWyKWMcLYLWTuXygbVcTK_mKq2vOxGrZKgKAmKJwqT0AW-Cpw3whvPh3xpk6WerCGF8PB88GGbXhU-41uF7DZGfogcuAvxKuX_Op63_zOej9AZno_O1Nm38Y938IqeUIWa4Iewufh5594jF1qYD8u1_ggafQhm
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1daxQxFA26fag-WK2Kq1Xy4Gum-ZhP3-q2SxG6CLpQHyQkmaTddnZm6c5q66_3ppNZVhEqIszLwFyYcG_mnDvcnIPQW1tYYVWhSWF1AQ2KiIkClkyYNgbgnRqa-tPIJ5P0eBp_OE1Ow_yTPwsD3VwEoEBMWXcnGrxGU93uz-awvfYZWfKIkk-euMRpDugrANKymLhrJqurs-hicXYfbaUJ8PIB2ppOPh586S0M_PO--8ozQUSeFL8Me916zii4_LBXdit-6tVL_wxVG1R0e1Uv1M13VVUbqDTeQZf9erphlMto1erI_PhN6vH_LPgxehTIKz7oqu0JumfrXbQ96j3jdtHDDXnDp-jroVei6EybcOPw6LyCgpv7qTJff9j_A8aT5put8ImFJgCPGzXHR50xT2mXeFbj97MmOPWYIG2Ag8j6MzQdH30eHZNg50AMgF5LvJe5K6jKCkqd4Upz51xpTCHiorTOZVR5G5zEcVcCq8ktS3KbCSVKWyojnHiOBnVT2xcIC-VEzHVZMgvBCdNAU7hmigOD09yaIUr7zEkTtM695UYl-6G2C7lOufQplzSWkPIhouvARSf3cXfIu740ZGAtHRuRAEp3B-_1xSTDx2MpgVMzYKXAvIeIrQvsb9_n5T_EvEIP_J0fgeN0Dw3aq5V9DWSr1W_CLvoJJuAneA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+Chloramphenicol+with+Novel+Metal+Foam+Electrodes+in+Bioelectrochemical+Systems&rft.jtitle=Electrochimica+acta&rft.au=Wu%2C+Dan&rft.au=Sun%2C+Faqian&rft.au=Zhou%2C+Yan&rft.date=2017-06-20&rft.issn=0013-4686&rft.volume=240&rft.spage=136&rft.epage=145&rft_id=info:doi/10.1016%2Fj.electacta.2017.04.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2017_04_059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon