Learning the geometry of short‐circuit faults in power systems for real‐time fault detection and classification

Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault cur...

Full description

Saved in:
Bibliographic Details
Published inIET cyber-physical systems Vol. 8; no. 4; pp. 289 - 306
Main Authors Naranjo Cuéllar, Juan Pablo, Ramos López, Gustavo, Giraldo Trujillo, Luis Felipe
Format Journal Article
LanguageEnglish
Published Southampton John Wiley & Sons, Inc 01.12.2023
Wiley
Subjects
Online AccessGet full text
ISSN2398-3396
2398-3396
DOI10.1049/cps2.12074

Cover

Abstract Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real‐time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three‐phase voltages of the power system. The process was conducted in real time using the HIL402 system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time. The work proposed in this paper presents a fault characterisation technique for different types of faults based on the eigenvalues and eigenvectors of the matrix associated with the ellipse generated by the Clarke transform of the three‐phase voltages of a power system in real time.
AbstractList Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real‐time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three‐phase voltages of the power system. The process was conducted in real time using the HIL402 system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time. The work proposed in this paper presents a fault characterisation technique for different types of faults based on the eigenvalues and eigenvectors of the matrix associated with the ellipse generated by the Clarke transform of the three‐phase voltages of a power system in real time.
Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real‐time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three‐phase voltages of the power system. The process was conducted in real time using the HIL402 system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time.
Abstract Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real‐time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three‐phase voltages of the power system. The process was conducted in real time using the HIL402 system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time.
Author Naranjo Cuéllar, Juan Pablo
Giraldo Trujillo, Luis Felipe
Ramos López, Gustavo
Author_xml – sequence: 1
  givenname: Juan Pablo
  orcidid: 0009-0007-0861-9616
  surname: Naranjo Cuéllar
  fullname: Naranjo Cuéllar, Juan Pablo
  organization: Universidad de los Andes
– sequence: 2
  givenname: Gustavo
  orcidid: 0000-0003-2240-7875
  surname: Ramos López
  fullname: Ramos López, Gustavo
  email: gramos@uniandes.edu.co
  organization: Universidad de los Andes
– sequence: 3
  givenname: Luis Felipe
  surname: Giraldo Trujillo
  fullname: Giraldo Trujillo, Luis Felipe
  organization: Universidad de los Andes
BookMark eNp9kM2KFDEURoOM4DjOxicIuFN6zG-lspRGnYEGBXUdUqmbnjTVSZmkaGrnI_iMPonVU4O4mtW9fJx74H4v0UVMERB6TckNJUK_d2NhN5QRJZ6hS8Z1u-FcNxf_7S_QdSkHQghrlZCcXKKyA5tjiHtc7wHvIR2h5hknj8t9yvXPr98uZDeFir2dhlpwiHhMJ8i4zKXCsWCfMs5ghwWt4Qgrh3uo4GpIEdvYYzfYUoIPzp6jV-i5t0OB68d5hX58-vh9e7vZffl8t_2w2zjBtNh4LbxnlKiOtqzvvRDcOkah01IDKNaTRnXOy6aRCrQUsiVUckoaDx1Ir_kVulu9fbIHM-ZwtHk2yQbzEKS8NzbX4AYwynHRtFI13AmhGOkaCrp30DrFpANYXO9W1xRHO5_sMPwTUmLO9Ztz_eah_oV-s9JjTj8nKNUc0pTj8qzhRDNOJWmbhXq7Ui6nUjL4p5V0hU9hgPkJ0my_fmPrzV8eaKZV
Cites_doi 10.1016/j.ijepes.2021.107102
10.1109/34.765658
10.3390/app10144965
10.1016/j.prime.2023.100107
10.1109/t‐aiee.1951.5060554
10.1109/tia.2015.2397176
10.1016/j.epsr.2021.107430
10.48084/etasr.5107
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1049/cps2.12074
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2398-3396
EndPage 306
ExternalDocumentID oai_doaj_org_article_7c34685763c44720b61e9dce8c725cee
10.1049/cps2.12074
10_1049_cps2_12074
CPS212074
Genre article
GrantInformation_xml – fundername: Vice Presidency for Research & Creation publication fund at the Universidad de los Andes
GroupedDBID 0R~
1OC
24P
6IK
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADBBV
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
IFIPE
IPLJI
ITC
JAVBF
K7-
M7S
M~E
O9-
OCL
OK1
PIMPY
PTHSS
RIE
RUI
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IGS
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c4294-f94ff2107b182ddf443ac21eb959ee72d067bcf56657e954580153106febe5f93
IEDL.DBID 24P
ISSN 2398-3396
IngestDate Fri Oct 03 12:52:48 EDT 2025
Tue Aug 19 16:24:08 EDT 2025
Wed Aug 13 04:30:55 EDT 2025
Wed Oct 29 21:10:39 EDT 2025
Wed Jan 22 16:18:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4294-f94ff2107b182ddf443ac21eb959ee72d067bcf56657e954580153106febe5f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-0861-9616
0000-0003-2240-7875
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcps2.12074
PQID 3092315086
PQPubID 6853487
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_7c34685763c44720b61e9dce8c725cee
unpaywall_primary_10_1049_cps2_12074
proquest_journals_3092315086
crossref_primary_10_1049_cps2_12074
wiley_primary_10_1049_cps2_12074_CPS212074
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Southampton
PublicationPlace_xml – name: Southampton
PublicationTitle IET cyber-physical systems
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 51
2021
2000; 21
2022; 12
1998
2008
2007
2003
2021; 133
2021; 199
2017; 131
2020; 10
2023; 3
1951; 70
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_10_1
Halir R. (e_1_2_10_13_1) 1998
Microchip Technology, Inc. (e_1_2_10_15_1) 2007
Anderson P.M. (e_1_2_10_2_1) 2003
Khan S. (e_1_2_10_3_1) 2008
Grossman S.I. (e_1_2_10_11_1) 2007
Philipp M. (e_1_2_10_16_1) 2017; 131
e_1_2_10_4_1
e_1_2_10_6_1
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
References_xml – volume: 21
  start-page: 476
  issue: 5
  year: 2000
  end-page: 480
  article-title: Direct least square fitting of ellipses
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 524
  year: 2007
– volume: 3
  year: 2023
  article-title: Fast and accurate fault detection and classification in transmission lines using extreme learning machine
  publication-title: Adv. Electr. Comput. Eng.
– start-page: 1
  year: 2007
  end-page: 2
– volume: 199
  year: 2021
  article-title: End to end machine learning for fault detection and classification in power transmission lines
  publication-title: Elec. Power Syst. Res.
– volume: 10
  issue: 14
  year: 2020
  article-title: Application of machine learning for fault classification and location in a radial distribution grid
  publication-title: Appl. Sci.
– volume: 70
  start-page: 1248
  issue: 2
  year: 1951
  end-page: 1255
  article-title: Determination of instantaneous currents and voltages by means of alpha, beta and zero components
  publication-title: Trans. Am. Inst. Electr. Eng.
– year: 2008
– year: 2003
– year: 2021
– volume: 12
  start-page: 8972
  issue: 4
  year: 2022
  end-page: 8977
  article-title: An intelligent fault detection and classification scheme for distribution lines using machine learning
  publication-title: Eng. Technol. Appl. Sci. Res.
– volume: 131
  start-page: 685
  year: 2017
  end-page: 700
  article-title: Measuring the stability of results from supervised statistical learning
  publication-title: J. Comput. Graph Stat.
– volume: 51
  start-page: 1
  issue: 4
  year: 2015
  end-page: 2790
  article-title: Characterizing voltage sags and swells using three‐phase voltage ellipse parameters
  publication-title: IEEE Trans. Ind. Appl.
– year: 1998
– volume: 133
  year: 2021
  article-title: A deep learning based intelligent approach in detection and classification of transmission line faults
  publication-title: Int. J. Electr. Power Energy Syst.
– volume-title: Numerically Stable Direct Least Squares Fitting of Ellipses
  year: 1998
  ident: e_1_2_10_13_1
– volume-title: Industrial Power Systems / Shoaib Khan
  year: 2008
  ident: e_1_2_10_3_1
– ident: e_1_2_10_7_1
  doi: 10.1016/j.ijepes.2021.107102
– start-page: 1
  volume-title: MCP3004/3008 Datasheet
  year: 2007
  ident: e_1_2_10_15_1
– volume: 131
  start-page: 685
  year: 2017
  ident: e_1_2_10_16_1
  article-title: Measuring the stability of results from supervised statistical learning
  publication-title: J. Comput. Graph Stat.
– ident: e_1_2_10_14_1
– ident: e_1_2_10_12_1
  doi: 10.1109/34.765658
– ident: e_1_2_10_4_1
  doi: 10.3390/app10144965
– ident: e_1_2_10_5_1
  doi: 10.1016/j.prime.2023.100107
– volume-title: Analysis of Faulted Power Systems / P. Anderson
  year: 2003
  ident: e_1_2_10_2_1
– ident: e_1_2_10_9_1
  doi: 10.1109/t‐aiee.1951.5060554
– ident: e_1_2_10_10_1
  doi: 10.1109/tia.2015.2397176
– start-page: 524
  volume-title: Elementary Linear Algebra with Applications
  year: 2007
  ident: e_1_2_10_11_1
– ident: e_1_2_10_8_1
  doi: 10.1016/j.epsr.2021.107430
– ident: e_1_2_10_6_1
  doi: 10.48084/etasr.5107
SSID ssj0002874530
Score 2.2419736
Snippet Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the...
Abstract Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 289
SubjectTerms Accuracy
Algorithms
Classification
Damage detection
Eigenvalues
Eigenvectors
Fault detection
fault diagnosis
Faults
hardware‐in‐the loop simulation
Linear algebra
Machine learning
Methods
Neural networks
Power
power grids
Programming languages
Python
Real time
Short circuits
Support vector machines
Time lag
Time measurement
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMeDeFEP4hPXFwE9CdVuM33kqKKIBxFU8BbSNKMra3fZdhFvfgQ_o5_ESdqV3YtevJUyhzD_JvObZphh7JByCk2BTwdGmyggIqY9B2iCLug8AhFatL5A9ia5eoDrx_hxatSXqwlr2gM3jjtJjYAkIyoWBiCNwjzpWlkYm5k0iumEd6dvmMmpZOrF_zJKIRbhpB8pyBMzrKLjbhSmMBOBfKP-GbpcGJdD_f6m-_1ZXvUB53KFLbekyE-bFa6yOVuusaWp_oHrrGq7oz5xwjj-ZAevth698wHy6pmw-uvj0_RGZtyrOepxv654r-RDNxaNNw2cK07Iygkb-2Tqpsw3drywta_QKrkuC24cYLuKIi_iBnu4vLg_vwraKQqBoVgDAUpApMQuzSmVKAoEECRL1-YyltamUUHxKjcYuysYK909GhECQV-CpG-MUmyy-XJQ2i3GYyGh0CSgSWNAazLMDOpcYI6Y2BA67GDiWTVsmmUof8kNUjn_K-__DjtzTv-xcA2u_QuSXbWyq79k77DdiWSq3XWVEqHDVULOpMMOf2T8dSlHXuFfTNT57V3kn7b_Y907bNENrG8KYnbZfD0a2z3Cmjrf91_wN6Cd9-k
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB2SzaHpobRpQrZJi6A5Fdx4JdleHUppQkLoYQlpA7kJWR-bhY3trL2U3PoT8hv7SzqS7W33sjdjBmzmSZonzegNwAnuKRQGPhVppWmEjBjnHHc6GnGVU85i62wokJ2kV7f8-11ytwWT_i6ML6vs18SwUJtS-zPyUxZ7KoJ0Iv1aPUa-a5TPrvYtNFTXWsF8CRJj27BDvTLWAHbOLibXN6tTl6DuzuJep5SLU13V9POIxhlfi0xBwH-Ndb5YFpV6-qXm83UeGwLR5Wt41TFI8q2F_A1s2WIPXv6nK_gW6k41dUqQ3pGpLR9ss3gipSP1PdLtP7-f9Wyhl7OGOLWcNzWZFaTy7dJIK-xcE6SyBOnkHE199_nWjhjbhMqtgqjCEO2Jt680CuDuw-3lxc_zq6jrrhBpjEE8coI7hz7KctxiGOM4ZwjXyOYiEdZm1GAcy7VLfGrGCp9fQ-aAZDB1iHviBDuAQVEW9hBIwgQ3CoHVWcKd1WM31k7lzOXOpTbmQ_jYe1ZWrYiGDMlvLqT3vwz-H8KZd_rKwgtfhxflYiq7eSQzzXg6xk0S05xnNM7TkRVG27HOaIIBfwjHPWSym421_Dd2hnCygnHjr3wKCG8wkefXP2h4erf5k0ew61vUtyUwxzBoFkv7HolMk3_oRudfRsf2Cg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBXt5hB66GdKt6RB0JwK3uxa8oeOaUgIPYRAspCehDTWbJZuvGZtU9JTf0J_Y39JR7J3yfYQCr0ZMza29Ebzxhq_YeyQcgpDgc9EYCCOiBGTz0mEaCKNjaUYO3ShQPYiPZ_KLzfJzYO_-Dt9iM0HN-8ZYb32Dl4V2K3zXdYp1RFUdTyaxBQGn7KdNCE2PmA704vL46-hp5zKIyFUulYl3bpgKw4Fuf4tjrnblpW5_24Wi23WGsLO2Qtm1g_cVZt8G7WNHcGPv7Qc_-eNXrLnPSflxx2IXrEnrnzNnj1QKnzD6l6HdcaJMPKZW965ZnXPl8jrWyLwv3_-gvkK2nnD0bSLpubzkle-ARvvpKJrTuSYE0FdkKnvZ9_Z8cI1oRas5KYsOHgq72uXAlz22PTs9PrkPOr7NURAUU1GqCQipZCZpaSlKFBKQQCYOKsS5VwWFxQZLWDiN3uc8jt2xEWIXqZISEpQibdsUC5L947xRChZGIIKZIlEBznmgMYKtIipG8sh-7iePV11shw6bKdLpf0Q6jCEQ_bZT-zGwktphxPL1Uz3nqkzEDLNKe0SIGUWj206caoAl0MWJ0Qhhmx_DQvd-3etxdgTYyK36ZAdbqDy6KN8ClP_iIk-ubyKw9H7f7vnPhs0q9Z9IFbU2IMe-H8AAVUSTg
  priority: 102
  providerName: Unpaywall
Title Learning the geometry of short‐circuit faults in power systems for real‐time fault detection and classification
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcps2.12074
https://www.proquest.com/docview/3092315086
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cps2.12074
https://doaj.org/article/7c34685763c44720b61e9dce8c725cee
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2398-3396
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library (Open Access collection)
  customDbUrl:
  eissn: 2398-3396
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: IDLOA
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2398-3396
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2398-3396
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2398-3396
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: AVUZU
  dateStart: 20161231
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2398-3396
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: 24P
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH507WHboaz7wdJ2QbCeBt5iSf4h2KUtTcsOIawNdCchyVIWyJwQO5Te-if0b-xf0ifZyZpLoRdjm2cw79Pz-yQ9fw_gCOcUChOfiowyNEJGjDHHnYlirjTlrGedDQWyg_RixH9dJ9db8HP1L0yjD7FecPOREb7XPsCVbrqQIKlFEM28ot9jiinwFezESGT8-KZ8uF5hCUruodmI17iLGFqs9Em5-PH_8Y2MFIT7N9jm62U5V7c3ajrd5K8hAfXfwW7LHMlxA_UebNnyPbx9oif4AapWLXVMkNaRsZ39s_Xilswcqf4izX64uzeThVlOauLUclpXZFKSuW-TRhpB54oghSVII6do6rvON3aksHWo2CqJKgtiPOH2FUYB1I8w6p9dnV5EbVeFyGDu4ZET3Dmc6GUapxZF4ThnCFNstUiEtRktMH9p4xK_JWOF31dDxoAkMHWId-IE-wTb5ay0n4EkTPBCIaAmS7izJne5cUozp51LbY934OvKs3LeiGfIsOnNhfT-l8H_HTjxTl9beMHrcGO2GMs2fmRmGE9znBwxw3lGezqNrSiMzU1GE0z0HThcQSbbKKwk63n6ihQ07cDRGsZnX-VbQPgZE3k6vKThbP8lxgfwxjeqbwphDmG7XiztF6Qzte6GUYvHvH_ehZ2Ts8HwdzcsDeDVaDA8_vMIjoX3Xg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaq9lA4IH7FQgFLlAtSaNaeJJtDhWhptaVlVUEr9WYc_2xXWpKwyaraG4_AE_EwPAljJ1nYy956iyJLccbz8409_oaQXcwpJAY-GSipWICIGG0OrAr6IDMGPDTW-ALZUTy8hE9X0dUG-d3dhXFllZ1P9I5aF8rtke_x0EERhBPx-_JH4LpGudPVroWGbFsr6H1PMdZe7Dg1ixtM4ar9k4-43m8YOz66OBwGbZeBQKEvhsCmYC0mPkmGUFtrC8Bx2n2TpVFqTMI0-vNM2cgdUZjUnTNhBEVQFFv8_8g6MiYMAVvAIcXkb-vgaHT-ZbnL49nkedjxokK6p8qKveuzMIGVSOgbBqyg3O15XsrFjZxOV3GzD3zH98m9FrHSD42KPSAbJn9I7v7HY_iIVC1L65ginKRjU3w39WxBC0ura4T3f37-UpOZmk9qauV8Wld0ktPStWejDZF0RRE6U4SvUxzqut0346g2ta8Uy6nMNVUO6LvKJq9Mj8nlrcj5CdnMi9w8JTTiKWiJiqSSCKxRAztQVmbcZtbGJoQeed1JVpQNaYfwh-2QCid_4eXfIwdO6MsRjmjbvyhmY9HarUgUh3iASRlXAAkLs7hvUq3MQCUsQoDRIzvdkonW-ivxT1d7ZHe5jGun8tav8Joh4vD8K_NPz9Z_8hXZHl58PhNnJ6PT5-QOQ1DWlN_skM16NjcvEETV2ctWUyn5dtvG8RfbLjIn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ni9RAEC10Fvw4iJ8466oN7kmIZtKVZPq4rg7rB8uCjixemk6naxyYzYRJBtmbP8Hf6C-xupMZncuCtxCKEPql8l6lK68ADrmmMEx8JrLGJhErYs45JBuN0BQJytiRCw2yp9nJFD-cp-d9b47_F6bzh9h-cPOZEd7XPsFdXVJXcKI3ybR1k7waJcyB12GPiTzGAewdfZ1-m24_sgQz9zBvxNvcRVKqbGNRiur13wvskFLw7t8RnDfXVW0uf5jFYlfCBg6a3IU7vXgURx3a9-Caq-7D7X8sBR9A0xumzgQrOzFzywvXri7FkkTznZX275-_7Hxl1_NWkFkv2kbMK1H7SWmi83RuBKtYwUpywaF-8HwXJ0rXhqatSpiqFNZrbt9kFHB9CNPJuy_HJ1E_WCGyTD8YkUIirvXygquLsiREyUiNXKFS5VyelExhhaXU78o45bfWWDSwDsyIIU9JyUcwqJaVewwilQpLw5jaPEVydkxjS6aQVBBlLsYhvNisrK47_wwd9r1Rab_-Oqz_EN74Rd9GeM_rcGK5muk-hXRuJWZjro-kRcyTuMhGTpXWjW2epMz1QzjYQKb7RGy0jL2CZRWaDeFwC-OVt_IyIHxFiD4--5yEo_3_CX4ON87eTvSn96cfn8AtP7a-a4s5gEG7WrunLG7a4ln_CP8BQAr2-Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBXt5hB66GdKt6RB0JwK3uxa8oeOaUgIPYRAspCehDTWbJZuvGZtU9JTf0J_Y39JR7J3yfYQCr0ZMza29Ebzxhq_YeyQcgpDgc9EYCCOiBGTz0mEaCKNjaUYO3ShQPYiPZ_KLzfJzYO_-Dt9iM0HN-8ZYb32Dl4V2K3zXdYp1RFUdTyaxBQGn7KdNCE2PmA704vL46-hp5zKIyFUulYl3bpgKw4Fuf4tjrnblpW5_24Wi23WGsLO2Qtm1g_cVZt8G7WNHcGPv7Qc_-eNXrLnPSflxx2IXrEnrnzNnj1QKnzD6l6HdcaJMPKZW965ZnXPl8jrWyLwv3_-gvkK2nnD0bSLpubzkle-ARvvpKJrTuSYE0FdkKnvZ9_Z8cI1oRas5KYsOHgq72uXAlz22PTs9PrkPOr7NURAUU1GqCQipZCZpaSlKFBKQQCYOKsS5VwWFxQZLWDiN3uc8jt2xEWIXqZISEpQibdsUC5L947xRChZGIIKZIlEBznmgMYKtIipG8sh-7iePV11shw6bKdLpf0Q6jCEQ_bZT-zGwktphxPL1Uz3nqkzEDLNKe0SIGUWj206caoAl0MWJ0Qhhmx_DQvd-3etxdgTYyK36ZAdbqDy6KN8ClP_iIk-ubyKw9H7f7vnPhs0q9Z9IFbU2IMe-H8AAVUSTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+geometry+of+short%E2%80%90circuit+faults+in+power+systems+for+real%E2%80%90time+fault+detection+and+classification&rft.jtitle=IET+cyber-physical+systems&rft.au=Naranjo+Cu%C3%A9llar%2C+Juan+Pablo&rft.au=Ramos+L%C3%B3pez%2C+Gustavo&rft.au=Giraldo+Trujillo%2C+Luis+Felipe&rft.date=2023-12-01&rft.issn=2398-3396&rft.eissn=2398-3396&rft.volume=8&rft.issue=4&rft.spage=289&rft.epage=306&rft_id=info:doi/10.1049%2Fcps2.12074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cps2_12074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-3396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-3396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-3396&client=summon