Learning the geometry of short‐circuit faults in power systems for real‐time fault detection and classification
Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault cur...
        Saved in:
      
    
          | Published in | IET cyber-physical systems Vol. 8; no. 4; pp. 289 - 306 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Southampton
          John Wiley & Sons, Inc
    
        01.12.2023
     Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2398-3396 2398-3396  | 
| DOI | 10.1049/cps2.12074 | 
Cover
| Abstract | Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real‐time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three‐phase voltages of the power system. The process was conducted in real time using the HIL402 system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time.
The work proposed in this paper presents a fault characterisation technique for different types of faults based on the eigenvalues and eigenvectors of the matrix associated with the ellipse generated by the Clarke transform of the three‐phase voltages of a power system in real time. | 
    
|---|---|
| AbstractList | Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real‐time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three‐phase voltages of the power system. The process was conducted in real time using the HIL402 system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time.
The work proposed in this paper presents a fault characterisation technique for different types of faults based on the eigenvalues and eigenvectors of the matrix associated with the ellipse generated by the Clarke transform of the three‐phase voltages of a power system in real time. Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real‐time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three‐phase voltages of the power system. The process was conducted in real time using the HIL402 system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time. Abstract Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real‐time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three‐phase voltages of the power system. The process was conducted in real time using the HIL402 system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time.  | 
    
| Author | Naranjo Cuéllar, Juan Pablo Giraldo Trujillo, Luis Felipe Ramos López, Gustavo  | 
    
| Author_xml | – sequence: 1 givenname: Juan Pablo orcidid: 0009-0007-0861-9616 surname: Naranjo Cuéllar fullname: Naranjo Cuéllar, Juan Pablo organization: Universidad de los Andes – sequence: 2 givenname: Gustavo orcidid: 0000-0003-2240-7875 surname: Ramos López fullname: Ramos López, Gustavo email: gramos@uniandes.edu.co organization: Universidad de los Andes – sequence: 3 givenname: Luis Felipe surname: Giraldo Trujillo fullname: Giraldo Trujillo, Luis Felipe organization: Universidad de los Andes  | 
    
| BookMark | eNp9kM2KFDEURoOM4DjOxicIuFN6zG-lspRGnYEGBXUdUqmbnjTVSZmkaGrnI_iMPonVU4O4mtW9fJx74H4v0UVMERB6TckNJUK_d2NhN5QRJZ6hS8Z1u-FcNxf_7S_QdSkHQghrlZCcXKKyA5tjiHtc7wHvIR2h5hknj8t9yvXPr98uZDeFir2dhlpwiHhMJ8i4zKXCsWCfMs5ghwWt4Qgrh3uo4GpIEdvYYzfYUoIPzp6jV-i5t0OB68d5hX58-vh9e7vZffl8t_2w2zjBtNh4LbxnlKiOtqzvvRDcOkah01IDKNaTRnXOy6aRCrQUsiVUckoaDx1Ir_kVulu9fbIHM-ZwtHk2yQbzEKS8NzbX4AYwynHRtFI13AmhGOkaCrp30DrFpANYXO9W1xRHO5_sMPwTUmLO9Ztz_eah_oV-s9JjTj8nKNUc0pTj8qzhRDNOJWmbhXq7Ui6nUjL4p5V0hU9hgPkJ0my_fmPrzV8eaKZV | 
    
| Cites_doi | 10.1016/j.ijepes.2021.107102 10.1109/34.765658 10.3390/app10144965 10.1016/j.prime.2023.100107 10.1109/t‐aiee.1951.5060554 10.1109/tia.2015.2397176 10.1016/j.epsr.2021.107430 10.48084/etasr.5107  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.1049/cps2.12074 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2398-3396 | 
    
| EndPage | 306 | 
    
| ExternalDocumentID | oai_doaj_org_article_7c34685763c44720b61e9dce8c725cee 10.1049/cps2.12074 10_1049_cps2_12074 CPS212074  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: Vice Presidency for Research & Creation publication fund at the Universidad de los Andes | 
    
| GroupedDBID | 0R~ 1OC 24P 6IK AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACXQS ADBBV AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BCNDV BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO IDLOA IFIPE IPLJI ITC JAVBF K7- M7S M~E O9- OCL OK1 PIMPY PTHSS RIE RUI AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IGS PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4294-f94ff2107b182ddf443ac21eb959ee72d067bcf56657e954580153106febe5f93 | 
    
| IEDL.DBID | 24P | 
    
| ISSN | 2398-3396 | 
    
| IngestDate | Fri Oct 03 12:52:48 EDT 2025 Tue Aug 19 16:24:08 EDT 2025 Wed Aug 13 04:30:55 EDT 2025 Wed Oct 29 21:10:39 EDT 2025 Wed Jan 22 16:18:57 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | Attribution-NonCommercial-NoDerivs cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4294-f94ff2107b182ddf443ac21eb959ee72d067bcf56657e954580153106febe5f93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0007-0861-9616 0000-0003-2240-7875  | 
    
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcps2.12074 | 
    
| PQID | 3092315086 | 
    
| PQPubID | 6853487 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7c34685763c44720b61e9dce8c725cee unpaywall_primary_10_1049_cps2_12074 proquest_journals_3092315086 crossref_primary_10_1049_cps2_12074 wiley_primary_10_1049_cps2_12074_CPS212074  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2023 2023-12-00 20231201 2023-12-01  | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Southampton | 
    
| PublicationPlace_xml | – name: Southampton | 
    
| PublicationTitle | IET cyber-physical systems | 
    
| PublicationYear | 2023 | 
    
| Publisher | John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | 2015; 51 2021 2000; 21 2022; 12 1998 2008 2007 2003 2021; 133 2021; 199 2017; 131 2020; 10 2023; 3 1951; 70 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_10_1 Halir R. (e_1_2_10_13_1) 1998 Microchip Technology, Inc. (e_1_2_10_15_1) 2007 Anderson P.M. (e_1_2_10_2_1) 2003 Khan S. (e_1_2_10_3_1) 2008 Grossman S.I. (e_1_2_10_11_1) 2007 Philipp M. (e_1_2_10_16_1) 2017; 131 e_1_2_10_4_1 e_1_2_10_6_1 e_1_2_10_5_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1  | 
    
| References_xml | – volume: 21 start-page: 476 issue: 5 year: 2000 end-page: 480 article-title: Direct least square fitting of ellipses publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 524 year: 2007 – volume: 3 year: 2023 article-title: Fast and accurate fault detection and classification in transmission lines using extreme learning machine publication-title: Adv. Electr. Comput. Eng. – start-page: 1 year: 2007 end-page: 2 – volume: 199 year: 2021 article-title: End to end machine learning for fault detection and classification in power transmission lines publication-title: Elec. Power Syst. Res. – volume: 10 issue: 14 year: 2020 article-title: Application of machine learning for fault classification and location in a radial distribution grid publication-title: Appl. Sci. – volume: 70 start-page: 1248 issue: 2 year: 1951 end-page: 1255 article-title: Determination of instantaneous currents and voltages by means of alpha, beta and zero components publication-title: Trans. Am. Inst. Electr. Eng. – year: 2008 – year: 2003 – year: 2021 – volume: 12 start-page: 8972 issue: 4 year: 2022 end-page: 8977 article-title: An intelligent fault detection and classification scheme for distribution lines using machine learning publication-title: Eng. Technol. Appl. Sci. Res. – volume: 131 start-page: 685 year: 2017 end-page: 700 article-title: Measuring the stability of results from supervised statistical learning publication-title: J. Comput. Graph Stat. – volume: 51 start-page: 1 issue: 4 year: 2015 end-page: 2790 article-title: Characterizing voltage sags and swells using three‐phase voltage ellipse parameters publication-title: IEEE Trans. Ind. Appl. – year: 1998 – volume: 133 year: 2021 article-title: A deep learning based intelligent approach in detection and classification of transmission line faults publication-title: Int. J. Electr. Power Energy Syst. – volume-title: Numerically Stable Direct Least Squares Fitting of Ellipses year: 1998 ident: e_1_2_10_13_1 – volume-title: Industrial Power Systems / Shoaib Khan year: 2008 ident: e_1_2_10_3_1 – ident: e_1_2_10_7_1 doi: 10.1016/j.ijepes.2021.107102 – start-page: 1 volume-title: MCP3004/3008 Datasheet year: 2007 ident: e_1_2_10_15_1 – volume: 131 start-page: 685 year: 2017 ident: e_1_2_10_16_1 article-title: Measuring the stability of results from supervised statistical learning publication-title: J. Comput. Graph Stat. – ident: e_1_2_10_14_1 – ident: e_1_2_10_12_1 doi: 10.1109/34.765658 – ident: e_1_2_10_4_1 doi: 10.3390/app10144965 – ident: e_1_2_10_5_1 doi: 10.1016/j.prime.2023.100107 – volume-title: Analysis of Faulted Power Systems / P. Anderson year: 2003 ident: e_1_2_10_2_1 – ident: e_1_2_10_9_1 doi: 10.1109/t‐aiee.1951.5060554 – ident: e_1_2_10_10_1 doi: 10.1109/tia.2015.2397176 – start-page: 524 volume-title: Elementary Linear Algebra with Applications year: 2007 ident: e_1_2_10_11_1 – ident: e_1_2_10_8_1 doi: 10.1016/j.epsr.2021.107430 – ident: e_1_2_10_6_1 doi: 10.48084/etasr.5107  | 
    
| SSID | ssj0002874530 | 
    
| Score | 2.2419736 | 
    
| Snippet | Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the... Abstract Given the short time intervals in which short‐circuit faults occur in a power system, a certain time delay between the moment of a fault's inception...  | 
    
| SourceID | doaj unpaywall proquest crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 289 | 
    
| SubjectTerms | Accuracy Algorithms Classification Damage detection Eigenvalues Eigenvectors Fault detection fault diagnosis Faults hardware‐in‐the loop simulation Linear algebra Machine learning Methods Neural networks Power power grids Programming languages Python Real time Short circuits Support vector machines Time lag Time measurement Wavelet transforms  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMeDeFEP4hPXFwE9CdVuM33kqKKIBxFU8BbSNKMra3fZdhFvfgQ_o5_ESdqV3YtevJUyhzD_JvObZphh7JByCk2BTwdGmyggIqY9B2iCLug8AhFatL5A9ia5eoDrx_hxatSXqwlr2gM3jjtJjYAkIyoWBiCNwjzpWlkYm5k0iumEd6dvmMmpZOrF_zJKIRbhpB8pyBMzrKLjbhSmMBOBfKP-GbpcGJdD_f6m-_1ZXvUB53KFLbekyE-bFa6yOVuusaWp_oHrrGq7oz5xwjj-ZAevth698wHy6pmw-uvj0_RGZtyrOepxv654r-RDNxaNNw2cK07Iygkb-2Tqpsw3drywta_QKrkuC24cYLuKIi_iBnu4vLg_vwraKQqBoVgDAUpApMQuzSmVKAoEECRL1-YyltamUUHxKjcYuysYK909GhECQV-CpG-MUmyy-XJQ2i3GYyGh0CSgSWNAazLMDOpcYI6Y2BA67GDiWTVsmmUof8kNUjn_K-__DjtzTv-xcA2u_QuSXbWyq79k77DdiWSq3XWVEqHDVULOpMMOf2T8dSlHXuFfTNT57V3kn7b_Y907bNENrG8KYnbZfD0a2z3Cmjrf91_wN6Cd9-k priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB2SzaHpobRpQrZJi6A5Fdx4JdleHUppQkLoYQlpA7kJWR-bhY3trL2U3PoT8hv7SzqS7W33sjdjBmzmSZonzegNwAnuKRQGPhVppWmEjBjnHHc6GnGVU85i62wokJ2kV7f8-11ytwWT_i6ML6vs18SwUJtS-zPyUxZ7KoJ0Iv1aPUa-a5TPrvYtNFTXWsF8CRJj27BDvTLWAHbOLibXN6tTl6DuzuJep5SLU13V9POIxhlfi0xBwH-Ndb5YFpV6-qXm83UeGwLR5Wt41TFI8q2F_A1s2WIPXv6nK_gW6k41dUqQ3pGpLR9ss3gipSP1PdLtP7-f9Wyhl7OGOLWcNzWZFaTy7dJIK-xcE6SyBOnkHE199_nWjhjbhMqtgqjCEO2Jt680CuDuw-3lxc_zq6jrrhBpjEE8coI7hz7KctxiGOM4ZwjXyOYiEdZm1GAcy7VLfGrGCp9fQ-aAZDB1iHviBDuAQVEW9hBIwgQ3CoHVWcKd1WM31k7lzOXOpTbmQ_jYe1ZWrYiGDMlvLqT3vwz-H8KZd_rKwgtfhxflYiq7eSQzzXg6xk0S05xnNM7TkRVG27HOaIIBfwjHPWSym421_Dd2hnCygnHjr3wKCG8wkefXP2h4erf5k0ew61vUtyUwxzBoFkv7HolMk3_oRudfRsf2Cg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBXt5hB66GdKt6RB0JwK3uxa8oeOaUgIPYRAspCehDTWbJZuvGZtU9JTf0J_Y39JR7J3yfYQCr0ZMza29Ebzxhq_YeyQcgpDgc9EYCCOiBGTz0mEaCKNjaUYO3ShQPYiPZ_KLzfJzYO_-Dt9iM0HN-8ZYb32Dl4V2K3zXdYp1RFUdTyaxBQGn7KdNCE2PmA704vL46-hp5zKIyFUulYl3bpgKw4Fuf4tjrnblpW5_24Wi23WGsLO2Qtm1g_cVZt8G7WNHcGPv7Qc_-eNXrLnPSflxx2IXrEnrnzNnj1QKnzD6l6HdcaJMPKZW965ZnXPl8jrWyLwv3_-gvkK2nnD0bSLpubzkle-ARvvpKJrTuSYE0FdkKnvZ9_Z8cI1oRas5KYsOHgq72uXAlz22PTs9PrkPOr7NURAUU1GqCQipZCZpaSlKFBKQQCYOKsS5VwWFxQZLWDiN3uc8jt2xEWIXqZISEpQibdsUC5L947xRChZGIIKZIlEBznmgMYKtIipG8sh-7iePV11shw6bKdLpf0Q6jCEQ_bZT-zGwktphxPL1Uz3nqkzEDLNKe0SIGUWj206caoAl0MWJ0Qhhmx_DQvd-3etxdgTYyK36ZAdbqDy6KN8ClP_iIk-ubyKw9H7f7vnPhs0q9Z9IFbU2IMe-H8AAVUSTg priority: 102 providerName: Unpaywall  | 
    
| Title | Learning the geometry of short‐circuit faults in power systems for real‐time fault detection and classification | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcps2.12074 https://www.proquest.com/docview/3092315086 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cps2.12074 https://doaj.org/article/7c34685763c44720b61e9dce8c725cee  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2398-3396 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library (Open Access collection) customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: IDLOA dateStart: 20161201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: AVUZU dateStart: 20161231 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: 24P dateStart: 20160101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH507WHboaz7wdJ2QbCeBt5iSf4h2KUtTcsOIawNdCchyVIWyJwQO5Te-if0b-xf0ifZyZpLoRdjm2cw79Pz-yQ9fw_gCOcUChOfiowyNEJGjDHHnYlirjTlrGedDQWyg_RixH9dJ9db8HP1L0yjD7FecPOREb7XPsCVbrqQIKlFEM28ot9jiinwFezESGT8-KZ8uF5hCUruodmI17iLGFqs9Em5-PH_8Y2MFIT7N9jm62U5V7c3ajrd5K8hAfXfwW7LHMlxA_UebNnyPbx9oif4AapWLXVMkNaRsZ39s_Xilswcqf4izX64uzeThVlOauLUclpXZFKSuW-TRhpB54oghSVII6do6rvON3aksHWo2CqJKgtiPOH2FUYB1I8w6p9dnV5EbVeFyGDu4ZET3Dmc6GUapxZF4ThnCFNstUiEtRktMH9p4xK_JWOF31dDxoAkMHWId-IE-wTb5ay0n4EkTPBCIaAmS7izJne5cUozp51LbY934OvKs3LeiGfIsOnNhfT-l8H_HTjxTl9beMHrcGO2GMs2fmRmGE9znBwxw3lGezqNrSiMzU1GE0z0HThcQSbbKKwk63n6ihQ07cDRGsZnX-VbQPgZE3k6vKThbP8lxgfwxjeqbwphDmG7XiztF6Qzte6GUYvHvH_ehZ2Ts8HwdzcsDeDVaDA8_vMIjoX3Xg | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaq9lA4IH7FQgFLlAtSaNaeJJtDhWhptaVlVUEr9WYc_2xXWpKwyaraG4_AE_EwPAljJ1nYy956iyJLccbz8409_oaQXcwpJAY-GSipWICIGG0OrAr6IDMGPDTW-ALZUTy8hE9X0dUG-d3dhXFllZ1P9I5aF8rtke_x0EERhBPx-_JH4LpGudPVroWGbFsr6H1PMdZe7Dg1ixtM4ar9k4-43m8YOz66OBwGbZeBQKEvhsCmYC0mPkmGUFtrC8Bx2n2TpVFqTMI0-vNM2cgdUZjUnTNhBEVQFFv8_8g6MiYMAVvAIcXkb-vgaHT-ZbnL49nkedjxokK6p8qKveuzMIGVSOgbBqyg3O15XsrFjZxOV3GzD3zH98m9FrHSD42KPSAbJn9I7v7HY_iIVC1L65ginKRjU3w39WxBC0ura4T3f37-UpOZmk9qauV8Wld0ktPStWejDZF0RRE6U4SvUxzqut0346g2ta8Uy6nMNVUO6LvKJq9Mj8nlrcj5CdnMi9w8JTTiKWiJiqSSCKxRAztQVmbcZtbGJoQeed1JVpQNaYfwh-2QCid_4eXfIwdO6MsRjmjbvyhmY9HarUgUh3iASRlXAAkLs7hvUq3MQCUsQoDRIzvdkonW-ivxT1d7ZHe5jGun8tav8Joh4vD8K_NPz9Z_8hXZHl58PhNnJ6PT5-QOQ1DWlN_skM16NjcvEETV2ctWUyn5dtvG8RfbLjIn | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ni9RAEC10Fvw4iJ8466oN7kmIZtKVZPq4rg7rB8uCjixemk6naxyYzYRJBtmbP8Hf6C-xupMZncuCtxCKEPql8l6lK68ADrmmMEx8JrLGJhErYs45JBuN0BQJytiRCw2yp9nJFD-cp-d9b47_F6bzh9h-cPOZEd7XPsFdXVJXcKI3ybR1k7waJcyB12GPiTzGAewdfZ1-m24_sgQz9zBvxNvcRVKqbGNRiur13wvskFLw7t8RnDfXVW0uf5jFYlfCBg6a3IU7vXgURx3a9-Caq-7D7X8sBR9A0xumzgQrOzFzywvXri7FkkTznZX275-_7Hxl1_NWkFkv2kbMK1H7SWmi83RuBKtYwUpywaF-8HwXJ0rXhqatSpiqFNZrbt9kFHB9CNPJuy_HJ1E_WCGyTD8YkUIirvXygquLsiREyUiNXKFS5VyelExhhaXU78o45bfWWDSwDsyIIU9JyUcwqJaVewwilQpLw5jaPEVydkxjS6aQVBBlLsYhvNisrK47_wwd9r1Rab_-Oqz_EN74Rd9GeM_rcGK5muk-hXRuJWZjro-kRcyTuMhGTpXWjW2epMz1QzjYQKb7RGy0jL2CZRWaDeFwC-OVt_IyIHxFiD4--5yEo_3_CX4ON87eTvSn96cfn8AtP7a-a4s5gEG7WrunLG7a4ln_CP8BQAr2-Q | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBXt5hB66GdKt6RB0JwK3uxa8oeOaUgIPYRAspCehDTWbJZuvGZtU9JTf0J_Y39JR7J3yfYQCr0ZMza29Ebzxhq_YeyQcgpDgc9EYCCOiBGTz0mEaCKNjaUYO3ShQPYiPZ_KLzfJzYO_-Dt9iM0HN-8ZYb32Dl4V2K3zXdYp1RFUdTyaxBQGn7KdNCE2PmA704vL46-hp5zKIyFUulYl3bpgKw4Fuf4tjrnblpW5_24Wi23WGsLO2Qtm1g_cVZt8G7WNHcGPv7Qc_-eNXrLnPSflxx2IXrEnrnzNnj1QKnzD6l6HdcaJMPKZW965ZnXPl8jrWyLwv3_-gvkK2nnD0bSLpubzkle-ARvvpKJrTuSYE0FdkKnvZ9_Z8cI1oRas5KYsOHgq72uXAlz22PTs9PrkPOr7NURAUU1GqCQipZCZpaSlKFBKQQCYOKsS5VwWFxQZLWDiN3uc8jt2xEWIXqZISEpQibdsUC5L947xRChZGIIKZIlEBznmgMYKtIipG8sh-7iePV11shw6bKdLpf0Q6jCEQ_bZT-zGwktphxPL1Uz3nqkzEDLNKe0SIGUWj206caoAl0MWJ0Qhhmx_DQvd-3etxdgTYyK36ZAdbqDy6KN8ClP_iIk-ubyKw9H7f7vnPhs0q9Z9IFbU2IMe-H8AAVUSTg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+geometry+of+short%E2%80%90circuit+faults+in+power+systems+for+real%E2%80%90time+fault+detection+and+classification&rft.jtitle=IET+cyber-physical+systems&rft.au=Naranjo+Cu%C3%A9llar%2C+Juan+Pablo&rft.au=Ramos+L%C3%B3pez%2C+Gustavo&rft.au=Giraldo+Trujillo%2C+Luis+Felipe&rft.date=2023-12-01&rft.issn=2398-3396&rft.eissn=2398-3396&rft.volume=8&rft.issue=4&rft.spage=289&rft.epage=306&rft_id=info:doi/10.1049%2Fcps2.12074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cps2_12074 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-3396&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-3396&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-3396&client=summon |