Non-alcoholic steatohepatitis: Pathogenesis and novel therapeutic approaches

Non‐alcoholic fatty liver disease (NAFLD) refers to a disease spectrum, ranging from mere hepatic steatosis to hepatic necroinflammation (NASH, non‐alcoholic steatohepatitis). NASH often leads to fibrosis, which can progress to cirrhosis with a high risk of liver failure and hepatocellular carcinoma...

Full description

Saved in:
Bibliographic Details
Published inJournal of gastroenterology and hepatology Vol. 28; no. S1; pp. 68 - 76
Main Authors Schuppan, Detlef, Schattenberg, Jörn M
Format Journal Article
LanguageEnglish
Published Australia Blackwell Publishing Ltd 01.08.2013
Subjects
Online AccessGet full text
ISSN0815-9319
1440-1746
1440-1746
DOI10.1111/jgh.12212

Cover

Abstract Non‐alcoholic fatty liver disease (NAFLD) refers to a disease spectrum, ranging from mere hepatic steatosis to hepatic necroinflammation (NASH, non‐alcoholic steatohepatitis). NASH often leads to fibrosis, which can progress to cirrhosis with a high risk of liver failure and hepatocellular carcinoma. The course of NAFLD is highly variable, and only a minority of patients (2–3%) progress to end‐stage liver disease. However, due to a dramatic increase of the risk factors for NAFLD, that is obesity and insulin resistance/type 2 diabetes, that affect 15–30% and 7–15% of subjects, in most industrialized countries, respectively, NAFLD has become the most frequent liver disease and is even considered a pace setter of the metabolic syndrome. Sedentary lifestyle, modern Western nutrition, and genetic predispositions have been identified as major causes of NAFLD. These lead to liver injury via insulin resistance and an excess of free fatty acids in hepatocytes, resulting in oxidant stress and lipotoxicity that promote the activation of intracellular stress kinases and apoptosis or necroapoptosis (NASH). The damaged hepatocytes directly trigger inflammation and fibrogenesis, but can also lead to the emergence of fibrogenic progenitor cells. Moreover, NASH is linked to inflammation in peripheral adipose tissues that involves mainly macrophages and humoral factors, such as adipokines and cytokines. The most efficient treatment is by weight loss and exercise, but (adjunctive) pharmacological strategies are urgently needed. Here, we highlight the aspects of NAFLD epidemiology and pathophysiology that are beginning to lead to novel pharmacological approaches to address this growing health‐care challenge.
AbstractList Non-alcoholic fatty liver disease (NAFLD) refers to a disease spectrum, ranging from mere hepatic steatosis to hepatic necroinflammation (NASH, non-alcoholic steatohepatitis). NASH often leads to fibrosis, which can progress to cirrhosis with a high risk of liver failure and hepatocellular carcinoma. The course of NAFLD is highly variable, and only a minority of patients (2-3%) progress to end-stage liver disease. However, due to a dramatic increase of the risk factors for NAFLD, that is obesity and insulin resistance/type 2 diabetes, that affect 15-30% and 7-15% of subjects, in most industrialized countries, respectively, NAFLD has become the most frequent liver disease and is even considered a pace setter of the metabolic syndrome. Sedentary lifestyle, modern Western nutrition, and genetic predispositions have been identified as major causes of NAFLD. These lead to liver injury via insulin resistance and an excess of free fatty acids in hepatocytes, resulting in oxidant stress and lipotoxicity that promote the activation of intracellular stress kinases and apoptosis or necroapoptosis (NASH). The damaged hepatocytes directly trigger inflammation and fibrogenesis, but can also lead to the emergence of fibrogenic progenitor cells. Moreover, NASH is linked to inflammation in peripheral adipose tissues that involves mainly macrophages and humoral factors, such as adipokines and cytokines. The most efficient treatment is by weight loss and exercise, but (adjunctive) pharmacological strategies are urgently needed. Here, we highlight the aspects of NAFLD epidemiology and pathophysiology that are beginning to lead to novel pharmacological approaches to address this growing health-care challenge.Non-alcoholic fatty liver disease (NAFLD) refers to a disease spectrum, ranging from mere hepatic steatosis to hepatic necroinflammation (NASH, non-alcoholic steatohepatitis). NASH often leads to fibrosis, which can progress to cirrhosis with a high risk of liver failure and hepatocellular carcinoma. The course of NAFLD is highly variable, and only a minority of patients (2-3%) progress to end-stage liver disease. However, due to a dramatic increase of the risk factors for NAFLD, that is obesity and insulin resistance/type 2 diabetes, that affect 15-30% and 7-15% of subjects, in most industrialized countries, respectively, NAFLD has become the most frequent liver disease and is even considered a pace setter of the metabolic syndrome. Sedentary lifestyle, modern Western nutrition, and genetic predispositions have been identified as major causes of NAFLD. These lead to liver injury via insulin resistance and an excess of free fatty acids in hepatocytes, resulting in oxidant stress and lipotoxicity that promote the activation of intracellular stress kinases and apoptosis or necroapoptosis (NASH). The damaged hepatocytes directly trigger inflammation and fibrogenesis, but can also lead to the emergence of fibrogenic progenitor cells. Moreover, NASH is linked to inflammation in peripheral adipose tissues that involves mainly macrophages and humoral factors, such as adipokines and cytokines. The most efficient treatment is by weight loss and exercise, but (adjunctive) pharmacological strategies are urgently needed. Here, we highlight the aspects of NAFLD epidemiology and pathophysiology that are beginning to lead to novel pharmacological approaches to address this growing health-care challenge.
Non-alcoholic fatty liver disease (NAFLD) refers to a disease spectrum, ranging from mere hepatic steatosis to hepatic necroinflammation (NASH, non-alcoholic steatohepatitis). NASH often leads to fibrosis, which can progress to cirrhosis with a high risk of liver failure and hepatocellular carcinoma. The course of NAFLD is highly variable, and only a minority of patients (2-3%) progress to end-stage liver disease. However, due to a dramatic increase of the risk factors for NAFLD, that is obesity and insulin resistance/type 2 diabetes, that affect 15-30% and 7-15% of subjects, in most industrialized countries, respectively, NAFLD has become the most frequent liver disease and is even considered a pace setter of the metabolic syndrome. Sedentary lifestyle, modern Western nutrition, and genetic predispositions have been identified as major causes of NAFLD. These lead to liver injury via insulin resistance and an excess of free fatty acids in hepatocytes, resulting in oxidant stress and lipotoxicity that promote the activation of intracellular stress kinases and apoptosis or necroapoptosis (NASH). The damaged hepatocytes directly trigger inflammation and fibrogenesis, but can also lead to the emergence of fibrogenic progenitor cells. Moreover, NASH is linked to inflammation in peripheral adipose tissues that involves mainly macrophages and humoral factors, such as adipokines and cytokines. The most efficient treatment is by weight loss and exercise, but (adjunctive) pharmacological strategies are urgently needed. Here, we highlight the aspects of NAFLD epidemiology and pathophysiology that are beginning to lead to novel pharmacological approaches to address this growing health-care challenge.
graphic graphic Non‐alcoholic fatty liver disease ( NAFLD ) refers to a disease spectrum, ranging from mere hepatic steatosis to hepatic necroinflammation ( NASH , non‐alcoholic steatohepatitis). NASH often leads to fibrosis, which can progress to cirrhosis with a high risk of liver failure and hepatocellular carcinoma. The course of NAFLD is highly variable, and only a minority of patients (2–3%) progress to end‐stage liver disease. However, due to a dramatic increase of the risk factors for NAFLD , that is obesity and insulin resistance/type 2 diabetes, that affect 15–30% and 7–15% of subjects, in most industrialized countries, respectively, NAFLD has become the most frequent liver disease and is even considered a pace setter of the metabolic syndrome. Sedentary lifestyle, modern Western nutrition, and genetic predispositions have been identified as major causes of NAFLD . These lead to liver injury via insulin resistance and an excess of free fatty acids in hepatocytes, resulting in oxidant stress and lipotoxicity that promote the activation of intracellular stress kinases and apoptosis or necroapoptosis ( NASH ). The damaged hepatocytes directly trigger inflammation and fibrogenesis, but can also lead to the emergence of fibrogenic progenitor cells. Moreover, NASH is linked to inflammation in peripheral adipose tissues that involves mainly macrophages and humoral factors, such as adipokines and cytokines. The most efficient treatment is by weight loss and exercise, but (adjunctive) pharmacological strategies are urgently needed. Here, we highlight the aspects of NAFLD epidemiology and pathophysiology that are beginning to lead to novel pharmacological approaches to address this growing health‐care challenge.
Author Schuppan, Detlef
Schattenberg, Jörn M
Author_xml – sequence: 1
  givenname: Detlef
  surname: Schuppan
  fullname: Schuppan, Detlef
  email: detlef.schuppan@unimedizin-mainz.de
  organization: Molecular and Translational Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany
– sequence: 2
  givenname: Jörn M
  surname: Schattenberg
  fullname: Schattenberg, Jörn M
  organization: First Department of Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23855299$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1OGzEUha2KqoSURV-gmiVdDPhvftwdiiApioAFBdSNdeO5w5hOxsPYKfD2NU3SBQJv7ub7zrWP98hO5zok5Aujhyyeo_u75pBxzvgHMmJS0pQVMt8hI1qyLFWCqV2y5_09pVTSIvtEdrkos4wrNSLzc9el0BrXuNaaxAeE4BrsIdhg_ffkEkLj7rBDb30CXZV07g-2SWhwgB5XITrQ94MD06D_TD7W0Hrc38wx-Xl6cjWZpfOL6Y_J8Tw1kiue1pUABVVukFOA2rCiEnKhSlELyCWHMpdlGa9aVjmXTPEiE8yAWLDcKKUWRozJwTo3Ln5YoQ96ab3BtoUO3cprJhlnWSajOCZfN-hqscRK94NdwvCstw1E4GgNmMF5P2CtjQ3x9a4LA9hWM6pfOtaxY_2v42h8e2VsQ99iN-mPtsXn90F9Np1tjXRt2PgXT_8NGH7rvBBFpm_Op_rm-nb267o81bn4Cz3-mfk
CitedBy_id crossref_primary_10_1007_s13410_023_01308_y
crossref_primary_10_3389_fphys_2023_1129889
crossref_primary_10_1016_j_jcmgh_2015_12_005
crossref_primary_10_1016_j_phrs_2019_04_016
crossref_primary_10_1016_j_jhep_2017_11_012
crossref_primary_10_1016_j_lfs_2014_12_013
crossref_primary_10_1016_j_jsps_2022_09_001
crossref_primary_10_1053_j_gastro_2021_02_051
crossref_primary_10_1080_10520295_2018_1517898
crossref_primary_10_1097_MEG_0000000000001371
crossref_primary_10_1016_j_biopha_2024_117805
crossref_primary_10_1177_0009922813520072
crossref_primary_10_1038_s41598_020_61508_y
crossref_primary_10_1371_journal_pone_0201566
crossref_primary_10_3390_nu16081242
crossref_primary_10_11603_mcch_2410_681X_2024_i1_14593
crossref_primary_10_1096_fj_201902687R
crossref_primary_10_3389_fnut_2022_916704
crossref_primary_10_1007_s13679_021_00434_0
crossref_primary_10_1016_j_bbamcr_2015_09_003
crossref_primary_10_1155_2014_637027
crossref_primary_10_1016_j_bpg_2014_07_008
crossref_primary_10_1016_j_cld_2016_02_013
crossref_primary_10_2119_molmed_2016_00033
crossref_primary_10_1055_s_0042_1748037
crossref_primary_10_18632_oncotarget_24587
crossref_primary_10_20463_pan_2024_0024
crossref_primary_10_1016_S1665_2681_19_31170_6
crossref_primary_10_1016_j_jgr_2020_07_004
crossref_primary_10_1186_s13098_016_0169_x
crossref_primary_10_7863_ultra_34_6_1123
crossref_primary_10_1007_s00394_019_01916_7
crossref_primary_10_1371_journal_pone_0097341
crossref_primary_10_1002_lipd_12084
crossref_primary_10_1016_j_bbadis_2017_12_013
crossref_primary_10_1136_gutjnl_2024_332695
crossref_primary_10_33549_physiolres_934869
crossref_primary_10_1016_j_surg_2017_01_012
crossref_primary_10_3748_wjg_v22_i46_10180
crossref_primary_10_1016_j_taap_2020_115169
crossref_primary_10_2337_dc18_0165
crossref_primary_10_2217_nnm_15_87
crossref_primary_10_3389_fphar_2021_646239
crossref_primary_10_1016_j_jhep_2015_11_002
crossref_primary_10_3382_ps_pew160
crossref_primary_10_4254_wjh_v16_i9_1211
crossref_primary_10_1016_j_biopha_2023_115447
crossref_primary_10_1016_j_clinre_2023_102279
crossref_primary_10_1586_17474124_2016_1099433
crossref_primary_10_1016_j_gtc_2016_02_008
crossref_primary_10_3748_wjg_v20_i44_16464
crossref_primary_10_3892_ijmm_2022_5169
crossref_primary_10_1016_j_metabol_2015_09_004
crossref_primary_10_3748_wjg_v26_i3_279
crossref_primary_10_36303_JMLSTSA_2020_2_2_55
crossref_primary_10_1016_j_jhepr_2022_100524
crossref_primary_10_1159_000375353
crossref_primary_10_1186_s12876_022_02500_w
crossref_primary_10_3389_fphar_2022_934136
crossref_primary_10_3389_fendo_2020_597583
crossref_primary_10_1007_s10620_020_06644_1
crossref_primary_10_1016_j_mayocp_2015_06_013
crossref_primary_10_3390_ijms19072130
crossref_primary_10_1007_s11130_014_0436_7
crossref_primary_10_1155_2016_2862173
crossref_primary_10_1007_s00394_021_02542_y
crossref_primary_10_1111_apt_12820
crossref_primary_10_3390_cells10102516
crossref_primary_10_3389_fmed_2022_995749
crossref_primary_10_1111_cts_12421
crossref_primary_10_3390_jpm14020132
crossref_primary_10_3390_ijms151121202
crossref_primary_10_3390_ijms23052525
crossref_primary_10_3389_fendo_2021_635556
crossref_primary_10_1002_ueg2_12124
crossref_primary_10_1186_s13098_017_0282_5
crossref_primary_10_1016_j_molmet_2016_01_010
crossref_primary_10_1590_S0004_28032014000300017
crossref_primary_10_1097_MEG_0000000000000350
crossref_primary_10_1021_acs_jmedchem_1c02002
crossref_primary_10_1186_1743_7075_11_19
crossref_primary_10_1210_js_2017_00092
crossref_primary_10_4254_wjh_v7_i8_1012
crossref_primary_10_2139_ssrn_3943144
crossref_primary_10_47102_annals_acadmedsg_202379
crossref_primary_10_1038_srep11180
crossref_primary_10_1016_j_mce_2018_03_013
crossref_primary_10_3390_nu13082523
crossref_primary_10_1111_jcmm_17435
crossref_primary_10_1152_ajpgi_00121_2020
crossref_primary_10_1097_MCG_0000000000001916
crossref_primary_10_1007_s11904_017_0368_6
crossref_primary_10_14218_JCTH_2021_00289
crossref_primary_10_1186_s12944_022_01658_2
crossref_primary_10_1016_j_mri_2015_10_018
crossref_primary_10_1053_j_gastro_2019_07_036
crossref_primary_10_1089_cap_2015_0007
crossref_primary_10_1016_j_jep_2023_116199
crossref_primary_10_55117_bufbd_1161709
crossref_primary_10_1089_ars_2016_6953
crossref_primary_10_1016_j_clinre_2022_101876
crossref_primary_10_1186_s12986_015_0026_1
crossref_primary_10_1007_s10517_017_3949_x
crossref_primary_10_1007_s10753_019_00967_6
crossref_primary_10_1007_s13410_021_01008_5
crossref_primary_10_1053_j_gastro_2018_06_048
crossref_primary_10_1016_j_cgh_2023_02_021
crossref_primary_10_2174_1574885518666230417111247
crossref_primary_10_1016_j_biopha_2019_109503
crossref_primary_10_1038_s41598_020_69571_1
crossref_primary_10_1016_j_jhep_2016_06_026
crossref_primary_10_3390_nu12030699
crossref_primary_10_1016_j_jnutbio_2015_09_029
crossref_primary_10_3389_fnins_2019_00263
crossref_primary_10_1186_s13098_021_00731_7
crossref_primary_10_1186_s12876_024_03394_6
crossref_primary_10_35366_109314
crossref_primary_10_1007_s11377_013_0823_x
crossref_primary_10_1055_a_1482_9236
crossref_primary_10_1146_annurev_pathol_020117_044010
crossref_primary_10_1016_j_phymed_2015_01_015
crossref_primary_10_1039_C6MD00043F
crossref_primary_10_2174_1570163817666200121143959
crossref_primary_10_1016_j_biopha_2021_111937
crossref_primary_10_1016_j_cld_2013_09_003
crossref_primary_10_3389_fendo_2022_836455
crossref_primary_10_1194_jlr_M075713
crossref_primary_10_1152_ajpgi_00346_2014
crossref_primary_10_1371_journal_pone_0112327
crossref_primary_10_1152_ajpgi_00447_2014
crossref_primary_10_1136_bmjspcare_2014_000752
crossref_primary_10_1016_j_omtm_2016_11_004
crossref_primary_10_1016_S2468_1253_19_30184_0
crossref_primary_10_1002_oby_22353
crossref_primary_10_1155_2017_3932491
crossref_primary_10_3904_kjm_2014_86_4_425
crossref_primary_10_3389_fendo_2022_973823
crossref_primary_10_1016_j_jhep_2014_03_009
crossref_primary_10_1016_j_bbadis_2015_05_015
crossref_primary_10_1177_2050640620944098
crossref_primary_10_1038_cddis_2015_196
crossref_primary_10_3389_fgene_2020_563265
crossref_primary_10_3892_mmr_2019_9928
crossref_primary_10_1016_j_cld_2016_12_006
crossref_primary_10_1139_cjpp_2016_0681
crossref_primary_10_1517_13543784_2015_997874
crossref_primary_10_1016_j_mito_2017_08_015
crossref_primary_10_3748_wjg_v22_i8_2494
crossref_primary_10_3390_biomedicines9091093
crossref_primary_10_1016_j_jep_2023_116827
crossref_primary_10_1024_0300_9831_a000432
crossref_primary_10_1371_journal_pone_0111551
crossref_primary_10_1007_s11756_022_01071_1
crossref_primary_10_1152_ajpgi_00198_2014
crossref_primary_10_1111_1440_1681_12701
crossref_primary_10_1055_s_0043_1770984
crossref_primary_10_1186_s12944_023_01861_9
crossref_primary_10_1016_j_bcp_2018_11_020
crossref_primary_10_1016_j_metabol_2013_10_010
crossref_primary_10_1016_j_molmet_2019_11_015
crossref_primary_10_1038_aps_2016_158
crossref_primary_10_1152_ajpgi_00379_2016
crossref_primary_10_1111_apt_12543
crossref_primary_10_1111_hepr_12358
crossref_primary_10_1186_s40816_016_0019_2
crossref_primary_10_3390_molecules28073127
crossref_primary_10_3389_fphar_2023_1102792
crossref_primary_10_1074_jbc_RA119_010233
crossref_primary_10_1186_s12944_016_0194_7
crossref_primary_10_1016_j_jhep_2019_10_028
crossref_primary_10_1097_MEG_0000000000002136
crossref_primary_10_3390_nu12071946
crossref_primary_10_1016_j_thromres_2020_12_002
crossref_primary_10_1038_s41598_017_06439_x
crossref_primary_10_3389_fmed_2022_984241
crossref_primary_10_1080_13880209_2019_1568509
crossref_primary_10_2337_db14_0263
crossref_primary_10_1007_s10620_019_05986_9
crossref_primary_10_1210_clinem_dgab897
crossref_primary_10_1186_s12876_015_0407_y
crossref_primary_10_1371_journal_pone_0164191
crossref_primary_10_3390_ijms15033671
crossref_primary_10_1016_j_ajpath_2022_06_002
crossref_primary_10_1038_nature16969
crossref_primary_10_1016_j_plipres_2015_05_002
crossref_primary_10_1002_jgh3_70054
crossref_primary_10_1016_j_metabol_2015_02_003
crossref_primary_10_18699_VJ20_43_o
crossref_primary_10_5604_01_3001_0011_7396
crossref_primary_10_1210_en_2014_1430
crossref_primary_10_1016_S0021_9258_17_49910_8
crossref_primary_10_1016_j_ejphar_2022_174857
crossref_primary_10_1259_bjr_20170344
crossref_primary_10_1097_01_NPR_0000472248_28703_18
crossref_primary_10_1097_MCG_0000000000001409
crossref_primary_10_1097_MEG_0000000000002234
crossref_primary_10_1186_s12967_015_0552_7
crossref_primary_10_1016_j_bcp_2015_09_004
crossref_primary_10_1016_j_cellsig_2023_110741
Cites_doi 10.1002/hep.20466
10.1002/hep.23719
10.1002/hep.25789
10.1172/JCI65179
10.1055/s-0030-1261929
10.1002/hep.23122
10.1007/s00125-011-2401-4
10.1016/S1665-2681(19)31822-8
10.1056/NEJMra0912063
10.1016/j.cmet.2012.04.008
10.1016/j.drudis.2012.05.012
10.1002/hep.26271
10.1016/S1665-2681(19)31364-X
10.1159/000282101
10.1136/gut.2007.146019
10.1111/j.1478-3231.2011.02730.x
10.1111/j.1440-1746.2011.06939.x
10.1016/j.cld.2009.07.005
10.1016/j.cgh.2012.10.001
10.1053/j.gastro.2012.04.031
10.1016/j.jhep.2010.03.016
10.1053/j.gastro.2005.04.014
10.1038/nm1421
10.1159/000322702
10.1016/j.jnutbio.2012.01.014
10.1007/s11745-012-3709-7
10.1016/j.ejphar.2009.07.001
10.1002/hep.23535
10.1172/JCI37409
10.1097/MOL.0b013e32834c7cfc
10.1523/JNEUROSCI.2648-09.2010
10.1016/j.ejphar.2006.02.028
10.1016/j.jhep.2010.10.024
10.1016/j.jhep.2008.11.021
10.1001/archinte.168.15.1609
10.1038/nrgastro.2013.34
10.1053/j.gastro.2010.09.038
10.1038/ijo.2012.208
10.1517/17460441.2011.608063
10.1016/j.cmet.2005.03.001
10.1016/j.jhep.2008.06.018
10.1053/j.gastro.2012.06.031
10.1016/j.clinre.2012.06.014
10.1152/japplphysiol.00127.2012
10.1056/NEJMoa0907929
10.1136/gutjnl‐2012‐302962
10.1007/s10495-009-0366-2
10.1371/journal.pone.0025269
10.1016/j.bbalip.2012.07.004
10.1371/journal.pone.0038744
10.1002/hep.21327
10.1186/1471-230X-9-75
10.1016/S1665-2681(19)31820-4
10.1016/j.jhep.2011.12.025
10.1053/j.gastro.2011.09.049
10.1002/hep.25953
10.1016/j.cld.2012.05.001
10.2174/13816128113199990336
10.1053/j.gastro.2005.03.084
10.1016/j.jhep.2009.03.025
10.1016/j.jhep.2009.03.019
10.1016/j.jhep.2011.01.010
10.1096/fj.10.164921
10.1002/hep.22848
10.1161/CIRCULATIONAHA.109.192644
10.1002/hep.24747
10.1016/S0140-6736(05)66348-9
10.1136/gut.2009.205088
10.1016/S1665-2681(19)31905-2
10.1002/hep.21827
10.1038/ng.257
10.1097/MD.0b013e3182779d49
10.1002/hep.23567
10.1016/j.jnutbio.2010.10.002
10.1093/ajcn/78.4.719
10.1002/hep.20999
10.1371/journal.pone.0045425
10.1042/CS20110504
10.2337/dc11-0093
10.1111/j.1440-1746.2010.06548.x
10.1001/jama.2010.1505
10.1038/nature10809
10.1002/hep.25741
10.1002/hep.24283
10.1016/j.jhep.2010.02.009
10.1136/gutjnl-2011-300269
10.1053/j.gastro.2004.09.014
10.1053/j.gastro.2008.03.078
10.1152/ajpgi.00274.2011
10.1002/hep.26093
10.1152/ajpgi.00476.2011
ContentType Journal Article
Copyright 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd
2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
Copyright_xml – notice: 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd
– notice: 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/jgh.12212
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1440-1746
EndPage 76
ExternalDocumentID 23855299
10_1111_jgh_12212
JGH12212
ark_67375_WNG_WVXHZV8F_6
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
DU5
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
KMS
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4292-fd3a9ad6ce20aafc17d34b983f3a642a864880408d6241927531ca3b16c999bc3
IEDL.DBID DR2
ISSN 0815-9319
1440-1746
IngestDate Fri Sep 05 09:16:24 EDT 2025
Wed Feb 19 01:52:08 EST 2025
Wed Oct 01 02:28:56 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Wed Jan 22 16:41:44 EST 2025
Sun Sep 21 06:20:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue S1
Keywords metabolic syndrome
FXR
GLP-1
DPP-4
apoptosis
fibrosis
NASH
diabetes
microbiome
lifestyle
Language English
License 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4292-fd3a9ad6ce20aafc17d34b983f3a642a864880408d6241927531ca3b16c999bc3
Notes istex:E5B1273E90955114DC55CB95A2E7650306086C4A
ark:/67375/WNG-WVXHZV8F-6
ArticleID:JGH12212
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 23855299
PQID 1412155475
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1412155475
pubmed_primary_23855299
crossref_citationtrail_10_1111_jgh_12212
crossref_primary_10_1111_jgh_12212
wiley_primary_10_1111_jgh_12212_JGH12212
istex_primary_ark_67375_WNG_WVXHZV8F_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace Australia
PublicationPlace_xml – name: Australia
PublicationTitle Journal of gastroenterology and hepatology
PublicationTitleAlternate J Gastroenterol Hepatol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Hollman DA, Milona A, van Erpecum KJ, van Mil SW. Anti-inflammatory and metabolic actions of FXR: insights into molecular mechanisms. Biochim. Biophys. Acta 2012; 1821: 1443-1452.
Bellentani S, Marino M. Epidemiology and natural history of non-alcoholic fatty liver disease (NAFLD). Ann. Hepatol. 2009; 8 (Suppl. 1): S4-S8.
Parnell JA, Raman M, Rioux KP, Reimer RA. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int. 2012; 32: 701-711.
Browning JD, Szczepaniak LS, Dobbins R et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40: 1387-1395.
Stefan N, Kantartzis K, Machann J et al. Identification and characterization of metabolically benign obesity in humans. Arch. Intern. Med. 2008; 168: 1609-1616.
Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011; 53: 1883-1894.
Ong JP, Pitts A, Younossi ZM. Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. J. Hepatol. 2008; 49: 608-612.
Ratziu V, Sheikh MY, Sanyal AJ et al. A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology 2012; 55: 419-428.
Robson SC, Schuppan D. Adenosine: tipping the balance towards hepatic steatosis and fibrosis. J. Hepatol. 2010; 52: 941-943.
Machado MV, Cortez-Pinto H. No need for a large belly to have NASH. J. Hepatol. 2011; 54: 1090-1093.
Cariou B, Zair Y, Staels B, Bruckert E. Effects of the new dual PPAR alpha/delta agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care 2011; 34: 2008-2014.
Trevaskis JL, Griffin PS, Wittmer C et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012; 302: G762-772.
Zhu L, Baker SS, Gill C et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013; 57: 601-609.
Abdelmalek MF, Lazo M, Horska A et al. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology 2012; 56: 952-960.
Wong VW, Wong GL, Choi PC et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 2010; 59: 969-974.
Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS ONE 2011; 6: e25269.
Dubuquoy C, Burnol AF, Moldes M. PNPLA3, a genetic marker of progressive liver disease, still hiding its metabolic function? Clin. Res. Hepatol. Gastroenterol. 2013; 37: 30-35.
Alberti KG, Eckel RH, Grundy SM et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120: 1640-1645.
Pagotto U, Pasquali R. Fighting obesity and associated risk factors by antagonising cannabinoid type 1 receptors. Lancet 2005; 365: 1363-1364.
Li JZ, Huang Y, Karaman R et al. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J. Clin. Invest. 2012; 122: 4130-4144.
Mells JE, Fu PP, Sharma S et al. Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am. J. Physiol. Gastrointest. Liver Physiol. 2012; 302: G225-235.
Larter CZ, Yeh MM, Van Rooyen DM, Brooling J, Ghatora K, Farrell GC. Peroxisome proliferator-activated receptor-alpha agonist, Wy 14 643, improves metabolic indices, steatosis and ballooning in diabetic mice with non-alcoholic steatohepatitis. J. Gastroenterol. Hepatol. 2012; 27: 341-350.
Goodpaster BH, Delany JP, Otto AD et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA 2010; 304: 1795-1802.
Adams LA, Lymp JF, St Sauver J et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129: 113-121.
Williams CD, Stengel J, Asike MI et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 2011; 140: 124-131.
Ekstedt M, Franzen LE, Mathiesen UL et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44: 865-873.
Kalaany NY, Gauthier KC, Zavacki AM et al. LXRs regulate the balance between fat storage and oxidation. Cell Metab. 2005; 1: 231-244.
Chitturi S, Wong VW, Farrell G. Nonalcoholic fatty liver in Asia: firmly entrenched and rapidly gaining ground. J. Gastroenterol. Hepatol. 2011; 26 (Suppl. 1): 163-172.
Ratziu V, Giral P, Jacqueminet S et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled fatty liver improvement with rosiglitazone therapy (FLIRT) trial. Gastroenterology 2008; 135: 100-110.
Mencarelli A, Cipriani S, Renga B et al. VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS ONE 2012; 7: e45425.
Holst JJ. Incretin hormones and the satiation signal. Int. J. Obes. (Lond) 2013; DOI: 10.1038/ijo.2012.208.
Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004; 127: S35-50.
Shen J, Chan HL, Wong GL et al. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. J. Hepatol. 2012; 56: 1363-1370.
Farrell GC, Wong VW, Chitturi S. NAFLD in Asia-as common and important as in the West. Nat. Rev. Gastroenterol. Hepatol. 2013; doi: 10.1038/nrgastro.2013.34.
Massa F, Mancini G, Schmidt H et al. Alterations in the hippocampal endocannabinoid system in diet-induced obese mice. J. Neurosci. 2010; 30: 6273-6281.
Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 2009; 50: 1094-1104.
Vrieze A, Van Nood E, Holleman F et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916.
Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut 2008; 57: 1441-1447.
MacKenzie SH, Schipper JL, Clark AC. The potential for caspases in drug discovery. Curr. Opin. Drug Discov. Devel. 2010; 13: 568-576.
Li Y, Xu C, Yu C, Xu L, Miao M. Association of serum uric acid level with non-alcoholic fatty liver disease: a cross-sectional study. J. Hepatol. 2009; 50: 1029-1034.
Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 2010; 363: 1341-1350.
Ye D, Li FY, Lam KS et al. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 2012; 61: 1058-1067.
Peng Z, Borea PA, Varani K et al. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J. Clin. Invest. 2009; 119: 582-594.
Schattenberg JM, Schuchmann M. Diabetes and apoptosis: liver. Apoptosis 2009; 14: 1459-1471.
Fealy CE, Haus JM, Solomon TP et al. Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease. J. Appl. Physiol. 2012; 113: 1-6.
Balaban YH, Korkusuz P, Simsek H et al. Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann. Hepatol. 2007; 6: 242-250.
Serrano-Marco L, Barroso E, El K I et al. The peroxisome proliferator-activated receptor (PPAR) beta/delta agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia 2012; 55: 743-751.
Centis E, Marzocchi R, Di Domizio S, Ciaravella MF, Marchesini G. The effect of lifestyle changes in non-alcoholic fatty liver disease. Dig. Dis. 2010; 28: 267-273.
Argo CK, Northup PG, Al Osaimi AM, Caldwell SH. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J. Hepatol. 2009; 51: 371-379.
Zhang S, Wang J, Liu Q, Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J. Hepatol. 2009; 51: 380-388.
Romeo S, Kozlitina J, Xing C et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008; 40: 1461-1465.
Katsuno K, Fujimori Y, Ishikawa-Takemura Y, Isaji M. Long-term treatment with sergliflozin etabonate improves disturbed glucose metabolism in KK-A(y) mice. Eur. J. Pharmacol. 2009; 618: 98-104.
Rabot S, Membrez M, Bruneau A et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 2010; 24: 4948-4959.
Argo CK, Caldwell SH. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin. Liver Dis. 2009; 13: 511-531.
Das K, Das K, Mukherjee PS et al. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liv
2012; 61
2012; 482
2010; 53
2004; 127
2010; 59
2012; 122
2012; 123
2010; 13
2010; 57
2013; 24
2010; 304
2011; 53
2011; 55
2011; 54
2012; 17
2012; 16
2012; 15
2009; 119
2012; 56
2006; 536
2012; 55
2012; 10
2009; 49
2009; 14
2009; 13
2009; 51
2010; 24
2009; 50
2013; 57
2010; 28
2013; 12
2011; 22
2007; 6
2011; 26
2012; 27
2009; 120
2010; 30
2012; 142
2012; 143
2004; 40
2009; 618
2012
2006; 12
2012; 1821
2010; 363
2008; 57
2010; 362
2011; 34
2008; 168
2012; 302
2011; 6
2012; 32
2003; 78
2012; 91
2010; 42
2013; 37
2012; 113
2006; 43
2005; 365
2006; 44
2008; 49
2005; 128
2005; 129
2009; 9
2009; 8
2005; 1
2013
2008; 135
2012; 47
2011; 140
2008; 40
2012; 7
2007; 46
2010; 52
2010; 51
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
MacKenzie SH (e_1_2_6_60_1) 2010; 13
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_92_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Imarisio C, Alchera E, Sutti S et al. Adenosine A(2a) receptor stimulation prevents hepatocyte lipotoxicity and non-alcoholic steatohepatitis (NASH) in rats. Clin. Sci. (Lond) 2012; 123: 323-332.
– reference: Wagnerberger S, Spruss A, Kanuri G et al. Lactobaccilus casei Shirota protects from fructose-induced liver steatosis: a mouse model. J. Nutr. Biochem. 2013; 24: 531-538.
– reference: Teixeira-Clerc F, Julien B, Grenard P et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat. Med. 2006; 12: 671-676.
– reference: Das K, Das K, Mukherjee PS et al. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. Hepatology 2010; 51: 1593-1602.
– reference: Miura K, Kitahara Y, Yamagishi S. Combination therapy with nateglinide and vildagliptin improves postprandial metabolic derangements in Zucker fatty rats. Horm. Metab. Res. 2010; 42: 731-735.
– reference: Janero DR, Lindsley L, Vemuri VK, Makriyannis A. Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin. Drug Discov. 2011; 6: 995-1025.
– reference: Katsuno K, Fujimori Y, Ishikawa-Takemura Y, Isaji M. Long-term treatment with sergliflozin etabonate improves disturbed glucose metabolism in KK-A(y) mice. Eur. J. Pharmacol. 2009; 618: 98-104.
– reference: Williams CD, Stengel J, Asike MI et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 2011; 140: 124-131.
– reference: Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 2010; 363: 1341-1350.
– reference: Henao-Mejia J, Elinav E, Jin C et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482: 179-185.
– reference: Wong VW, Wong GL, Choi PC et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 2010; 59: 969-974.
– reference: Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010; 52: 774-788.
– reference: Kornek M, Lynch M, Mehta SH et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology 2012; 143: 448-458.
– reference: Miele L, Valenza V, La Torre G et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009; 49: 1877-1887.
– reference: Zhang S, Wang J, Liu Q, Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J. Hepatol. 2009; 51: 380-388.
– reference: White DL, Kanwal F, El Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin. Gastroenterol. Hepatol. 2012; 10: 1342-1359.
– reference: Argo CK, Caldwell SH. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin. Liver Dis. 2009; 13: 511-531.
– reference: Stefan N, Kantartzis K, Machann J et al. Identification and characterization of metabolically benign obesity in humans. Arch. Intern. Med. 2008; 168: 1609-1616.
– reference: Dubuquoy C, Burnol AF, Moldes M. PNPLA3, a genetic marker of progressive liver disease, still hiding its metabolic function? Clin. Res. Hepatol. Gastroenterol. 2013; 37: 30-35.
– reference: Goodpaster BH, Delany JP, Otto AD et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA 2010; 304: 1795-1802.
– reference: Li Y, Xu C, Yu C, Xu L, Miao M. Association of serum uric acid level with non-alcoholic fatty liver disease: a cross-sectional study. J. Hepatol. 2009; 50: 1029-1034.
– reference: Bellentani S, Marino M. Epidemiology and natural history of non-alcoholic fatty liver disease (NAFLD). Ann. Hepatol. 2009; 8 (Suppl. 1): S4-S8.
– reference: Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011; 53: 1883-1894.
– reference: Shen J, Chan HL, Wong GL et al. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. J. Hepatol. 2012; 56: 1363-1370.
– reference: Abdelmalek MF, Suzuki A, Guy C et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51: 1961-1971.
– reference: Schattenberg JM, Schuchmann M. Diabetes and apoptosis: liver. Apoptosis 2009; 14: 1459-1471.
– reference: Neuschwander-Tetri BA, Ford DA, Acharya S et al. Dietary trans-fatty acid induced NASH is normalized following loss of trans-fatty acids from hepatic lipid pools. Lipids 2012; 47: 941-950.
– reference: Iacono A, Raso GM, Canani RB, Calignano A, Meli R. Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. J. Nutr. Biochem. 2011; 22: 699-711.
– reference: Younossi ZM, Stepanova M, Negro F et al. Nonalcoholic fatty liver disease in lean individuals in the United States. Medicine (Baltimore) 2012; 91: 319-327.
– reference: Chavez-Tapia NC, Tellez-Avila FI, Bedogni G, Croce LS, Masutti F, Tiribelli C. Systematic review and meta-analysis on the adverse events of rimonabant treatment: considerations for its potential use in hepatology. BMC Gastroenterol. 2009; 9: 75.
– reference: Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 2009; 50: 1094-1104.
– reference: Almeda-Valdes P, Cuevas-Ramos D, Aguilar-Salinas CA. Metabolic syndrome and non-alcoholic fatty liver disease. Ann. Hepatol. 2009; 8 (Suppl. 1): S18-24.
– reference: Teratani T, Tomita K, Suzuki T et al. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 2012; 142: 152-164.
– reference: Zhu L, Baker SS, Gill C et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013; 57: 601-609.
– reference: Vrieze A, Van Nood E, Holleman F et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916.
– reference: Centis E, Marzocchi R, Di Domizio S, Ciaravella MF, Marchesini G. The effect of lifestyle changes in non-alcoholic fatty liver disease. Dig. Dis. 2010; 28: 267-273.
– reference: Serrano-Marco L, Barroso E, El K I et al. The peroxisome proliferator-activated receptor (PPAR) beta/delta agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia 2012; 55: 743-751.
– reference: Schattenberg JM, Schuppan D. Nonalcoholic steatohepatitis: the therapeutic challenge of a global epidemic. Curr. Opin. Lipidol. 2011; 22: 479-488.
– reference: Mells JE, Fu PP, Sharma S et al. Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am. J. Physiol. Gastrointest. Liver Physiol. 2012; 302: G225-235.
– reference: Chitturi S, Wong VW, Farrell G. Nonalcoholic fatty liver in Asia: firmly entrenched and rapidly gaining ground. J. Gastroenterol. Hepatol. 2011; 26 (Suppl. 1): 163-172.
– reference: Mencarelli A, Cipriani S, Renga B et al. VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS ONE 2012; 7: e45425.
– reference: Neuschwander-Tetri BA, Wang DQ. Excess cholesterol and fat in the diet: a dangerous liaison for energy expenditure and the liver. Hepatology 2013; 57: 7-9.
– reference: Kalaany NY, Gauthier KC, Zavacki AM et al. LXRs regulate the balance between fat storage and oxidation. Cell Metab. 2005; 1: 231-244.
– reference: Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004; 127: S35-50.
– reference: Romeo S, Kozlitina J, Xing C et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008; 40: 1461-1465.
– reference: Sanyal AJ, Chalasani N, Kowdley KV et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010; 362: 1675-1685.
– reference: Dubuquoy C, Robichon C, Lasnier F et al. Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes. J. Hepatol. 2011; 55: 145-153.
– reference: Ong JP, Pitts A, Younossi ZM. Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. J. Hepatol. 2008; 49: 608-612.
– reference: Browning JD, Szczepaniak LS, Dobbins R et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40: 1387-1395.
– reference: Abdelmalek MF, Lazo M, Horska A et al. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology 2012; 56: 952-960.
– reference: Kern M, Kloting N, Niessen HG et al. Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity. PLoS ONE 2012; 7: e38744.
– reference: Wong VW, Won GL, Chim AM et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann. Hepatol. 2013; 12: 256-262.
– reference: Ekstedt M, Franzen LE, Mathiesen UL et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44: 865-873.
– reference: Machado MV, Cortez-Pinto H. No need for a large belly to have NASH. J. Hepatol. 2011; 54: 1090-1093.
– reference: Fealy CE, Haus JM, Solomon TP et al. Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease. J. Appl. Physiol. 2012; 113: 1-6.
– reference: Koh-Banerjee P, Chu NF, Spiegelman D et al. Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9-y gain in waist circumference among 16 587 US men. Am. J. Clin. Nutr. 2003; 78: 719-727.
– reference: Balaban YH, Korkusuz P, Simsek H et al. Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann. Hepatol. 2007; 6: 242-250.
– reference: Farrell GC, Wong VW, Chitturi S. NAFLD in Asia-as common and important as in the West. Nat. Rev. Gastroenterol. Hepatol. 2013; doi: 10.1038/nrgastro.2013.34.
– reference: Pirola CJ, Fernandez GT, Burgueno AL et al. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 2012. DOI: 10.1136/gutjnl-2012-302962.
– reference: Parnell JA, Raman M, Rioux KP, Reimer RA. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int. 2012; 32: 701-711.
– reference: Savard C, Tartaglione EV, Kuver R et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology 2013; 57: 81-92.
– reference: Bedogni G, Miglioli L, Masutti F et al. Incidence and natural course of fatty liver in the general population: the Dionysos study. Hepatology 2007; 46: 1387-1391.
– reference: Adams LA, Lymp JF, St Sauver J et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129: 113-121.
– reference: Ratziu V, Charlotte F, Heurtier A et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 2005; 128: 1898-1906.
– reference: Anstee QM, Concas D, Kudo H et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J. Hepatol. 2010; 53: 542-550.
– reference: Kumari M, Schoiswohl G, Chitraju C et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 2012; 15: 691-702.
– reference: MacKenzie SH, Schipper JL, Clark AC. The potential for caspases in drug discovery. Curr. Opin. Drug Discov. Devel. 2010; 13: 568-576.
– reference: Massa F, Mancini G, Schmidt H et al. Alterations in the hippocampal endocannabinoid system in diet-induced obese mice. J. Neurosci. 2010; 30: 6273-6281.
– reference: Bhala N, Jouness RI, Bugianesi E. Epidemiology and natural history of patients with NAFLD. Curr. Pharm. Des. 2013 Feb 4 [Epub ahead of print]. doi: 10.2174/13816128113199990336.
– reference: Trevaskis JL, Griffin PS, Wittmer C et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012; 302: G762-772.
– reference: Grandison GA, Angulo P. Can NASH be diagnosed, graded, and staged noninvasively? Clin. Liver Dis. 2012; 16: 567-585.
– reference: Ratziu V, Giral P, Jacqueminet S et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled fatty liver improvement with rosiglitazone therapy (FLIRT) trial. Gastroenterology 2008; 135: 100-110.
– reference: Pagotto U, Pasquali R. Fighting obesity and associated risk factors by antagonising cannabinoid type 1 receptors. Lancet 2005; 365: 1363-1364.
– reference: Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut 2008; 57: 1441-1447.
– reference: Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS ONE 2011; 6: e25269.
– reference: Hatting M, Zhao G, Schumacher F et al. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in mice. Hepatology 2013 (in press). DOI: 10.1002/hep.26271.
– reference: Cariou B, Zair Y, Staels B, Bruckert E. Effects of the new dual PPAR alpha/delta agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care 2011; 34: 2008-2014.
– reference: Schattenberg JM, Singh R, Wang Y et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 2006; 43: 163-172.
– reference: Adorini L, Pruzanski M, Shapiro D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov. Today 2012; 17: 988-997.
– reference: Ye D, Li FY, Lam KS et al. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 2012; 61: 1058-1067.
– reference: Peng Z, Borea PA, Varani K et al. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J. Clin. Invest. 2009; 119: 582-594.
– reference: Rabot S, Membrez M, Bruneau A et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 2010; 24: 4948-4959.
– reference: Ratziu V, Sheikh MY, Sanyal AJ et al. A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology 2012; 55: 419-428.
– reference: Hollman DA, Milona A, van Erpecum KJ, van Mil SW. Anti-inflammatory and metabolic actions of FXR: insights into molecular mechanisms. Biochim. Biophys. Acta 2012; 1821: 1443-1452.
– reference: Argo CK, Northup PG, Al Osaimi AM, Caldwell SH. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J. Hepatol. 2009; 51: 371-379.
– reference: Robson SC, Schuppan D. Adenosine: tipping the balance towards hepatic steatosis and fibrosis. J. Hepatol. 2010; 52: 941-943.
– reference: Li JZ, Huang Y, Karaman R et al. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J. Clin. Invest. 2012; 122: 4130-4144.
– reference: Larter CZ, Yeh MM, Van Rooyen DM, Brooling J, Ghatora K, Farrell GC. Peroxisome proliferator-activated receptor-alpha agonist, Wy 14 643, improves metabolic indices, steatosis and ballooning in diabetic mice with non-alcoholic steatohepatitis. J. Gastroenterol. Hepatol. 2012; 27: 341-350.
– reference: Holst JJ. Incretin hormones and the satiation signal. Int. J. Obes. (Lond) 2013; DOI: 10.1038/ijo.2012.208.
– reference: Alberti KG, Eckel RH, Grundy SM et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120: 1640-1645.
– reference: Nagasawa T, Inada Y, Nakano S et al. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur. J. Pharmacol. 2006; 536: 182-191.
– reference: Stensel D. Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control. Ann. Nutr. Metab. 2010; 57 (Suppl. 2): 36-42.
– volume: 50
  start-page: 1094
  year: 2009
  end-page: 1104
  article-title: Toll‐like receptor 4 is involved in the development of fructose‐induced hepatic steatosis in mice
  publication-title: Hepatology
– volume: 363
  start-page: 1341
  year: 2010
  end-page: 1350
  article-title: Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease
  publication-title: N. Engl. J. Med.
– volume: 51
  start-page: 1961
  year: 2010
  end-page: 1971
  article-title: Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease
  publication-title: Hepatology
– volume: 51
  start-page: 371
  year: 2009
  end-page: 379
  article-title: Systematic review of risk factors for fibrosis progression in non‐alcoholic steatohepatitis
  publication-title: J. Hepatol.
– year: 2013
  article-title: Hepatocyte caspase‐8 is an essential modulator of steatohepatitis in mice
  publication-title: Hepatology
– volume: 140
  start-page: 124
  year: 2011
  end-page: 131
  article-title: Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle‐aged population utilizing ultrasound and liver biopsy: a prospective study
  publication-title: Gastroenterology
– volume: 302
  start-page: G225
  year: 2012
  end-page: 235
  article-title: Glp‐1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– year: 2012
  article-title: Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease
  publication-title: Gut
– volume: 14
  start-page: 1459
  year: 2009
  end-page: 1471
  article-title: Diabetes and apoptosis: liver
  publication-title: Apoptosis
– volume: 26
  start-page: 163
  issue: Suppl. 1
  year: 2011
  end-page: 172
  article-title: Nonalcoholic fatty liver in Asia: firmly entrenched and rapidly gaining ground
  publication-title: J. Gastroenterol. Hepatol.
– volume: 57
  start-page: 81
  year: 2013
  end-page: 92
  article-title: Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis
  publication-title: Hepatology
– volume: 55
  start-page: 743
  year: 2012
  end-page: 751
  article-title: The peroxisome proliferator‐activated receptor (PPAR) beta/delta agonist GW501516 inhibits IL‐6‐induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells
  publication-title: Diabetologia
– volume: 9
  start-page: 75
  year: 2009
  article-title: Systematic review and meta‐analysis on the adverse events of rimonabant treatment: considerations for its potential use in hepatology
  publication-title: BMC Gastroenterol.
– volume: 44
  start-page: 865
  year: 2006
  end-page: 873
  article-title: Long‐term follow‐up of patients with NAFLD and elevated liver enzymes
  publication-title: Hepatology
– volume: 34
  start-page: 2008
  year: 2011
  end-page: 2014
  article-title: Effects of the new dual PPAR alpha/delta agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism
  publication-title: Diabetes Care
– volume: 51
  start-page: 1593
  year: 2010
  end-page: 1602
  article-title: Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease
  publication-title: Hepatology
– volume: 135
  start-page: 100
  year: 2008
  end-page: 110
  article-title: Rosiglitazone for nonalcoholic steatohepatitis: one‐year results of the randomized placebo‐controlled fatty liver improvement with rosiglitazone therapy (FLIRT) trial
  publication-title: Gastroenterology
– volume: 13
  start-page: 511
  year: 2009
  end-page: 531
  article-title: Epidemiology and natural history of non‐alcoholic steatohepatitis
  publication-title: Clin. Liver Dis.
– volume: 61
  start-page: 1058
  year: 2012
  end-page: 1067
  article-title: Toll‐like receptor‐4 mediates obesity‐induced non‐alcoholic steatohepatitis through activation of X‐box binding protein‐1 in mice
  publication-title: Gut
– volume: 37
  start-page: 30
  year: 2013
  end-page: 35
  article-title: PNPLA3, a genetic marker of progressive liver disease, still hiding its metabolic function?
  publication-title: Clin. Res. Hepatol. Gastroenterol.
– volume: 57
  start-page: 1441
  year: 2008
  end-page: 1447
  article-title: Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease
  publication-title: Gut
– volume: 43
  start-page: 163
  year: 2006
  end-page: 172
  article-title: JNK1 but not JNK2 promotes the development of steatohepatitis in mice
  publication-title: Hepatology
– volume: 57
  start-page: 7
  year: 2013
  end-page: 9
  article-title: Excess cholesterol and fat in the diet: a dangerous liaison for energy expenditure and the liver
  publication-title: Hepatology
– volume: 168
  start-page: 1609
  year: 2008
  end-page: 1616
  article-title: Identification and characterization of metabolically benign obesity in humans
  publication-title: Arch. Intern. Med.
– volume: 142
  start-page: 152
  year: 2012
  end-page: 164
  article-title: A high‐cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells
  publication-title: Gastroenterology
– volume: 53
  start-page: 542
  year: 2010
  end-page: 550
  article-title: Impact of pan‐caspase inhibition in animal models of established steatosis and non‐alcoholic steatohepatitis
  publication-title: J. Hepatol.
– volume: 32
  start-page: 701
  year: 2012
  end-page: 711
  article-title: The potential role of prebiotic fibre for treatment and management of non‐alcoholic fatty liver disease and associated obesity and insulin resistance
  publication-title: Liver Int.
– volume: 7
  start-page: e45425
  year: 2012
  article-title: VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation
  publication-title: PLoS ONE
– volume: 129
  start-page: 113
  year: 2005
  end-page: 121
  article-title: The natural history of nonalcoholic fatty liver disease: a population‐based cohort study
  publication-title: Gastroenterology
– volume: 1821
  start-page: 1443
  year: 2012
  end-page: 1452
  article-title: Anti‐inflammatory and metabolic actions of FXR: insights into molecular mechanisms
  publication-title: Biochim. Biophys. Acta
– volume: 123
  start-page: 323
  year: 2012
  end-page: 332
  article-title: Adenosine A(2a) receptor stimulation prevents hepatocyte lipotoxicity and non‐alcoholic steatohepatitis (NASH) in rats
  publication-title: Clin. Sci. (Lond)
– volume: 78
  start-page: 719
  year: 2003
  end-page: 727
  article-title: Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9‐y gain in waist circumference among 16 587 US men
  publication-title: Am. J. Clin. Nutr.
– volume: 40
  start-page: 1461
  year: 2008
  end-page: 1465
  article-title: Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease
  publication-title: Nat. Genet.
– year: 2013
  article-title: NAFLD in Asia‐as common and important as in the West
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 13
  start-page: 568
  year: 2010
  end-page: 576
  article-title: The potential for caspases in drug discovery
  publication-title: Curr. Opin. Drug Discov. Devel.
– volume: 536
  start-page: 182
  year: 2006
  end-page: 191
  article-title: Effects of bezafibrate, PPAR pan‐agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine‐ and choline‐deficient diet
  publication-title: Eur. J. Pharmacol.
– volume: 49
  start-page: 1877
  year: 2009
  end-page: 1887
  article-title: Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease
  publication-title: Hepatology
– volume: 22
  start-page: 479
  year: 2011
  end-page: 488
  article-title: Nonalcoholic steatohepatitis: the therapeutic challenge of a global epidemic
  publication-title: Curr. Opin. Lipidol.
– volume: 482
  start-page: 179
  year: 2012
  end-page: 185
  article-title: Inflammasome‐mediated dysbiosis regulates progression of NAFLD and obesity
  publication-title: Nature
– year: 2013
  article-title: Epidemiology and natural history of patients with NAFLD
  publication-title: Curr. Pharm. Des.
– volume: 15
  start-page: 691
  year: 2012
  end-page: 702
  article-title: Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase
  publication-title: Cell Metab.
– volume: 113
  start-page: 1
  year: 2012
  end-page: 6
  article-title: Short‐term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease
  publication-title: J. Appl. Physiol.
– volume: 55
  start-page: 419
  year: 2012
  end-page: 428
  article-title: A phase 2, randomized, double‐blind, placebo‐controlled study of GS‐9450 in subjects with nonalcoholic steatohepatitis
  publication-title: Hepatology
– volume: 56
  start-page: 952
  year: 2012
  end-page: 960
  article-title: Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes
  publication-title: Hepatology
– volume: 52
  start-page: 941
  year: 2010
  end-page: 943
  article-title: Adenosine: tipping the balance towards hepatic steatosis and fibrosis
  publication-title: J. Hepatol.
– volume: 55
  start-page: 145
  year: 2011
  end-page: 153
  article-title: Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes
  publication-title: J. Hepatol.
– volume: 618
  start-page: 98
  year: 2009
  end-page: 104
  article-title: Long‐term treatment with sergliflozin etabonate improves disturbed glucose metabolism in KK‐A(y) mice
  publication-title: Eur. J. Pharmacol.
– volume: 365
  start-page: 1363
  year: 2005
  end-page: 1364
  article-title: Fighting obesity and associated risk factors by antagonising cannabinoid type 1 receptors
  publication-title: Lancet
– volume: 22
  start-page: 699
  year: 2011
  end-page: 711
  article-title: Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms
  publication-title: J. Nutr. Biochem.
– volume: 50
  start-page: 1029
  year: 2009
  end-page: 1034
  article-title: Association of serum uric acid level with non‐alcoholic fatty liver disease: a cross‐sectional study
  publication-title: J. Hepatol.
– volume: 52
  start-page: 774
  year: 2010
  end-page: 788
  article-title: Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites
  publication-title: Hepatology
– volume: 143
  start-page: 448
  year: 2012
  end-page: 458
  article-title: Circulating microparticles as disease‐specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis
  publication-title: Gastroenterology
– volume: 51
  start-page: 380
  year: 2009
  end-page: 388
  article-title: Farnesoid X receptor agonist WAY‐362450 attenuates liver inflammation and fibrosis in murine model of non‐alcoholic steatohepatitis
  publication-title: J. Hepatol.
– volume: 91
  start-page: 319
  year: 2012
  end-page: 327
  article-title: Nonalcoholic fatty liver disease in lean individuals in the United States
  publication-title: Medicine (Baltimore)
– volume: 127
  start-page: S35
  year: 2004
  end-page: 50
  article-title: Hepatocellular carcinoma in cirrhosis: incidence and risk factors
  publication-title: Gastroenterology
– volume: 46
  start-page: 1387
  year: 2007
  end-page: 1391
  article-title: Incidence and natural course of fatty liver in the general population: the Dionysos study
  publication-title: Hepatology
– volume: 304
  start-page: 1795
  year: 2010
  end-page: 1802
  article-title: Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial
  publication-title: JAMA
– volume: 143
  start-page: 913
  year: 2012
  end-page: 916
  article-title: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome
  publication-title: Gastroenterology
– volume: 12
  start-page: 256
  year: 2013
  end-page: 262
  article-title: Treatment of nonalcoholic steatohepatitis with probiotics. A proof‐of‐concept study
  publication-title: Ann. Hepatol.
– volume: 16
  start-page: 567
  year: 2012
  end-page: 585
  article-title: Can NASH be diagnosed, graded, and staged noninvasively?
  publication-title: Clin. Liver Dis.
– volume: 6
  start-page: e25269
  year: 2011
  article-title: GLP‐1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy
  publication-title: PLoS ONE
– volume: 6
  start-page: 995
  year: 2011
  end-page: 1025
  article-title: Cannabinoid 1 G protein‐coupled receptor (periphero‐)neutral antagonists: emerging therapeutics for treating obesity‐driven metabolic disease and reducing cardiovascular risk
  publication-title: Expert Opin. Drug Discov.
– volume: 10
  start-page: 1342
  year: 2012
  end-page: 1359
  article-title: Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review
  publication-title: Clin. Gastroenterol. Hepatol.
– volume: 119
  start-page: 582
  year: 2009
  end-page: 594
  article-title: Adenosine signaling contributes to ethanol‐induced fatty liver in mice
  publication-title: J. Clin. Invest.
– volume: 24
  start-page: 531
  year: 2013
  end-page: 538
  article-title: Lactobaccilus casei Shirota protects from fructose‐induced liver steatosis: a mouse model
  publication-title: J. Nutr. Biochem.
– volume: 49
  start-page: 608
  year: 2008
  end-page: 612
  article-title: Increased overall mortality and liver‐related mortality in non‐alcoholic fatty liver disease
  publication-title: J. Hepatol.
– volume: 8
  start-page: S4
  issue: Suppl. 1
  year: 2009
  end-page: S8
  article-title: Epidemiology and natural history of non‐alcoholic fatty liver disease (NAFLD)
  publication-title: Ann. Hepatol.
– volume: 27
  start-page: 341
  year: 2012
  end-page: 350
  article-title: Peroxisome proliferator‐activated receptor‐alpha agonist, Wy 14 643, improves metabolic indices, steatosis and ballooning in diabetic mice with non‐alcoholic steatohepatitis
  publication-title: J. Gastroenterol. Hepatol.
– volume: 42
  start-page: 731
  year: 2010
  end-page: 735
  article-title: Combination therapy with nateglinide and vildagliptin improves postprandial metabolic derangements in Zucker fatty rats
  publication-title: Horm. Metab. Res.
– volume: 56
  start-page: 1363
  year: 2012
  end-page: 1370
  article-title: Non‐invasive diagnosis of non‐alcoholic steatohepatitis by combined serum biomarkers
  publication-title: J. Hepatol.
– volume: 47
  start-page: 941
  year: 2012
  end-page: 950
  article-title: Dietary trans‐fatty acid induced NASH is normalized following loss of trans‐fatty acids from hepatic lipid pools
  publication-title: Lipids
– volume: 17
  start-page: 988
  year: 2012
  end-page: 997
  article-title: Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis
  publication-title: Drug Discov. Today
– volume: 362
  start-page: 1675
  year: 2010
  end-page: 1685
  article-title: Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis
  publication-title: N. Engl. J. Med.
– volume: 57
  start-page: 36
  issue: Suppl. 2
  year: 2010
  end-page: 42
  article-title: Exercise, appetite and appetite‐regulating hormones: implications for food intake and weight control
  publication-title: Ann. Nutr. Metab.
– volume: 59
  start-page: 969
  year: 2010
  end-page: 974
  article-title: Disease progression of non‐alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years
  publication-title: Gut
– volume: 302
  start-page: G762
  year: 2012
  end-page: 772
  article-title: Glucagon‐like peptide‐1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 128
  start-page: 1898
  year: 2005
  end-page: 1906
  article-title: Sampling variability of liver biopsy in nonalcoholic fatty liver disease
  publication-title: Gastroenterology
– volume: 24
  start-page: 4948
  year: 2010
  end-page: 4959
  article-title: Germ‐free C57BL/6J mice are resistant to high‐fat‐diet‐induced insulin resistance and have altered cholesterol metabolism
  publication-title: FASEB J.
– volume: 54
  start-page: 1090
  year: 2011
  end-page: 1093
  article-title: No need for a large belly to have NASH
  publication-title: J. Hepatol.
– volume: 1
  start-page: 231
  year: 2005
  end-page: 244
  article-title: LXRs regulate the balance between fat storage and oxidation
  publication-title: Cell Metab.
– volume: 28
  start-page: 267
  year: 2010
  end-page: 273
  article-title: The effect of lifestyle changes in non‐alcoholic fatty liver disease
  publication-title: Dig. Dis.
– volume: 30
  start-page: 6273
  year: 2010
  end-page: 6281
  article-title: Alterations in the hippocampal endocannabinoid system in diet‐induced obese mice
  publication-title: J. Neurosci.
– volume: 8
  start-page: S18
  issue: Suppl. 1
  year: 2009
  end-page: 24
  article-title: Metabolic syndrome and non‐alcoholic fatty liver disease
  publication-title: Ann. Hepatol.
– volume: 40
  start-page: 1387
  year: 2004
  end-page: 1395
  article-title: Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity
  publication-title: Hepatology
– volume: 7
  start-page: e38744
  year: 2012
  article-title: Linagliptin improves insulin sensitivity and hepatic steatosis in diet‐induced obesity
  publication-title: PLoS ONE
– volume: 122
  start-page: 4130
  year: 2012
  end-page: 4144
  article-title: Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis
  publication-title: J. Clin. Invest.
– volume: 57
  start-page: 601
  year: 2013
  end-page: 609
  article-title: Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH
  publication-title: Hepatology
– volume: 6
  start-page: 242
  year: 2007
  end-page: 250
  article-title: Dipeptidyl peptidase IV (DDP IV) in NASH patients
  publication-title: Ann. Hepatol.
– year: 2013
  article-title: Incretin hormones and the satiation signal
  publication-title: Int. J. Obes. (Lond)
– volume: 120
  start-page: 1640
  year: 2009
  end-page: 1645
  article-title: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity
  publication-title: Circulation
– volume: 53
  start-page: 1883
  year: 2011
  end-page: 1894
  article-title: Meta‐analysis of the influence of I148M variant of patatin‐like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease
  publication-title: Hepatology
– volume: 12
  start-page: 671
  year: 2006
  end-page: 676
  article-title: CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis
  publication-title: Nat. Med.
– ident: e_1_2_6_5_1
  doi: 10.1002/hep.20466
– ident: e_1_2_6_29_1
  doi: 10.1002/hep.23719
– ident: e_1_2_6_26_1
  doi: 10.1002/hep.25789
– ident: e_1_2_6_48_1
  doi: 10.1172/JCI65179
– ident: e_1_2_6_71_1
  doi: 10.1055/s-0030-1261929
– ident: e_1_2_6_34_1
  doi: 10.1002/hep.23122
– ident: e_1_2_6_78_1
  doi: 10.1007/s00125-011-2401-4
– ident: e_1_2_6_3_1
  doi: 10.1016/S1665-2681(19)31822-8
– ident: e_1_2_6_22_1
  doi: 10.1056/NEJMra0912063
– ident: e_1_2_6_47_1
  doi: 10.1016/j.cmet.2012.04.008
– ident: e_1_2_6_87_1
  doi: 10.1016/j.drudis.2012.05.012
– ident: e_1_2_6_61_1
  doi: 10.1002/hep.26271
– ident: e_1_2_6_92_1
  doi: 10.1016/S1665-2681(19)31364-X
– ident: e_1_2_6_56_1
  doi: 10.1159/000282101
– ident: e_1_2_6_52_1
  doi: 10.1136/gut.2007.146019
– ident: e_1_2_6_93_1
  doi: 10.1111/j.1478-3231.2011.02730.x
– ident: e_1_2_6_77_1
  doi: 10.1111/j.1440-1746.2011.06939.x
– ident: e_1_2_6_11_1
  doi: 10.1016/j.cld.2009.07.005
– ident: e_1_2_6_24_1
  doi: 10.1016/j.cgh.2012.10.001
– ident: e_1_2_6_54_1
  doi: 10.1053/j.gastro.2012.04.031
– ident: e_1_2_6_62_1
  doi: 10.1016/j.jhep.2010.03.016
– ident: e_1_2_6_17_1
  doi: 10.1053/j.gastro.2005.04.014
– ident: e_1_2_6_83_1
  doi: 10.1038/nm1421
– ident: e_1_2_6_67_1
  doi: 10.1159/000322702
– ident: e_1_2_6_91_1
  doi: 10.1016/j.jnutbio.2012.01.014
– ident: e_1_2_6_30_1
  doi: 10.1007/s11745-012-3709-7
– ident: e_1_2_6_82_1
  doi: 10.1016/j.ejphar.2009.07.001
– ident: e_1_2_6_31_1
  doi: 10.1002/hep.23535
– ident: e_1_2_6_66_1
  doi: 10.1172/JCI37409
– ident: e_1_2_6_49_1
  doi: 10.1097/MOL.0b013e32834c7cfc
– ident: e_1_2_6_68_1
  doi: 10.1523/JNEUROSCI.2648-09.2010
– ident: e_1_2_6_76_1
  doi: 10.1016/j.ejphar.2006.02.028
– ident: e_1_2_6_45_1
  doi: 10.1016/j.jhep.2010.10.024
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jhep.2008.11.021
– ident: e_1_2_6_23_1
  doi: 10.1001/archinte.168.15.1609
– ident: e_1_2_6_10_1
  doi: 10.1038/nrgastro.2013.34
– ident: e_1_2_6_4_1
  doi: 10.1053/j.gastro.2010.09.038
– ident: e_1_2_6_69_1
  doi: 10.1038/ijo.2012.208
– ident: e_1_2_6_85_1
  doi: 10.1517/17460441.2011.608063
– ident: e_1_2_6_28_1
  doi: 10.1016/j.cmet.2005.03.001
– ident: e_1_2_6_20_1
  doi: 10.1016/j.jhep.2008.06.018
– ident: e_1_2_6_43_1
  doi: 10.1053/j.gastro.2012.06.031
– ident: e_1_2_6_46_1
  doi: 10.1016/j.clinre.2012.06.014
– ident: e_1_2_6_57_1
  doi: 10.1152/japplphysiol.00127.2012
– ident: e_1_2_6_80_1
  doi: 10.1056/NEJMoa0907929
– ident: e_1_2_6_19_1
  doi: 10.1136/gutjnl‐2012‐302962
– ident: e_1_2_6_33_1
  doi: 10.1007/s10495-009-0366-2
– ident: e_1_2_6_75_1
  doi: 10.1371/journal.pone.0025269
– ident: e_1_2_6_88_1
  doi: 10.1016/j.bbalip.2012.07.004
– ident: e_1_2_6_72_1
  doi: 10.1371/journal.pone.0038744
– ident: e_1_2_6_21_1
  doi: 10.1002/hep.21327
– ident: e_1_2_6_84_1
  doi: 10.1186/1471-230X-9-75
– ident: e_1_2_6_12_1
  doi: 10.1016/S1665-2681(19)31820-4
– ident: e_1_2_6_51_1
  doi: 10.1016/j.jhep.2011.12.025
– volume: 13
  start-page: 568
  year: 2010
  ident: e_1_2_6_60_1
  article-title: The potential for caspases in drug discovery
  publication-title: Curr. Opin. Drug Discov. Devel.
– ident: e_1_2_6_37_1
  doi: 10.1053/j.gastro.2011.09.049
– ident: e_1_2_6_27_1
  doi: 10.1002/hep.25953
– ident: e_1_2_6_53_1
  doi: 10.1016/j.cld.2012.05.001
– ident: e_1_2_6_15_1
  doi: 10.2174/13816128113199990336
– ident: e_1_2_6_50_1
  doi: 10.1053/j.gastro.2005.03.084
– ident: e_1_2_6_89_1
  doi: 10.1016/j.jhep.2009.03.025
– ident: e_1_2_6_16_1
  doi: 10.1016/j.jhep.2009.03.019
– ident: e_1_2_6_38_1
  doi: 10.1016/j.jhep.2011.01.010
– ident: e_1_2_6_39_1
  doi: 10.1096/fj.10.164921
– ident: e_1_2_6_41_1
  doi: 10.1002/hep.22848
– ident: e_1_2_6_2_1
  doi: 10.1161/CIRCULATIONAHA.109.192644
– ident: e_1_2_6_63_1
  doi: 10.1002/hep.24747
– ident: e_1_2_6_86_1
  doi: 10.1016/S0140-6736(05)66348-9
– ident: e_1_2_6_13_1
  doi: 10.1136/gut.2009.205088
– ident: e_1_2_6_70_1
  doi: 10.1016/S1665-2681(19)31905-2
– ident: e_1_2_6_14_1
  doi: 10.1002/hep.21827
– ident: e_1_2_6_18_1
  doi: 10.1038/ng.257
– ident: e_1_2_6_6_1
  doi: 10.1097/MD.0b013e3182779d49
– ident: e_1_2_6_9_1
  doi: 10.1002/hep.23567
– ident: e_1_2_6_35_1
  doi: 10.1016/j.jnutbio.2010.10.002
– ident: e_1_2_6_58_1
  doi: 10.1093/ajcn/78.4.719
– ident: e_1_2_6_59_1
  doi: 10.1002/hep.20999
– ident: e_1_2_6_90_1
  doi: 10.1371/journal.pone.0045425
– ident: e_1_2_6_65_1
  doi: 10.1042/CS20110504
– ident: e_1_2_6_81_1
  doi: 10.2337/dc11-0093
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1440-1746.2010.06548.x
– ident: e_1_2_6_55_1
  doi: 10.1001/jama.2010.1505
– ident: e_1_2_6_42_1
  doi: 10.1038/nature10809
– ident: e_1_2_6_32_1
  doi: 10.1002/hep.25741
– ident: e_1_2_6_44_1
  doi: 10.1002/hep.24283
– ident: e_1_2_6_64_1
  doi: 10.1016/j.jhep.2010.02.009
– ident: e_1_2_6_36_1
  doi: 10.1136/gutjnl-2011-300269
– ident: e_1_2_6_25_1
  doi: 10.1053/j.gastro.2004.09.014
– ident: e_1_2_6_79_1
  doi: 10.1053/j.gastro.2008.03.078
– ident: e_1_2_6_73_1
  doi: 10.1152/ajpgi.00274.2011
– ident: e_1_2_6_40_1
  doi: 10.1002/hep.26093
– ident: e_1_2_6_74_1
  doi: 10.1152/ajpgi.00476.2011
SSID ssj0004075
Score 2.5052876
SecondaryResourceType review_article
Snippet Non‐alcoholic fatty liver disease (NAFLD) refers to a disease spectrum, ranging from mere hepatic steatosis to hepatic necroinflammation (NASH, non‐alcoholic...
graphic graphic Non‐alcoholic fatty liver disease ( NAFLD ) refers to a disease spectrum, ranging from mere hepatic steatosis to hepatic necroinflammation (...
Non-alcoholic fatty liver disease (NAFLD) refers to a disease spectrum, ranging from mere hepatic steatosis to hepatic necroinflammation (NASH, non-alcoholic...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 68
SubjectTerms Adipose Tissue
Apoptosis
diabetes
Diabetes Mellitus, Type 2 - complications
DPP-4
Exercise Therapy
Fatty Acids, Nonesterified - metabolism
Fatty Liver - epidemiology
Fatty Liver - etiology
Fatty Liver - prevention & control
Fatty Liver - therapy
Fibrosis
FXR
Genetic Predisposition to Disease
GLP-1
Hepatocytes - metabolism
Hepatocytes - pathology
Humans
Inflammation - etiology
Insulin Resistance - physiology
Life Style
lifestyle
metabolic syndrome
microbiome
Molecular Targeted Therapy
NASH
Non-alcoholic Fatty Liver Disease
Obesity - complications
Oxidative Stress
Probiotics - therapeutic use
Risk Factors
Stem Cells - pathology
Weight Loss
Title Non-alcoholic steatohepatitis: Pathogenesis and novel therapeutic approaches
URI https://api.istex.fr/ark:/67375/WNG-WVXHZV8F-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjgh.12212
https://www.ncbi.nlm.nih.gov/pubmed/23855299
https://www.proquest.com/docview/1412155475
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0815-9319
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1440-1746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004075
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD4MCrIv6213HW90ZRFfOkyTJm31ScSZQXCQxRkHWShJms4MSiu2I-KTP8Hf6C8xSS9ecGHZl9KHtKQ55-R8p-fkOwC_RKD8MmbYlsRFOkARth-oC0Y8xphRj3NTbdGnvYF7MiKjBhxUZ2EKfoj6h5u2DLNfawNnPHtr5ONJy0HIdBh2MDEp2t-v1FFuQbKrPB6xA6VnJauQqeKpnnzni-b1st5_BjTf41bjeDqL8KeaclFvctWa5bwlHj6wOf7nNy3B1xKQWoeFBi1DQyYrsHBaptxXod9Pk-fHJ1a00p0KS6tFnk6kLsXOp9m-daZAZDrWe-Y0s1gSWUl6J6-tNye7rIq5XGbfYNA5Pj_q2WUTBlvoTlZ2HGEWsEg3DmszFgvHi7DLAx_HSpIuYj7VW4Db9iOKdEZZhT-OYJg7VCjsyQX-DnNJmsg1sHCby5jGVCpU4wZtymIp1cujiDOEROA1Ya8SRyhKhnLdKOM6rCOV8SQ069OEnXroTUHL8dmgXSPTegS7vdJ1bB4JL_rd8GI46l0O_U5Im_CzEnqorEunTFgi01mmAiPNvkFcjzThR6EN9dsU2CFEeXM1bSPTv08kPOn2zM36vw_dgC_IdN7QtYabMJffzuSWwj853zaK_gKSPABn
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CAm0vTZu-NunDCSHk4mVXsmW79FLabpyXCSGPJVCEJMu7S4Idst5SeupP6G_sL6lGfjQpKYRcjA9jIWtmNDOa0TcA6yoydpkK6mrfIxigKDeMzIMSmVEqWCClrbZIWHzs7Qz94Rx8aO7CVPgQ7YEbaobdr1HB8UD6upaPxt0-IdhieAHzc6iWnw__gkd5FcyusXm-GxlJq3GFbB1P8-kNa7SAC_v9NlfzpudqTc9gEb42k64qTs67s1J21Y9_8Bzv-1dP4HHtkzofKyF6CnM6X4IH-3XW_RkkSZH__vlLVN10J8pBySiLscZq7HIyfe8cGD-yGOG2OZk6Ik-dvPimL5xrl7ucBrxcT5_D8eDL0afYrfswuAqbWblZSkUkUuwd1hMiU_0gpZ6MQpoZZnpEhAx3Aa8XpoxgUtlEQH0lqOwzZdxPqegLmM-LXL8Ch_akzljGtHFsvKjHRKa1GTxNpSBERUEHNht-cFWDlGOvjAveBiujMbfr04G1lvSyQua4jWjDMrWlEFfnWMoW-Pw02eKnJ8P47CQccNaB1Ybr3CgYZk1ErovZ1MRGCMDhe4HfgZeVOLSjGX_H941BN9O2TP3_RPjOVmxflu9O-g4exkf7e3xvO9ldgUfENuLA0sPXMF9ezfQb4w6V8q2V-j-OegSD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8QSIgvAv7jALUaY3zp5W53u23xyQjHidoQI3AxJpvd7fbuAmkJ1yOEJz6Cn9FP4s72j2AwMb40fZg2252Znd90Z38D8ErHNi5TSX0TMIIJivaj2F4oURmlkodKuWqLhA8P2f4oGC3A2-YsTMUP0f5wQ89w6zU6-Fma3XTy8aTbJwQ7DC8xbrMrRERffnNHsYpl14a8wI-todW0Qq6Mp3n0VjBawnm9vAtp3gauLvIMVuB7M-aq4OSkOy9VV1_9Qef4nx-1CvdrROq9q0xoDRZM_gCWP9d77g8hSYr85_UPWfXSnWoP7aIsJgZrscvpbNs7sCiyGOOiOZ15Mk-9vLgwp96No11eQ11uZo_gcLD79f3Qr7sw-BpbWflZSmUsU-wc1pMy0_0wpUzFEc2sKhmREcc1gPWilBPcUrb5T19LqvpcW_CpNH0Mi3mRm3XwaE-ZjGfcWFjD4h6XmTH25WmqJCE6DjvwplGH0DVFOXbKOBVtqjKeCDc_HXjZip5VvBx3Cb12Om0l5PkJFrKFgThO9sTx0Wj47SgaCN6BF43ShXUv3DORuSnmM5sZIf1GwMKgA08qa2jfZtFOENhwboftdPr3gYj9vaG72fh30eewfLAzEJ8-JB834R5xXTiw7nALFsvzuXlqsVCpnjmb_wWEJAMy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-alcoholic+steatohepatitis%3A+pathogenesis+and+novel+therapeutic+approaches&rft.jtitle=Journal+of+gastroenterology+and+hepatology&rft.au=Schuppan%2C+Detlef&rft.au=Schattenberg%2C+J%C3%B6rn+M&rft.date=2013-08-01&rft.issn=1440-1746&rft.eissn=1440-1746&rft.volume=28+Suppl+1&rft.spage=68&rft_id=info:doi/10.1111%2Fjgh.12212&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0815-9319&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0815-9319&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0815-9319&client=summon