Zero‐anaphora resolution in Korean based on deep language representation model: BERT

It is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and various other languages. Deep‐learning‐based models are being employed for building ZAR systems, owing to the success of deep learning in...

Full description

Saved in:
Bibliographic Details
Published inETRI journal Vol. 43; no. 2; pp. 299 - 312
Main Authors Kim, Youngtae, Ra, Dongyul, Lim, Soojong
Format Journal Article
LanguageEnglish
Published Electronics and Telecommunications Research Institute (ETRI) 01.04.2021
한국전자통신연구원
Subjects
Online AccessGet full text
ISSN1225-6463
2233-7326
2233-7326
DOI10.4218/etrij.2019-0441

Cover

Abstract It is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and various other languages. Deep‐learning‐based models are being employed for building ZAR systems, owing to the success of deep learning in the recent years. However, the objective of building a high‐quality ZAR system is far from being achieved even using these models. To enhance the current ZAR techniques, we fine‐tuned a pre‐trained bidirectional encoder representations from transformers (BERT). Notably, BERT is a general language representation model that enables systems to utilize deep bidirectional contextual information in a natural language text. It extensively exploits the attention mechanism based upon the sequence‐transduction model Transformer. In our model, classification is simultaneously performed for all the words in the input word sequence to decide whether each word can be an antecedent. We seek end‐to‐end learning by disallowing any use of hand‐crafted or dependency‐parsing features. Experimental results show that compared with other models, our approach can significantly improve the performance of ZAR.
AbstractList It is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and various other languages. Deep‐learning‐based models are being employed for building ZAR systems, owing to the success of deep learning in the recent years. However, the objective of building a high‐quality ZAR system is far from being achieved even using these models. To enhance the current ZAR techniques, we fine‐tuned a pre‐trained bidirectional encoder representations from transformers (BERT). Notably, BERT is a general language representation model that enables systems to utilize deep bidirectional contextual information in a natural language text. It extensively exploits the attention mechanism based upon the sequence‐transduction model Transformer. In our model, classification is simultaneously performed for all the words in the input word sequence to decide whether each word can be an antecedent. We seek end‐to‐end learning by disallowing any use of hand‐crafted or dependency‐parsing features. Experimental results show that compared with other models, our approach can significantly improve the performance of ZAR.
AbstractIt is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and various other languages. Deep‐learning‐based models are being employed for building ZAR systems, owing to the success of deep learning in the recent years. However, the objective of building a high‐quality ZAR system is far from being achieved even using these models. To enhance the current ZAR techniques, we fine‐tuned a pre‐trained bidirectional encoder representations from transformers (BERT). Notably, BERT is a general language representation model that enables systems to utilize deep bidirectional contextual information in a natural language text. It extensively exploits the attention mechanism based upon the sequence‐transduction model Transformer. In our model, classification is simultaneously performed for all the words in the input word sequence to decide whether each word can be an antecedent. We seek end‐to‐end learning by disallowing any use of hand‐crafted or dependency‐parsing features. Experimental results show that compared with other models, our approach can significantly improve the performance of ZAR.
It is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and various other languages. Deep‐learning‐based models are being employed for building ZAR systems, owing to the success of deep learning in the recent years. However, the objective of building a high‐quality ZAR system is far from being achieved even using these models. To enhance the current ZAR techniques, we fine‐tuned a pre‐trained bidirectional encoder representations from transformers (BERT). Notably, BERT is a general language representation model that enables systems to utilize deep bidirectional contextual information in a natural language text. It extensively exploits the attention mechanism based upon the sequence‐transduction model Transformer. In our model, classification is simultaneously performed for all the words in the input word sequence to decide whether each word can be an antecedent. We seek end‐to‐end learning by disallowing any use of hand‐crafted or dependency‐parsing features. Experimental results show that compared with other models, our approach can significantly improve the performance of ZAR. KCI Citation Count: 7
Author Lim, Soojong
Kim, Youngtae
Ra, Dongyul
Author_xml – sequence: 1
  givenname: Youngtae
  surname: Kim
  fullname: Kim, Youngtae
  organization: Yonsei University
– sequence: 2
  givenname: Dongyul
  orcidid: 0000-0003-1449-4614
  surname: Ra
  fullname: Ra, Dongyul
  email: dyra2246@gmail.com
  organization: Yonsei University
– sequence: 3
  givenname: Soojong
  surname: Lim
  fullname: Lim, Soojong
  organization: Electronics and Telecommunications Research Institute
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002706551$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkrFu2zAQhokiAeqknbtq7aCEpCiS6pYGbmM0QADD6dCFOFEnlw5DCpSMwFsfoc-YJ6ksBR06NNMBh-_7D-DPM3ISYkBCPjB6ITjTlzgkt7vglFU5FYK9IQvOiyJXBZcnZME4L3MpZPGWnPX9jlJORakX5PsPTPH5128I0P2MCbKEffT7wcWQuZB9iwkhZDX02GTjqkHsMg9hu4ctjmw34hgGmPjH2KD_lH1erjfvyGkLvsf3L_Oc3H9Zbq5v8tu7r6vrq9vcCl7xXIOSWoJUGq1izKoKbanLBlorWctaqrCokVnRINRS6kZZ3dSaj1hd0dYW5-TjnBtSax6sMxHcNLfRPCRztd6sTKWUEEqO7Gpmmwg70yX3COkwCdMipq2BNDjr0QgQXAFQiaISEutaU6zGu6pSTBRNPWbROWsfOjg8gfd_Axk1xz7M1Ic59mGOfYxKOSs2xb5P2Brr5ocbEjj_H-_yH-_1S3I2npzHw2u4WW7WnPFi_C1_ACAytJU
CitedBy_id crossref_primary_10_1038_s41598_023_41484_9
crossref_primary_10_4218_etrij_2023_0100
crossref_primary_10_14801_jkiit_2023_21_2_43
crossref_primary_10_1109_ACCESS_2021_3112682
crossref_primary_10_1186_s40494_023_01068_2
Cites_doi 10.1162/neco.1997.9.8.1735
10.4218/etrij.2017-0085
10.18653/v1/D16-1132
10.1145/3325884
ContentType Journal Article
Copyright 2020 ETRI
Copyright_xml – notice: 2020 ETRI
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
ACYCR
DOI 10.4218/etrij.2019-0441
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-7326
EndPage 312
ExternalDocumentID oai_kci_go_kr_ARTI_9774476
oai_doaj_org_article_4a427aa06e4946ebb80e9b82797143db
10.4218/etrij.2019-0441
10_4218_etrij_2019_0441
ETR212322
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2017R1D1A3B03031855
– fundername: Institute for Information and communications Technology Planning and Evaluation
  funderid: 2013‐0‐00131
GroupedDBID -~X
.4S
.DC
.UV
0R~
1OC
29G
2WC
5GY
5VS
9ZL
AAKPC
AAYBS
ACGFS
ACXQS
ACYCR
ADBBV
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BCNDV
DU5
E3Z
EBS
EDO
EJD
GROUPED_DOAJ
IPNFZ
ITG
ITH
JDI
KQ8
KVFHK
MK~
ML~
O9-
OK1
P5Y
RIG
RNS
TR2
TUS
WIN
XSB
AAMMB
AAYXX
ADMLS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
OVT
ADTOC
UNPAY
ID FETCH-LOGICAL-c4292-8a7686a678ec711c79ec585dafc61f1f07e3be1c4deab668d7c8db829ecb90fc3
IEDL.DBID DOA
ISSN 1225-6463
2233-7326
IngestDate Sat Oct 25 08:02:50 EDT 2025
Fri Oct 03 12:51:34 EDT 2025
Tue Aug 19 19:48:08 EDT 2025
Thu Apr 24 23:09:13 EDT 2025
Wed Oct 01 02:46:33 EDT 2025
Wed Jan 22 16:29:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4292-8a7686a678ec711c79ec585dafc61f1f07e3be1c4deab668d7c8db829ecb90fc3
Notes This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Rep. of Korea (2017R1D1A3B03031855), and by Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT), Rep. of Korea (No. 2013‐0‐00131, Development of Knowledge Evolutionary WiseQA Platform Technology for Human Knowledge Augmented Services).
Funding Information
https://doi.org/10.4218/etrij.2019-0441
ORCID 0000-0003-1449-4614
OpenAccessLink https://doaj.org/article/4a427aa06e4946ebb80e9b82797143db
PageCount 14
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9774476
doaj_primary_oai_doaj_org_article_4a427aa06e4946ebb80e9b82797143db
unpaywall_primary_10_4218_etrij_2019_0441
crossref_citationtrail_10_4218_etrij_2019_0441
crossref_primary_10_4218_etrij_2019_0441
wiley_primary_10_4218_etrij_2019_0441_ETR212322
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle ETRI journal
PublicationYear 2021
Publisher Electronics and Telecommunications Research Institute (ETRI)
한국전자통신연구원
Publisher_xml – name: Electronics and Telecommunications Research Institute (ETRI)
– name: 한국전자통신연구원
References 2017; 30
2015; 28
2012
2011
2017; 44
2019
1996
2018
2007
2016
2018; 40
2015
2014
1997; 9
Sennrich R. (e_1_2_8_34_1) 2016
Vinyals O. (e_1_2_8_8_1) 2015; 28
e_1_2_8_24_1
e_1_2_8_27_1
Okumura M. (e_1_2_8_13_1)
Vaswani A. (e_1_2_8_6_1) 2017; 30
Lim S. (e_1_2_8_17_1)
Sutskever I. (e_1_2_8_29_1) 2014
Chen C. (e_1_2_8_10_1)
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
Nariyama S. (e_1_2_8_15_1)
e_1_2_8_23_1
Park C. (e_1_2_8_9_1) 2017; 44
Iida R. (e_1_2_8_19_1) 2011
Devlin J. (e_1_2_8_5_1) 2019
Sasano R. (e_1_2_8_2_1)
Zhao S. (e_1_2_8_18_1) 2007
e_1_2_8_36_1
Seki K. (e_1_2_8_16_1)
e_1_2_8_35_1
Yin Q. (e_1_2_8_11_1) 2018
Kong F. (e_1_2_8_25_1) 2019
e_1_2_8_37_1
Goodfellow I. (e_1_2_8_26_1) 2016
Chung J. (e_1_2_8_28_1) 2014
Murata M. (e_1_2_8_14_1)
Tsochantaridis I. (e_1_2_8_7_1)
Schuster M. (e_1_2_8_33_1) 2012
Nakaiwa H. (e_1_2_8_3_1) 1996
Iida R. (e_1_2_8_4_1)
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 44
  start-page: 496
  year: 2017
  end-page: 502
  article-title: Co‐reference resolution for Korean pronouns using pointer networks
  publication-title: J. Korean Inst. Inform. Sci. Eng.
– start-page: 5149
  year: 2012
  end-page: 5152
– start-page: 812
  year: 1996
  end-page: 817
– start-page: 871
  end-page: 887
– start-page: 1
  year: 2019
  end-page: 21
– volume: 30
  start-page: 6000
  year: 2017
  end-page: 6010
  article-title: Attention is all you need
  publication-title: Advances Neural Inform. Process. Syst.
– start-page: 1715
  year: 2016
  end-page: 1725
– volume: 28
  start-page: 2674
  year: 2015
  end-page: 2682
  article-title: Pointer networks
  publication-title: Advances in Neural Inform. Process. Syst.
– start-page: 541
  year: 2007
  end-page: 550
– start-page: 1
  end-page: 22
– year: 2016
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput.
– start-page: 75
  end-page: 80
– year: 2014
– start-page: 823
  end-page: 830
– start-page: 804
  year: 2011
  end-page: 813
– start-page: 778
  end-page: 788
– start-page: 135
  end-page: 145
– start-page: 13
  year: 2018
  end-page: 23
– start-page: 3104
  year: 2014
  end-page: 3112
– start-page: 215
  end-page: 219
– start-page: 769
  end-page: 776
– start-page: 911
  end-page: 917
– volume: 40
  start-page: 257
  year: 2018
  end-page: 264
  article-title: Deep neural architecture for recovering dropped pronouns in Korean
  publication-title: ETRI J.
– start-page: 4171
  year: 2019
  end-page: 4186
– year: 2015
– start-page: 1
  volume-title: ACM Trans. Asian Language Inform. Process.
  ident: e_1_2_8_4_1
– ident: e_1_2_8_31_1
– ident: e_1_2_8_37_1
– start-page: 3104
  volume-title: in Proc. Int. Conf. Neural Inform. Process. Syst
  year: 2014
  ident: e_1_2_8_29_1
– start-page: 769
  volume-title: in Proc. 22nd Int. Conf. Comput. Linguistics
  ident: e_1_2_8_2_1
– ident: e_1_2_8_27_1
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 135
  volume-title: in Proc. Int. Conf. Theoret. Methodol. Issues Mach. Transl
  ident: e_1_2_8_15_1
– start-page: 804
  volume-title: in Proc. Annu. Meet. Assoc. Comput. Linguistics
  year: 2011
  ident: e_1_2_8_19_1
– start-page: 823
  volume-title: in Proc. 21st Int. Conf. Mach. Learn
  ident: e_1_2_8_7_1
– start-page: 541
  volume-title: in Proc. Joint Conf. Empirical Methods Natural Language Process. Comput. Natural Language Learn
  year: 2007
  ident: e_1_2_8_18_1
– ident: e_1_2_8_22_1
– ident: e_1_2_8_20_1
  doi: 10.4218/etrij.2017-0085
– start-page: 812
  volume-title: in Proc. Int. Conf. Comput. Linguistics
  year: 1996
  ident: e_1_2_8_3_1
– start-page: 1715
  volume-title: in Proc. Annu. Meet. Assoc. Comput. Linguistics
  year: 2016
  ident: e_1_2_8_34_1
– ident: e_1_2_8_32_1
– ident: e_1_2_8_36_1
– volume: 28
  start-page: 2674
  year: 2015
  ident: e_1_2_8_8_1
  article-title: Pointer networks
  publication-title: Advances in Neural Inform. Process. Syst.
– start-page: 75
  volume-title: in Proc. Natural Language Process. Pacific Rim Symp
  ident: e_1_2_8_14_1
– ident: e_1_2_8_21_1
– start-page: 215
  volume-title: in Proc. Int. Joint Conf. Natural Language Process
  ident: e_1_2_8_17_1
– ident: e_1_2_8_12_1
  doi: 10.18653/v1/D16-1132
– volume: 44
  start-page: 496
  year: 2017
  ident: e_1_2_8_9_1
  article-title: Co‐reference resolution for Korean pronouns using pointer networks
  publication-title: J. Korean Inst. Inform. Sci. Eng.
– volume-title: in Proc. Neural Inform. Process. Syst., Workshop Deep Learn
  year: 2014
  ident: e_1_2_8_28_1
– start-page: 4171
  volume-title: in Proc. North American Chap. Assoc. Comput. Linguistics
  year: 2019
  ident: e_1_2_8_5_1
– start-page: 778
  volume-title: in Proc. Annu. Meet. Assoc. Comput. Linguistics
  ident: e_1_2_8_10_1
– start-page: 13
  volume-title: in Proc. Int. Conf. Comput. Linguistics
  year: 2018
  ident: e_1_2_8_11_1
– start-page: 5149
  volume-title: in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (Kyoto, Japan)
  year: 2012
  ident: e_1_2_8_33_1
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_8_26_1
– start-page: 871
  volume-title: in Proc. Int. Conf. Computat. Linguistics
  ident: e_1_2_8_13_1
– ident: e_1_2_8_35_1
– ident: e_1_2_8_30_1
– ident: e_1_2_8_24_1
  doi: 10.1145/3325884
– start-page: 1
  volume-title: ACM Trans. Asian Low‐Resour. Lang. Inf. Process. 19
  year: 2019
  ident: e_1_2_8_25_1
– ident: e_1_2_8_23_1
– volume: 30
  start-page: 6000
  year: 2017
  ident: e_1_2_8_6_1
  article-title: Attention is all you need
  publication-title: Advances Neural Inform. Process. Syst.
– start-page: 911
  volume-title: in Proc. Int. Conf. Comput. Linguistics
  ident: e_1_2_8_16_1
SSID ssj0020458
Score 2.3059053
Snippet It is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese,...
AbstractIt is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese,...
SourceID nrf
doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 299
SubjectTerms attention
bidirectional encoder representations from transformers (BERT)
deep learning
language representation model
zero‐anaphora resolution (ZAR)
전자/정보통신공학
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaq7QE48I-6_MlCHOCQbZw4dsKtRVsVEBWqdlHhYtmOXcqukijsCsGpj9Bn7JN0xsmuKAJViFMUy7Zie8bzjTP-hpDnJitT473DX_9pxEVsozyxIkpz7hmTzuaBvvj9gdif8rdH2dEGGa_uwnT8EOsDN9SMsF-jgjel7_Z5VHUOtmkbk059xfgsPODH6-ubIgNIPiCb04MPO5_Q2QJ5jQQPGdXAEqaRBLzSUfz8qYdL1imQ-IPNqVp4ubasGv3ju57PL8PYYIf2bnXxIt8CfSGGn8xGy4UZ2Z-_kTv-9xBvk5s9UqU7nWjdIRuuuktu_MJfeI98_Oza-vz0TFe6-QKyRMF370WZnlT0XQ2ItKJoKEsKRaVzDV0dkNJAp7m6-lTRkJLnFd0dH07uk-neePJ6P-oTNUQWs11FuQanRWiwe85KxqwsnAU3pNTeCuaZj6VLjWOWl04bIfJS2rw0eQLVTBF7mz4gg6qu3BahxmdFITOdZzxBrFgIBxKTMB1z5zMmhmS0WiBlexZzTKYxV-DN4ISpMGEKJ0zhhA3Ji3WDpiPw-HvVXVzxdTVk3g4FdXusekVWXPNEah0LxwsunDF57AoYiywwk3xphuQZyIua2ZPQHp_HtZq1CvyTNwrRNpcwipdrcbr6q7aDjFxVT40nh4hDkuThP_T-iFxPMEonxCI9JoNFu3RPAGYtzNNeiS4AYEQjxA
  priority: 102
  providerName: Unpaywall
Title Zero‐anaphora resolution in Korean based on deep language representation model: BERT
URI https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.2019-0441
https://onlinelibrary.wiley.com/doi/pdfdirect/10.4218/etrij.2019-0441
https://doaj.org/article/4a427aa06e4946ebb80e9b82797143db
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002706551
UnpaywallVersion publishedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ETRI Journal, 2021, 43(2), , pp.299-312
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020458
  issn: 2233-7326
  databaseCode: KQ8
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020458
  issn: 2233-7326
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020458
  issn: 2233-7326
  databaseCode: ADMLS
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020458
  issn: 2233-7326
  databaseCode: AVUZU
  dateStart: 19930401
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQeygcKiggtkBlIQ5wCBsnjn-4tWirAqJC1S4qXCzbsUvpyrtatUK98Qg8I0_CjJNdtQe0F05RrLFkz4wy88Xjbwh56Zq2djEGPPqvCy5KX6jKi6JWPDImg1eZvvjTsTia8A-nzemNVl9YE9bRA3eKG3LLK2ltKQLXXATnVBm0U5XU2Lm7dfj1LZVegqkeauHxH0It8NZCcFF3pD4c4tkQG1X9wJouPBTg7FY8yrT9EGXSAl62rtLcXv-00-ntxDVHnsP7ZLtPGel-t9QH5E5IO-TeDSLBh-TLt7CY_fn12yY7_w5GpQCie5-i54l-nEFqmChGrJbCUBvCnC7_VNLMa7m8g5Ro7o3zlh6MTsaPyORwNH53VPQdEwqPbacKZQE9CAsBKHjJmJc6eMADrY1esMhiKUPtAvO8DdYJoVrpVQvKBDGny-jrx2QjzVJ4QqiLjdaysarhFSZtWgQwXcVsyUNsmBiQN0u9Gd_TiWNXi6kBWIGKNlnRBhVtUNED8mo1Yd4xafxb9AANsRJDCuw8AI5hescw6xxjQF6AGc2FP8_z8Xk2MxcLA0DhvcG0l0vYxeuVldevapi9YJ2cGY1PMCGoqt3_sY-n5G6FdTS5WugZ2bhcXIXnkAhdur3s83tkc3L8ef_rXyTHA-4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9lA4oPISCwUsxAEOoXHiOA63Fm21pY9DtVtVvVi2Y5elK2cVbYW48RP4jfwSZrzZqEVCFaco1tiKZ8aZh-1vCHlnijo33jvc-s8TLlKbyMyKJJfcM1Y6KyN88fGJGE_5l_Pi_MZdmBU-RJ9ww5UR_9e4wDEhjaucg1lCKS7b2Tc8nIXZfby7vlGgcRqQjd2z6cW0D7twKxDDLtDcRHCRrwB-cJCdv4a4ZZsihD9YnNDCy-Z1WOgf3_V8ftuJjVZof4s87NxHuruS9yNyz4XH5MENUMEn5OzCtc3vn7900IuvIGAKAXWnX3QW6GEDbmKgaL1qCk21cwu6zlrSiHG5vo8UaKyT84nujU4nT8l0fzT5PE666gmJxRJUidQQSQgNxsjZkjFbVs5CbFBrbwXzzKely41jltdOGyFkXVpZG5kBmalSb_NnZBCa4J4TanxRVWWhZcEzdOAq4UCMGdMpd75gYkg-rvmmbActjhUu5gpCDGS0ioxWyGiFjB6S932HxQpV49-keyiIngzhsGND016qbnUprnlWap0KxysunDEydRXMpaywvHtthuQtiFFd2Vnsj8_LRl21CoKGA4UuMC9hFh96Kd_9VTtRC-6iU6PJKToHWfbiv3u8IZvjyfGROjo4OXxJ7md4mCYeGdomg2V77V6BN7Q0rzt1_wNtPAMB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlA30cQp90kz5E6aE9uPFDlu3cknaXpGlDCbsh5CIkeZRus9jGbAi99Sf0N-aXdEbrNUmhhJ6MxUhY8_DM6PENY29NWibGOaCt_yQQMrRBHlsZJLlwUZSBzT188ddDuTcVn0_Sk2t3YZb4EP2CG1mG_1-TgUNTOrJygW6JpLhoZz_ocBat7tPd9TX05qEYsLWd4-nptE-7aCuQ0i7U3EAKmSwBfmiQrb-GuOGbPIQ_epyqxZd7F1Wjf17q-fxmEOu90PghW-_CR76zlPcjdgeqx-zBNVDBJ-z4FNr66tdvXenmOwqYY0Ld6RefVfygxjCx4uS9So5NJUDDV6uW3GNcru4jVdzXydnmu6OjyVM2HY8mH_eCrnpCYKkEVZBrzCSkRmcENosimxVgMTcotbMycpELM0gMRFaUoI2UeZnZvDR5jGSmCJ1NnrFBVVfwnHHj0qLIUp2nIqYArpCAYowjHQpwaSSH7MOKb8p20OJU4WKuMMUgRivPaEWMVsToIXvXd2iWqBr_Jt0lQfRkBIftG-r2THXWpYQWcaZ1KEEUQoIxeQgFziUrqLx7aYbsDYpRnduZ70_Ps1qdtwqThn1FIbDIcBbveynf_lVbXgtuo1OjyREFB3G88d89XrO73z6N1Zf9w4NNdj-mszT-xNALNli0F_ASg6GFedVp-x8jwAKQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaq7QE48I-6_MlCHOCQbZw4dsKtRVsVEBWqdlHhYtmOXcqukijsCsGpj9Bn7JN0xsmuKAJViFMUy7Zie8bzjTP-hpDnJitT473DX_9pxEVsozyxIkpz7hmTzuaBvvj9gdif8rdH2dEGGa_uwnT8EOsDN9SMsF-jgjel7_Z5VHUOtmkbk059xfgsPODH6-ubIgNIPiCb04MPO5_Q2QJ5jQQPGdXAEqaRBLzSUfz8qYdL1imQ-IPNqVp4ubasGv3ju57PL8PYYIf2bnXxIt8CfSGGn8xGy4UZ2Z-_kTv-9xBvk5s9UqU7nWjdIRuuuktu_MJfeI98_Oza-vz0TFe6-QKyRMF370WZnlT0XQ2ItKJoKEsKRaVzDV0dkNJAp7m6-lTRkJLnFd0dH07uk-neePJ6P-oTNUQWs11FuQanRWiwe85KxqwsnAU3pNTeCuaZj6VLjWOWl04bIfJS2rw0eQLVTBF7mz4gg6qu3BahxmdFITOdZzxBrFgIBxKTMB1z5zMmhmS0WiBlexZzTKYxV-DN4ISpMGEKJ0zhhA3Ji3WDpiPw-HvVXVzxdTVk3g4FdXusekVWXPNEah0LxwsunDF57AoYiywwk3xphuQZyIua2ZPQHp_HtZq1CvyTNwrRNpcwipdrcbr6q7aDjFxVT40nh4hDkuThP_T-iFxPMEonxCI9JoNFu3RPAGYtzNNeiS4AYEQjxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zero%E2%80%90anaphora+resolution+in+Korean+based+on+deep+language+representation+model%3A+BERT&rft.jtitle=ETRI+journal&rft.au=Kim%2C+Youngtae&rft.au=Ra%2C+Dongyul&rft.au=Lim%2C+Soojong&rft.date=2021-04-01&rft.issn=1225-6463&rft.eissn=2233-7326&rft.volume=43&rft.issue=2&rft.spage=299&rft.epage=312&rft_id=info:doi/10.4218%2Fetrij.2019-0441&rft.externalDBID=10.4218%252Fetrij.2019-0441&rft.externalDocID=ETR212322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon