Classification and characterisation of brain network changes in chronic back pain: A multicenter study

Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and nature of changes in the brain is poorly understood. Methods. We investigated brain network architecture using resting-state fMR...

Full description

Saved in:
Bibliographic Details
Published inWellcome open research Vol. 3; p. 19
Main Authors Mano, Hiroaki, Kotecha, Gopal, Leibnitz, Kenji, Matsubara, Takashi, Sprenger, Christian, Nakae, Aya, Shenker, Nicholas, Shibata, Masahiko, Voon, Valerie, Yoshida, Wako, Lee, Michael, Yanagida, Toshio, Kawato, Mitsuo, Rosa, Maria Joao, Seymour, Ben
Format Journal Article
LanguageEnglish
Published England Wellcome Trust Limited 2018
F1000 Research Limited
Wellcome
Subjects
Online AccessGet full text
ISSN2398-502X
2398-502X
DOI10.12688/wellcomeopenres.14069.2

Cover

Abstract Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and nature of changes in the brain is poorly understood. Methods. We investigated brain network architecture using resting-state fMRI data in chronic back pain patients in the UK and Japan (41 patients, 56 controls), as well as open data from USA. We applied machine learning and deep learning (conditional variational autoencoder architecture) methods to explore classification of patients/controls based on network connectivity. We then studied the network topology of the data, and developed a multislice modularity method to look for consensus evidence of modular reorganisation in chronic back pain. Results. Machine learning and deep learning allowed reliable classification of patients in a third, independent open data set with an accuracy of 63%, with 68% in cross validation of all data. We identified robust evidence of network hub disruption in chronic pain, most consistently with respect to clustering coefficient and betweenness centrality. We found a consensus pattern of modular reorganisation involving extensive, bilateral regions of sensorimotor cortex, and characterised primarily by negative reorganisation - a tendency for sensorimotor cortex nodes to be less inclined to form pairwise modular links with other brain nodes. Furthermore, these regions were found to display increased connectivity with the pregenual anterior cingulate cortex, a region known to be involved in endogenous pain control. In contrast, intraparietal sulcus displayed a propensity towards positive modular reorganisation, suggesting that it might have a role in forming modules associated with the chronic pain state. Conclusion. The results provide evidence of consistent and characteristic brain network changes in chronic pain, characterised primarily by extensive reorganisation of the network architecture of the sensorimotor cortex.
AbstractList Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and nature of changes in the brain is poorly understood. Methods. We investigated brain network architecture using resting-state fMRI data in chronic back pain patients in the UK and Japan (41 patients, 56 controls), as well as open data from USA. We applied machine learning and deep learning (conditional variational autoencoder architecture) methods to explore classification of patients/controls based on network connectivity. We then studied the network topology of the data, and developed a multislice modularity method to look for consensus evidence of modular reorganisation in chronic back pain. Results. Machine learning and deep learning allowed reliable classification of patients in a third, independent open data set with an accuracy of 63%, with 68% in cross validation of all data. We identified robust evidence of network hub disruption in chronic pain, most consistently with respect to clustering coefficient and betweenness centrality. We found a consensus pattern of modular reorganisation involving extensive, bilateral regions of sensorimotor cortex, and characterised primarily by negative reorganisation - a tendency for sensorimotor cortex nodes to be less inclined to form pairwise modular links with other brain nodes. Furthermore, these regions were found to display increased connectivity with the pregenual anterior cingulate cortex, a region known to be involved in endogenous pain control. In contrast, intraparietal sulcus displayed a propensity towards positive modular reorganisation, suggesting that it might have a role in forming modules associated with the chronic pain state. Conclusion. The results provide evidence of consistent and characteristic brain network changes in chronic pain, characterised primarily by extensive reorganisation of the network architecture of the sensorimotor cortex.Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and nature of changes in the brain is poorly understood. Methods. We investigated brain network architecture using resting-state fMRI data in chronic back pain patients in the UK and Japan (41 patients, 56 controls), as well as open data from USA. We applied machine learning and deep learning (conditional variational autoencoder architecture) methods to explore classification of patients/controls based on network connectivity. We then studied the network topology of the data, and developed a multislice modularity method to look for consensus evidence of modular reorganisation in chronic back pain. Results. Machine learning and deep learning allowed reliable classification of patients in a third, independent open data set with an accuracy of 63%, with 68% in cross validation of all data. We identified robust evidence of network hub disruption in chronic pain, most consistently with respect to clustering coefficient and betweenness centrality. We found a consensus pattern of modular reorganisation involving extensive, bilateral regions of sensorimotor cortex, and characterised primarily by negative reorganisation - a tendency for sensorimotor cortex nodes to be less inclined to form pairwise modular links with other brain nodes. Furthermore, these regions were found to display increased connectivity with the pregenual anterior cingulate cortex, a region known to be involved in endogenous pain control. In contrast, intraparietal sulcus displayed a propensity towards positive modular reorganisation, suggesting that it might have a role in forming modules associated with the chronic pain state. Conclusion. The results provide evidence of consistent and characteristic brain network changes in chronic pain, characterised primarily by extensive reorganisation of the network architecture of the sensorimotor cortex.
Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and nature of changes in the brain is poorly understood. We investigated brain network architecture using resting-state fMRI data in chronic back pain patients in the UK and Japan (41 patients, 56 controls), as well as open data from USA. We applied machine learning and deep learning (conditional variational autoencoder architecture) methods to explore classification of patients/controls based on network connectivity. We then studied the network topology of the data, and developed a multislice modularity method to look for consensus evidence of modular reorganisation in chronic back pain. Machine learning and deep learning allowed reliable classification of patients in a third, independent open data set with an accuracy of 63%, with 68% in cross validation of all data. We identified robust evidence of network hub disruption in chronic pain, most consistently with respect to clustering coefficient and betweenness centrality. We found a consensus pattern of modular reorganisation involving extensive, bilateral regions of sensorimotor cortex, and characterised primarily by negative reorganisation - a tendency for sensorimotor cortex nodes to be less inclined to form pairwise modular links with other brain nodes. Furthermore, these regions were found to display increased connectivity with the pregenual anterior cingulate cortex, a region known to be involved in endogenous pain control. In contrast, intraparietal sulcus displayed a propensity towards positive modular reorganisation, suggesting that it might have a role in forming modules associated with the chronic pain state. The results provide evidence of consistent and characteristic brain network changes in chronic pain, characterised primarily by extensive reorganisation of the network architecture of the sensorimotor cortex.
Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and nature of changes in the brain is poorly understood. Methods. We investigated brain network architecture using resting-state fMRI data in chronic back pain patients in the UK and Japan (41 patients, 56 controls), as well as open data from USA. We applied machine learning and deep learning (conditional variational autoencoder architecture) methods to explore classification of patients/controls based on network connectivity. We then studied the network topology of the data, and developed a multislice modularity method to look for consensus evidence of modular reorganisation in chronic back pain. Results. Machine learning and deep learning allowed reliable classification of patients in a third, independent open data set with an accuracy of 63%, with 68% in cross validation of all data. We identified robust evidence of network hub disruption in chronic pain, most consistently with respect to clustering coefficient and betweenness centrality. We found a consensus pattern of modular reorganisation involving extensive, bilateral regions of sensorimotor cortex, and characterised primarily by negative reorganisation - a tendency for sensorimotor cortex nodes to be less inclined to form pairwise modular links with other brain nodes. Furthermore, these regions were found to display increased connectivity with the pregenual anterior cingulate cortex, a region known to be involved in endogenous pain control. In contrast, intraparietal sulcus displayed a propensity towards positive modular reorganisation, suggesting that it might have a role in forming modules associated with the chronic pain state. Conclusion. The results provide evidence of consistent and characteristic brain network changes in chronic pain, characterised primarily by extensive reorganisation of the network architecture of the sensorimotor cortex.
Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and nature of changes in the brain is poorly understood. Methods. We investigated brain network architecture using resting-state fMRI data in chronic back pain patients in the UK and Japan (41 patients, 56 controls), as well as open data from USA. We applied machine learning and deep learning (conditional variational autoencoder architecture) methods to explore classification of patients/controls based on network connectivity. We then studied the network topology of the data, and developed a multislice modularity method to look for consensus evidence of modular reorganisation in chronic back pain. Results. Machine learning and deep learning allowed reliable classification of patients in a third, independent open data set with an accuracy of 63%, with 68% in cross validation of all data. We identified robust evidence of network hub disruption in chronic pain, most consistently with respect to clustering coefficient and betweenness centrality. We found a consensus pattern of modular reorganisation involving extensive, bilateral regions of sensorimotor cortex, and characterised primarily by negative reorganisation - a tendency for sensorimotor cortex nodes to be less inclined to form pairwise modular links with other brain nodes. Furthermore, these regions were found to display increased connectivity with the pregenual anterior cingulate cortex, a region known to be involved in endogenous pain control. In contrast, intraparietal sulcus displayed a propensity towards positive modular reorganisation, suggesting that it might have a role in forming modules associated with the chronic pain state. Conclusion. The results provide evidence of consistent and characteristic brain network changes in chronic pain, characterised primarily by extensive reorganisation of the network architecture of the sensorimotor cortex.
Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and nature of changes in the brain is poorly understood. Methods. We investigated brain network architecture using resting-state fMRI data in chronic back pain patients in the UK and Japan (41 patients, 56 controls), as well as open data from USA. We applied machine learning and deep learning (conditional variational autoencoder architecture) methods to explore classification of patients/controls based on network connectivity. We then studied the network topology of the data, and developed a multislice modularity method to look for consensus evidence of modular reorganisation in chronic back pain. Results. Machine learning and deep learning allowed reliable classification of patients in a third, independent open data set with an accuracy of 63%, with 68% in cross validation of all data. We identified robust evidence of network hub disruption in chronic pain, most consistently with respect to clustering coefficient and betweenness centrality. We found a consensus pattern of modular reorganisation involving extensive, bilateral regions of sensorimotor cortex, and characterised primarily by negative reorganisation - a tendency for sensorimotor cortex nodes to be less inclined to form pairwise modular links with other brain nodes. Furthermore, these regions were found to display increased connectivity with the pregenual anterior cingulate cortex, a region known to be involved in endogenous pain control. In contrast, intraparietal sulcus displayed a propensity towards positive modular reorganisation, suggesting that it might have a role in forming modules associated with the chronic pain state. Conclusion. The results provide evidence of consistent and characteristic brain network changes in chronic pain, characterised primarily by extensive reorganisation of the network architecture of the sensorimotor cortex.
Author Nakae, Aya
Shenker, Nicholas
Kawato, Mitsuo
Kotecha, Gopal
Shibata, Masahiko
Lee, Michael
Yanagida, Toshio
Voon, Valerie
Yoshida, Wako
Matsubara, Takashi
Leibnitz, Kenji
Rosa, Maria Joao
Seymour, Ben
Mano, Hiroaki
Sprenger, Christian
Author_xml – sequence: 1
  givenname: Hiroaki
  surname: Mano
  fullname: Mano, Hiroaki
– sequence: 2
  givenname: Gopal
  surname: Kotecha
  fullname: Kotecha, Gopal
– sequence: 3
  givenname: Kenji
  orcidid: 0000-0002-3691-3675
  surname: Leibnitz
  fullname: Leibnitz, Kenji
– sequence: 4
  givenname: Takashi
  orcidid: 0000-0003-0642-4800
  surname: Matsubara
  fullname: Matsubara, Takashi
– sequence: 5
  givenname: Christian
  orcidid: 0000-0002-0307-7383
  surname: Sprenger
  fullname: Sprenger, Christian
– sequence: 6
  givenname: Aya
  surname: Nakae
  fullname: Nakae, Aya
– sequence: 7
  givenname: Nicholas
  surname: Shenker
  fullname: Shenker, Nicholas
– sequence: 8
  givenname: Masahiko
  orcidid: 0000-0003-3363-1012
  surname: Shibata
  fullname: Shibata, Masahiko
– sequence: 9
  givenname: Valerie
  surname: Voon
  fullname: Voon, Valerie
– sequence: 10
  givenname: Wako
  orcidid: 0000-0001-9273-1617
  surname: Yoshida
  fullname: Yoshida, Wako
– sequence: 11
  givenname: Michael
  orcidid: 0000-0002-5838-2916
  surname: Lee
  fullname: Lee, Michael
– sequence: 12
  givenname: Toshio
  surname: Yanagida
  fullname: Yanagida, Toshio
– sequence: 13
  givenname: Mitsuo
  orcidid: 0000-0001-8185-1197
  surname: Kawato
  fullname: Kawato, Mitsuo
– sequence: 14
  givenname: Maria Joao
  surname: Rosa
  fullname: Rosa, Maria Joao
– sequence: 15
  givenname: Ben
  orcidid: 0000-0003-1724-5832
  surname: Seymour
  fullname: Seymour, Ben
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29774244$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEURi1UREvpX0CW2LBJ8GM8Y7NAqiIelSqxAYmd5cedxOnEDvZMq_57nKSEthtWHl0fH3137n2NTmKKgBCmZE5ZK-WHOxgGlzaQthAzlDltSKvm7AU6Y1zJmSDs18mj71N0UcqaEEJly6Qkr9ApU13XsKY5Q_1iMKWEPjgzhhSxiR67lcnGjZBDORRTj202IeII413KNzsiLqHgWnKrnGJw2Bp3g7cV-ogv8WYaxuAgVgcu4-Tv36CXvRkKXDyc5-jnl88_Ft9m19-_Xi0ur2euYYrNeGOV9aq3VnHTE_CcWseV74BYyrz1HadATQuNUIRZaYXqlJGUW9VQ7yk_R1cHr09mrbc5bEy-18kEvS-kvNQm12gDaODGM86oJIo03FDFRSeUEoQ4cA0V1fXp4NpOdgN-1042wxPp05sYVnqZbrVQnAixC_P-QZDT7wnKqDehuDo8EyFNRXMqqeQdF6yi756h6zTlWH-VZpR1rWqVkpV6-zjRMcrfcVZAHgCXUykZ-iNCid4vj362PHq_PJr96_b41IVxP_7aWxj-L_gDXfzTdQ
CitedBy_id crossref_primary_10_1002_hbm_24784
crossref_primary_10_3389_fneur_2021_734821
crossref_primary_10_1016_j_pnpbp_2025_111326
crossref_primary_10_3389_fneur_2022_780966
crossref_primary_10_1097_j_pain_0000000000001519
crossref_primary_10_1093_cercor_bhz276
crossref_primary_10_1038_s41591_020_1142_7
crossref_primary_10_1097_j_pain_0000000000001674
crossref_primary_10_1097_j_pain_0000000000002565
crossref_primary_10_1016_j_neulet_2018_11_047
crossref_primary_10_1097_j_pain_0000000000002327
crossref_primary_10_1016_j_neubiorev_2020_10_023
crossref_primary_10_3389_fpain_2022_966398
crossref_primary_10_3390_app11073205
crossref_primary_10_1007_s00702_020_02223_w
crossref_primary_10_1007_s40122_021_00297_2
crossref_primary_10_1016_j_physa_2019_123321
crossref_primary_10_1016_j_neuron_2019_01_055
crossref_primary_10_3390_diagnostics10110958
crossref_primary_10_1080_00207454_2020_1837802
crossref_primary_10_1136_rapm_2024_106030
crossref_primary_10_3390_bioengineering10060669
crossref_primary_10_1371_journal_pone_0282346
crossref_primary_10_1097_j_pain_0000000000001666
crossref_primary_10_1088_1741_2552_ac59a1
crossref_primary_10_1371_journal_pone_0209818
crossref_primary_10_3390_ijms232113038
crossref_primary_10_1038_s41596_019_0289_5
crossref_primary_10_2196_11966
crossref_primary_10_3390_brainsci11010010
crossref_primary_10_1016_j_neuroimage_2020_117439
crossref_primary_10_1038_s41582_020_0362_2
crossref_primary_10_1097_j_pain_0000000000002104
crossref_primary_10_1097_j_pain_0000000000002984
crossref_primary_10_1038_s41392_024_01845_w
crossref_primary_10_1038_s41572_018_0052_1
crossref_primary_10_3174_ajnr_A6569
crossref_primary_10_1097_j_pain_0000000000003198
crossref_primary_10_1002_hbm_25287
crossref_primary_10_7554_eLife_74463
crossref_primary_10_1016_j_nicl_2019_102042
crossref_primary_10_1073_pnas_1918682117
crossref_primary_10_1016_j_artmed_2024_102849
crossref_primary_10_1097_PR9_0000000000000751
crossref_primary_10_3724_SP_J_1329_2023_05011
crossref_primary_10_1093_texcom_tgaa088
crossref_primary_10_1097_j_pain_0000000000001762
crossref_primary_10_3389_fneur_2022_899254
crossref_primary_10_1097_j_pain_0000000000002534
crossref_primary_10_1097_j_pain_0000000000002613
crossref_primary_10_3389_fnins_2022_942136
crossref_primary_10_1007_s00234_024_03300_7
crossref_primary_10_1177_09544119221122012
crossref_primary_10_1587_nolta_11_16
crossref_primary_10_1088_1741_2552_ab50b2
Cites_doi 10.1523/JNEUROSCI.3155-13.2014
10.1097/j.pain.0000000000001001
10.1016/S0304-3959(99)00114-1
10.1111/j.1469-7580.2005.00426.x
10.1523/JNEUROSCI.1316-17.2017
10.1371/journal.pone.0106133
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2015.05.018
10.7554/eLife.31949
10.1523/JNEUROSCI.3653-06.2007
10.1016/j.clinph.2007.12.022
10.3389/fnins.2014.00229
10.1523/JNEUROSCI.0946-11.2011
10.1038/nrn.2016.162
10.1007/978-3-7091-9160-6_37
10.1093/brain/awx337
10.1371/journal.pone.0098007
10.1093/brain/awt211
10.1016/j.neuroimage.2009.10.003
10.3389/fncom.2016.00084
10.1016/j.tics.2010.04.004
10.3389/fnins.2010.00200
10.1523/JNEUROSCI.0328-11.2011
10.1016/S0304-3940(97)13441-3
10.1038/ncomms13209
10.1038/nrn2575
10.1093/ijnp/pyx059
10.1038/srep39104
10.1093/cercor/bhs378
10.1038/srep00336
10.1371/journal.pbio.1002037
10.1038/ncomms11254
10.1016/j.neuroimage.2013.05.010
10.1023/A:1022627411411
10.1016/j.neuroimage.2007.07.007
10.1523/JNEUROSCI.4123-07.2008
10.1007/s00429-015-1161-1
10.1002/hbm.1058
10.1007/978-3-642-40763-5_72
10.1038/srep34853
10.1016/j.jpainsymman.2009.09.023
10.1038/s41598-017-07792-7
10.1126/science.1184819
10.1371/journal.pone.0094115
10.1146/annurev-psych-122414-033634
10.1523/JNEUROSCI.1984-11.2011
10.1523/JNEUROSCI.3687-09.2009
10.1002/art.27497
10.1016/j.pneurobio.2008.09.018
10.1038/nn.3153
10.1056/NEJMoa1204471
10.1016/j.tics.2017.09.010
10.1016/j.neulet.2010.08.053
10.1038/srep19250
10.1073/pnas.1208933109
ContentType Journal Article
Copyright 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2018 Mano H et al. 2018
Copyright_xml – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2018 Mano H et al. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.12688/wellcomeopenres.14069.2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2398-502X
ExternalDocumentID oai_doaj_org_article_e3ad2321809043a19357599500cec415
PMC5930551
29774244
10_12688_wellcomeopenres_14069_2
Genre Journal Article
GeographicLocations United Kingdom--UK
United States--US
Japan
GeographicLocations_xml – name: United Kingdom--UK
– name: United States--US
– name: Japan
GrantInformation_xml – fundername: Versus Arthritis
  grantid: 21537
– fundername: Wellcome Trust
– fundername: Versus Arthritis
  grantid: 21192
– fundername: Medical Research Council
  grantid: MR/P008747/1
– fundername: Ministry of Education, Culture, Sports, Science and Technology
– fundername: Arthritis Research UK
  grantid: 21537
– fundername: University of Cambridge
– fundername: Japan Society for the Promotion of Science
– fundername: Wellcome Trust
  grantid: 097490
– fundername: Japan Agency for Medical Research and Development
– fundername: National Institute for Information and Communications Technology
GroupedDBID 7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4292-34b9bd9fbb93af0ed31bc39d7e0b12dbd731e1a6e45902b8b5979a813b941dd13
IEDL.DBID DOA
ISSN 2398-502X
IngestDate Wed Aug 27 01:30:29 EDT 2025
Thu Aug 21 18:28:42 EDT 2025
Fri Sep 05 17:49:28 EDT 2025
Mon Jun 30 14:43:13 EDT 2025
Mon Jul 21 06:08:12 EDT 2025
Tue Jul 01 04:21:44 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nociception
deep learning
rostral ACC
arthritis
hub disruption
graph theory
multislice modularity
osteoarthritis
sensorimotor
endogenous modulation
Chronic pain
Connectomics
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4292-34b9bd9fbb93af0ed31bc39d7e0b12dbd731e1a6e45902b8b5979a813b941dd13
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
No competing interests were disclosed.
ORCID 0000-0002-0307-7383
0000-0003-1724-5832
0000-0001-9273-1617
0000-0002-5838-2916
0000-0002-3691-3675
0000-0003-3363-1012
0000-0003-0642-4800
0000-0001-8185-1197
OpenAccessLink https://doaj.org/article/e3ad2321809043a19357599500cec415
PMID 29774244
PQID 2127696998
PQPubID 2050296
ParticipantIDs doaj_primary_oai_doaj_org_article_e3ad2321809043a19357599500cec415
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5930551
proquest_miscellaneous_3181837352
proquest_journals_2127696998
pubmed_primary_29774244
crossref_primary_10_12688_wellcomeopenres_14069_2
crossref_citationtrail_10_12688_wellcomeopenres_14069_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: London, UK
PublicationTitle Wellcome open research
PublicationTitleAlternate Wellcome Open Res
PublicationYear 2018
Publisher Wellcome Trust Limited
F1000 Research Limited
Wellcome
Publisher_xml – name: Wellcome Trust Limited
– name: F1000 Research Limited
– name: Wellcome
References C Grefkes (ref-15) 2005; 207
A Segerdahl (ref-59) 2018; 141
Y Koush (ref-26) 2013; 81
S Plis (ref-42) 2014; 8
J Power (ref-43) 2012; 59
L Garcia-Larrea (ref-14) 1999; 83
M Baliki (ref-4) 2011; 31
F Pedregosa (ref-41) 2011; 12
A Apkarian (ref-3) 2009; 87
M Baliki (ref-7) 2012; 15
F Mancini (ref-32) 2016; 6
T Tsubokawa (ref-52) 1991; 52
H Flor (ref-13) 1997; 224
H Suk (ref-47) 2013; 16
O Sporns (ref-46) 2016; 67
M Termenon (ref-51) 2016; 10
N Yahata (ref-56) 2016; 7
J Ashburner (ref-61) 2007; 38
S Kim (ref-24) 2011; 31
A Lancichinetti (ref-29) 2012; 2
A Mansour (ref-35) 2016; 6
D Callan (ref-10) 2014; 9
A Antal (ref-2) 2010; 39
I Guyon (ref-16) 2003; 3
M Rubinov (ref-45) 2010; 52
R Rodriguez-Raecke (ref-44) 2009; 29
T Yamada (ref-57) 2017
K Eto (ref-12) 2011; 31
(ref-30) 2018
J Kutch (ref-28) 2017; 158
T Wager (ref-54) 2013; 368
S Bressler (ref-8) 2010; 14
J Hashmi (ref-17) 2013; 136
T Makin (ref-31) 2007; 27
T Nichols (ref-39) 2002; 15
P Mucha (ref-37) 2010; 328
T Itahashi (ref-21) 2014; 9
H Ung (ref-53) 2012; 24
K Hemington (ref-19) 2016; 221
C Nicolini (ref-40) 2016; 6
K Hosomi (ref-20) 2008; 119
D Kingma (ref-25) 2014
D Meunier (ref-36) 2010; 4
E Bullmore (ref-9) 2009; 10
J Kim (ref-23) 2016; 124
H Mano (ref-34) 2017; 37
S Achard (ref-1) 2012; 109
T Tashiro (ref-50) 2017
R Kuner (ref-27) 2017; 18
H Mano (ref-33) 2015; 13
M Baliki (ref-6) 2014; 9
L Jeub (ref-22) 2011
T Yanagisawa (ref-58) 2016; 7
E Tagliazucchi (ref-48) 2010; 485
Y Takagi (ref-49) 2017; 7
S Zhang (ref-60) 2018; 7
J Hashmi (ref-18) 2014; 34
T Watanabe (ref-55) 2017; 21
M Baliki (ref-5) 2008; 28
V Napadow (ref-38) 2010; 62
C Cortes (ref-11) 1995; 20
References_xml – volume: 34
  start-page: 3924-3936
  year: 2014
  ident: ref-18
  article-title: Functional network architecture predicts psychologically mediated analgesia related to treatment in chronic knee pain patients.
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.3155-13.2014
– volume: 158
  start-page: 1979-1991
  year: 2017
  ident: ref-28
  article-title: Brain signature and functional impact of centralized pain: a multidisciplinary approach to the study of chronic pelvic pain (MAPP) network study.
  publication-title: Pain.
  doi: 10.1097/j.pain.0000000000001001
– volume: 83
  start-page: 259-273
  year: 1999
  ident: ref-14
  article-title: Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study.
  publication-title: Pain.
  doi: 10.1016/S0304-3959(99)00114-1
– volume: 207
  start-page: 3-17
  year: 2005
  ident: ref-15
  article-title: The functional organization of the intraparietal sulcus in humans and monkeys.
  publication-title: J Anat.
  doi: 10.1111/j.1469-7580.2005.00426.x
– volume: 37
  start-page: 9380-9388
  year: 2017
  ident: ref-34
  article-title: Thermosensory Perceptual Learning Is Associated with Structural Brain Changes in Parietal-Opercular (SII) Cortex.
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.1316-17.2017
– volume: 9
  start-page: e106133
  year: 2014
  ident: ref-6
  article-title: Functional reorganization of the default mode network across chronic pain conditions.
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0106133
– volume: 59
  start-page: 2142-2154
  year: 2012
  ident: ref-43
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 124
  start-page: 127-146
  year: 2016
  ident: ref-23
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2015.05.018
– volume: 7
  year: 2018
  ident: ref-60
  article-title: The control of tonic pain by active relief learning.
  publication-title: eLife.
  doi: 10.7554/eLife.31949
– volume: 27
  start-page: 731-740
  year: 2007
  ident: ref-31
  article-title: Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus.
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.3653-06.2007
– volume: 119
  start-page: 993-1001
  year: 2008
  ident: ref-20
  article-title: Electrical stimulation of primary motor cortex within the central sulcus for intractable neuropathic pain.
  publication-title: Clin Neurophysiol.
  doi: 10.1016/j.clinph.2007.12.022
– volume: 8
  start-page: 229
  year: 2014
  ident: ref-42
  article-title: Deep learning for neuroimaging: a validation study.
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2014.00229
– volume: 31
  start-page: 7631-7636
  year: 2011
  ident: ref-12
  article-title: Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior.
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.0946-11.2011
– volume: 18
  start-page: 20-30
  year: 2017
  ident: ref-27
  article-title: Structural plasticity and reorganisation in chronic pain.
  publication-title: Nat Rev Neurosci.
  doi: 10.1038/nrn.2016.162
– volume: 52
  start-page: 137-139
  year: 1991
  ident: ref-52
  article-title: Chronic motor cortex stimulation for the treatment of central pain.
  publication-title: Acta Neurochir Suppl (Wien).
  doi: 10.1007/978-3-7091-9160-6_37
– volume: 141
  start-page: 357-364
  year: 2018
  ident: ref-59
  article-title: A brain-based pain facilitation mechanism contributes to painful diabetic polyneuropathy.
  publication-title: Brain.
  doi: 10.1093/brain/awx337
– volume: 9
  start-page: e98007
  year: 2014
  ident: ref-10
  article-title: A tool for classifying individuals with chronic back pain: using multivariate pattern analysis with functional magnetic resonance imaging data.
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0098007
– volume: 136
  start-page: 2751-2768
  year: 2013
  ident: ref-17
  article-title: Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits.
  publication-title: Brain.
  doi: 10.1093/brain/awt211
– volume: 52
  start-page: 1059-1069
  year: 2010
  ident: ref-45
  article-title: Complex network measures of brain connectivity: uses and interpretations.
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 10
  start-page: 84
  year: 2016
  ident: ref-51
  article-title: The "Hub Disruption Index," a Reliable Index Sensitive to the Brain Networks Reorganization. A Study of the Contralesional Hemisphere in Stroke.
  publication-title: Front Comput Neurosci.
  doi: 10.3389/fncom.2016.00084
– volume: 3
  start-page: 1157-1182
  year: 2003
  ident: ref-16
  article-title: An introduction to variable and feature selection.
  publication-title: J Mach Learn Res.
– volume: 14
  start-page: 277-290
  year: 2010
  ident: ref-8
  article-title: Large-scale brain networks in cognition: emerging methods and principles.
  publication-title: Trends Cogn Sci.
  doi: 10.1016/j.tics.2010.04.004
– volume: 4
  start-page: 200
  year: 2010
  ident: ref-36
  article-title: Modular and hierarchically modular organization of brain networks.
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2010.00200
– volume: 31
  start-page: 5477-5482
  year: 2011
  ident: ref-24
  article-title: Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain.
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.0328-11.2011
– volume: 12
  start-page: 2825-2830
  year: 2011
  ident: ref-41
  article-title: Scikit-learn: Machine Learning in Python.
  publication-title: J Mach Learn Res.
– volume: 224
  start-page: 5-8
  year: 1997
  ident: ref-13
  article-title: Extensive reorganization of primary somatosensory cortex in chronic back pain patients.
  publication-title: Neurosci Lett.
  doi: 10.1016/S0304-3940(97)13441-3
– volume: 7
  start-page: 13209
  year: 2016
  ident: ref-58
  article-title: Induced sensorimotor brain plasticity controls pain in phantom limb patients.
  publication-title: Nat commun.
  doi: 10.1038/ncomms13209
– volume: 10
  start-page: 186-98
  year: 2009
  ident: ref-9
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems.
  publication-title: Nat Rev Neurosci.
  doi: 10.1038/nrn2575
– year: 2017
  ident: ref-57
  article-title: Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric disorders: a challenge for developing theranostic biomarkers
  doi: 10.1093/ijnp/pyx059
– volume: 6
  start-page: 39104
  year: 2016
  ident: ref-32
  article-title: Perceptual learning to discriminate the intensity and spatial location of nociceptive stimuli.
  publication-title: Sci rep.
  doi: 10.1038/srep39104
– start-page: 3581-3589
  year: 2014
  ident: ref-25
  article-title: Semi-supervised learning with deep generative models.
  publication-title: Adv Neural Inf Process Syst.
– volume: 24
  start-page: 1037-1044
  year: 2012
  ident: ref-53
  article-title: Multivariate classification of structural MRI data detects chronic low back pain.
  publication-title: Cereb cortex.
  doi: 10.1093/cercor/bhs378
– volume: 2
  start-page: 336
  year: 2012
  ident: ref-29
  article-title: Consensus clustering in complex networks.
  publication-title: Sci Rep.
  doi: 10.1038/srep00336
– volume: 13
  start-page: e1002037
  year: 2015
  ident: ref-33
  article-title: Pain: a distributed brain information network?
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002037
– volume: 7
  year: 2016
  ident: ref-56
  article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder.
  publication-title: Nat Commun.
  doi: 10.1038/ncomms11254
– volume: 81
  start-page: 422-430
  year: 2013
  ident: ref-26
  article-title: Connectivity-based neurofeedback: dynamic causal modeling for real-time fMRI.
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2013.05.010
– volume: 20
  start-page: 273-297
  year: 1995
  ident: ref-11
  article-title: Support-vector networks.
  publication-title: Mach Learn.
  doi: 10.1023/A:1022627411411
– year: 2011
  ident: ref-22
  article-title: A generalized Louvain method for community detection implemented in MATLAB
– volume: 38
  start-page: 95-113
  year: 2007
  ident: ref-61
  article-title: A fast diffeomorphic image registration algorithm.
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2007.07.007
– volume: 28
  start-page: 1398-1403
  year: 2008
  ident: ref-5
  article-title: Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics.
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.4123-07.2008
– volume: 221
  start-page: 4203-4219
  year: 2016
  ident: ref-19
  article-title: Abnormal cross-network functional connectivity in chronic pain and its association with clinical symptoms.
  publication-title: Brain Struct Funct.
  doi: 10.1007/s00429-015-1161-1
– volume: 15
  start-page: 1-25
  year: 2002
  ident: ref-39
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples.
  publication-title: Hum Brain Mapp.
  doi: 10.1002/hbm.1058
– volume: 16
  start-page: 583-590
  year: 2013
  ident: ref-47
  article-title: Deep learning-based feature representation for AD/MCI classification.
  publication-title: Med Image Comput Comput Assist Interv.
  doi: 10.1007/978-3-642-40763-5_72
– volume: 6
  year: 2016
  ident: ref-35
  article-title: Global disruption of degree rank order: a hallmark of chronic pain.
  publication-title: Sci rep.
  doi: 10.1038/srep34853
– volume: 39
  start-page: 890-903
  year: 2010
  ident: ref-2
  article-title: Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition.
  publication-title: J Pain Symptom Manage.
  doi: 10.1016/j.jpainsymman.2009.09.023
– volume: 7
  year: 2017
  ident: ref-49
  article-title: A Neural Marker of Obsessive-Compulsive Disorder from Whole-Brain Functional Connectivity.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-07792-7
– volume: 328
  start-page: 876-878
  year: 2010
  ident: ref-37
  article-title: Community structure in time-dependent, multiscale, and multiplex networks.
  publication-title: Science.
  doi: 10.1126/science.1184819
– volume: 9
  start-page: e94115
  year: 2014
  ident: ref-21
  article-title: Altered network topologies and hub organization in adults with autism: a resting-state fMRI study.
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0094115
– volume: 67
  start-page: 613-640
  year: 2016
  ident: ref-46
  article-title: Modular Brain Networks.
  publication-title: Annu Rev Psychol.
  doi: 10.1146/annurev-psych-122414-033634
– volume: 31
  start-page: 13981-13990
  year: 2011
  ident: ref-4
  article-title: The cortical rhythms of chronic back pain.
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.1984-11.2011
– volume: 29
  start-page: 13746-13750
  year: 2009
  ident: ref-44
  article-title: Brain gray matter decrease in chronic pain is the consequence and not the cause of pain.
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.3687-09.2009
– volume: 62
  start-page: 2545-2555
  year: 2010
  ident: ref-38
  article-title: Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity.
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.27497
– volume: 87
  start-page: 81-97
  year: 2009
  ident: ref-3
  article-title: Towards a theory of chronic pain.
  publication-title: Prog Neurobiol.
  doi: 10.1016/j.pneurobio.2008.09.018
– volume: 15
  start-page: 1117-1119
  year: 2012
  ident: ref-7
  article-title: Corticostriatal functional connectivity predicts transition to chronic back pain.
  publication-title: Nat Neurosci.
  doi: 10.1038/nn.3153
– volume: 368
  start-page: 1388-1397
  year: 2013
  ident: ref-54
  article-title: An fMRI-based neurologic signature of physical pain.
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1204471
– volume: 21
  start-page: 997-1010
  year: 2017
  ident: ref-55
  article-title: Advances in fMRI Real-Time Neurofeedback.
  publication-title: Trends Cogn Sci.
  doi: 10.1016/j.tics.2017.09.010
– volume: 485
  start-page: 26-31
  year: 2010
  ident: ref-48
  article-title: Brain resting state is disrupted in chronic back pain patients.
  publication-title: Neurosci lett.
  doi: 10.1016/j.neulet.2010.08.053
– year: 2017
  ident: ref-50
  article-title: Deep Neural Generative Model for fMRI Image Based Diagnosis of Mental Disorder.
  publication-title: International Symposium on Nonlinear Theory and its Applications (NOLTA),
– volume: 6
  year: 2016
  ident: ref-40
  article-title: Modular structure of brain functional networks: breaking the resolution limit by Surprise.
  publication-title: Sci Rep.
  doi: 10.1038/srep19250
– year: 2018
  ident: ref-30
  article-title: leiken26/pain-network v0.1 (Version v0.1).
  publication-title: Zenodo.
– volume: 109
  start-page: 20608-20613
  year: 2012
  ident: ref-1
  article-title: Hubs of brain functional networks are radically reorganized in comatose patients.
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1208933109
SSID ssj0001862880
Score 2.2510138
Snippet Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However,...
Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and...
Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 19
SubjectTerms Adults
Arthritis
Artificial intelligence
Back pain
Biomarkers
Brain research
Chronic pain
Classification
Communications technology
Funding
Methods
Roles
Software
University colleges
Visualization
Writing
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LixQxEA66IngR37auEsFra6eTTjrrQVZxWQQ9uTAgEvJqFaV7nN5d8B_4s61KMjPOIuKlD-kHIVVJf1WpfB8hT5W0buCdrIW0DVwGXvc9biHyNkYhVAwSDwq_ey-PT8TbRbcoCbe5lFWu18S0UIfJY478OTKRSy0hOni5_FGjahTurhYJjcvkCgMkgtINaqG2OZYexXSbUsDTSgj2MCMGn42oTbXCuiM8-fms3fkrJfL-vyHOi4WTf_yJjm6Q6wVC0sNs85vkUhxvkatZVPLnbfIr6VxiBVAadGrHQP2Wljk3TgN1KA5Bx1wGTvMB4JlCk898udRZ_40u4aEDekhT4SF2KK5ooqSlH89zqo22L2gWK4nzAeU0sZSfx_DpDjk5evPh9XFd9BZqj6JVNRdOu6AH5zS3QxMDZ85zHVRsHGuDC4qzyKyMAjlfXO8gGNG2Z9xpwUJg_C7ZG6cx3ic0QGQkWuWV970QQ2Otlqhq7jtvwW1YRdR6vI0vZOSoifHdYFCCljIXLGWSpUxbEbZ5c5kJOf7jnVdo0s3zSKmdGqbVZ1NmqIncBoCXyGfWCG7BnVC7VHdN46MHmFOR_bVDmDLPZ7P1yoo82dyGGYrbLnaM09lsYNWEdVMB0q3Ivew_m560CL8BYcF47HjWTld374xfvyQW8E4jWRt78O9uPSTXAOL1OWm0T_ZOV2fxEcCoU_c4zZXfi4Misg
  priority: 102
  providerName: ProQuest
Title Classification and characterisation of brain network changes in chronic back pain: A multicenter study
URI https://www.ncbi.nlm.nih.gov/pubmed/29774244
https://www.proquest.com/docview/2127696998
https://www.proquest.com/docview/3181837352
https://pubmed.ncbi.nlm.nih.gov/PMC5930551
https://doaj.org/article/e3ad2321809043a19357599500cec415
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5aEXwR706tSwRfRyeXSSb1qZWWIlhELCyIhNwGpWW27LaF_gN_tuck03W3FOqDL_OQC2RyTpJzTk6-j5C3Wjnfi1bVUrkGPr2ouw6vEAVPSUqdosKHwp8P1cGR_DRtpytUX5gTVuCBy8S9T8JFOPURZqqRwoG9gZSSpm2akEJ5Xs6hasWZytGVDml0m8wsZ7q6bfh0TOPhClw-jIuBQBMyVM0x-wjff77ja2dThvC_ye68nj65ch7tPyIPR0OS7pQfeEzupOEJuV-oJS-fkt-Z7RLzgPLUUzdEGv6CM5fCWU89UkTQoSSD0_IMeEGhKBTUXOpdOKan0Gib7tCcfogDSnOagWnp94sScKP8Ay2UJWmxTQXNWOUXKf54Ro729759PKhH1oU6IHVVLaQ3PpreeyNc36QomA_CRJ0az3j0UQuWmFNJIvKL7zy4JMZ1THgjWYxMPCcbw2xILwmN4B9JroMOoZOyb5wzCrnNQxscKA-riL6abxtGSHJkxjix6JqgpOw1SdksKcsrwpY9Twssxz_02UWRLtsjsHYuAHWzo7rZ29StIltXCmHH1b6wiJKvjALPtSJvltWwTvHyxQ1pdr6wsHfC7qnB3q3Ii6I_y5FwNMLBzoL5WNOstaGu1wy_fmYs8NYgZBvb_B__9oo8AHOwKwGmLbJxNj9Pr8HkOvMTcldP9YTc2907_PJ1ktfaH1YXLbw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB7qFdEv4runVVfQj9Eku5eXSpFWW662PURaKBRZ9y0qSnLetZX-A3-Vv82Z3eTOKyJ-6Zd82LywycxOZmZnngfgaZ4pXfFBFolMxXioeFQUtIXIU-eEyJ3NqFF4b5QND8Tbw8HhEvzqemGorLKzid5Q28ZQjvwFIZFnZYbRwavx94hYo2h3taPQUC21gl3zEGNtY8eOO_uBIdx0bfsNyvtZmm5t7r8eRi3LQGSIqiniQpfalpXWJVdV7CxPtOGlzV2sk9Rqm_PEJSpzgpBOdKHRBS9VkXBdisTahONzL8GyoARKD5Y3Nkfv3s-zPAXR-cZtCVGaYbhJOTl8MUfsWBOqfKLe0-fpwn_R0wf8zec9X7r5x79w6zpca51Yth607gYsufomXA60lme34Kdn2qQaJC92pmrLzBwYOgw2FdNET8HqUIjOQgvylOGQCYi9TCvzlY3xolW2znzpI03ITZgHxWVHpyHZx9KXLNCluOkq48zjpJ86--E2HFyILO5Ar25qdw-YxdhMpLnJjSmEqGKlyox41c3AKFTcpA95972laeHQiZXjm6SwiCQlz0lKeknJtA_J7M5xgAT5j3s2SKSz6wnU2w80k0-ytRHScWXRwSVEtVhwha41saeWgzg2zqCj1YeVTiFka2mmcr4u-vBkdhptBG38qNo1J1OJdhstd46-dh_uBv2ZzSSlAAB9PPweC5q1MNXFM_WXzx6HfFASXFxy_9_TegxXhvt7u3J3e7TzAK6iw1mEFNYK9I4nJ-4hOnXH-lG7chh8vOjF-htck2aE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKK1BfEHcCBYwEj6GJ7dyKKtTSrloKqwpRqVKFjG8pCJRdNm1R_4Bv46uYsZNdtkKIl77sg5OsnMx4PDOeOYeQZ0WudM2zPBa5SuCn5nFZ4hEiZ84JUTibY6Pwu2G-cyDeHGaHC-RX3wuDZZW9TfSG2o4M5shXEYk8r3KIDlbrrixif2vwavw9RgYpPGnt6TRUR7Ng1z3cWNfksefOf0A4167vboHsnzM22P7weifuGAdig7RNMRe60raqta64qhNneaoNr2zhEp0yq23BU5eq3AlEPdGlBne8UmXKdSVSa1MO_3uFLBWw60MguLS5Pdx_P8v4lEjtm3TlRCyH0BPzc_CSDpmyJlgFhX2oL9jcHumpBP7m_14s4_xjXxzcINc7h5ZuBA28SRZcc4tcDRSX57fJT8-6ifVIXgWoaiw1M5DoMDiqqUaqCtqEonQa2pFbCkMmoPdSrcxXOoab1ugG9WWQOCE3oR4glx6dhcQfZS9poE5x7Rrl1GOmnzn78Q45uBRZ3CWLzahx9wm1EKcJVpjCmFKIOlGqypFj3WRGgRKnESn67y1NB42ODB3fJIZIKCl5QVLSS0qyiKTTJ8cBHuQ_ntlEkU7vR4BvPzCaHMvOXkjHlQVnF9HVEsEVuNnIpFplSWKcAacrIiu9QsjO6rRytkYi8nR6GewFHgKpxo1OWwk2HKx4AX53RO4F_ZnOhGEwAP4efI85zZqb6vyV5stnj0meVQgdlz7497SekGuwaOXb3eHeQ7IMvmcZslkrZPFkcuoegX93oh93C4eST5e9Vn8D65xqyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+and+characterisation+of+brain+network+changes+in+chronic+back+pain%3A+A+multicenter+study+%5Bversion+2%3B+referees%3A+3+approved%5D&rft.jtitle=Wellcome+open+research&rft.au=Hiroaki+Mano&rft.au=Gopal+Kotecha&rft.au=Kenji+Leibnitz&rft.au=Takashi+Matsubara&rft.date=2018&rft.pub=Wellcome&rft.issn=2398-502X&rft.eissn=2398-502X&rft.volume=3&rft_id=info:doi/10.12688%2Fwellcomeopenres.14069.2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3ad2321809043a19357599500cec415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-502X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-502X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-502X&client=summon