Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics
Background : Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the...
Saved in:
Published in | Wellcome open research Vol. 4; p. 152 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wellcome Trust Limited
2019
F1000 Research Limited Wellcome |
Subjects | |
Online Access | Get full text |
ISSN | 2398-502X 2398-502X |
DOI | 10.12688/wellcomeopenres.15421.1 |
Cover
Abstract | Background
: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in
Trypanosoma brucei
, the etiological agent of human and animal African trypanosomiasis.
Methods
: To establish baseline data on
T.
brucei
proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite.
Results
: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of
T. brucei
proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates.
Conclusions
: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions. |
---|---|
AbstractList | Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei, the etiological agent of human and animal African trypanosomiasis. Methods: To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions. Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei, the etiological agent of human and animal African trypanosomiasis. Methods: To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei, the etiological agent of human and animal African trypanosomiasis. Methods: To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions. Background : Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei , the etiological agent of human and animal African trypanosomiasis. Methods : To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results : This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions : The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions. : Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in , the etiological agent of human and animal African trypanosomiasis. : To establish baseline data on proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. : This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. : The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions. |
Author | Tinti, Michele Crozier, Thomas W. M. Lamond, Angus I. Ferguson, Michael A. J. Güther, Maria Lucia S. |
Author_xml | – sequence: 1 givenname: Michele orcidid: 0000-0002-0051-017X surname: Tinti fullname: Tinti, Michele – sequence: 2 givenname: Maria Lucia S. surname: Güther fullname: Güther, Maria Lucia S. – sequence: 3 givenname: Thomas W. M. orcidid: 0000-0003-0951-4588 surname: Crozier fullname: Crozier, Thomas W. M. – sequence: 4 givenname: Angus I. orcidid: 0000-0001-6204-6045 surname: Lamond fullname: Lamond, Angus I. – sequence: 5 givenname: Michael A. J. orcidid: 0000-0003-1321-8714 surname: Ferguson fullname: Ferguson, Michael A. J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31681858$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkklrHDEQhZvgEC_xXwiCXHKZifZRXwLBZDEYkoMDuQkt1baGbmksdU-Yfx_12I7tueQkIVV99XivTpujmCI0DSJ4SahU6uMf6HuXBkgbiBnKkghOyZK8ak4oa9VCYPr76Nn9uDkvZY0xJkpSpfCb5pgRqYgS6qTJP3MaocLQOOWYtpBRiGi8BWT7lHwZM5gBmejRJie3c31wqEt5KCh16DrvNiamkgaDbJ4cBDSAKVMGj-wO3U0mjmE0Y9jC3D7PCa68bV53pi9w_nCeNb--frm--L64-vHt8uLz1cJx2pIFs3LFpGqxEABgrGwxGEGYkyvfYtf6lTGqE4TblgqMhaSUM0WFNdw76Ag7ay7vuT6Ztd7kMJi808kEvX9I-UabPAbXg7ZkRSR4YltJuadgmZCdJdz76rdTsrI-3bM2kx2g8uOYTf8C-vInhlt9k7a6-iy5EBXw4QGQ090EZdRDKK4GaSKkqWjKCGkp5wzX0vcHpetUs6lW1Sq6YowwPit691zRPymP0T5JdjmVkqHTbp9FmgWGXhOs9-ukD9ZJ79dJz_6pA8DjjP-2_gXZRtkQ |
CitedBy_id | crossref_primary_10_1371_journal_pone_0244699 crossref_primary_10_1371_journal_ppat_1009696 crossref_primary_10_1186_s13104_022_06258_y crossref_primary_10_7554_eLife_70272 crossref_primary_10_1042_BCJ20210778 crossref_primary_10_1186_s13071_023_05728_x crossref_primary_10_1371_journal_ppat_1011522 crossref_primary_10_3389_fcimb_2022_900878 crossref_primary_10_1098_rsob_240334 crossref_primary_10_12688_wellcomeopenres_17607_2 crossref_primary_10_12688_wellcomeopenres_17607_1 crossref_primary_10_1002_cbic_202200626 crossref_primary_10_1128_mBio_00687_21 crossref_primary_10_1128_mSphere_00366_21 crossref_primary_10_12688_wellcomeopenres_16430_3 crossref_primary_10_12688_wellcomeopenres_17964_1 crossref_primary_10_1093_nar_gkae1203 crossref_primary_10_12688_wellcomeopenres_16430_2 crossref_primary_10_7554_eLife_68136 crossref_primary_10_12688_wellcomeopenres_16430_1 crossref_primary_10_1038_s41467_022_33109_y crossref_primary_10_1111_mmi_14429 crossref_primary_10_12688_wellcomeopenres_17964_2 crossref_primary_10_1039_D0MD00122H |
Cites_doi | 10.1093/nar/gkx1077 10.1038/s41598-018-28948-z 10.1016/j.pt.2016.10.009 10.1016/j.cell.2016.09.015 10.12688/wellcomeopenres.14392.1 10.1016/j.cels.2017.08.008 10.1021/pr101183k 10.1371/journal.pone.0036619 10.1038/nbt.1511 10.1021/pr401209w 10.1111/j.1600-0854.2008.00785.x 10.1371/journal.ppat.1005439 10.1021/pr400086y 10.1016/S1937-6448(08)02005-4 10.1002/pmic.200500668 10.1038/s41467-017-00959-w 10.1038/nature19339 10.7554/eLife.02419 10.1016/s0166-6851(99)00002-x 10.1083/jcb.201310113 10.5281/zenodo.11813 10.1074/mcp.M110.000323 10.1002/pmic.200401063 10.1091/mbc.E14-05-0961 10.1016/s0166-6851(99)00157-7 10.1016/s0166-6851(00)00318-2 10.1073/pnas.1820175116 10.1111/mmi.13328 10.1186/1471-2164-11-283 10.1111/j.1550-7408.1975.tb00943.x 10.1038/nprot.2009.36 10.1021/pr800641v 10.1371/journal.ppat.1003680 10.1074/mcp.M112.019224 10.1074/mcp.M114.045146 10.1016/j.idc.2004.01.004 10.1023/A:1020346417223 10.1093/nar/gkp851 10.1074/mcp.O117.068122 10.1017/s0031182099004217 10.1016/j.pt.2014.03.004 10.1073/pnas.1601596113 10.15252/msb.20156662 10.1152/physrev.00033.2016 10.1038/srep36565 10.1111/cmi.12268 10.1080/15548627.2016.1235127 10.1038/nprot.2010.192 10.1186/2046-2530-2-16 10.1111/j.1550-7408.1990.tb01263.x 10.1371/journal.pntd.0005333 10.1016/0166-6851(88)90178-8 10.1074/mcp.M111.011429 10.1016/j.bbamcr.2015.09.015 10.1128/EC.05012-11 10.1074/mcp.RA118.000650 10.1074/jbc.M116.726133 10.1083/jcb.105.6.2649 10.1002/j.1460-2075.1987.tb02381.x |
ContentType | Journal Article |
Copyright | Copyright: © 2019 Tinti M et al. 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2019 Tinti M et al. 2019 |
Copyright_xml | – notice: Copyright: © 2019 Tinti M et al. – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2019 Tinti M et al. 2019 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.12688/wellcomeopenres.15421.1 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2398-502X |
ExternalDocumentID | oai_doaj_org_article_b1716ed1b9624d2eb356fb14dd688c86 PMC6816455 31681858 10_12688_wellcomeopenres_15421_1 |
Genre | Journal Article |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 203134/Z/16/Z – fundername: Wellcome Trust grantid: 050662.D10; 090944; 097045 – fundername: Wellcome Trust grantid: 101842 |
GroupedDBID | 7X7 8FI 8FJ AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BPHCQ BVXVI CCPQU CITATION FYUFA GROUPED_DOAJ HMCUK HYE M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM UKHRP NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c4291-3b673689055eeeab690ea513c67d90c9d7aa8f514b92500562243825ba4dcef13 |
IEDL.DBID | DOA |
ISSN | 2398-502X |
IngestDate | Wed Aug 27 01:28:17 EDT 2025 Thu Aug 21 18:16:06 EDT 2025 Thu Sep 04 19:50:57 EDT 2025 Mon Jun 30 19:23:48 EDT 2025 Mon Jul 21 05:43:13 EDT 2025 Tue Jul 01 04:21:46 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Trypanosoma Procyclic Bloodstream Proteomics Turnover |
Language | English |
License | Copyright: © 2019 Tinti M et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4291-3b673689055eeeab690ea513c67d90c9d7aa8f514b92500562243825ba4dcef13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 No competing interests were disclosed. |
ORCID | 0000-0003-1321-8714 0000-0003-0951-4588 0000-0001-6204-6045 0000-0002-0051-017X |
OpenAccessLink | https://doaj.org/article/b1716ed1b9624d2eb356fb14dd688c86 |
PMID | 31681858 |
PQID | 2327331346 |
PQPubID | 2050296 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b1716ed1b9624d2eb356fb14dd688c86 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6816455 proquest_miscellaneous_2311924430 proquest_journals_2327331346 pubmed_primary_31681858 crossref_citationtrail_10_12688_wellcomeopenres_15421_1 crossref_primary_10_12688_wellcomeopenres_15421_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: London, UK |
PublicationTitle | Wellcome open research |
PublicationTitleAlternate | Wellcome Open Res |
PublicationYear | 2019 |
Publisher | Wellcome Trust Limited F1000 Research Limited Wellcome |
Publisher_xml | – name: Wellcome Trust Limited – name: F1000 Research Limited – name: Wellcome |
References | E Wirtz (ref-10) 1999; 99 T Ly (ref-18) 2018; 3 D Huet (ref-55) 2014; 3 (ref-16) 2019 E Jones (ref-21) 2001 Z Yao (ref-59) 2016; 12 J Cox (ref-13) 2008; 26 W Chung (ref-35) 2008; 9 A Seyfang (ref-41) 1990; 37 M Martin-Perez (ref-43) 2017; 5 C Walker (ref-62) 2018; 98 L Manza (ref-12) 2005; 5 C Colasante (ref-5) 2006; 6 K Leung (ref-34) 2011; 10 F Butter (ref-6) 2013; 12 S Kramer (ref-48) 2010; 11 M Jakob (ref-58) 2016; 6 M Urbaniak (ref-7) 2013; 12 S Wyllie (ref-45) 2019; 116 T Geiger (ref-15) 2011; 6 S Cambridge (ref-31) 2011; 10 T Blisnick (ref-54) 2014; 25 M Dejung (ref-9) 2016; 12 S Khare (ref-46) 2016; 537 M Gouw (ref-22) 2018; 46 S Dean (ref-24) 2017; 33 A Barnekow (ref-53) 2009; 274 N Kolev (ref-50) 2014; 16 E McShane (ref-33) 2016; 167 C Clayton (ref-49) 2013; 9 B Morga (ref-57) 2013; 2 M Sury (ref-29) 2010; 9 J Pinger (ref-42) 2017; 8 M Shimogawa (ref-8) 2015; 14 S Bauer (ref-60) 2017; 11 J Van Hellemond (ref-36) 2000; 111 J Van Den Abbeele (ref-3) 1999; 118 F Boisvert (ref-17) 2012; 11 D Hart (ref-38) 1987; 6 J Cox (ref-28) 2009; 4 M Newville (ref-20) 2014 C Clayton (ref-39) 1988; 28 Q Zhou (ref-51) 2016; 113 S Sbicego (ref-2) 1999; 104 M Aslett (ref-14) 2010; 38 S Lueong (ref-47) 2016; 100 M Guther (ref-11) 2014; 13 T Crozier (ref-26) 2017; 16 P Manna (ref-40) 2014; 30 Q Zhou (ref-52) 2016; 291 M Babst (ref-56) 2014; 205 C Clayton (ref-37) 1987; 105 D Klopfenstein (ref-23) 2018; 8 S Langreth (ref-30) 1975; 22 T Crozier (ref-25) 2018; 17 B Olivier (ref-19) 2002; 29 J Haanstra (ref-61) 2016; 1863 F Cox (ref-1) 2004; 18 (ref-27) 2019 M Doherty (ref-32) 2009; 8 D Gawron (ref-44) 2016; 12 M Urbaniak (ref-4) 2012; 7 |
References_xml | – volume: 46 start-page: D428-D434 year: 2018 ident: ref-22 article-title: The eukaryotic linear motif resource - 2018 update. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1077 – volume: 8 start-page: 10872 year: 2018 ident: ref-23 article-title: GOATOOLS: A Python library for Gene Ontology analyses. publication-title: Sci Rep. doi: 10.1038/s41598-018-28948-z – volume: 33 start-page: 80-82 year: 2017 ident: ref-24 article-title: TrypTag.org: A Trypanosome Genome-wide Protein Localisation Resource. publication-title: Trends Parasitol. doi: 10.1016/j.pt.2016.10.009 – volume: 167 start-page: 803-815.e21 year: 2016 ident: ref-33 article-title: Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation. publication-title: Cell. doi: 10.1016/j.cell.2016.09.015 – volume: 3 start-page: 51 year: 2018 ident: ref-18 article-title: Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells [version 1; peer review: 2 approved, 1 approved with reservations]. publication-title: Wellcome Open Res. doi: 10.12688/wellcomeopenres.14392.1 – volume: 5 start-page: 283-294 e5 year: 2017 ident: ref-43 article-title: Determinants and Regulation of Protein Turnover in Yeast. publication-title: Cell Syst. doi: 10.1016/j.cels.2017.08.008 – volume: 10 start-page: 5275-84 year: 2011 ident: ref-31 article-title: Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. publication-title: J Proteome Res. doi: 10.1021/pr101183k – volume: 7 start-page: e36619 year: 2012 ident: ref-4 article-title: Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. publication-title: PLoS One. doi: 10.1371/journal.pone.0036619 – volume: 26 start-page: 1367-72 year: 2008 ident: ref-13 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. publication-title: Nat Biotechnol. doi: 10.1038/nbt.1511 – volume: 13 start-page: 2796-806 year: 2014 ident: ref-11 article-title: High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. publication-title: J Proteome Res. doi: 10.1021/pr401209w – volume: 9 start-page: 1681-97 year: 2008 ident: ref-35 article-title: Ubiquitylation is required for degradation of transmembrane surface proteins in trypanosomes. publication-title: Traffic. doi: 10.1111/j.1600-0854.2008.00785.x – year: 2019 ident: ref-27 article-title: mtinti/wor_turnover_web: Turnover 1.0 (Version v1.0). publication-title: Zenodo. – volume: 12 start-page: e1005439 year: 2016 ident: ref-9 article-title: Quantitative Proteomics Uncovers Novel Factors Involved in Developmental Differentiation of Trypanosoma brucei. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005439 – volume: 12 start-page: 2233-44 year: 2013 ident: ref-7 article-title: Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. publication-title: J Proteome Res. doi: 10.1021/pr400086y – year: 2001 ident: ref-21 article-title: SciPy: Open source scientific tools for Python – volume: 274 start-page: 235-74 year: 2009 ident: ref-53 article-title: Chapter 5: rab proteins and their interaction partners. publication-title: Int Rev Cell Mol Biol. doi: 10.1016/S1937-6448(08)02005-4 – year: 2019 ident: ref-16 article-title: mtinti/wor_turnover: Turnover 1.0 (Version V1.0). publication-title: Zenodo. – volume: 6 start-page: 3275-93 year: 2006 ident: ref-5 article-title: Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei. publication-title: Proteomics. doi: 10.1002/pmic.200500668 – volume: 8 start-page: 828 year: 2017 ident: ref-42 article-title: Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. publication-title: Nat Commun. doi: 10.1038/s41467-017-00959-w – volume: 537 start-page: 229-233 year: 2016 ident: ref-46 article-title: Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. publication-title: Nature. doi: 10.1038/nature19339 – volume: 3 start-page: e02419 year: 2014 ident: ref-55 article-title: The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport. publication-title: eLife. doi: 10.7554/eLife.02419 – volume: 99 start-page: 89-101 year: 1999 ident: ref-10 article-title: A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma bruceiM. publication-title: Mol Biochem Parasitol. doi: 10.1016/s0166-6851(99)00002-x – volume: 205 start-page: 11-20 year: 2014 ident: ref-56 article-title: Quality control: quality control at the plasma membrane: one mechanism does not fit all. publication-title: J Cell Biol. doi: 10.1083/jcb.201310113 – year: 2014 ident: ref-20 article-title: LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python (Version 0.8.0) doi: 10.5281/zenodo.11813 – volume: 9 start-page: 2173-83 year: 2010 ident: ref-29 article-title: The SILAC fly allows for accurate protein quantification in vivo. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.M110.000323 – volume: 5 start-page: 1742-5 year: 2005 ident: ref-12 article-title: Sample preparation and digestion for proteomic analyses using spin filters. publication-title: Proteomics. doi: 10.1002/pmic.200401063 – volume: 25 start-page: 2620-33 year: 2014 ident: ref-54 article-title: The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions. publication-title: Mol Biol Cell. doi: 10.1091/mbc.E14-05-0961 – volume: 104 start-page: 311-22 year: 1999 ident: ref-2 article-title: The use of transgenic Trypanosoma brucei to identify compounds inducing the differentiation of bloodstream forms to procyclic forms. publication-title: Mol Biochem Parasitol. doi: 10.1016/s0166-6851(99)00157-7 – volume: 111 start-page: 275-82 year: 2000 ident: ref-36 article-title: The CYC3 gene of trypanosoma brucei encodes a cyclin with a short half-life. publication-title: Mol Biochem Parasitol. doi: 10.1016/s0166-6851(00)00318-2 – volume: 116 start-page: 9318-9323 year: 2019 ident: ref-45 article-title: Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1820175116 – volume: 100 start-page: 457-71 year: 2016 ident: ref-47 article-title: Gene expression regulatory networks in Trypanosoma brucei: insights into the role of the mRNA-binding proteome. publication-title: Mol Microbiol. doi: 10.1111/mmi.13328 – volume: 11 start-page: 283 year: 2010 ident: ref-48 article-title: Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. publication-title: BMC Genomics. doi: 10.1186/1471-2164-11-283 – volume: 22 start-page: 40-53 year: 1975 ident: ref-30 article-title: Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei. publication-title: J Protozool. doi: 10.1111/j.1550-7408.1975.tb00943.x – volume: 4 start-page: 698-705 year: 2009 ident: ref-28 article-title: A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. publication-title: Nat Protoc. doi: 10.1038/nprot.2009.36 – volume: 8 start-page: 104-12 year: 2009 ident: ref-32 article-title: Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. publication-title: J Proteome Res. doi: 10.1021/pr800641v – volume: 9 start-page: e1003680 year: 2013 ident: ref-49 article-title: The regulation of trypanosome gene expression by RNA-binding proteins. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003680 – volume: 12 start-page: 172-9 year: 2013 ident: ref-6 article-title: Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.M112.019224 – volume: 14 start-page: 1977-88 year: 2015 ident: ref-8 article-title: Cell Surface Proteomics Provides Insight into Stage-Specific Remodeling of the Host-Parasite Interface in Trypanosoma brucei. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.M114.045146 – volume: 18 start-page: 231-45 year: 2004 ident: ref-1 article-title: History of sleeping sickness (African trypanosomiasis). publication-title: Infect Dis Clin North Am. doi: 10.1016/j.idc.2004.01.004 – volume: 29 start-page: 249-54 year: 2002 ident: ref-19 article-title: Modelling cellular processes with Python and Scipy. publication-title: Mol Biol Rep. doi: 10.1023/A:1020346417223 – volume: 38 start-page: D457-62 year: 2010 ident: ref-14 article-title: TriTrypDB: a functional genomic resource for the Trypanosomatidae. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp851 – volume: 16 start-page: 2254-2267 year: 2017 ident: ref-26 article-title: Prediction of Protein Complexes in Trypanosoma brucei by Protein Correlation Profiling Mass Spectrometry and Machine Learning. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.O117.068122 – volume: 118 start-page: 469-78 year: 1999 ident: ref-3 article-title: Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. publication-title: Parasitology. doi: 10.1017/s0031182099004217 – volume: 30 start-page: 251-8 year: 2014 ident: ref-40 article-title: Life and times: synthesis, trafficking, and evolution of VSG. publication-title: Trends Parasitol. doi: 10.1016/j.pt.2014.03.004 – volume: 113 start-page: 3287-92 year: 2016 ident: ref-51 article-title: Two distinct cytokinesis pathways drive trypanosome cell division initiation from opposite cell ends. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1601596113 – volume: 12 start-page: 858 year: 2016 ident: ref-44 article-title: Positional proteomics reveals differences in N-terminal proteoform stability. publication-title: Mol Syst Biol. doi: 10.15252/msb.20156662 – volume: 98 start-page: 89-115 year: 2018 ident: ref-62 article-title: Redox Regulation of Homeostasis and Proteostasis in Peroxisomes. publication-title: Physiol Rev. doi: 10.1152/physrev.00033.2016 – volume: 6 start-page: 36565 year: 2016 ident: ref-58 article-title: Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. publication-title: Sci Rep. doi: 10.1038/srep36565 – volume: 16 start-page: 482-9 year: 2014 ident: ref-50 article-title: The emerging role of RNA-binding proteins in the life cycle of Trypanosoma brucei. publication-title: Cell Microbiol. doi: 10.1111/cmi.12268 – volume: 12 start-page: 1971-1972 year: 2016 ident: ref-59 article-title: An unconventional pathway for mitochondrial protein degradation. publication-title: Autophagy. doi: 10.1080/15548627.2016.1235127 – volume: 6 start-page: 147-57 year: 2011 ident: ref-15 article-title: Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. publication-title: Nat Protoc. doi: 10.1038/nprot.2010.192 – volume: 2 start-page: 16 year: 2013 ident: ref-57 article-title: Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences. publication-title: Cilia. doi: 10.1186/2046-2530-2-16 – volume: 37 start-page: 546-52 year: 1990 ident: ref-41 article-title: Degradation, recycling, and shedding of Trypanosoma brucei variant surface glycoprotein. publication-title: J Protozool. doi: 10.1111/j.1550-7408.1990.tb01263.x – volume: 11 start-page: e0005333 year: 2017 ident: ref-60 article-title: Glycosome biogenesis in trypanosomes and the de novo dilemma. publication-title: PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0005333 – volume: 28 start-page: 43-6 year: 1988 ident: ref-39 article-title: Most proteins, including fructose bisphosphate aldolase, are stable in the procyclic trypomastigote form of Trypanosoma brucei. publication-title: Mol Biochem Parasitol. doi: 10.1016/0166-6851(88)90178-8 – volume: 11 start-page: M111.011429 year: 2012 ident: ref-17 article-title: A quantitative spatial proteomics analysis of proteome turnover in human cells. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.M111.011429 – volume: 1863 start-page: 1038-48 year: 2016 ident: ref-61 article-title: Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. publication-title: Biochim Biophys Acta. doi: 10.1016/j.bbamcr.2015.09.015 – volume: 10 start-page: 916-31 year: 2011 ident: ref-34 article-title: Ubiquitylation and developmental regulation of invariant surface protein expression in trypanosomes. publication-title: Eukaryot Cell. doi: 10.1128/EC.05012-11 – volume: 17 start-page: 1184-1195 year: 2018 ident: ref-25 article-title: Proteomic Analysis of the Cell Cycle of Procylic Form Trypanosoma brucei. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.RA118.000650 – volume: 291 start-page: 14395-409 year: 2016 ident: ref-52 article-title: An EF-hand-containing Protein in Trypanosoma brucei Regulates Cytokinesis Initiation by Maintaining the Stability of the Cytokinesis Initiation Factor CIF1. publication-title: J Biol Chem. doi: 10.1074/jbc.M116.726133 – volume: 105 start-page: 2649-54 year: 1987 ident: ref-37 article-title: Import of fructose bisphosphate aldolase into the glycosomes of Trypanosoma brucei. publication-title: J Cell Biol. doi: 10.1083/jcb.105.6.2649 – volume: 6 start-page: 1403-11 year: 1987 ident: ref-38 article-title: Biogenesis of the glycosome in Trypanosoma brucei: the synthesis, translocation and turnover of glycosomal polypeptides. publication-title: EMBO J. doi: 10.1002/j.1460-2075.1987.tb02381.x |
SSID | ssj0001862880 |
Score | 2.1900308 |
Snippet | Background
: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation... : Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is... Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 152 |
SubjectTerms | Biosynthesis Cell culture Cell cycle Cell division Data visualization Gene expression Isotopes Life sciences Parasites Peptides Proteins Quality control RNA polymerase Writing |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEG50RfAivo2uUoLXaDr9SKIHUXFZBMXDLgyIhH5lDewks5Odhfkl_l2rOplZZxHxmk4_6Oru-qq6uj7GXjoTUG_5Js2aipJqc5uWTjeptqLJrAvKR46lL1_14bH8PFOzyeE2TGGVmzMxHtS-d-Qjf42an-gFhdTvFmcpsUbR7epEoXGd3eCIRIi6oZgVlz6Wksh0symAJ9do7JFHDJsNxE21pLgjJXP-iu9opZi8_2-I82rg5B-a6OAOuz1BSHg_yvwuuxa6e-zmSCq5vs9-faPUC9g5oDbpKEIT2g4Q50EMUqfHIWYOpvNAymvtTlsHhFwH6Bs4Wq7xeOiHfm7AkthbmI9eRA92DWcr08VXaXhGwmLsp3UDfL8Y3W7A38IiYI_ji5g3ICAmLb8I_scDdnzw6ejjYTrRL6QOlRRPhaWYr7LKlAohGIt2dDCKC6cLX2Wu8oUxZYOAy1aIowhI5XSrqKyROEENFw_ZXtd34TGDonBSqTKXaN1JJ3mFKFkWKqA5Y0XgImHFZvprN-UmJ4qM05psFBJcfUVwdRRczRPGtzUXY36O_6jzgSS8_Z8ybMcP_fKknjZsbSmPUPDcVjqXPg9WKN1YLr3Hll2pE7a_WR_1tO2H-nKRJuzFthg3LN3CmC70K_qHk9ErRZawR-Ny2o6EWMQQQJU4HzsLbWeouyVd-zMmBceKGuf4yb-H9ZTdQsRXjT6kfbZ3vlyFZ4iqzu3zuHV-A1HzKNQ priority: 102 providerName: ProQuest |
Title | Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31681858 https://www.proquest.com/docview/2327331346 https://www.proquest.com/docview/2311924430 https://pubmed.ncbi.nlm.nih.gov/PMC6816455 https://doaj.org/article/b1716ed1b9624d2eb356fb14dd688c86 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-0IvgifntajxF8jc0mu0lWn6y0FMFSpIUDkbBfoYFect71CveX9N_tzG563BVBH3zNZtlkZjbzm8nsbxj7YLVHv-WaJG0UkWpzk1S2aJLC5E1qrJcu9Fj6flwcnYlvEznZaPVFNWGRHjgKbs8Qn4t33KgiEy7D2E8WjeHCuaKqbBXItlOVbgRTIbtSURvdNHSWU1Ui02wylPFkOG2P8mKoUE8dquZUfSRFxj_yLd8UKPz_hDvvlk9u-KPDJ-zxACThS3yBp-ye756xh7G15Oo5uz4hAgZcHNCndFSnCW0HiPYglKrTERE9Bd05IBe2shetBcKvC-gbOJ2v8CPRL_qpBkPKb2Eac4kOzAp-L3UXzqbhlxJmcZ3WLuDnVUy-Af8MM48rxnMxnyCDQF1-5d2vF-zs8OD061EyNGFILLoqnuSGKr8qlUrpvdcGo2mvJc9tUTqVWuVKrasGYZdRiKYITmX0b1EaLVBADc9fsp2u7_xrBmVphZRVJjDGE1ZwhVhZlNJjUGNyz_MRK2_FX9uBoZwaZVzUFKmQ4uo7iquD4mo-Ynw9cxZZOv5hzj5peH0_8WyHC2h99WB99d-sb8R2b-2jHjb_okaQSp0wc4HD79fDuG3pX4zufL-keziFviJPR-xVNKf1k1AvMYRRFcpjy9C2HnV7pGvPAzU4TixQxm_-x7u9ZY8QHaqYb9plO5fzpX-HCOzSjNn9clKO2YP9g-OTH-Ow9W4AY8A2EQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VIgQviDspBQYJHg1Ze9cXEELcqpRexEMqRUJo2ZuppcZO46YoX8Jf8I3M2E5KKoR46Wvs9W52ZmfPzM7OYeyp1R73LZcH_TyjotrcBKmN8yA2Ud431kvXcCzt7ceDA_FpJEdr7NfiLgylVS5sYmOoXWUpRv4Cd36iF4xE_GZyHBBrFJ2uLig0WrXY8fMf6LLVr7c_oHyfheHWx-H7QdCxCgQWbS8PIkOpTGnWl9J7rw26h15LHtk4cVnfZi7ROs0RR5gM4QHhg5AOy6TRwlmf8wi_e4ldFnTEiOsnGSVnMZ2UyHv7XcJQGKNzSRE4_BueuLCmlOckRcif85VdsCEL-BvCPZ-o-cfOt3WDXe8gK7xtdewmW_PlLXalJbGc32Y_P1OpB-wccPcqKSMUihIQV0KTFE-XUfQYdOmANsu5PSosEFKuocphOJ2jOarqaqzBkJoVMG6jlg7MHI5numxuwaFNhknbT2Fr-HLahvmAv4KJxx7bGzgvIYKmSPqpd1_vsIMLEcxdtl5Wpb_PIEmskDINBXqTwgqeISoXifToPpnI86jHksX0K9vVQidKjiNFPhEJTp0TnGoEp3iP8WXLSVsP5D_avCMJL9-nit7ND9X0u-oMhDJUt8g7brI4FC70JpJxbrhwDr9s07jHNhf6oTozU6uzRdFjT5aP0UDQqY8ufTWjdzg52aivPXavVaflSIi1DAFbivOxomgrQ119UhaHTRFybBjjHG_8e1iP2dXBcG9X7W7v7zxg1xBtZm38apOtn0xn_iEiuhPzqFlGwL5d9Lr9DZPSZD8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VViBeEHcCBQYJHk299q4voApR2qilEEWolSohZPZmiNTYadwU5Uv4J76KGV9SUiHES19jr3ezsztzZnZ2DmPPjXJot2zu-XlKRbW59hIT5V6kw9zXxklbcyx9HES7h-L9kTxaYb-6uzCUVtnpxFpR29JQjHwDLT_RC4Yi2sjbtIjhdv_N5MQjBik6ae3oNFRLs2A363Jj7SWPfTf_ge5ctbm3jbJ_EQT9nYN3u17LOOAZ1MvcCzWlOSWpL6VzTml0HZ2SPDRRbFPfpDZWKskRY-gUoQNhh4AO0qRWwhqX8xC_e4WtxWj10RFc29oZDD-dR3wSovb123SiIELXk-Jz-CcdMWVNKQtKioC_5Es2sqYS-Bv-vZjG-Ydd7N9kN1pAC2-bFXiLrbjiNrvaUFzO77CfQyoEgZ0D2raC8kVhVACiTqhT5umqihqDKiyQKZ2b45EBwtEVlDkcTOeorMqqHCvQtAhHMG5imhb0HE5mqqjvyKHGhknTz8hU8PmsCQICfw0Thz0293NeQQh1CfUzZ7_cZYeXIpp7bLUoC_eAQRwbIWUSCPQ1hRE8RcwuYunQudKh42GPxd30Z6atlE6EHccZeUwkuOyC4LJacBnvMb5oOWmqhfxHmy2S8OJ9qvdd_1BOv2Wt-sg0VTVylus0CoQNnA5llGsurMUvmyTqsfVufWStEqqy8y3TY88Wj1F90JmQKlw5o3c4ueAi9HvsfrOcFiMhTjOEcwnOx9JCWxrq8pNi9L0uUY4NI5zjh_8e1lN2Dfdw9mFvsP-IXUcomjbBrXW2ejqduccI9071k3YfAft62Vv3N4Hnbxo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteome+turnover+in+the+bloodstream+and+procyclic+forms+of+Trypanosoma+brucei+measured+by+quantitative+proteomics+%5Bversion+1%3B+peer+review%3A+2+approved%5D&rft.jtitle=Wellcome+open+research&rft.au=Michele+Tinti&rft.au=Maria+Lucia+S.+G%C3%BCther&rft.au=Thomas+W.+M.+Crozier&rft.au=Angus+I.+Lamond&rft.date=2019&rft.pub=Wellcome&rft.issn=2398-502X&rft.eissn=2398-502X&rft.volume=4&rft_id=info:doi/10.12688%2Fwellcomeopenres.15421.1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b1716ed1b9624d2eb356fb14dd688c86 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-502X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-502X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-502X&client=summon |