Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics

Background : Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the...

Full description

Saved in:
Bibliographic Details
Published inWellcome open research Vol. 4; p. 152
Main Authors Tinti, Michele, Güther, Maria Lucia S., Crozier, Thomas W. M., Lamond, Angus I., Ferguson, Michael A. J.
Format Journal Article
LanguageEnglish
Published England Wellcome Trust Limited 2019
F1000 Research Limited
Wellcome
Subjects
Online AccessGet full text
ISSN2398-502X
2398-502X
DOI10.12688/wellcomeopenres.15421.1

Cover

Abstract Background : Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei , the etiological agent of human and animal African trypanosomiasis. Methods : To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results : This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions : The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.
AbstractList Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei, the etiological agent of human and animal African trypanosomiasis. Methods: To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.
Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei, the etiological agent of human and animal African trypanosomiasis. Methods: To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei, the etiological agent of human and animal African trypanosomiasis. Methods: To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.
Background : Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei , the etiological agent of human and animal African trypanosomiasis. Methods : To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results : This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions : The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.
: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in , the etiological agent of human and animal African trypanosomiasis. : To establish baseline data on proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. : This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. : The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.
Author Tinti, Michele
Crozier, Thomas W. M.
Lamond, Angus I.
Ferguson, Michael A. J.
Güther, Maria Lucia S.
Author_xml – sequence: 1
  givenname: Michele
  orcidid: 0000-0002-0051-017X
  surname: Tinti
  fullname: Tinti, Michele
– sequence: 2
  givenname: Maria Lucia S.
  surname: Güther
  fullname: Güther, Maria Lucia S.
– sequence: 3
  givenname: Thomas W. M.
  orcidid: 0000-0003-0951-4588
  surname: Crozier
  fullname: Crozier, Thomas W. M.
– sequence: 4
  givenname: Angus I.
  orcidid: 0000-0001-6204-6045
  surname: Lamond
  fullname: Lamond, Angus I.
– sequence: 5
  givenname: Michael A. J.
  orcidid: 0000-0003-1321-8714
  surname: Ferguson
  fullname: Ferguson, Michael A. J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31681858$$D View this record in MEDLINE/PubMed
BookMark eNqFkklrHDEQhZvgEC_xXwiCXHKZifZRXwLBZDEYkoMDuQkt1baGbmksdU-Yfx_12I7tueQkIVV99XivTpujmCI0DSJ4SahU6uMf6HuXBkgbiBnKkghOyZK8ak4oa9VCYPr76Nn9uDkvZY0xJkpSpfCb5pgRqYgS6qTJP3MaocLQOOWYtpBRiGi8BWT7lHwZM5gBmejRJie3c31wqEt5KCh16DrvNiamkgaDbJ4cBDSAKVMGj-wO3U0mjmE0Y9jC3D7PCa68bV53pi9w_nCeNb--frm--L64-vHt8uLz1cJx2pIFs3LFpGqxEABgrGwxGEGYkyvfYtf6lTGqE4TblgqMhaSUM0WFNdw76Ag7ay7vuT6Ztd7kMJi808kEvX9I-UabPAbXg7ZkRSR4YltJuadgmZCdJdz76rdTsrI-3bM2kx2g8uOYTf8C-vInhlt9k7a6-iy5EBXw4QGQ090EZdRDKK4GaSKkqWjKCGkp5wzX0vcHpetUs6lW1Sq6YowwPit691zRPymP0T5JdjmVkqHTbp9FmgWGXhOs9-ukD9ZJ79dJz_6pA8DjjP-2_gXZRtkQ
CitedBy_id crossref_primary_10_1371_journal_pone_0244699
crossref_primary_10_1371_journal_ppat_1009696
crossref_primary_10_1186_s13104_022_06258_y
crossref_primary_10_7554_eLife_70272
crossref_primary_10_1042_BCJ20210778
crossref_primary_10_1186_s13071_023_05728_x
crossref_primary_10_1371_journal_ppat_1011522
crossref_primary_10_3389_fcimb_2022_900878
crossref_primary_10_1098_rsob_240334
crossref_primary_10_12688_wellcomeopenres_17607_2
crossref_primary_10_12688_wellcomeopenres_17607_1
crossref_primary_10_1002_cbic_202200626
crossref_primary_10_1128_mBio_00687_21
crossref_primary_10_1128_mSphere_00366_21
crossref_primary_10_12688_wellcomeopenres_16430_3
crossref_primary_10_12688_wellcomeopenres_17964_1
crossref_primary_10_1093_nar_gkae1203
crossref_primary_10_12688_wellcomeopenres_16430_2
crossref_primary_10_7554_eLife_68136
crossref_primary_10_12688_wellcomeopenres_16430_1
crossref_primary_10_1038_s41467_022_33109_y
crossref_primary_10_1111_mmi_14429
crossref_primary_10_12688_wellcomeopenres_17964_2
crossref_primary_10_1039_D0MD00122H
Cites_doi 10.1093/nar/gkx1077
10.1038/s41598-018-28948-z
10.1016/j.pt.2016.10.009
10.1016/j.cell.2016.09.015
10.12688/wellcomeopenres.14392.1
10.1016/j.cels.2017.08.008
10.1021/pr101183k
10.1371/journal.pone.0036619
10.1038/nbt.1511
10.1021/pr401209w
10.1111/j.1600-0854.2008.00785.x
10.1371/journal.ppat.1005439
10.1021/pr400086y
10.1016/S1937-6448(08)02005-4
10.1002/pmic.200500668
10.1038/s41467-017-00959-w
10.1038/nature19339
10.7554/eLife.02419
10.1016/s0166-6851(99)00002-x
10.1083/jcb.201310113
10.5281/zenodo.11813
10.1074/mcp.M110.000323
10.1002/pmic.200401063
10.1091/mbc.E14-05-0961
10.1016/s0166-6851(99)00157-7
10.1016/s0166-6851(00)00318-2
10.1073/pnas.1820175116
10.1111/mmi.13328
10.1186/1471-2164-11-283
10.1111/j.1550-7408.1975.tb00943.x
10.1038/nprot.2009.36
10.1021/pr800641v
10.1371/journal.ppat.1003680
10.1074/mcp.M112.019224
10.1074/mcp.M114.045146
10.1016/j.idc.2004.01.004
10.1023/A:1020346417223
10.1093/nar/gkp851
10.1074/mcp.O117.068122
10.1017/s0031182099004217
10.1016/j.pt.2014.03.004
10.1073/pnas.1601596113
10.15252/msb.20156662
10.1152/physrev.00033.2016
10.1038/srep36565
10.1111/cmi.12268
10.1080/15548627.2016.1235127
10.1038/nprot.2010.192
10.1186/2046-2530-2-16
10.1111/j.1550-7408.1990.tb01263.x
10.1371/journal.pntd.0005333
10.1016/0166-6851(88)90178-8
10.1074/mcp.M111.011429
10.1016/j.bbamcr.2015.09.015
10.1128/EC.05012-11
10.1074/mcp.RA118.000650
10.1074/jbc.M116.726133
10.1083/jcb.105.6.2649
10.1002/j.1460-2075.1987.tb02381.x
ContentType Journal Article
Copyright Copyright: © 2019 Tinti M et al.
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2019 Tinti M et al. 2019
Copyright_xml – notice: Copyright: © 2019 Tinti M et al.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2019 Tinti M et al. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.12688/wellcomeopenres.15421.1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2398-502X
ExternalDocumentID oai_doaj_org_article_b1716ed1b9624d2eb356fb14dd688c86
PMC6816455
31681858
10_12688_wellcomeopenres_15421_1
Genre Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 203134/Z/16/Z
– fundername: Wellcome Trust
  grantid: 050662.D10; 090944; 097045
– fundername: Wellcome Trust
  grantid: 101842
GroupedDBID 7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4291-3b673689055eeeab690ea513c67d90c9d7aa8f514b92500562243825ba4dcef13
IEDL.DBID DOA
ISSN 2398-502X
IngestDate Wed Aug 27 01:28:17 EDT 2025
Thu Aug 21 18:16:06 EDT 2025
Thu Sep 04 19:50:57 EDT 2025
Mon Jun 30 19:23:48 EDT 2025
Mon Jul 21 05:43:13 EDT 2025
Tue Jul 01 04:21:46 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Trypanosoma
Procyclic
Bloodstream
Proteomics
Turnover
Language English
License Copyright: © 2019 Tinti M et al.
This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4291-3b673689055eeeab690ea513c67d90c9d7aa8f514b92500562243825ba4dcef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
No competing interests were disclosed.
ORCID 0000-0003-1321-8714
0000-0003-0951-4588
0000-0001-6204-6045
0000-0002-0051-017X
OpenAccessLink https://doaj.org/article/b1716ed1b9624d2eb356fb14dd688c86
PMID 31681858
PQID 2327331346
PQPubID 2050296
ParticipantIDs doaj_primary_oai_doaj_org_article_b1716ed1b9624d2eb356fb14dd688c86
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6816455
proquest_miscellaneous_2311924430
proquest_journals_2327331346
pubmed_primary_31681858
crossref_citationtrail_10_12688_wellcomeopenres_15421_1
crossref_primary_10_12688_wellcomeopenres_15421_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: London, UK
PublicationTitle Wellcome open research
PublicationTitleAlternate Wellcome Open Res
PublicationYear 2019
Publisher Wellcome Trust Limited
F1000 Research Limited
Wellcome
Publisher_xml – name: Wellcome Trust Limited
– name: F1000 Research Limited
– name: Wellcome
References E Wirtz (ref-10) 1999; 99
T Ly (ref-18) 2018; 3
D Huet (ref-55) 2014; 3
(ref-16) 2019
E Jones (ref-21) 2001
Z Yao (ref-59) 2016; 12
J Cox (ref-13) 2008; 26
W Chung (ref-35) 2008; 9
A Seyfang (ref-41) 1990; 37
M Martin-Perez (ref-43) 2017; 5
C Walker (ref-62) 2018; 98
L Manza (ref-12) 2005; 5
C Colasante (ref-5) 2006; 6
K Leung (ref-34) 2011; 10
F Butter (ref-6) 2013; 12
S Kramer (ref-48) 2010; 11
M Jakob (ref-58) 2016; 6
M Urbaniak (ref-7) 2013; 12
S Wyllie (ref-45) 2019; 116
T Geiger (ref-15) 2011; 6
S Cambridge (ref-31) 2011; 10
T Blisnick (ref-54) 2014; 25
M Dejung (ref-9) 2016; 12
S Khare (ref-46) 2016; 537
M Gouw (ref-22) 2018; 46
S Dean (ref-24) 2017; 33
A Barnekow (ref-53) 2009; 274
N Kolev (ref-50) 2014; 16
E McShane (ref-33) 2016; 167
C Clayton (ref-49) 2013; 9
B Morga (ref-57) 2013; 2
M Sury (ref-29) 2010; 9
J Pinger (ref-42) 2017; 8
M Shimogawa (ref-8) 2015; 14
S Bauer (ref-60) 2017; 11
J Van Hellemond (ref-36) 2000; 111
J Van Den Abbeele (ref-3) 1999; 118
F Boisvert (ref-17) 2012; 11
D Hart (ref-38) 1987; 6
J Cox (ref-28) 2009; 4
M Newville (ref-20) 2014
C Clayton (ref-39) 1988; 28
Q Zhou (ref-51) 2016; 113
S Sbicego (ref-2) 1999; 104
M Aslett (ref-14) 2010; 38
S Lueong (ref-47) 2016; 100
M Guther (ref-11) 2014; 13
T Crozier (ref-26) 2017; 16
P Manna (ref-40) 2014; 30
Q Zhou (ref-52) 2016; 291
M Babst (ref-56) 2014; 205
C Clayton (ref-37) 1987; 105
D Klopfenstein (ref-23) 2018; 8
S Langreth (ref-30) 1975; 22
T Crozier (ref-25) 2018; 17
B Olivier (ref-19) 2002; 29
J Haanstra (ref-61) 2016; 1863
F Cox (ref-1) 2004; 18
(ref-27) 2019
M Doherty (ref-32) 2009; 8
D Gawron (ref-44) 2016; 12
M Urbaniak (ref-4) 2012; 7
References_xml – volume: 46
  start-page: D428-D434
  year: 2018
  ident: ref-22
  article-title: The eukaryotic linear motif resource - 2018 update.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1077
– volume: 8
  start-page: 10872
  year: 2018
  ident: ref-23
  article-title: GOATOOLS: A Python library for Gene Ontology analyses.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-018-28948-z
– volume: 33
  start-page: 80-82
  year: 2017
  ident: ref-24
  article-title: TrypTag.org: A Trypanosome Genome-wide Protein Localisation Resource.
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2016.10.009
– volume: 167
  start-page: 803-815.e21
  year: 2016
  ident: ref-33
  article-title: Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation.
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.09.015
– volume: 3
  start-page: 51
  year: 2018
  ident: ref-18
  article-title: Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells [version 1; peer review: 2 approved, 1 approved with reservations].
  publication-title: Wellcome Open Res.
  doi: 10.12688/wellcomeopenres.14392.1
– volume: 5
  start-page: 283-294 e5
  year: 2017
  ident: ref-43
  article-title: Determinants and Regulation of Protein Turnover in Yeast.
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2017.08.008
– volume: 10
  start-page: 5275-84
  year: 2011
  ident: ref-31
  article-title: Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover.
  publication-title: J Proteome Res.
  doi: 10.1021/pr101183k
– volume: 7
  start-page: e36619
  year: 2012
  ident: ref-4
  article-title: Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages.
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0036619
– volume: 26
  start-page: 1367-72
  year: 2008
  ident: ref-13
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.
  publication-title: Nat Biotechnol.
  doi: 10.1038/nbt.1511
– volume: 13
  start-page: 2796-806
  year: 2014
  ident: ref-11
  article-title: High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics.
  publication-title: J Proteome Res.
  doi: 10.1021/pr401209w
– volume: 9
  start-page: 1681-97
  year: 2008
  ident: ref-35
  article-title: Ubiquitylation is required for degradation of transmembrane surface proteins in trypanosomes.
  publication-title: Traffic.
  doi: 10.1111/j.1600-0854.2008.00785.x
– year: 2019
  ident: ref-27
  article-title: mtinti/wor_turnover_web: Turnover 1.0 (Version v1.0).
  publication-title: Zenodo.
– volume: 12
  start-page: e1005439
  year: 2016
  ident: ref-9
  article-title: Quantitative Proteomics Uncovers Novel Factors Involved in Developmental Differentiation of Trypanosoma brucei.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005439
– volume: 12
  start-page: 2233-44
  year: 2013
  ident: ref-7
  article-title: Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei.
  publication-title: J Proteome Res.
  doi: 10.1021/pr400086y
– year: 2001
  ident: ref-21
  article-title: SciPy: Open source scientific tools for Python
– volume: 274
  start-page: 235-74
  year: 2009
  ident: ref-53
  article-title: Chapter 5: rab proteins and their interaction partners.
  publication-title: Int Rev Cell Mol Biol.
  doi: 10.1016/S1937-6448(08)02005-4
– year: 2019
  ident: ref-16
  article-title: mtinti/wor_turnover: Turnover 1.0 (Version V1.0).
  publication-title: Zenodo.
– volume: 6
  start-page: 3275-93
  year: 2006
  ident: ref-5
  article-title: Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei.
  publication-title: Proteomics.
  doi: 10.1002/pmic.200500668
– volume: 8
  start-page: 828
  year: 2017
  ident: ref-42
  article-title: Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation.
  publication-title: Nat Commun.
  doi: 10.1038/s41467-017-00959-w
– volume: 537
  start-page: 229-233
  year: 2016
  ident: ref-46
  article-title: Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness.
  publication-title: Nature.
  doi: 10.1038/nature19339
– volume: 3
  start-page: e02419
  year: 2014
  ident: ref-55
  article-title: The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport.
  publication-title: eLife.
  doi: 10.7554/eLife.02419
– volume: 99
  start-page: 89-101
  year: 1999
  ident: ref-10
  article-title: A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma bruceiM.
  publication-title: Mol Biochem Parasitol.
  doi: 10.1016/s0166-6851(99)00002-x
– volume: 205
  start-page: 11-20
  year: 2014
  ident: ref-56
  article-title: Quality control: quality control at the plasma membrane: one mechanism does not fit all.
  publication-title: J Cell Biol.
  doi: 10.1083/jcb.201310113
– year: 2014
  ident: ref-20
  article-title: LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python (Version 0.8.0)
  doi: 10.5281/zenodo.11813
– volume: 9
  start-page: 2173-83
  year: 2010
  ident: ref-29
  article-title: The SILAC fly allows for accurate protein quantification in vivo.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.M110.000323
– volume: 5
  start-page: 1742-5
  year: 2005
  ident: ref-12
  article-title: Sample preparation and digestion for proteomic analyses using spin filters.
  publication-title: Proteomics.
  doi: 10.1002/pmic.200401063
– volume: 25
  start-page: 2620-33
  year: 2014
  ident: ref-54
  article-title: The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions.
  publication-title: Mol Biol Cell.
  doi: 10.1091/mbc.E14-05-0961
– volume: 104
  start-page: 311-22
  year: 1999
  ident: ref-2
  article-title: The use of transgenic Trypanosoma brucei to identify compounds inducing the differentiation of bloodstream forms to procyclic forms.
  publication-title: Mol Biochem Parasitol.
  doi: 10.1016/s0166-6851(99)00157-7
– volume: 111
  start-page: 275-82
  year: 2000
  ident: ref-36
  article-title: The CYC3 gene of trypanosoma brucei encodes a cyclin with a short half-life.
  publication-title: Mol Biochem Parasitol.
  doi: 10.1016/s0166-6851(00)00318-2
– volume: 116
  start-page: 9318-9323
  year: 2019
  ident: ref-45
  article-title: Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition.
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1820175116
– volume: 100
  start-page: 457-71
  year: 2016
  ident: ref-47
  article-title: Gene expression regulatory networks in Trypanosoma brucei: insights into the role of the mRNA-binding proteome.
  publication-title: Mol Microbiol.
  doi: 10.1111/mmi.13328
– volume: 11
  start-page: 283
  year: 2010
  ident: ref-48
  article-title: Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major.
  publication-title: BMC Genomics.
  doi: 10.1186/1471-2164-11-283
– volume: 22
  start-page: 40-53
  year: 1975
  ident: ref-30
  article-title: Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei.
  publication-title: J Protozool.
  doi: 10.1111/j.1550-7408.1975.tb00943.x
– volume: 4
  start-page: 698-705
  year: 2009
  ident: ref-28
  article-title: A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics.
  publication-title: Nat Protoc.
  doi: 10.1038/nprot.2009.36
– volume: 8
  start-page: 104-12
  year: 2009
  ident: ref-32
  article-title: Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC.
  publication-title: J Proteome Res.
  doi: 10.1021/pr800641v
– volume: 9
  start-page: e1003680
  year: 2013
  ident: ref-49
  article-title: The regulation of trypanosome gene expression by RNA-binding proteins.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003680
– volume: 12
  start-page: 172-9
  year: 2013
  ident: ref-6
  article-title: Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.M112.019224
– volume: 14
  start-page: 1977-88
  year: 2015
  ident: ref-8
  article-title: Cell Surface Proteomics Provides Insight into Stage-Specific Remodeling of the Host-Parasite Interface in Trypanosoma brucei.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.M114.045146
– volume: 18
  start-page: 231-45
  year: 2004
  ident: ref-1
  article-title: History of sleeping sickness (African trypanosomiasis).
  publication-title: Infect Dis Clin North Am.
  doi: 10.1016/j.idc.2004.01.004
– volume: 29
  start-page: 249-54
  year: 2002
  ident: ref-19
  article-title: Modelling cellular processes with Python and Scipy.
  publication-title: Mol Biol Rep.
  doi: 10.1023/A:1020346417223
– volume: 38
  start-page: D457-62
  year: 2010
  ident: ref-14
  article-title: TriTrypDB: a functional genomic resource for the Trypanosomatidae.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp851
– volume: 16
  start-page: 2254-2267
  year: 2017
  ident: ref-26
  article-title: Prediction of Protein Complexes in Trypanosoma brucei by Protein Correlation Profiling Mass Spectrometry and Machine Learning.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.O117.068122
– volume: 118
  start-page: 469-78
  year: 1999
  ident: ref-3
  article-title: Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis.
  publication-title: Parasitology.
  doi: 10.1017/s0031182099004217
– volume: 30
  start-page: 251-8
  year: 2014
  ident: ref-40
  article-title: Life and times: synthesis, trafficking, and evolution of VSG.
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2014.03.004
– volume: 113
  start-page: 3287-92
  year: 2016
  ident: ref-51
  article-title: Two distinct cytokinesis pathways drive trypanosome cell division initiation from opposite cell ends.
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1601596113
– volume: 12
  start-page: 858
  year: 2016
  ident: ref-44
  article-title: Positional proteomics reveals differences in N-terminal proteoform stability.
  publication-title: Mol Syst Biol.
  doi: 10.15252/msb.20156662
– volume: 98
  start-page: 89-115
  year: 2018
  ident: ref-62
  article-title: Redox Regulation of Homeostasis and Proteostasis in Peroxisomes.
  publication-title: Physiol Rev.
  doi: 10.1152/physrev.00033.2016
– volume: 6
  start-page: 36565
  year: 2016
  ident: ref-58
  article-title: Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms.
  publication-title: Sci Rep.
  doi: 10.1038/srep36565
– volume: 16
  start-page: 482-9
  year: 2014
  ident: ref-50
  article-title: The emerging role of RNA-binding proteins in the life cycle of Trypanosoma brucei.
  publication-title: Cell Microbiol.
  doi: 10.1111/cmi.12268
– volume: 12
  start-page: 1971-1972
  year: 2016
  ident: ref-59
  article-title: An unconventional pathway for mitochondrial protein degradation.
  publication-title: Autophagy.
  doi: 10.1080/15548627.2016.1235127
– volume: 6
  start-page: 147-57
  year: 2011
  ident: ref-15
  article-title: Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics.
  publication-title: Nat Protoc.
  doi: 10.1038/nprot.2010.192
– volume: 2
  start-page: 16
  year: 2013
  ident: ref-57
  article-title: Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences.
  publication-title: Cilia.
  doi: 10.1186/2046-2530-2-16
– volume: 37
  start-page: 546-52
  year: 1990
  ident: ref-41
  article-title: Degradation, recycling, and shedding of Trypanosoma brucei variant surface glycoprotein.
  publication-title: J Protozool.
  doi: 10.1111/j.1550-7408.1990.tb01263.x
– volume: 11
  start-page: e0005333
  year: 2017
  ident: ref-60
  article-title: Glycosome biogenesis in trypanosomes and the de novo dilemma.
  publication-title: PLoS Negl Trop Dis.
  doi: 10.1371/journal.pntd.0005333
– volume: 28
  start-page: 43-6
  year: 1988
  ident: ref-39
  article-title: Most proteins, including fructose bisphosphate aldolase, are stable in the procyclic trypomastigote form of Trypanosoma brucei.
  publication-title: Mol Biochem Parasitol.
  doi: 10.1016/0166-6851(88)90178-8
– volume: 11
  start-page: M111.011429
  year: 2012
  ident: ref-17
  article-title: A quantitative spatial proteomics analysis of proteome turnover in human cells.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.M111.011429
– volume: 1863
  start-page: 1038-48
  year: 2016
  ident: ref-61
  article-title: Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites.
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/j.bbamcr.2015.09.015
– volume: 10
  start-page: 916-31
  year: 2011
  ident: ref-34
  article-title: Ubiquitylation and developmental regulation of invariant surface protein expression in trypanosomes.
  publication-title: Eukaryot Cell.
  doi: 10.1128/EC.05012-11
– volume: 17
  start-page: 1184-1195
  year: 2018
  ident: ref-25
  article-title: Proteomic Analysis of the Cell Cycle of Procylic Form Trypanosoma brucei.
  publication-title: Mol Cell Proteomics.
  doi: 10.1074/mcp.RA118.000650
– volume: 291
  start-page: 14395-409
  year: 2016
  ident: ref-52
  article-title: An EF-hand-containing Protein in Trypanosoma brucei Regulates Cytokinesis Initiation by Maintaining the Stability of the Cytokinesis Initiation Factor CIF1.
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M116.726133
– volume: 105
  start-page: 2649-54
  year: 1987
  ident: ref-37
  article-title: Import of fructose bisphosphate aldolase into the glycosomes of Trypanosoma brucei.
  publication-title: J Cell Biol.
  doi: 10.1083/jcb.105.6.2649
– volume: 6
  start-page: 1403-11
  year: 1987
  ident: ref-38
  article-title: Biogenesis of the glycosome in Trypanosoma brucei: the synthesis, translocation and turnover of glycosomal polypeptides.
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1987.tb02381.x
SSID ssj0001862880
Score 2.1900308
Snippet Background : Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation...
: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is...
Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 152
SubjectTerms Biosynthesis
Cell culture
Cell cycle
Cell division
Data visualization
Gene expression
Isotopes
Life sciences
Parasites
Peptides
Proteins
Quality control
RNA polymerase
Writing
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEG50RfAivo2uUoLXaDr9SKIHUXFZBMXDLgyIhH5lDewks5Odhfkl_l2rOplZZxHxmk4_6Oru-qq6uj7GXjoTUG_5Js2aipJqc5uWTjeptqLJrAvKR46lL1_14bH8PFOzyeE2TGGVmzMxHtS-d-Qjf42an-gFhdTvFmcpsUbR7epEoXGd3eCIRIi6oZgVlz6Wksh0symAJ9do7JFHDJsNxE21pLgjJXP-iu9opZi8_2-I82rg5B-a6OAOuz1BSHg_yvwuuxa6e-zmSCq5vs9-faPUC9g5oDbpKEIT2g4Q50EMUqfHIWYOpvNAymvtTlsHhFwH6Bs4Wq7xeOiHfm7AkthbmI9eRA92DWcr08VXaXhGwmLsp3UDfL8Y3W7A38IiYI_ji5g3ICAmLb8I_scDdnzw6ejjYTrRL6QOlRRPhaWYr7LKlAohGIt2dDCKC6cLX2Wu8oUxZYOAy1aIowhI5XSrqKyROEENFw_ZXtd34TGDonBSqTKXaN1JJ3mFKFkWKqA5Y0XgImHFZvprN-UmJ4qM05psFBJcfUVwdRRczRPGtzUXY36O_6jzgSS8_Z8ybMcP_fKknjZsbSmPUPDcVjqXPg9WKN1YLr3Hll2pE7a_WR_1tO2H-nKRJuzFthg3LN3CmC70K_qHk9ErRZawR-Ny2o6EWMQQQJU4HzsLbWeouyVd-zMmBceKGuf4yb-H9ZTdQsRXjT6kfbZ3vlyFZ4iqzu3zuHV-A1HzKNQ
  priority: 102
  providerName: ProQuest
Title Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics
URI https://www.ncbi.nlm.nih.gov/pubmed/31681858
https://www.proquest.com/docview/2327331346
https://www.proquest.com/docview/2311924430
https://pubmed.ncbi.nlm.nih.gov/PMC6816455
https://doaj.org/article/b1716ed1b9624d2eb356fb14dd688c86
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-0IvgifntajxF8jc0mu0lWn6y0FMFSpIUDkbBfoYFect71CveX9N_tzG563BVBH3zNZtlkZjbzm8nsbxj7YLVHv-WaJG0UkWpzk1S2aJLC5E1qrJcu9Fj6flwcnYlvEznZaPVFNWGRHjgKbs8Qn4t33KgiEy7D2E8WjeHCuaKqbBXItlOVbgRTIbtSURvdNHSWU1Ui02wylPFkOG2P8mKoUE8dquZUfSRFxj_yLd8UKPz_hDvvlk9u-KPDJ-zxACThS3yBp-ye756xh7G15Oo5uz4hAgZcHNCndFSnCW0HiPYglKrTERE9Bd05IBe2shetBcKvC-gbOJ2v8CPRL_qpBkPKb2Eac4kOzAp-L3UXzqbhlxJmcZ3WLuDnVUy-Af8MM48rxnMxnyCDQF1-5d2vF-zs8OD061EyNGFILLoqnuSGKr8qlUrpvdcGo2mvJc9tUTqVWuVKrasGYZdRiKYITmX0b1EaLVBADc9fsp2u7_xrBmVphZRVJjDGE1ZwhVhZlNJjUGNyz_MRK2_FX9uBoZwaZVzUFKmQ4uo7iquD4mo-Ynw9cxZZOv5hzj5peH0_8WyHC2h99WB99d-sb8R2b-2jHjb_okaQSp0wc4HD79fDuG3pX4zufL-keziFviJPR-xVNKf1k1AvMYRRFcpjy9C2HnV7pGvPAzU4TixQxm_-x7u9ZY8QHaqYb9plO5fzpX-HCOzSjNn9clKO2YP9g-OTH-Ow9W4AY8A2EQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VIgQviDspBQYJHg1Ze9cXEELcqpRexEMqRUJo2ZuppcZO46YoX8Jf8I3M2E5KKoR46Wvs9W52ZmfPzM7OYeyp1R73LZcH_TyjotrcBKmN8yA2Ud431kvXcCzt7ceDA_FpJEdr7NfiLgylVS5sYmOoXWUpRv4Cd36iF4xE_GZyHBBrFJ2uLig0WrXY8fMf6LLVr7c_oHyfheHWx-H7QdCxCgQWbS8PIkOpTGnWl9J7rw26h15LHtk4cVnfZi7ROs0RR5gM4QHhg5AOy6TRwlmf8wi_e4ldFnTEiOsnGSVnMZ2UyHv7XcJQGKNzSRE4_BueuLCmlOckRcif85VdsCEL-BvCPZ-o-cfOt3WDXe8gK7xtdewmW_PlLXalJbGc32Y_P1OpB-wccPcqKSMUihIQV0KTFE-XUfQYdOmANsu5PSosEFKuocphOJ2jOarqaqzBkJoVMG6jlg7MHI5numxuwaFNhknbT2Fr-HLahvmAv4KJxx7bGzgvIYKmSPqpd1_vsIMLEcxdtl5Wpb_PIEmskDINBXqTwgqeISoXifToPpnI86jHksX0K9vVQidKjiNFPhEJTp0TnGoEp3iP8WXLSVsP5D_avCMJL9-nit7ND9X0u-oMhDJUt8g7brI4FC70JpJxbrhwDr9s07jHNhf6oTozU6uzRdFjT5aP0UDQqY8ufTWjdzg52aivPXavVaflSIi1DAFbivOxomgrQ119UhaHTRFybBjjHG_8e1iP2dXBcG9X7W7v7zxg1xBtZm38apOtn0xn_iEiuhPzqFlGwL5d9Lr9DZPSZD8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VViBeEHcCBQYJHk299q4voApR2qilEEWolSohZPZmiNTYadwU5Uv4J76KGV9SUiHES19jr3ezsztzZnZ2DmPPjXJot2zu-XlKRbW59hIT5V6kw9zXxklbcyx9HES7h-L9kTxaYb-6uzCUVtnpxFpR29JQjHwDLT_RC4Yi2sjbtIjhdv_N5MQjBik6ae3oNFRLs2A363Jj7SWPfTf_ge5ctbm3jbJ_EQT9nYN3u17LOOAZ1MvcCzWlOSWpL6VzTml0HZ2SPDRRbFPfpDZWKskRY-gUoQNhh4AO0qRWwhqX8xC_e4WtxWj10RFc29oZDD-dR3wSovb123SiIELXk-Jz-CcdMWVNKQtKioC_5Es2sqYS-Bv-vZjG-Ydd7N9kN1pAC2-bFXiLrbjiNrvaUFzO77CfQyoEgZ0D2raC8kVhVACiTqhT5umqihqDKiyQKZ2b45EBwtEVlDkcTOeorMqqHCvQtAhHMG5imhb0HE5mqqjvyKHGhknTz8hU8PmsCQICfw0Thz0293NeQQh1CfUzZ7_cZYeXIpp7bLUoC_eAQRwbIWUSCPQ1hRE8RcwuYunQudKh42GPxd30Z6atlE6EHccZeUwkuOyC4LJacBnvMb5oOWmqhfxHmy2S8OJ9qvdd_1BOv2Wt-sg0VTVylus0CoQNnA5llGsurMUvmyTqsfVufWStEqqy8y3TY88Wj1F90JmQKlw5o3c4ueAi9HvsfrOcFiMhTjOEcwnOx9JCWxrq8pNi9L0uUY4NI5zjh_8e1lN2Dfdw9mFvsP-IXUcomjbBrXW2ejqduccI9071k3YfAft62Vv3N4Hnbxo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteome+turnover+in+the+bloodstream+and+procyclic+forms+of+Trypanosoma+brucei+measured+by+quantitative+proteomics+%5Bversion+1%3B+peer+review%3A+2+approved%5D&rft.jtitle=Wellcome+open+research&rft.au=Michele+Tinti&rft.au=Maria+Lucia+S.+G%C3%BCther&rft.au=Thomas+W.+M.+Crozier&rft.au=Angus+I.+Lamond&rft.date=2019&rft.pub=Wellcome&rft.issn=2398-502X&rft.eissn=2398-502X&rft.volume=4&rft_id=info:doi/10.12688%2Fwellcomeopenres.15421.1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b1716ed1b9624d2eb356fb14dd688c86
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-502X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-502X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-502X&client=summon