Terahertz topological photonic integrated circuits for 6G and beyond: A Perspective
The development of terahertz integrated circuits is vital for realizing sixth-generation (6G) wireless communication, high-speed on-chip interconnects, high-resolution imaging, on-chip biosensors, and fingerprint chemical detection. Nonetheless, the existing terahertz on-chip devices suffer from ref...
Saved in:
Published in | Journal of applied physics Vol. 132; no. 14 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
14.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 |
DOI | 10.1063/5.0099423 |
Cover
Abstract | The development of terahertz integrated circuits is vital for realizing sixth-generation (6G) wireless communication, high-speed on-chip interconnects, high-resolution imaging, on-chip biosensors, and fingerprint chemical detection. Nonetheless, the existing terahertz on-chip devices suffer from reflection, and scattering losses at sharp bends or defects. Recently discovered topological phases of light endow the photonics devices with extraordinary properties, such as reflectionless propagation and robustness against impurities or defects, which is vital for terahertz integrated devices. Leveraging the robustness of topological edge states combined with a low-loss silicon platform is poised to offer a remarkable performance of the terahertz devices providing a breakthrough in the field of terahertz integrated circuits and high-speed interconnects. In this Perspective, we present a brief outlook of various terahertz functional devices enabled by a photonic topological insulator that will pave the path for augmentation of complementary metal oxide semiconductor compatible terahertz technologies, essential for accelerating the vision of 6G communication and beyond to enable ubiquitous connectivity and massive digital cloning of physical and biological worlds. |
---|---|
AbstractList | The development of terahertz integrated circuits is vital for realizing sixth-generation (6G) wireless communication, high-speed on-chip interconnects, high-resolution imaging, on-chip biosensors, and fingerprint chemical detection. Nonetheless, the existing terahertz on-chip devices suffer from reflection, and scattering losses at sharp bends or defects. Recently discovered topological phases of light endow the photonics devices with extraordinary properties, such as reflectionless propagation and robustness against impurities or defects, which is vital for terahertz integrated devices. Leveraging the robustness of topological edge states combined with a low-loss silicon platform is poised to offer a remarkable performance of the terahertz devices providing a breakthrough in the field of terahertz integrated circuits and high-speed interconnects. In this Perspective, we present a brief outlook of various terahertz functional devices enabled by a photonic topological insulator that will pave the path for augmentation of complementary metal oxide semiconductor compatible terahertz technologies, essential for accelerating the vision of 6G communication and beyond to enable ubiquitous connectivity and massive digital cloning of physical and biological worlds. |
Author | Gupta, Manoj Wang, Nan Singh, Ranjan Kumar, Abhishek Pitchappa, Prakash Fujita, Masayuki |
Author_xml | – sequence: 1 givenname: Abhishek surname: Kumar fullname: Kumar, Abhishek organization: 4Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan – sequence: 2 givenname: Manoj surname: Gupta fullname: Gupta, Manoj organization: 4Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan – sequence: 3 givenname: Prakash surname: Pitchappa fullname: Pitchappa, Prakash organization: Institute of Microelectronics, Agency for Science, Technology and Research – sequence: 4 givenname: Nan surname: Wang fullname: Wang, Nan organization: Institute of Microelectronics, Agency for Science, Technology and Research – sequence: 5 givenname: Masayuki surname: Fujita fullname: Fujita, Masayuki organization: Graduate School of Engineering Science, Osaka University – sequence: 6 givenname: Ranjan surname: Singh fullname: Singh, Ranjan organization: 4Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan |
BookMark | eNqd0EFLAzEQBeAgFWyrB_9BwJPCttmkm914K0WrIChYz0t2dtKm1M2apIX6621pRRBPnubyvTfweqTTuAYJuUzZIGVSDLMBY0qNuDgh3ZQVKsmzjHVIlzGeJoXK1RnphbBkLE0LobrkdYZeL9DHTxpd61ZubkGvaLtw0TUWqG0izr2OWFOwHtY2Bmqcp3JKdVPTCreuqW_pmL6gDy1CtBs8J6dGrwJeHG-fvN3fzSYPydPz9HEyfkpgxIuYGIYF1zkUhQEtTQYCKg7SSFVXKKpqZACYBMk0VxLrkUCRalBM1iirGnLRJ1eH3ta7jzWGWC7d2je7lyXPueDZLrdXw4MC70LwaEqwUUfrmui1XZUpK_fLlVl5XG6XuP6VaL191377p7052PDd-j-8cf4Hlm1txBeK140H |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1515_nanoph_2023_0026 crossref_primary_10_1021_acs_nanolett_4c03921 crossref_primary_10_1063_5_0173977 crossref_primary_10_1016_j_optlastec_2023_109593 crossref_primary_10_1016_j_sintl_2025_100326 crossref_primary_10_1126_sciadv_adi8500 crossref_primary_10_1515_nanoph_2023_0869 crossref_primary_10_1016_j_infrared_2024_105350 crossref_primary_10_1007_s13538_023_01408_4 crossref_primary_10_1088_1361_6463_ad4159 crossref_primary_10_1063_5_0150179 crossref_primary_10_1364_OME_487619 crossref_primary_10_3390_app13105892 crossref_primary_10_1016_j_optcom_2024_131119 crossref_primary_10_1063_5_0213641 crossref_primary_10_34133_research_0597 crossref_primary_10_1063_5_0166211 crossref_primary_10_1063_5_0239310 crossref_primary_10_1038_s41377_024_01557_4 crossref_primary_10_1109_JLT_2023_3307511 crossref_primary_10_1364_PRJ_485676 crossref_primary_10_1002_adma_202309497 crossref_primary_10_1016_j_osn_2024_100771 crossref_primary_10_1063_5_0158350 crossref_primary_10_35848_1347_4065_ad0b2e crossref_primary_10_1364_OL_515504 crossref_primary_10_4028_p_JT9ZkN crossref_primary_10_1016_j_optlastec_2024_111921 crossref_primary_10_1038_s41467_024_45175_5 crossref_primary_10_1002_lpor_202300482 crossref_primary_10_1364_AO_504776 crossref_primary_10_1109_JLT_2024_3462754 crossref_primary_10_1364_OE_475559 crossref_primary_10_1002_andp_202400250 crossref_primary_10_1016_j_mssp_2024_108539 crossref_primary_10_1364_OE_482785 crossref_primary_10_1002_lpor_202301061 crossref_primary_10_3788_COL202422_103701 crossref_primary_10_1109_TTHZ_2024_3392157 crossref_primary_10_1002_adma_202415083 crossref_primary_10_1038_s41566_023_01348_0 crossref_primary_10_1016_j_matpr_2023_03_801 crossref_primary_10_1002_adma_202418510 crossref_primary_10_1364_OE_497514 crossref_primary_10_3788_AOS231686 crossref_primary_10_1364_OE_494644 crossref_primary_10_1063_5_0143796 crossref_primary_10_1063_5_0168016 crossref_primary_10_1103_PhysRevApplied_21_044044 crossref_primary_10_1016_j_rinp_2023_107295 crossref_primary_10_1002_adma_202401131 crossref_primary_10_1016_j_optlastec_2024_111667 crossref_primary_10_3390_electronics12010109 crossref_primary_10_21468_SciPostPhysCore_7_3_039 crossref_primary_10_35848_1347_4065_acc6da crossref_primary_10_1063_5_0170233 crossref_primary_10_3788_AOS240938 crossref_primary_10_1039_D4CP03658A crossref_primary_10_34133_ultrafastscience_0047 crossref_primary_10_1007_s10762_023_00926_1 crossref_primary_10_1002_adom_202301051 crossref_primary_10_1103_PhysRevLett_131_053802 |
Cites_doi | 10.1364/OME.415128 10.1002/lpor.201900087 10.1103/PhysRevApplied.9.034032 10.1002/adom.201800030 10.1038/nmat4807 10.1364/OPTICA.6.001063 10.1007/978-3-030-73738-2 10.1016/j.optcom.2012.05.044 10.1109/TTHZ.2014.2322513 10.1109/JSSC.1978.1051012 10.1364/OE.23.031977 10.1088/0031-9155/47/21/325 10.1109/TTHZ.2020.3023917 10.1038/nphoton.2016.65 10.7567/1882-0786/aaf4b3 10.1038/s41586-018-0609-x 10.1038/nphys2063 10.1098/rspa.1984.0023 10.1038/nphoton.2011.270 10.1103/PhysRevLett.114.223901 10.1063/1.5060631 10.1038/nphys4304 10.1038/nphoton.2007.3 10.1063/1.2194229 10.1364/OL.26.001888 10.1126/sciadv.aax8821 10.1103/PhysRevA.78.033834 10.1364/OE.468010 10.1103/PhysRevA.78.023804 10.1049/el.2016.2941 10.1063/5.0097129 10.1038/s41467-021-25881-0 10.1002/adfm.202100200 10.1109/TWC.2011.081011.100545 10.1163/156939306779276767 10.1109/LMWC.2018.2797524 10.1364/PRJ.451344 10.1364/OE.458823 10.1038/s41928-022-00751-9 10.1126/science.aar4003 10.1109/MMM.2019.2945139 10.1007/978-3-030-73738-2_44 10.1038/s41467-022-31789-0 10.1364/OL.391764 10.1038/nphoton.2008.146 10.1103/PhysRevLett.107.023901 10.1038/nphoton.2013.274 10.1103/PhysRevA.84.043804 10.1080/23746149.2022.2046156 10.1364/OPTICA.420715 10.1038/s41467-019-08881-z 10.1038/nature04235 10.1109/TTHZ.2017.2788202 10.1103/PhysRevLett.95.226801 10.1587/transele.E98.C.1091 10.1002/adom.202000101 10.1117/1.AP.4.4.046002 10.1016/j.phycom.2014.01.006 10.1002/adma.202202370 10.1109/TTHZ.2022.3142965 10.1038/s41928-018-0173-2 10.1038/srep28453 10.1063/1.116920 10.1038/ncomms2572 10.1103/PhysRevB.100.125108 10.1103/PhysRevLett.49.405 10.1038/s41467-022-32909-6 10.1364/JOSAB.7.002006 10.1109/COMST.2018.2839672 10.1088/1367-2630/aaac04 10.1038/ncomms1876 10.1038/s41598-019-54627-8 10.1063/1.5128444 10.1038/s41467-022-29049-2 10.1038/nnano.2012.95 10.1109/JLT.2010.2102338 10.1038/s41566-017-0048-5 10.1109/MAP.2021.3069276 10.1021/acsphotonics.0c00797 10.1002/adma.201901455 10.1364/OME.427069 10.1587/elex.12.20141161 10.1103/PhysRevLett.45.494 10.1038/s41377-020-0331-y 10.1038/nmat3520 10.1063/1.5129403 10.1038/natrevmats.2016.55 10.1103/PhysRevLett.115.253901 10.1515/nanoph-2021-0673 10.1109/TTHZ.2011.2159552 10.1103/PhysRevLett.96.106802 10.3390/photonics9080515 10.1143/JJAP.47.4375 10.1103/PhysRevLett.50.1395 10.7567/APEX.9.024101 10.1038/s41467-021-25835-6 10.1364/OE.382181 10.1038/nphys3867 10.1103/RevModPhys.91.015006 10.1103/PhysRevB.100.085118 10.1109/JLT.2014.2321573 10.1038/nphoton.2013.275 10.1038/s41928-022-00775-1 10.1103/PhysRevLett.100.013905 10.1038/nphoton.2012.236 10.1049/ell2.12332 10.1002/adom.202200327 10.1364/OE.398421 10.1049/el.2018.7686 10.1364/OPTICA.6.000839 10.1587/elex.18.20210494 10.1126/science.aar4005 10.1364/JOSAB.21.001379 10.1109/TTHZ.2017.2708505 10.1103/PhysRevLett.99.236809 10.1038/s41586-018-0478-3 10.1002/adma.201803229 10.1002/adom.201800401 10.1109/MCOM.2015.7081096 10.1109/JSTQE.2010.2081350 10.1103/PhysRevLett.113.087403 10.1126/sciadv.aap8802 10.1364/OE.25.014706 10.1038/nmat4573 10.1088/1367-2630/18/2/025012 10.1109/TTHZ.2020.3019928 10.1103/PhysRevLett.106.093903 10.1038/s41566-019-0475-6 10.1364/OPTICA.4.000707 10.1364/OE.25.002422 10.1038/s41586-020-1981-x 10.1002/adma.201705331 10.1109/TTHZ.2016.2585345 10.1103/RevModPhys.82.1959 10.1038/s41565-018-0297-6 10.1038/nphoton.2014.248 10.1002/adma.202100836 10.1103/PhysRevLett.125.180403 10.1126/science.1148047 10.1126/science.aaq0327 10.1103/PhysRevLett.100.013904 10.1364/BOE.5.001050 10.1364/OE.27.028707 10.1049/el.2019.3682 10.1109/TTHZ.2015.2399693 10.1103/RevModPhys.82.3045 10.1109/JSTQE.2012.2215017 10.1088/0034-4885/67/5/R03 10.1364/OPN.17.4.000018 10.1088/1361-6463/aaa9fe 10.1109/22.81658 10.1109/JLT.2021.3107682 10.1109/TMTT.2017.2660491 10.1109/IRMMW-THz.2019.8874535 10.1109/TTHZ.2015.2397279 10.1364/OE.11.002549 10.1038/s41566-021-00851-6 10.1038/s41566-020-0618-9 10.1038/nature12066 10.1038/nature08293 |
ContentType | Journal Article |
Copyright | Author(s) 2022 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0099423 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_5_0099423 jap |
GrantInformation_xml | – fundername: 1. Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (Grant. No. JPMJCR21C4) – fundername: National Institute of Information and Communications Technology (NICT), Japan, commissioned research (Grant No. 03001) – fundername: KAKENHI, Japan (Grant. No. 20H01064) – fundername: National Research Foundation Singapore grantid: NRF-CRP23-2019-0005 funderid: 10.13039/501100001381 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c428t-f0e82a7c88fca6f5c3cb2c6f69dbe3bb4fcc06c60a296ed43e31ac906de6bdc73 |
ISSN | 0021-8979 |
IngestDate | Sun Sep 07 03:40:53 EDT 2025 Thu Apr 24 23:03:04 EDT 2025 Tue Jul 01 00:38:40 EDT 2025 Fri Jun 21 00:30:06 EDT 2024 Tue Jul 04 19:18:56 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-f0e82a7c88fca6f5c3cb2c6f69dbe3bb4fcc06c60a296ed43e31ac906de6bdc73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3273-8953 0000-0002-6168-4130 0000-0003-1772-0891 0000-0001-8068-7428 0000-0002-1579-3918 |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/5.0099423 |
PQID | 2723252967 |
PQPubID | 2050677 |
PageCount | 14 |
ParticipantIDs | scitation_primary_10_1063_5_0099423 crossref_citationtrail_10_1063_5_0099423 crossref_primary_10_1063_5_0099423 proquest_journals_2723252967 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-14 |
PublicationDateYYYYMMDD | 2022-10-14 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2022 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Iwamoto, Iwamoto, Iwamoto, Ota, Arakawa (c89) 2021 Ozawa, Price, Amo, Goldman, Hafezi, Lu, Rechtsman, Schuster, Simon, Zilberberg, Carusotto (c51) 2019 Zhang, Hsiang (c26) 2006 Kawase, Ogawa, Watanabe, Inoue (c8) 2003 Akiki, Verstuyft, Kuyken, Walter, Faucher, Lampin, Ducournau, Vanwolleghem (c39) 2021 Cimbri, Wang, Al-Khalidi, Wasige (c143) 2022 Wang, Chong, Joannopoulos, Soljačić (c70) 2008 Fang, Yu, Fan (c82) 2012 Zhang, Tian, Wang, Gao, Cheng, Liu, Christensen (c107) 2018 Shalaby, Peccianti, Ozturk, Morandotti (c48) 2013 Gao, Xue, Yang, Lai, Yu, Lin, Chong, Shvets, Zhang (c84) 2018 Suzuki, Shiraishi, Shibayama, Asada (c130) 2013 Woodward, Cole, Wallace, Pye, Arnone, Linfield, Pepper (c4) 2002 Lee, Lim, Kimerling, Shin, Cerrina (c43) 2001 Kim, Jacob, Rho (c54) 2020 Bisharat, Davis, Zhou, Bandaru, Sievenpiper (c68) 2021 Lee, Chen, Li, Painter, Vahala (c114) 2012 Wang, Chong, Joannopoulos, Soljačić (c53) 2009 Hafezi, Demler, Lukin, Taylor (c78) 2011 Koenig, Lopez-Diaz, Antes, Boes, Henneberger, Leuther, Tessmann, Schmogrow, Hillerkuss, Palmer, Zwick, Koos, Freude, Ambacher, Leuthold, Kallfass (c97) 2013 Zhang, Tan, Stormer, Kim (c61) 2005 Tanemura, Soganci, Oyama, Ohyama, Mino, Williams, Calabretta, Dorren, Nakano (c113) 2011 Lai, Ma, Bo, Anlage, Shvets (c118) 2016 Hasan, Kane (c55) 2010 Hafezi, Mittal, Fan, Migdall, Taylor (c73) 2013 Haldane, Raghu (c71) 2008 Schroder, Thomas, Swartz (c102) 1978 Dai, Zhang, Zhang, Grischkowsky (c29) 2004 Ikeda, Kitagawa, Okada, Suzuki, Asada (c145) 2015 Zhu, Xue, Hui, Pang (c33) Yu, Hosoda, Miyamoto, Obata, Kim, Fujita, Nagatsuma (c131) 2019 Ishibashi, Ito (c149) 2020 He, Liang, Yuan, Qiu, Chen, Zhao, Dong (c88) 2019 Harter, Ummethala, Blaicher, Muehlbrandt, Wolf, Weber, Adib, Kemal, Merboldt, Boes, Nellen, Tessmann, Walther, Globisch, Zwick, Freude, Randel, Koos (c150) 2019 Gao, Yu, Fujita, Nagatsuma, Fumeaux, Withayachumnankul (c35) 2019 Yang, Wang, Kruk, Liu, Kravchenko, Han, Kivshar, Shadrivov (c124) 2022 Harari, Bandres, Lumer, Rechtsman, Chong, Khajavikhan, Christodoulides, Segev (c91) 2018 Nagatsuma, Ducournau, Renaud (c151) 2016 Nagulu, Ni, Kord, Tymchenko, Garikapati, Alù, Krishnaswamy (c94) 2022 Wu, Hewitt, Zhang (c6) 1996 Diebold, Nishio, Nishida, Kim, Tsuruda, Mukai, Fujita, Nagatsuma (c144) 2016 Yang, Yamagami, Yu, Pitchappa, Webber, Zhang, Fujita, Nagatsuma, Singh (c18) 2020 Fan, Chang, Niu, Hou, Wang (c121) 2012 You, Ma, Lan, Xiao, Panoiu, Cui (c158) 2021 Xiao, Chang, Niu (c95) 2010 Thraskias, Lallas, Neumann, Schares, Offrein, Henker, Plettemeier, Ellinger, Leuthold, Tomkos (c13) 2018 Gupta, Singh (c136) Devi, Jana, Chowdhury (c104) 2021 Thouless, Kohmoto, Nightingale, den Nijs (c60) 1982 Tan, Zhu, Tan, Kumar, Wong, Chong, Singh (c160) 2022 Withayachumnankul, Fujita, Nagatsuma (c22) 2018 Skirlo, Lu, Igarashi, Yan, Joannopoulos, Soljačić (c72) 2015 Ma, Shvets (c83) 2016 Bernevig, Zhang (c57) 2006 Akyildiz, Jornet, Han (c99) 2014 Wu, Hu (c76) 2015 Dong, Chen, Zhu, Wang, Zhang (c86) 2017 Maekawa, Kanaya, Suzuki, Asada (c11) 2016 Holloway, Dogiamis, Han (c16) 2020 Amarloo, Ranjkesh, Safavi-Naeini (c34) 2018 Sengupta, Nagatsuma, Mittleman (c23) 2018 Miller, Yu, Ji, Griffith, Cardenas, Gaeta, Lipson (c28) 2017 Yurtsever, Považay, Alex, Zabihian, Drexler, Baets (c112) 2014 Ranjkesh, Gigoyan, Amarloo, Basha, Safavi-Naeini (c32) 2018 Raghu, Haldane (c69) 2008 Poo, Wu, Lin, Yang, Chan (c67) 2011 Takeda, John (c120) 2008 Schaibley, Yu, Clark, Rivera, Ross, Seyler, Yao, Xu (c65) 2016 Shalaev, Walasik, Litchinitser (c157) 2019 Jornet, Akyildiz (c1) 2011 König, Wiedmann, Brüne, Roth, Buhmann, Molenkamp, Qi, Zhang (c56) 2007 Boyd, Gauthier, Gaeta (c111) 2006 Potton (c119) 2004 Kumar, Gupta, Pitchappa, Tan, Wang, Singh (c153) 2022 Yu, Sugeta, Yamagami, Fujita, Nagatsuma (c37) 2019 Koala, Fujita, Nagatsuma (c24) 2022 Kagami, Kagami, Amemiya, Amemiya, Amemiya, Okada, Nishiyama, Nishiyama, Hu (c79) 2020 Pitchappa, Kumar, Prakash, Jani, Medwal, Mishra, Rawat, Venkatesan, Wang, Singh (c139) 2021 Oshiro, Nishigami, Yamamoto, Nishida, Webber, Fujita, Nagatsuma (c146) 2022 Barik, Karasahin, Flower, Cai, Miyake, DeGottardi, Hafezi, Waks (c80) 2018 Gao, Lee, Yu, Fujita, Nagatsuma, Fumeaux, Withayachumnankul (c45) 2021 Ma, Xi, Sun (c103) 2019 Laughlin (c62) 1983 Aghasi, Naghavi, Tavakoli Taba, Aseeri, Cathelin, Afshari (c165) 2020 Lu, Joannopoulos, Soljačić (c49) 2014 Lumer, Engheta (c106) 2020 Gentili, Pelosi, Piccioli, Selleri (c123) 2019 Zhang, Tian, Cheng, Wei, Liu, Christiensen (c164) 2018 Umucalılar, Carusotto (c75) 2011 Jia, Lo, Zhang, Ozolins, Udalcovs, Kong, Pang, Guzman, Yu, Xiao, Popov, Chen, Carpintero, Morioka, Hu, Oxenløwe (c12) 2022 Kumar, Gupta, Singh (c105) 2022 Shalaev, Desnavi, Walasik, Litchinitser (c155) 2018 Mittal, Goldschmidt, Hafezi (c93) 2018 Budich, Bergholtz (c154) 2020 Chen, Hang, Dong, Xiao, Wang, Chan (c52) 2011 Tsuruda, Fujita, Nagatsuma (c36) 2015 Tan, Wang, Kumar, Singh (c162) 2022 Iwamatsu, Nishigami, Nishida, Fujita, Nagatsuma (c9) 2021 Frankel, Gupta, Valdmanis, Mourou (c25) 1991 Tan, Srivastava, Ako, Wang, Bhaskaran, Sriram, Al-Naib, Plum, Singh (c135) 2021 Nishida, Nishigami, Diebold, Kim, Fujita, Nagatsuma (c10) 2019 Ranjkesh, Basha, Taeb, Safavi-Naeini (c40) 2015 Ni, Purtseladze, Smirnova, Slobozhanyuk, Alù, Khanikaev (c85) 2018 Webber, Yamagami, Ducournau, Szriftgiser, Iyoda, Fujita, Nagatsuma, Singh (c19) 2021 Yoshimi, Yoshimi, Yamaguchi, Yamaguchi, Ota, Arakawa, Iwamoto, Iwamoto, Iwamoto (c116) 2020 Carpintero, Balakier, Yang, Guzmán, Corradi, Jimenez, Kervella, Fice, Lamponi, Chitoui, van Dijk, Renaud, Wonfor, Bente, Penty, White, Seeds (c127) 2014 Agarwal, Huang, Ter Lim, Singh (c141) 2022 Kumar, Solanki, Manjappa, Ramesh, Srivastava, Agarwal, Sum, Singh (c134) 2020 Nagatsuma, Ducournau, Renaud (c166) 2016 Headland, Withayachumnankul, Yamada, Fujita, Nagatsuma (c128) 2018 Krishnamoorthy, Goossen, Jan, Zheng, Ho, Li, Rozier, Liu, Patil, Lexau, Schwetman, Feng, Asghari, Pinguet, Cunningham (c15) 2011 Ranjkesh, Basha, Taeb, Zandieh, Gigoyan, Safavi-Naeini (c41) 2015 He, Ni, Ge, Sun, Chen, Lu, Liu, Chen (c66) 2016 Rechtsman, Zeuner, Plotnik, Lumer, Podolsky, Dreisow, Nolte, Segev, Szameit (c81) 2013 Manjappa, Solanki, Kumar, Sum, Singh (c137) 2019 Ma, Xiao, Yu, Lai, Shvets, Anlage (c122) 2019 Yun, Kim, So, Kim, Rho (c161) 2022 Headland, Withayachumnankul, Fujita, Nagatsuma (c42) 2021 Zeng, Dai, Yao, Xiao, Cui (c64) 2012 Gu (c17) Kane, Mele (c58) 2005 Yu, Ohira, Kim, Fujita, Nagatsuma (c132) 2020 Baba (c115) 2008 Cheng, Jouvaud, Ni, Mousavi, Genack, Khanikaev (c117) 2016 Kim, Hatami, Harris, Kurian, Ford, King, Scalari, Giovannini, Hoyler, Faist, Harris (c7) 2006 Kumar, Gupta, Pitchappa (c163) 2022 Tonouchi (c5) 2007 Malekabadi, Charlebois, Deslandes, Boone (c31) 2014 Xiao, Yao, Niu (c63) 2007 Kumar, Srivastava, Manjappa, Singh (c138) 2018 Koala, Maru, Iyoda, Yi, Fujita, Nagatsuma (c101) 2022 Song, Nagatsuma (c152) 2011 Holloway, Boglione, Hancock, Han (c14) 2017 Ma, Shrestha, Adelberg, Yeh, Hossain, Knightly, Jornet, Mittleman (c3) 2018 Zeng, Liang, Zhang, Wang, Liang, Gong, Li, Yang, Zhang, Lan, Feng, Gong, Yang, Mittleman (c110) 2021 Amarloo, Safavi-Naeini (c44) 2017 Klitzing, Dorda, Pepper (c59) 1980 Zeng, Chattopadhyay, Zhu, Qiang, Li, Jin, Li, Davies, Linfield, Zhang, Chong, Wang (c90) 2020 Yuan, Chen, Wang, Deng, Hou, Zhang, Yu, Wu, Zhang (c47) 2021 Grischkowsky, Keiding, van Exter, Fattinger (c30) 1990 Withayachumnankul, Yamada, Fumeaux, Fujita, Nagatsuma (c108) 2017 Liu, Huang, Chen, Qian, Ma, Sun, Fan, Fan, Sun, Sun (c125) 2022 Ummethala, Harter, Koehnle, Li, Muehlbrandt, Kutuvantavida, Kemal, Marin-Palomo, Schaefer, Tessmann, Garlapati, Bacher, Hahn, Walther, Zwick, Randel, Freude, Koos (c98) 2019 Yu, Kim, Fujita, Nagatsuma (c129) 2019 Mittal, Fan, Faez, Migdall, Taylor, Hafezi (c74) 2014 Bandres, Wittek, Harari, Parto, Ren, Segev, Christodoulides, Khajavikhan (c92) 2018 Song, Liu, Huang, Wang (c156) 2018 Khanikaev, Hossein Mousavi, Tse, Kargarian, MacDonald, Shvets (c77) 2013 Fujishima, Amakawa, Takano, Katayama, Yoshida (c27) 2015 Bi, Hu, Jiang, Kim, Dionne, Kimerling, Ross (c46) 2011 Asada (c167) 2008 Lim, Manjappa, Srivastava, Cong, Kumar, MacDonald, Singh (c140) 2018 Headland, Withayachumnankul, Yu, Fujita, Nagatsuma (c38) 2020 Headland, Withayachumnankul, Yamada, Fujita, Nagatsuma (c109) 2018 Berry (c96) 1984 Pitchappa, Kumar, Liang, Prakash, Wang, Bettiol, Venkatesan, Lee, Singh (c159) 2020 Kumar, Gupta, Pitchappa, Tan, Chattopadhyay, Ducournau, Wang, Chong, Singh (c100) 2022 Khanikaev, Shvets (c50) 2017 Hulme, Kennedy, Chao, Liang, Komljenovic, Shi, Szafraniec, Baney, Bowers (c126) 2017 Shalaev, Walasik, Tsukernik, Xu, Litchinitser (c87) 2019 (2024070915314962900_c60) 1982; 49 (2024070915314962900_c66) 2016; 12 (2024070915314962900_c68) 2021; 63 (2024070915314962900_c10) 2019; 9 (2024070915314962900_c5) 2007; 1 2024070915314962900_c17 (2024070915314962900_c102) 1978; 13 (2024070915314962900_c122) 2019; 100 (2024070915314962900_c1) 2011; 10 (2024070915314962900_c63) 2007; 99 (2024070915314962900_c166) 2016; 10 (2024070915314962900_c54) 2020; 9 (2024070915314962900_c25) 1991; 39 (2024070915314962900_c14) 2017; 65 (2024070915314962900_c64) 2012; 7 (2024070915314962900_c94) 2022; 5 (2024070915314962900_c48) 2013; 4 (2024070915314962900_c82) 2012; 6 (2024070915314962900_c8) 2003; 11 (2024070915314962900_c52) 2011; 107 (2024070915314962900_c135) 2021; 33 (2024070915314962900_c23) 2018; 1 (2024070915314962900_c151) 2016; 10 (2024070915314962900_c160) 2022; 30 (2024070915314962900_c72) 2015; 115 (2024070915314962900_c113) 2011; 29 (2024070915314962900_c19) 2021; 39 (2024070915314962900_c107) 2018; 30 (2024070915314962900_c143) 2022; 12 (2024070915314962900_c159) 2020; 8 (2024070915314962900_c167) 2008 (2024070915314962900_c40) 2015; 5 (2024070915314962900_c112) 2014; 5 (2024070915314962900_c116) 2020; 45 (2024070915314962900_c47) 2021; 12 (2024070915314962900_c77) 2013; 12 (2024070915314962900_c44) 2017; 7 (2024070915314962900_c91) 2018; 359 (2024070915314962900_c128) 2018; 3 2024070915314962900_c20 (2024070915314962900_c108) 2017; 25 (2024070915314962900_c114) 2012; 3 (2024070915314962900_c43) 2001; 26 (2024070915314962900_c27) 2015; E98.C (2024070915314962900_c100) 2022; 34 (2024070915314962900_c149) 2020; 127 (2024070915314962900_c169) 2022 (2024070915314962900_c13) 2018; 20 (2024070915314962900_c41) 2015; 5 (2024070915314962900_c70) 2008; 100 (2024070915314962900_c80) 2018; 359 (2024070915314962900_c49) 2014; 8 (2024070915314962900_c145) 2015; 12 (2024070915314962900_c146) 2022; 19 (2024070915314962900_c142) 2016 (2024070915314962900_c59) 1980; 45 (2024070915314962900_c109) 2018; 3 (2024070915314962900_c74) 2014; 113 (2024070915314962900_c132) 2020; 56 (2024070915314962900_c93) 2018; 561 (2024070915314962900_c101) 2022; 9 2024070915314962900_c136 (2024070915314962900_c141) 2022; 13 (2024070915314962900_c158) 2021; 12 (2024070915314962900_c162) 2022; 30 (2024070915314962900_c154) 2020; 125 (2024070915314962900_c9) 2021; 57 (2024070915314962900_c55) 2010; 82 (2024070915314962900_c16) 2020; 21 (2024070915314962900_c45) 2021; 11 (2024070915314962900_c71) 2008; 100 (2024070915314962900_c119) 2004; 67 (2024070915314962900_c34) 2018; 8 (2024070915314962900_c104) 2021; 11 (2024070915314962900_c6) 1996; 69 (2024070915314962900_c2) 2022 (2024070915314962900_c86) 2017; 16 (2024070915314962900_c3) 2018; 563 (2024070915314962900_c15) 2011; 17 (2024070915314962900_c150) 2019; 6 (2024070915314962900_c67) 2011; 106 (2024070915314962900_c163) 2022; 13 (2024070915314962900_c97) 2013; 7 (2024070915314962900_c26) 2006; 20 (2024070915314962900_c131) 2019; 55 (2024070915314962900_c168) 2022 (2024070915314962900_c76) 2015; 114 (2024070915314962900_c81) 2013; 496 (2024070915314962900_c50) 2017; 11 (2024070915314962900_c89) 2021; 11 (2024070915314962900_c125) 2022; 10 (2024070915314962900_c4) 2002; 47 (2024070915314962900_c21) 2013 (2024070915314962900_c88) 2019; 10 (2024070915314962900_c115) 2008; 2 (2024070915314962900_c123) 2019; 100 (2024070915314962900_c46) 2011; 5 (2024070915314962900_c92) 2018; 359 (2024070915314962900_c7) 2006; 88 (2024070915314962900_c36) 2015; 23 (2024070915314962900_c156) 2018; 51 (2024070915314962900_c139) 2021; 31 (2024070915314962900_c155) 2018; 20 (2024070915314962900_c24) 2022; 11 (2024070915314962900_c111) 2006; 17 (2024070915314962900_c121) 2012; 285 (2024070915314962900_c106) 2020; 7 (2024070915314962900_c127) 2014; 32 (2024070915314962900_c157) 2019; 6 (2024070915314962900_c164) 2018; 9 (2024070915314962900_c32) 2018; 28 (2024070915314962900_c69) 2008; 78 (2024070915314962900_c31) 2014; 4 (2024070915314962900_c144) 2016; 52 (2024070915314962900_c73) 2013; 7 (2024070915314962900_c75) 2011; 84 (2024070915314962900_c18) 2020; 14 (2024070915314962900_c35) 2019; 27 (2024070915314962900_c165) 2020; 7 (2024070915314962900_c84) 2018; 14 (2024070915314962900_c87) 2019; 14 (2024070915314962900_c11) 2016; 9 (2024070915314962900_c148) 1997 (2024070915314962900_c42) 2021; 8 (2024070915314962900_c57) 2006; 96 (2024070915314962900_c12) 2022; 13 (2024070915314962900_c96) 1984; 392 (2024070915314962900_c62) 1983; 50 (2024070915314962900_c28) 2017; 4 (2024070915314962900_c129) 2019; 27 (2024070915314962900_c99) 2014; 12 (2024070915314962900_c39) 2021; 11 2024070915314962900_c33 (2024070915314962900_c126) 2017; 25 (2024070915314962900_c95) 2010; 82 (2024070915314962900_c120) 2008; 78 (2024070915314962900_c85) 2018; 4 (2024070915314962900_c152) 2011; 1 (2024070915314962900_c105) 2022; 5 (2024070915314962900_c29) 2004; 21 (2024070915314962900_c58) 2005; 95 (2024070915314962900_c134) 2020; 6 (2024070915314962900_c61) 2005; 438 Kürner (2024070915314962900_c147) 2022 (2024070915314962900_c38) 2020; 38 (2024070915314962900_c51) 2019; 91 (2024070915314962900_c53) 2009; 461 (2024070915314962900_c30) 1990; 7 (2024070915314962900_c79) 2020; 28 (2024070915314962900_c103) 2019; 13 (2024070915314962900_c65) 2016; 1 (2024070915314962900_c118) 2016; 6 (2024070915314962900_c37) 2019; 12 (2024070915314962900_c56) 2007; 318 (2024070915314962900_c137) 2019; 31 (2024070915314962900_c98) 2019; 13 (2024070915314962900_c78) 2011; 7 (2024070915314962900_c138) 2018; 6 (2024070915314962900_c110) 2021; 15 (2024070915314962900_c153) 2022; 121 (2024070915314962900_c117) 2016; 15 (2024070915314962900_c130) 2013; 19 (2024070915314962900_c140) 2018; 30 (2024070915314962900_c161) 2022 (2024070915314962900_c124) 2022; 4 (2024070915314962900_c22) 2018; 6 (2024070915314962900_c133) 2019 (2024070915314962900_c90) 2020; 578 (2024070915314962900_c83) 2016; 18 |
References_xml | – start-page: 226801 year: 2005 ident: c58 publication-title: Phys. Rev. Lett. – start-page: 447 year: 2014 ident: c31 publication-title: IEEE Trans. Terahertz Sci. Technol. – start-page: 782 year: 2012 ident: c82 publication-title: Nat. Photonics – start-page: 707 year: 2017 ident: c28 publication-title: Optica – start-page: 38721 year: 2019 ident: c35 publication-title: Opt. Express – start-page: 872 year: 2019 ident: c88 publication-title: Nat. Commun. – start-page: 2100836 year: 2021 ident: c135 publication-title: Adv. Mater. – start-page: eaap8802 year: 2018 ident: c85 publication-title: Sci. Adv. – start-page: 2046156 year: 2022 ident: c161 publication-title: Adv. Phys. X 7 – start-page: 185 year: 2018 ident: c32 publication-title: IEEE Microw. Wirel. Compon. Lett. – start-page: 023040 year: 2018 ident: c155 publication-title: New J. Phys. – start-page: 025012 year: 2016 ident: c83 publication-title: New J. Phys. – start-page: 3211 year: 2011 ident: c1 publication-title: IEEE Trans Wireless Commun. – start-page: 180 year: 1978 ident: c102 publication-title: IEEE J. Solid State Circuits – start-page: 42 year: 2021 ident: c39 publication-title: IEEE Trans. Terahertz Sci. Technol. – start-page: 45 year: 1984 ident: c96 publication-title: Proc. R. Soc. London A – start-page: 106802 year: 2006 ident: c57 publication-title: Phys. Rev. Lett. – start-page: 5404 year: 2022 ident: c163 article-title: Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication publication-title: Nat Commun – start-page: 2006 year: 1990 ident: c30 publication-title: J. Opt. Soc. Am. B – start-page: 821 year: 2014 ident: c49 publication-title: Nat. Photonics – start-page: 31 year: 2019 ident: c87 publication-title: Nat. Nanotechnol. – start-page: 021302 year: 2020 ident: c165 article-title: Terahertz electronics: Application of wave propagation and nonlinear processes publication-title: App. Phys. Rev. – start-page: 033834 year: 2008 ident: c69 publication-title: Phys. Rev. A – start-page: 433 year: 2017 ident: c44 publication-title: IEEE Trans. Terahertz Sci. Technol. – start-page: 1395 year: 1983 ident: c62 publication-title: Phys. Rev. Lett. – start-page: 446 year: 2020 ident: c18 publication-title: Nat. Photonics – start-page: 3853 year: 2002 ident: c4 publication-title: Phys. Med. Biol. – start-page: 031101 year: 2020 ident: c149 publication-title: J. Appl. Phys. – start-page: 28707 year: 2019 ident: c129 publication-title: Optics Express – start-page: 5570 year: 2021 ident: c47 publication-title: Nat. Commun. – start-page: 261 year: 2022 ident: c105 publication-title: Nat. Electron. – start-page: 095108 year: 2018 ident: c156 publication-title: J. Phys. D: Appl. Phys. – start-page: 89 year: 2018 ident: c3 publication-title: Nature – start-page: 236809 year: 2007 ident: c63 publication-title: Phys. Rev. Lett. – start-page: 223901 year: 2015 ident: c76 publication-title: Phys. Rev. Lett. – start-page: 907 year: 2011 ident: c78 publication-title: Nat. Phys. – start-page: 1388 year: 2022 ident: c12 publication-title: Nat. Commun. – start-page: 013905 year: 2008 ident: c70 publication-title: Phys. Rev. Lett. – start-page: 751 year: 2021 ident: c110 publication-title: Nat. Photonics – start-page: 2758 year: 2018 ident: c13 publication-title: IEEE Commun. Surv. Tutor. – start-page: 1063 year: 2019 ident: c150 publication-title: Optica – start-page: 465 year: 2008 ident: c115 publication-title: Nat. Photonics – ident: c33 – start-page: 1900087 year: 2019 ident: c103 publication-title: Laser Photon. Rev. – start-page: 1050 year: 2014 ident: c112 publication-title: Biomed. Opt. Express – start-page: 6853 year: 2020 ident: c38 publication-title: J. Lightwave Technol. – start-page: 766 year: 2007 ident: c56 publication-title: Science – start-page: 233 year: 2013 ident: c77 publication-title: Nat. Mater. – start-page: 1800030 year: 2018 ident: c138 publication-title: Adv. Opt. Mater. – start-page: 4072 year: 2022 ident: c141 publication-title: Nat. Commun. – start-page: 1 year: 2016 ident: c65 publication-title: Nat. Rev. Mater. – start-page: 2549 year: 2003 ident: c8 publication-title: Opt. Express – start-page: 1959 year: 2010 ident: c95 publication-title: Rev. Mod. Phys. – start-page: 246 year: 2020 ident: c90 publication-title: Nature – start-page: 1124 year: 2016 ident: c66 publication-title: Nat. Phys. – start-page: 4375 year: 2008 ident: c167 publication-title: Jpn. J. Appl. Phys. – start-page: 253901 year: 2015 ident: c72 publication-title: Phys. Rev. Lett. – start-page: 1001 year: 2013 ident: c73 publication-title: Nat. Photonics – start-page: 2200327 ident: c136 publication-title: Adv. Opt. Mater. – start-page: 180403 year: 2020 ident: c154 publication-title: Phys. Rev. Lett. – start-page: 298 year: 2017 ident: c86 publication-title: Nat. Mater. – start-page: 126105 year: 2018 ident: c128 publication-title: APL Photonics – start-page: 494 year: 1980 ident: c59 publication-title: Phys. Rev. Lett. – start-page: 201 year: 2018 ident: c34 publication-title: IEEE Trans. Terahertz Sci. Technol. – start-page: 280 year: 2015 ident: c40 publication-title: IEEE Trans. Terahertz Sci. Technol. – start-page: 515 year: 2022 ident: c101 publication-title: Photonics – start-page: 396 year: 2011 ident: c113 publication-title: J. Lightwave Technol. – start-page: 839 year: 2019 ident: c157 publication-title: Optica – start-page: 1001 year: 2021 ident: c9 publication-title: Electron. Lett. – start-page: 087403 year: 2014 ident: c74 publication-title: Phys. Rev. Lett. – start-page: 1379 year: 2004 ident: c29 publication-title: J. Opt. Soc. Am. B – start-page: 2445 year: 2021 ident: c104 publication-title: Opt. Mater. Express – start-page: 085118 year: 2019 ident: c122 publication-title: Phys. Rev. B – start-page: 33035 year: 2022 ident: c162 article-title: Interfacial topological photonics: Broadband silicon waveguides for THz 6G communication and beyond publication-title: Opt. Express – start-page: 371 year: 2016 ident: c166 article-title: Advances in terahertz communications accelerated by photonics publication-title: Nature Photon – start-page: 268 year: 2015 ident: c41 publication-title: IEEE Trans. Terahertz Sci. Technol. – start-page: 023901 year: 2011 ident: c52 publication-title: Phys. Rev. Lett. – start-page: 034032 year: 2018 ident: c164 article-title: Topological acoustic delay line publication-title: Phys. Rev. Appl. – start-page: 1800401 year: 2018 ident: c22 publication-title: Adv. Opt. Mater. – start-page: 7609 year: 2021 ident: c19 publication-title: J. Lightwave Technol. – start-page: 1026 year: 1996 ident: c6 publication-title: Appl. Phys. Lett. – start-page: 300 year: 2022 ident: c94 publication-title: Nat. Electron. – start-page: 126105 year: 2018 ident: c109 publication-title: APL Photonics – start-page: 18125 year: 2019 ident: c10 publication-title: Sci. Rep. – start-page: 2648 year: 2020 ident: c116 publication-title: Opt. Lett. – start-page: 490 year: 2012 ident: c64 publication-title: Nat. Nanotechnol. – start-page: 910 year: 1991 ident: c25 publication-title: IEEE Trans. Microw. Theory Techn. – start-page: 024101 year: 2016 ident: c11 publication-title: Appl. Phys. Express – start-page: 542 year: 2016 ident: c117 publication-title: Nat. Mater. – start-page: 31977 year: 2015 ident: c36 publication-title: Opt. Express – start-page: 405 year: 1982 ident: c60 publication-title: Phys. Rev. Lett. – start-page: 2244 year: 2020 ident: c106 publication-title: ACS Photonics – start-page: 201 year: 2005 ident: c61 publication-title: Nature – start-page: 5468 year: 2021 ident: c158 publication-title: Nat. Commun. – start-page: 772 year: 2009 ident: c53 publication-title: Nature – start-page: 357 year: 2011 ident: c15 publication-title: IEEE J. Sel. Top. Quantum Electron. – start-page: 2202370 year: 2022 ident: c100 publication-title: Adv. Mater. – start-page: 502 year: 2018 ident: c93 publication-title: Nature – start-page: 2373 year: 2017 ident: c14 publication-title: IEEE Trans. Microw. Theory Techn. – start-page: 196 year: 2013 ident: c81 publication-title: Nature – start-page: 717 year: 2004 ident: c119 publication-title: Rep. Prog. Phys. – start-page: 043804 year: 2011 ident: c75 publication-title: Phys. Rev. A – start-page: 3495 year: 2014 ident: c127 publication-title: J. Lightwave Technol. – ident: c17 – start-page: 1558 year: 2013 ident: c48 publication-title: Nat. Commun. – start-page: 763 year: 2017 ident: c50 publication-title: Nat. Photonics – start-page: 977 year: 2013 ident: c97 publication-title: Nat. Photonics – start-page: 6381 year: 2018 ident: c92 publication-title: Science – start-page: eaax8821 year: 2020 ident: c134 publication-title: Sci. Adv. – start-page: 519 year: 2019 ident: c98 publication-title: Nat. Photonics – start-page: 18 year: 2006 ident: c111 publication-title: Opt. Photonics News – start-page: 342 year: 2020 ident: c132 publication-title: Electron. Lett. – start-page: 14706 year: 2017 ident: c108 publication-title: Opt. Express – start-page: 1705331 year: 2018 ident: c140 publication-title: Adv. Mater. – start-page: 2000101 year: 2020 ident: c159 publication-title: Adv. Opt. Mater. – start-page: 758 year: 2011 ident: c46 publication-title: Nat. Photonics – start-page: 33619 year: 2020 ident: c79 publication-title: Opt. Express – start-page: 20141161 year: 2015 ident: c145 publication-title: IEICE Electron. Express – start-page: 371 year: 2016 ident: c151 publication-title: Nat. Photonics – start-page: 3763 year: 2012 ident: c121 publication-title: Opt. Commun. – start-page: 621 year: 2021 ident: c42 publication-title: Optica – start-page: 1091 year: 2015 ident: c27 publication-title: IEICE Trans. Electron. – start-page: 015006 year: 2019 ident: c51 publication-title: Rev. Mod. Phys. – start-page: 867 year: 2012 ident: c114 publication-title: Nat. Commun. – start-page: 023804 year: 2008 ident: c120 publication-title: Phys. Rev. A – start-page: 622 year: 2018 ident: c23 publication-title: Nat. Electron. – start-page: 153903 year: 2006 ident: c7 publication-title: Appl. Phys. Lett. – start-page: 8500108 year: 2013 ident: c130 publication-title: IEEE J. Sel. Top. Quantum Electron. – start-page: 011101 year: 2022 ident: c153 publication-title: Appl. Phys. Lett. – start-page: 1411 year: 2006 ident: c26 publication-title: J. Electromagn. Waves Appl. – start-page: 20210494 year: 2022 ident: c146 publication-title: IEICE Electron. Express – start-page: 666 year: 2018 ident: c80 publication-title: Science – start-page: 28453 year: 2016 ident: c118 publication-title: Sci. Rep. – start-page: 27763 year: 2022 ident: c160 publication-title: Opt. Express – start-page: 16 year: 2014 ident: c99 publication-title: Phys. Commun. – start-page: 125108 year: 2019 ident: c123 publication-title: Phys. Rev. B – start-page: 319 year: 2021 ident: c89 publication-title: Opt. Mater. Express – start-page: 398 year: 2019 ident: c131 publication-title: Electron. Lett. – start-page: 1888 year: 2001 ident: c43 publication-title: Opt. Lett. – start-page: 1090 year: 2022 ident: c125 publication-title: Photonics Res. – start-page: 140 year: 2018 ident: c84 publication-title: Nat. Phys. – start-page: 1803229 year: 2018 ident: c107 publication-title: Adv. Mater. – start-page: 1901455 year: 2019 ident: c137 publication-title: Adv. Mater. – start-page: 1999 year: 2016 ident: c144 publication-title: Electron. Lett. – start-page: 046002 year: 2022 ident: c124 article-title: Topology-empowered membrane devices for terahertz photonics publication-title: Adv. Photonics – start-page: 2422 year: 2017 ident: c126 publication-title: Opt. Express – start-page: 226 year: 2022 ident: c143 publication-title: IEEE Trans. Terahertz Sci. Technol. – start-page: 97 year: 2007 ident: c5 publication-title: Nat. Photonics – start-page: 112 year: 2021 ident: c68 publication-title: IEEE Antennas Propag. Mag. – start-page: 35 year: 2020 ident: c16 publication-title: IEEE Microw. Mag. – start-page: 130 year: 2020 ident: c54 publication-title: Light Sci. Appl. – start-page: 3045 year: 2010 ident: c55 publication-title: Rev. Mod. Phys. – start-page: 093903 year: 2011 ident: c67 publication-title: Phys. Rev. Lett. – start-page: 28 year: 2021 ident: c45 publication-title: IEEE Trans. Terahertz Sci. Technol. – start-page: 6381 year: 2018 ident: c91 publication-title: Science – start-page: 013904 year: 2008 ident: c71 publication-title: Phys. Rev. Lett. – start-page: 1741 year: 2022 ident: c24 publication-title: Nanophotonics – start-page: 256 year: 2011 ident: c152 publication-title: IEEE Trans. Terahertz Sci. Technol. – start-page: 2100200 year: 2021 ident: c139 publication-title: Adv. Funct. Mater. – start-page: 012005 year: 2019 ident: c37 publication-title: Appl. Phys. Express – volume: 11 start-page: 319 year: 2021 ident: 2024070915314962900_c89 publication-title: Opt. Mater. Express doi: 10.1364/OME.415128 – volume: 13 start-page: 1900087 year: 2019 ident: 2024070915314962900_c103 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201900087 – volume: 9 start-page: 034032 year: 2018 ident: 2024070915314962900_c164 article-title: Topological acoustic delay line publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.034032 – volume: 6 start-page: 1800030 year: 2018 ident: 2024070915314962900_c138 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800030 – volume: 16 start-page: 298 year: 2017 ident: 2024070915314962900_c86 publication-title: Nat. Mater. doi: 10.1038/nmat4807 – volume: 6 start-page: 1063 year: 2019 ident: 2024070915314962900_c150 publication-title: Optica doi: 10.1364/OPTICA.6.001063 – start-page: 461 volume-title: THz Communications Paving the Way Towards Wireless Tbps year: 2022 ident: 2024070915314962900_c147 doi: 10.1007/978-3-030-73738-2 – volume: 285 start-page: 3763 year: 2012 ident: 2024070915314962900_c121 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2012.05.044 – start-page: UC3 volume-title: Ultrafast Electronics and Optoelectronics (1997), Paper UC3 year: 1997 ident: 2024070915314962900_c148 – volume: 4 start-page: 447 year: 2014 ident: 2024070915314962900_c31 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2014.2322513 – volume: 13 start-page: 180 year: 1978 ident: 2024070915314962900_c102 publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.1978.1051012 – volume: 23 start-page: 31977 year: 2015 ident: 2024070915314962900_c36 publication-title: Opt. Express doi: 10.1364/OE.23.031977 – volume: 47 start-page: 3853 year: 2002 ident: 2024070915314962900_c4 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/47/21/325 – volume: 11 start-page: 28 year: 2021 ident: 2024070915314962900_c45 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2020.3023917 – volume: 10 start-page: 371 year: 2016 ident: 2024070915314962900_c151 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.65 – volume: 12 start-page: 012005 year: 2019 ident: 2024070915314962900_c37 publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/aaf4b3 – start-page: 29.3.1 year: 2016 ident: 2024070915314962900_c142 – volume: 563 start-page: 89 year: 2018 ident: 2024070915314962900_c3 publication-title: Nature doi: 10.1038/s41586-018-0609-x – volume: 7 start-page: 907 year: 2011 ident: 2024070915314962900_c78 publication-title: Nat. Phys. doi: 10.1038/nphys2063 – volume: 392 start-page: 45 year: 1984 ident: 2024070915314962900_c96 publication-title: Proc. R. Soc. London A doi: 10.1098/rspa.1984.0023 – volume: 5 start-page: 758 year: 2011 ident: 2024070915314962900_c46 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.270 – volume: 114 start-page: 223901 year: 2015 ident: 2024070915314962900_c76 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.223901 – volume: 3 start-page: 126105 year: 2018 ident: 2024070915314962900_c109 publication-title: APL Photonics doi: 10.1063/1.5060631 – volume: 14 start-page: 140 year: 2018 ident: 2024070915314962900_c84 publication-title: Nat. Phys. doi: 10.1038/nphys4304 – volume: 1 start-page: 97 year: 2007 ident: 2024070915314962900_c5 publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.3 – volume: 88 start-page: 153903 year: 2006 ident: 2024070915314962900_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2194229 – volume: 26 start-page: 1888 year: 2001 ident: 2024070915314962900_c43 publication-title: Opt. Lett. doi: 10.1364/OL.26.001888 – volume: 6 start-page: eaax8821 year: 2020 ident: 2024070915314962900_c134 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax8821 – volume: 78 start-page: 033834 year: 2008 ident: 2024070915314962900_c69 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.033834 – volume: 30 start-page: 33035 year: 2022 ident: 2024070915314962900_c162 article-title: Interfacial topological photonics: Broadband silicon waveguides for THz 6G communication and beyond publication-title: Opt. Express doi: 10.1364/OE.468010 – volume: 78 start-page: 023804 year: 2008 ident: 2024070915314962900_c120 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.023804 – volume: 52 start-page: 1999 year: 2016 ident: 2024070915314962900_c144 publication-title: Electron. Lett. doi: 10.1049/el.2016.2941 – volume: 121 start-page: 011101 year: 2022 ident: 2024070915314962900_c153 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0097129 – volume: 12 start-page: 5570 year: 2021 ident: 2024070915314962900_c47 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25881-0 – volume: 31 start-page: 2100200 year: 2021 ident: 2024070915314962900_c139 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100200 – volume: 10 start-page: 3211 year: 2011 ident: 2024070915314962900_c1 publication-title: IEEE Trans Wireless Commun. doi: 10.1109/TWC.2011.081011.100545 – volume: 20 start-page: 1411 year: 2006 ident: 2024070915314962900_c26 publication-title: J. Electromagn. Waves Appl. doi: 10.1163/156939306779276767 – volume: 28 start-page: 185 year: 2018 ident: 2024070915314962900_c32 publication-title: IEEE Microw. Wirel. Compon. Lett. doi: 10.1109/LMWC.2018.2797524 – volume: 10 start-page: 1090 year: 2022 ident: 2024070915314962900_c125 publication-title: Photonics Res. doi: 10.1364/PRJ.451344 – volume: 30 start-page: 27763 year: 2022 ident: 2024070915314962900_c160 publication-title: Opt. Express doi: 10.1364/OE.458823 – volume: 5 start-page: 300 year: 2022 ident: 2024070915314962900_c94 publication-title: Nat. Electron. doi: 10.1038/s41928-022-00751-9 – volume: 359 start-page: 6381 year: 2018 ident: 2024070915314962900_c91 publication-title: Science doi: 10.1126/science.aar4003 – volume: 21 start-page: 35 year: 2020 ident: 2024070915314962900_c16 publication-title: IEEE Microw. Mag. doi: 10.1109/MMM.2019.2945139 – volume-title: RTD Transceiver Project year: 2022 ident: 2024070915314962900_c168 doi: 10.1007/978-3-030-73738-2_44 – volume: 13 start-page: 4072 year: 2022 ident: 2024070915314962900_c141 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31789-0 – volume: 45 start-page: 2648 year: 2020 ident: 2024070915314962900_c116 publication-title: Opt. Lett. doi: 10.1364/OL.391764 – volume: 2 start-page: 465 year: 2008 ident: 2024070915314962900_c115 publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.146 – volume: 107 start-page: 023901 year: 2011 ident: 2024070915314962900_c52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.023901 – volume: 7 start-page: 1001 year: 2013 ident: 2024070915314962900_c73 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.274 – volume: 84 start-page: 043804 year: 2011 ident: 2024070915314962900_c75 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.043804 – volume: 38 start-page: 6853 year: 2020 ident: 2024070915314962900_c38 publication-title: J. Lightwave Technol. – start-page: 2046156 year: 2022 ident: 2024070915314962900_c161 publication-title: Adv. Phys. X 7 doi: 10.1080/23746149.2022.2046156 – volume: 8 start-page: 621 year: 2021 ident: 2024070915314962900_c42 publication-title: Optica doi: 10.1364/OPTICA.420715 – volume: 10 start-page: 872 year: 2019 ident: 2024070915314962900_c88 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08881-z – volume: 438 start-page: 201 year: 2005 ident: 2024070915314962900_c61 publication-title: Nature doi: 10.1038/nature04235 – volume: 8 start-page: 201 year: 2018 ident: 2024070915314962900_c34 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2017.2788202 – volume: 95 start-page: 226801 year: 2005 ident: 2024070915314962900_c58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.226801 – volume: E98.C start-page: 1091 year: 2015 ident: 2024070915314962900_c27 publication-title: IEICE Trans. Electron. doi: 10.1587/transele.E98.C.1091 – volume: 8 start-page: 2000101 year: 2020 ident: 2024070915314962900_c159 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000101 – volume: 4 start-page: 046002 year: 2022 ident: 2024070915314962900_c124 article-title: Topology-empowered membrane devices for terahertz photonics publication-title: Adv. Photonics doi: 10.1117/1.AP.4.4.046002 – volume: 12 start-page: 16 year: 2014 ident: 2024070915314962900_c99 publication-title: Phys. Commun. doi: 10.1016/j.phycom.2014.01.006 – volume: 34 start-page: 2202370 year: 2022 ident: 2024070915314962900_c100 publication-title: Adv. Mater. doi: 10.1002/adma.202202370 – start-page: 226 volume-title: IEEE Transactions on Terahertz Science and Technology year: 2022 ident: 2024070915314962900_c169 article-title: Resonant tunneling diodes high-speed terahertz wireless communications - A review doi: 10.1109/TTHZ.2022.3142965 – volume: 1 start-page: 622 year: 2018 ident: 2024070915314962900_c23 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0173-2 – volume: 6 start-page: 28453 year: 2016 ident: 2024070915314962900_c118 publication-title: Sci. Rep. doi: 10.1038/srep28453 – volume: 69 start-page: 1026 year: 1996 ident: 2024070915314962900_c6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.116920 – volume: 4 start-page: 1558 year: 2013 ident: 2024070915314962900_c48 publication-title: Nat. Commun. doi: 10.1038/ncomms2572 – volume: 100 start-page: 125108 year: 2019 ident: 2024070915314962900_c123 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.125108 – volume: 49 start-page: 405 year: 1982 ident: 2024070915314962900_c60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.405 – volume: 13 start-page: 5404 year: 2022 ident: 2024070915314962900_c163 article-title: Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication publication-title: Nat Commun doi: 10.1038/s41467-022-32909-6 – volume: 7 start-page: 2006 year: 1990 ident: 2024070915314962900_c30 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.7.002006 – volume: 20 start-page: 2758 year: 2018 ident: 2024070915314962900_c13 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2839672 – volume: 20 start-page: 023040 year: 2018 ident: 2024070915314962900_c155 publication-title: New J. Phys. doi: 10.1088/1367-2630/aaac04 – volume: 3 start-page: 867 year: 2012 ident: 2024070915314962900_c114 publication-title: Nat. Commun. doi: 10.1038/ncomms1876 – volume: 9 start-page: 18125 year: 2019 ident: 2024070915314962900_c10 publication-title: Sci. Rep. doi: 10.1038/s41598-019-54627-8 – volume: 127 start-page: 031101 year: 2020 ident: 2024070915314962900_c149 publication-title: J. Appl. Phys. doi: 10.1063/1.5128444 – volume: 13 start-page: 1388 year: 2022 ident: 2024070915314962900_c12 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29049-2 – volume: 7 start-page: 490 year: 2012 ident: 2024070915314962900_c64 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.95 – volume: 29 start-page: 396 year: 2011 ident: 2024070915314962900_c113 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2010.2102338 – volume: 11 start-page: 763 year: 2017 ident: 2024070915314962900_c50 publication-title: Nat. Photonics doi: 10.1038/s41566-017-0048-5 – volume: 63 start-page: 112 year: 2021 ident: 2024070915314962900_c68 publication-title: IEEE Antennas Propag. Mag. doi: 10.1109/MAP.2021.3069276 – volume: 7 start-page: 2244 year: 2020 ident: 2024070915314962900_c106 publication-title: ACS Photonics doi: 10.1021/acsphotonics.0c00797 – volume: 31 start-page: 1901455 year: 2019 ident: 2024070915314962900_c137 publication-title: Adv. Mater. doi: 10.1002/adma.201901455 – volume: 11 start-page: 2445 year: 2021 ident: 2024070915314962900_c104 publication-title: Opt. Mater. Express doi: 10.1364/OME.427069 – volume: 12 start-page: 20141161 year: 2015 ident: 2024070915314962900_c145 publication-title: IEICE Electron. Express doi: 10.1587/elex.12.20141161 – ident: 2024070915314962900_c20 – volume: 45 start-page: 494 year: 1980 ident: 2024070915314962900_c59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.494 – volume: 9 start-page: 130 year: 2020 ident: 2024070915314962900_c54 publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-0331-y – volume: 12 start-page: 233 year: 2013 ident: 2024070915314962900_c77 publication-title: Nat. Mater. doi: 10.1038/nmat3520 – volume: 7 start-page: 021302 year: 2020 ident: 2024070915314962900_c165 article-title: Terahertz electronics: Application of wave propagation and nonlinear processes publication-title: App. Phys. Rev. doi: 10.1063/1.5129403 – volume: 1 start-page: 1 year: 2016 ident: 2024070915314962900_c65 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.55 – volume: 115 start-page: 253901 year: 2015 ident: 2024070915314962900_c72 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.253901 – volume: 11 start-page: 1741 year: 2022 ident: 2024070915314962900_c24 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0673 – volume: 1 start-page: 256 year: 2011 ident: 2024070915314962900_c152 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2011.2159552 – volume: 96 start-page: 106802 year: 2006 ident: 2024070915314962900_c57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.106802 – volume: 9 start-page: 515 year: 2022 ident: 2024070915314962900_c101 publication-title: Photonics doi: 10.3390/photonics9080515 – start-page: 4375 year: 2008 ident: 2024070915314962900_c167 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.47.4375 – volume: 50 start-page: 1395 year: 1983 ident: 2024070915314962900_c62 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1395 – volume: 9 start-page: 024101 year: 2016 ident: 2024070915314962900_c11 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.024101 – volume: 12 start-page: 5468 year: 2021 ident: 2024070915314962900_c158 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25835-6 – volume: 27 start-page: 38721 year: 2019 ident: 2024070915314962900_c35 publication-title: Opt. Express doi: 10.1364/OE.382181 – volume: 12 start-page: 1124 year: 2016 ident: 2024070915314962900_c66 publication-title: Nat. Phys. doi: 10.1038/nphys3867 – volume-title: THz Communications: Paving the Way Towards Wireless Tbps year: 2022 ident: 2024070915314962900_c2 – volume: 91 start-page: 015006 year: 2019 ident: 2024070915314962900_c51 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.015006 – volume: 100 start-page: 085118 year: 2019 ident: 2024070915314962900_c122 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.085118 – volume: 32 start-page: 3495 year: 2014 ident: 2024070915314962900_c127 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2014.2321573 – volume: 7 start-page: 977 year: 2013 ident: 2024070915314962900_c97 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.275 – volume: 5 start-page: 261 year: 2022 ident: 2024070915314962900_c105 publication-title: Nat. Electron. doi: 10.1038/s41928-022-00775-1 – volume: 100 start-page: 013905 year: 2008 ident: 2024070915314962900_c70 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013905 – volume: 6 start-page: 782 year: 2012 ident: 2024070915314962900_c82 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.236 – volume: 57 start-page: 1001 year: 2021 ident: 2024070915314962900_c9 publication-title: Electron. Lett. doi: 10.1049/ell2.12332 – start-page: 2200327 ident: 2024070915314962900_c136 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202200327 – volume: 28 start-page: 33619 year: 2020 ident: 2024070915314962900_c79 publication-title: Opt. Express doi: 10.1364/OE.398421 – volume: 55 start-page: 398 year: 2019 ident: 2024070915314962900_c131 publication-title: Electron. Lett. doi: 10.1049/el.2018.7686 – volume: 6 start-page: 839 year: 2019 ident: 2024070915314962900_c157 publication-title: Optica doi: 10.1364/OPTICA.6.000839 – volume: 19 start-page: 20210494 year: 2022 ident: 2024070915314962900_c146 publication-title: IEICE Electron. Express doi: 10.1587/elex.18.20210494 – volume: 359 start-page: 6381 year: 2018 ident: 2024070915314962900_c92 publication-title: Science doi: 10.1126/science.aar4005 – volume: 21 start-page: 1379 year: 2004 ident: 2024070915314962900_c29 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.21.001379 – volume: 7 start-page: 433 year: 2017 ident: 2024070915314962900_c44 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2017.2708505 – volume: 99 start-page: 236809 year: 2007 ident: 2024070915314962900_c63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.236809 – volume: 561 start-page: 502 year: 2018 ident: 2024070915314962900_c93 publication-title: Nature doi: 10.1038/s41586-018-0478-3 – volume: 30 start-page: 1803229 year: 2018 ident: 2024070915314962900_c107 publication-title: Adv. Mater. doi: 10.1002/adma.201803229 – volume: 6 start-page: 1800401 year: 2018 ident: 2024070915314962900_c22 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800401 – ident: 2024070915314962900_c17 publication-title: IEEE Communications Magazine doi: 10.1109/MCOM.2015.7081096 – volume: 3 start-page: 126105 year: 2018 ident: 2024070915314962900_c128 publication-title: APL Photonics doi: 10.1063/1.5060631 – volume: 17 start-page: 357 year: 2011 ident: 2024070915314962900_c15 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2010.2081350 – volume: 113 start-page: 087403 year: 2014 ident: 2024070915314962900_c74 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.087403 – volume: 4 start-page: eaap8802 year: 2018 ident: 2024070915314962900_c85 publication-title: Sci. Adv. doi: 10.1126/sciadv.aap8802 – volume: 25 start-page: 14706 year: 2017 ident: 2024070915314962900_c108 publication-title: Opt. Express doi: 10.1364/OE.25.014706 – volume: 15 start-page: 542 year: 2016 ident: 2024070915314962900_c117 publication-title: Nat. Mater. doi: 10.1038/nmat4573 – volume: 18 start-page: 025012 year: 2016 ident: 2024070915314962900_c83 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/2/025012 – volume: 11 start-page: 42 year: 2021 ident: 2024070915314962900_c39 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2020.3019928 – volume: 106 start-page: 093903 year: 2011 ident: 2024070915314962900_c67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.093903 – volume: 13 start-page: 519 year: 2019 ident: 2024070915314962900_c98 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0475-6 – volume: 4 start-page: 707 year: 2017 ident: 2024070915314962900_c28 publication-title: Optica doi: 10.1364/OPTICA.4.000707 – volume: 25 start-page: 2422 year: 2017 ident: 2024070915314962900_c126 publication-title: Opt. Express doi: 10.1364/OE.25.002422 – volume: 578 start-page: 246 year: 2020 ident: 2024070915314962900_c90 publication-title: Nature doi: 10.1038/s41586-020-1981-x – volume: 30 start-page: 1705331 year: 2018 ident: 2024070915314962900_c140 publication-title: Adv. Mater. doi: 10.1002/adma.201705331 – ident: 2024070915314962900_c33 publication-title: IEEE Transactions on Terahertz Science and Technology doi: 10.1109/TTHZ.2016.2585345 – volume: 82 start-page: 1959 year: 2010 ident: 2024070915314962900_c95 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1959 – volume: 14 start-page: 31 year: 2019 ident: 2024070915314962900_c87 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0297-6 – volume: 8 start-page: 821 year: 2014 ident: 2024070915314962900_c49 publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.248 – volume: 33 start-page: 2100836 year: 2021 ident: 2024070915314962900_c135 publication-title: Adv. Mater. doi: 10.1002/adma.202100836 – volume: 12 start-page: 226 year: 2022 ident: 2024070915314962900_c143 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2022.3142965 – volume: 125 start-page: 180403 year: 2020 ident: 2024070915314962900_c154 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.180403 – start-page: 541 year: 2013 ident: 2024070915314962900_c21 – volume: 318 start-page: 766 year: 2007 ident: 2024070915314962900_c56 publication-title: Science doi: 10.1126/science.1148047 – volume: 359 start-page: 666 year: 2018 ident: 2024070915314962900_c80 publication-title: Science doi: 10.1126/science.aaq0327 – volume: 100 start-page: 013904 year: 2008 ident: 2024070915314962900_c71 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013904 – volume: 5 start-page: 1050 year: 2014 ident: 2024070915314962900_c112 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.5.001050 – volume: 27 start-page: 28707 year: 2019 ident: 2024070915314962900_c129 publication-title: Optics Express doi: 10.1364/OE.27.028707 – volume: 56 start-page: 342 year: 2020 ident: 2024070915314962900_c132 publication-title: Electron. Lett. doi: 10.1049/el.2019.3682 – volume: 5 start-page: 268 year: 2015 ident: 2024070915314962900_c41 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2015.2399693 – volume: 82 start-page: 3045 year: 2010 ident: 2024070915314962900_c55 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 19 start-page: 8500108 year: 2013 ident: 2024070915314962900_c130 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2012.2215017 – volume: 67 start-page: 717 year: 2004 ident: 2024070915314962900_c119 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/67/5/R03 – volume: 17 start-page: 18 year: 2006 ident: 2024070915314962900_c111 publication-title: Opt. Photonics News doi: 10.1364/OPN.17.4.000018 – volume: 51 start-page: 095108 year: 2018 ident: 2024070915314962900_c156 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aaa9fe – volume: 39 start-page: 910 year: 1991 ident: 2024070915314962900_c25 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/22.81658 – volume: 39 start-page: 7609 year: 2021 ident: 2024070915314962900_c19 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3107682 – volume: 65 start-page: 2373 year: 2017 ident: 2024070915314962900_c14 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2017.2660491 – start-page: 1 year: 2019 ident: 2024070915314962900_c133 doi: 10.1109/IRMMW-THz.2019.8874535 – volume: 10 start-page: 371 year: 2016 ident: 2024070915314962900_c166 article-title: Advances in terahertz communications accelerated by photonics publication-title: Nature Photon doi: 10.1038/nphoton.2016.65 – volume: 5 start-page: 280 year: 2015 ident: 2024070915314962900_c40 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2015.2397279 – volume: 11 start-page: 2549 year: 2003 ident: 2024070915314962900_c8 publication-title: Opt. Express doi: 10.1364/OE.11.002549 – volume: 15 start-page: 751 year: 2021 ident: 2024070915314962900_c110 publication-title: Nat. Photonics doi: 10.1038/s41566-021-00851-6 – volume: 14 start-page: 446 year: 2020 ident: 2024070915314962900_c18 publication-title: Nat. Photonics doi: 10.1038/s41566-020-0618-9 – volume: 496 start-page: 196 year: 2013 ident: 2024070915314962900_c81 publication-title: Nature doi: 10.1038/nature12066 – volume: 461 start-page: 772 year: 2009 ident: 2024070915314962900_c53 publication-title: Nature doi: 10.1038/nature08293 |
SSID | ssj0011839 |
Score | 2.6363206 |
Snippet | The development of terahertz integrated circuits is vital for realizing sixth-generation (6G) wireless communication, high-speed on-chip interconnects,... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 6G mobile communication Applied physics Bends Biosensors Cloning CMOS Defects Devices High speed Image resolution Integrated circuits Interconnections Photonics Robustness Semiconductors Topological insulators Wireless communications |
Title | Terahertz topological photonic integrated circuits for 6G and beyond: A Perspective |
URI | http://dx.doi.org/10.1063/5.0099423 https://www.proquest.com/docview/2723252967 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_0ilgfRKviaZVFfRAkNZdsdje-HX5cEa8ctMW-hf0KbS13Ic350L_e2exmk-oh1ZcQkmUIM78Mv52dD4TeaJYSxuBPI6wkEcmUijg3eWQAXWkmOVfaxjvmB3T_mHw9yU76QZdtdUkj99TVxrqS_7EqPAO72irZf7BsEAoP4B7sC1ewMFxvZmMDrsLUzRUwyCp4sep01bRzbUIrCP1OndVqbc8IbFYhnbVHBrItXnGl6YvrNZcb6KrwdNWFQgZHQD5FeypPbXp9KPyZrStHTOdiuToPHvgMUAKi2jeLWvwQlyEe_d2Hrg88YH0sAraxNrWDDP1rMol47sbD7BnnUmOeRyxz7WWDz-2DmuuujPQPZw7sCSxgY155TlxV8m-9sc9FdRttJQxo0whtTT_Nvx2GIyRL_Vx-j_ukrq0UTd8HkdfJSL_DuAv0w2VCDMjG0QN036sdT53JH6JbZrmD7g16R-6gOwtniEfoMMAAD2CAOxjgHga4gwEGGGA6wwAD7GDwAU_xAASP0fGXz0cf9yM_KyNSsIFsojI2PBFMcV4qQctMpUomipY019KkUpJSqZgqGoskp0YTG_sWKo-pNlRqxdInaLRcLc1ThLlJSqEzwRKTE2YUeHQuUyG4pnpiJnqM3nZKKzo12XkmF0Wb0EDTIiu8fsfoVVhaue4pmxbtdpov_M91WSQMqL7NCWBj9DpY429CNqz6uar7FUWly2c3kvUcbffg3kWjpl6bF0A9G_nSg-wXGHiGXw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terahertz+topological+photonic+integrated+circuits+for+6G+and+beyond%3A+A+Perspective&rft.jtitle=Journal+of+applied+physics&rft.au=Kumar%2C+Abhishek&rft.au=Gupta%2C+Manoj&rft.au=Pitchappa%2C+Prakash&rft.au=Wang%2C+Nan&rft.date=2022-10-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=132&rft.issue=14&rft_id=info:doi/10.1063%2F5.0099423&rft.externalDocID=jap |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |